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A National General Survey of Pollution Sources

The most important data source that we draw upon in Section I.B of the main text is the 2007 National
General Survey of Pollution Sources (henceforth NGSPS) [Ministry of Ecology and Environment of China
(2007)]. In this section, we provide a detailed description of the dataset, which is based on the following
documents:

e Census Program of the National General Survey of Pollution Sources (5 —X 2B 5 $£ kL5 7 %),
issued by The State Council of the People’s Republic of China (2007a);

o The Regulations on National General Survey of Pollution Sources [Decree of the State Council of the
People’s Republic of China (No.508)] (& B 5 k& &P+ AR LA %24 %5085,
issued by The State Council of the People’s Republic of China (20075);

e Technical Specifications Requirements of the First National General Survey of Pollution Sources (%
— KA BT FREEZHKHR), issued by The First NGSPS Leading Group Office of the State
Council of the People’s Republic of China (2007).

For an official introduction to the NGSPS and declassified information at the aggregate level, interested
readers could refer to the book Data Collection of the National General Survey of Pollution Sources ( 5 %
REZHIEE) | P BIRFEA S H AL, 2011) prepared by The Data Compilation Committee for the First
National General Survey of Pollution Sources (2011), which is publicly available. Besides the NGSPS, we
also use two other datasets in preparing this appendix: China National Economic Census [National Bureau
of Statistics of China (2004)] and Statistics of U.S. Businesses [U.S. Census Bureau (2004)].

A.1 General Introduction

The NGSPS was a joint effort of multiple national ministries in China. The survey was organized directly by
the State Council with data collection and quality control done by specially trained field staff. According to
the The State Council of the People’s Republic of China (2007b), faking data would lead to financial penalties
or even lawsuits. The purpose of the NGSPS is to understand the total number of pollution sources and their
distribution in different industries and regions; to understand the generation, discharge and treatment of major
pollutants; to establish records for key pollution sources; to build a pollution source information database and
an environmental statistics platform; and to provide basis for formulating policies and plans for economic
and social development and environmental protection. The term “pollution source” here refers to premises,
facilities and equipment which discharge pollutants to environment in the process of production, living or
other activities or have adverse impact on environment, as well as other sources that result in pollution.

The survey covers all of the pollution units from agricultural, industrial, domestic sources, and facilities
for centralized treatment of pollution within the borders of the People’s Republic of China. In this study,
we focus on the industrial pollution sources, which consist of businesses from 39 manufacturing industries
according to the Industrial Classification for National Economic Activities (GB/T4547-2002).

Key and Regular Sources.—Firms in the industrial sources are divided into two groups: key sources and
regular sources. A key source firm is required to file questionnaires that are more detailed than those filed by
the regular source firms. A firm is categorized as a key source, if one of the following conditions is satisfied:

1. All production entities that discharge pollutants that contain heavy metal, hazardous waste, and ra-
dioactive substance.
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All production entities that belong to the 11 heavily polluting industries, which include: Paper and
Paper Products; Food Processing; Raw Chemical Materials and Chemical Products; Textile; Ferrous
Metal Smelting and Rolling Processing; Food Manufacturing; Production and Supply of Electric and
Heating Power; Manufacturing of Leather, Fur, and Feather; Processing of Petroleum, Coking, and
Nuclear Fuel; Manufacturing of Non-metallic Mineral Goods; Ferrous Metal Smelting and Rolling
Processing.

Firms with revenue of more than CNY 5 million in the 16 key industries, which include: Beverage
Manufacturing; Medicine Manufacturing; Chemical Fibers Manufacturing; Transportation Equipment
Manufacturing; Coal Mining and Washing; Non-ferrous Metal Mining; Processing of Timber, and
Manufacture of Wood, Bamboo, Rattan, Palm and Straw Products; Petroleum and Natural Gas Ex-
ploitation; General Purpose Machinery Manufacturing; Ferrous Metal Mining; Non-metal Mining;
Apparel, Footwear and Caps Manufacturing; Water Production and Supply; Metal Products Manufac-
turing; Special Purpose Machinery Manufacturing; Communication Equipment, Computers and Other
Electronic Equipment.

A firm is categorized as a regular source firm, if none of the above conditions holds.

Variables.—The survey collects information on the following variables for the industrial sources.

1.

Firm’s basic registration information, geographic latitude and longitude, the receiving water body
wastewater discharged by the firm, etc.

The consumption of raw and intermediate inputs, including: water, energy (coal, petroleum, gas,
electricity, etc.), the sulfur content of fuel, hazardous intermediate input, etc.

The quantity of each of the products produced by the firm.
The type, size and number of the pollutants treatment equipment that the firms own.

The generation, abatement, discharge and comprehensive utilization of various types of pollutants; and
the operation of various kinds of pollution prevention and control facilities.

The monitoring of pollutants emissions, including: the date and frequency of the monitoring; the type,
quantity, and concentration of the pollutant.

Pollutants.—The pollutants included for the industrial sources are those that have general implications on
pollution control. These pollutants are as follows.

1.

Wastewater: Chemical Oxygen Demand (COD), Ammonian, Petrochemicals, Volatile Phenols, Mer-
cury, Cadmium, Plumbum, Arsenium, Hexavalent Chromium, Cyanidium. For Paper and Paper Prod-
uct, Food Processing, Food Manufacturing and Beverage Manufacturing Industries, Five-days Bio-
chemical Oxygen Demand (BODj3) is added. For Urban Sewage Treatment Plants, Total Phosphorus,
Total Nitrogen, and BODj5 are added.

Exhaust: Soot, Industrial Dust, Sulfur Dioxide. For Electrolytic Aluminium, Cement, Ceramic,
Frosted Glass industries, Fluoride is added. For Vehicle Exhaust Census, Carbon Monoxide and Hy-
drocarbon are added.

Industrial Solid Waste: Hazardous Waste (according to the National Catalogue of Hazardous Wastes),
Smelting Waste, Flying-Ash, Slag, Coal Refuse, Gangue, Radioactive Slag.
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TABLE A.1—PERCENTAGE OF FIRMS WITH POSITIVE EMISSIONS BY POLLUTANTS

Waste COD Petro NH; BOD CN Cr°" Phenol As Cr

Key Sources 76.2 732 314 252 174 490 4.86 2.42 228 201
Regular Sources ~ 35.2 283 791 649 256 0.13 N/A 0.04 0.07 N/A

T Source: The 2007 National General Survey of Pollution Sources (NGSPS). The acronyms are respec-
tively referring to: Wastewater, Chemical Oxygen Demand, Petrochemicals, Ammonian, Biochemical
Oxygen Demand, Cyanidium, Hexavalent Chromium, Volatile Phenols, Arsenium and Chromium.

4. Plaster discharged by Desulfurization Facilities, Sludge generated by waste water treatment facilities,
and the remaining from burning hazardous waste.

5. Radioactive pollution sources from the utilization of Concomitant Radioactive Mineral and from Civil
Nuclear Power Generation.

Table A.1 lists the percentage of key and regular firms that report positive emissions of different water
pollutants, respectively.

A.2  Methods of Measurement

Three different methods are used to measure the level of pollutant emissions: Monitoring Method, Method
of Emission Coelfficient, and Material Balance Method. In this section, we describe these three methods and
explain which method is used to determine the level of pollutant emissions in practice.

Monitoring Method.—With this method, the actual quantity and concentration of pollutants are measured,
which are used to infer the annual quantity of the generation and discharge of different pollutants. In practice,
there are three sources from which the monitored data are obtained. Ranked by the priority of adoption when
data from multiple sources are available, they are NGSPS monitoring, historical monitoring, and online
monitoring. The NGSPS monitoring data are collected by the field staff in the survey year (2007). The
historical monitoring data are measured and recorded in the past three years, with the latest data having the
highest priority. The online monitoring data are those automatically uploaded by computerized and Internet-
connected pollutants treatment equipment. Before the historical and online monitoring data are adopted, the
field staff of the survey would ensure that the production condition and pollutant treatment technology have
not undergone substantial changes.

A pollution source is required to report monitored data, if any of the following four criteria is met:

1. Nationally Monitored Key Pollution Sources (B £ % &% % /&): all firms in the List of Nationally
Monitored Key Pollution Sources (B K Z & Y t= 41 & % 37 7042007193 5).

2. Facilities for Centralized Treatment of Pollution.

3. Provincially Monitored Key Pollution Sources (‘4 45 ¥ %77 % /&) that in sum account for 65% of total
provincial emission as recorded in the 2005 Environmental Statistic Yearbook. That is for each of the
major pollutants, starting from the most polluting firm and adding up the quantity of emission, all the
firms until the summation reaches the 65% of the total provincial emission recorded. The collection
of the firms for all major pollutants makes the list.

"There are four different sources of historical data. Again, ranked by the priority of adoption when data from multiple sources
are available, they are the historical data monitored by the local environmental authorities, the data monitored upon the completion
of a newly constructed project, the data monitored by a third-party agency, and those self-reported by the firms.
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4. Newly established projects since 2005 whose pollutants discharge is higher than the least polluting
firms in the Provincially Monitored Key Pollution Sources.

These firms are later referred to as the monitored firms in this document.

Starting from 2007Q1, for all Nationally Monitored Key Pollution Sources, Centralized Treatment Facil-
ities and Provincially Monitored Key Pollution Sources, waste water sources have to be monitored at least
once per quarter, and exhaust sources have to be monitored at least once per six months.

The actual monitoring practice is subject to the following guidelines:

1. The monitoring of Mercury, Cadmium, Hexavalent Chromium, Plumbum, and Arsenium must be
conducted at the discharging outlets of individual factory workshops, separately for each outlets.

2. Other water-based pollutants are monitored at the outlets of the factory.

3. The flow rates of wastewater and exhaust are monitored at the same time with the that of pollutants
discharges.

4. The monitoring of pollution sources are conducted at representative production and polluting time
periods.

5. All monitoring technical standards of wastewater pollutants follow The Technical Specifications for
the Monitoring of Surface Water and Wastewater (3% 7K A= 5 K I M K78, HI/T91-2002) and
The Technical Specifications for the Monitoring of Wastewater Pollutants Emission (7K 7 3 41 HE3 &
= BB ARHATE, HI/T92-2002).

6. For unstable wastewater sources, the samples are collected using the Water Ratio Automatic Sampler.

7. All monitoring technical standards of exhaust pollutants follow The Determination of Particulates and
Sampling Methods of Gaseous Pollutants from Exhaust Gas of Stationary Sources (B % 7 32 R HE A,
¥ Bk N e RS TF F KA Tk, GB/T16157-1996).

Method of Emission Coefficient.—With this method, the generation and discharge of pollutants are calcu-
lated according to the Handbook of Emission Coefficient edited by the Chinese Academy of Sciences. The
benchmark coefficients are estimated based on firm’s production technology, production scale, etc. The ac-
tual coefficients used are modified from the benchmark coefficients according to firm’s use of intermediate
inputs, its managerial practice, and the pollution treatment equipment installed. The actual pollutants gener-
ation and discharge are then calculated according to the actual production scale of the firm in year 2007.

Material Balance Method.—With this method, the quantities of the materials entering and leaving a sys-
tem are measured. Therefore the material flows which might have been unknown or difficult to measure
without this method are indirectly measured. The exact rule of conservation used in analyzing the system
depends on specific context, but all rules revolve around mass conservation. In practice, a firm’s usage of
intermediate inputs, energy, water as well as production technology are considered simultaneously, in or-
der that the calculated pollutants generation and discharge can realistically reflect the actual production and
emission of the firm in reality.

Which Method Will Be Used in Practice?—To determine which measurement method will be used in
practice, the survey follows the following guidelines.
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1. The data of the Key Pollution Sources are obtained mainly through monitoring and the method of
emission coefficient, while the material balance method is only used when the other two methods are
not feasible.

2. The data of the Regular Pollution Sources are obtained mainly by the method of emission coefficient,
while the material balance method is used only when the method of emission coefficient is not feasible.

3. Before accepted, the monitored data are compared with those calculated from the method of emission
coefficient. If the discrepancy is less than 20% of the monitored value, the monitored value is used.
If the discrepancy is larger than 20%, the production technology and operating status of the firm are
examined. If the operating status is in compliance with that specified in the technical regulations of the
monitoring practice (for example, the firm has to reach at least 75% of its production capacity when
the emission is monitored), the monitored data are used. Otherwise, the emissions are calculated using
the method of emission coefficient.

B A Comparison of Firm Size Distributions for Different Samples

This section compares the firm size distributions from the different samples. In Figure B.1, we present the
kernel densities of firm size estimated using different samples in NGSPS and CNEC. In the upper panels, we
plot the firm size distributions of the key sources (the left panel) and all firms (the right panel) in the NGSPS
respectively. In the lower panels, we plot those of the Annual Surveys of Industrial Firms (ASIF) sample (the
left panel), which consists of all state-owned firms and private firms with sales above CNY 5 million, and of
all firms (the right panel) in the CNEC. There are two findings that we would like to emphasize:

1. Although the key source firms are indeed a bit larger on average, they include both small and large
firms; and the empirical density of the log output of the key source firms resembles a bell shape. This
suggests that the key source firms are reflecting the characteristics of the firms over the entire range of
the firm size distribution. As a result, the systematic bias introduced when using the key source firms
to empirically analyze the intensity/size relationship in Section I.B would be limited.

2. There are marked differences in the firm size distributions between the ASIF sample and CNEC full
sample, with the ASIF sample missing most of the small firms. As a result, while the ASIF data are
widely used in studies of Chinese economy, we use the CNEC full sample in our paper, because both
the small and large firms play a critical role in our empirical and quantitative analysis.

In sum, the two take away points from the four panels in Figure B.1 are that the key firms in NGSPS are
representative of both large and small firms; and that it is more appropriate to use the CNEC full sample in
companion with the NSGPS for our purpose.

C Additional Results on Firm Size and Pollution Intensity

In this section, we present additional results on the statistical relationship between firm size and pollution
intensity. In Section C.1, we show the scatter-plots and regression results for individual polluting industry
and for the whole manufacturing sector as well. In addition, we show that the negative relationship between
firm size and pollution intensity continues to hold after conditioning on whether firms are using physical,
chemical or biological technologies. We also show that our results in Section I.B remain robust if we cluster
the standard errors by province. In Section C.2, we provide a brief overview on our estimates on coefficients
of the dummy variables, and compare our findings with those from the existing literature.
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FIGURE B.1. FIRM S1ZE DISTRIBUTIONS IN VARIOUS DATA SOURCES

Sources: NGSPS and CNEC. In all panels, the horizontal axes are in log-scale.

C.1 Additional Scatter-plots and Regression Results

For each industry among the top five polluting industries, we regress the following equation:

log(COD;) = By + B1 log(Output;) + Xpy; + Xovs + &,

where X, are the provincial dummies and X, are the ownership dummies. The estimation results are
summarized in Table C.1, with the corresponding scatterplots presented in Figure C.1. We also include the
scatterplot with the top five industries pooled together in Figure C.1 for completeness. All the estimates are
significant both statistically and economically with reasonable levels of R2.

If we apply Regression (1) in Section I.B of the main text to the whole manufacturing sector, we get the
following results

log(COD;) = —11.05 + ().63) x log(Output,) + Xy + ¢4,

(0.84)
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Source: NGSPS. Line: Least square fit.
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TABLE C.1—FIRM S1ZE AND POLLUTION INTENSITY BY INDUSTRY

Parameters Paper  Food  Textiles Chemical Materials Beverages

Bo —414 -2.15 =371 -7.12 —2.86
0.56) (0.26)  (0.57) (0.33) (0.39)
B1 0.74 0.39 0.70 0.88 0.59
0.02) (0.01) (0.0 0.01) 0.02)
R? 0.38 0.31 0.38 0.40 0.34
N 5,632 6,893 6,284 8,686 1,558

t Data Source: NGSPS.

All Manufacturing
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FIGURE C.2. FIRM SIZE AND POLLUTION INTENSITY: ALL MANUFACTURING INDUSTRIES

Source: NGSPS. Line: Least square fit. Residuals after controlling for the covariates are plotted.

implying again a negative correlation between firm size and pollution intensity. However, as we mentioned
in Section I.A of the main text, because industrial water pollutants are typically concentrated in a handful of
industries, when we apply the above analysis to the whole manufacturing sector, we lose about two thirds of
the observations, because firms in many industries did not report positive COD emissions. Figure C.2 visu-
alizes the above regression by plotting the residuals after controlling for all the covariates. Likewise, if we
apply the linear regression of technology adoption in Section I.B of the main text to the whole manufacturing
sector, we get the following results:

y; = —0.16 + 0.04 x log(Output,) + Xy + ¢;,
(0.11)  (0.000)

implying again a similar positive correlation between firm size and the adoption of clean technology.

For the size-intensity relationship by treatment equipment, in Section I.B of the main text, we group
physical and chemical equipments together with an extra dummy variable for chemical equipment. Here, we
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show that the relationship holds as well when we estimate the relation for each type of equipment separately:

Physical: log(COD;) = —(3.5)0 + (%.318) x log(Output;) + Xgy; + XpYs + XoV3 + &,
0.40 .

Chemical: log(COD;) = —4.59 + (%.0717) x log(Output,) + Xsy; + XpvYs + XoV3 + &,
(0.49) .

Biological: log(COD;) = —4.37 + ((()).g?) x log(Output,) + Xsy; + XpYs + XoV3 + &
(0.20) 01

For Regression (1) in the main text, we have also clustered standard errors at the provincial level. We
confirm that the statistical significance does not change:

log(COD;) = —3.75 4+ 0.63 x log(Output;) + X5y, + XpYs + XoY3 + &5
(0.30) (0.03)

C.2  Locations and Ownership Rights

The pollution intensity also exhibits rich provincial level variations. We take the regression results on the pa-
per industry for illustration purpose. Using Beijing as the benchmark, of all the remaining 29 provinces and
municipalities, only the coefficient of Shanghai is negative and statistically insignificant. For the remainder
provinces, all estimates are positive and highly significant.” The five most polluting provinces are Ningxia,
Inner Mongolia, Gansu, Shaanxi and Xinjiang, for which the respective provincial GDP ranking in 2007 are
29, 16, 27, 19 and 25 out of 31 provincial administrative regions (not including Hong Kong and Macau). Ge-
ographically, these are also inland provinces. In fact, despite that the majority of the paper manufacturers are
located in Zhejiang and Guangdong (ranked 1st and 4th by GDP), their pollution levels are lower comparing
to those inland less developed regions. These patterns are highly robust across various specifications of our
regressions. The general message we get from these dummy coefficients are the following. First, Beijing
and Shanghai, arguably the political and economic center of China, exert pollution control standard far more
stringent than the rest provinces. Second, inland and less developed provinces in general have worse control
over and hence are more prone to industrial pollution problem. These two patterns are broadly consistent
with the environmental Kuznetz curve and results from previous literature. However, unlike Jiang, Lin and
Lin (2014), ownership rights do not seem to have significant effects. If anything, the Foreign and Hong
Kong, Macau and Taiwan based firms have only weakly better pollution controls. However, the statistical
significance of the estimates never exceed 10% across all our regressions. We conjecture that this could be
because Jiang, Lin and Lin (2014)’s estimates are derived using a different sample of firms (in total 1,931
firms), while our data cover more firms.

D Evidence Supporting the Modeling Assumptions

In this section, we provide some evidence in support of our modeling assumptions. In Section D.1, we
present the evidence that motivates us to model the distortions as progressive taxes on output. In Section
D.2, we justify our choice of modeling the adoption of advanced treatment technology as fixed costs. We
also describe additional technical features of the treatment technology, including the processing efficiency,
designed processing capacity, and installation costs, using the Paper and Paper Product industry as an exam-
ple. Section D.3 contains a brief summary of the environmental regulations in China.

2One province, Hebei is significant at 10% level. We notice here that Hebei, a province that is commonly considered as heavily
affected by industrial pollution, is in fact an outlier, since the paper manufacturing is not its pillar industry.
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D.1 Firm-level Distortions

Recent studies of the Chinese economy have found large distortions at both the sector and the firm level,
which negatively affect aggregate productivity and output considerably.’ Following the seminal approach
developed by Hsieh and Klenow (2009, 2014), we model and estimate firm-level distortions by using varia-
tions in the average products of capital and labor across firms.* More specifically, if we let 7,,, 7x,, and 7,
be the wedges that firm ¢ faces in the product, capital and labor markets respectively, the profit maximization
problem of firm ¢ is:

mi = e { (1= 72,)2/ 7 (W07 = (1 ) Ry — (17 W

By using the first-order conditions, the firm-level average product of capital ¢y, labor ¢;, and the capi-
tal/labor ratio x; can be expressed as

. Y N (1 +Tki)R

Y (1 +Tli)W
(B2 ML T U—an(-r)
(D.3) ki = E o« (1 -l-Tli)W

~

i l—a (1+m)R

The above equations show that in the absence of any distortions (7,, = 74, = 7, = 0), ¢x,, ¢, and K;
should all be equalized across firms. Equations (D.1) and (D.2) state that firms that face higher distortions
in the capital (labor) and/or product markets demonstrate a higher average product of capital (labor). In
addition, according to Equation (D.3), the capital/labor ratio increases with the relative size of labor to
capital market wedge. By using firm-level data on total production value, the book value of capital stock
and labor compensation from the CNEC, we calculate z;, ¢, ¢,, and x; for each firm in our sample. Here
we set v = 0.93, which is the calibrated value of returns to scale in the main text. Figure D.1 shows on log
scale the scatterplots of ¢y, , ¢;, and k; against firm-level productivity z; for the Paper and Paper Products
industry. We plot the Paper industry for demonstration purpose, qualitatively the results for all five polluting
industries as well as all manufacturing industries combined are very similar.

Two patterns emerge from Figure D.1. First, from the two upper panels, we see that both ¢, and ¢;,
are positively correlated with z;, which suggests that more productive firms have higher average products of
both capital and labor. Expressed in wedges, this means that both (1 +7,)/(1 —72,) and (1 +7,)/(1 —72,)
are higher for more productive firms. This could be because that more productive firms are subject to higher
factor or product market distortions or both. Second, from the lower panel, we see that the capital/labor ratio
is at best weakly negatively correlated with z.

Qualitatively, these findings indicate that the relative wedge firms face in the capital and labor markets
does not depend strongly on the idiosyncratic productivity of firms, which in the context of our model

3See Hsieh and Klenow (2009), Song, Storesletten and Zilibotti (2011), Brandt, Tombe and Zhu (2013), and Tombe and Zhu
(2019), among others.

*Though average factor product dispersion could arise due to dynamic capital adjustment [Asker, Collard-Wexler and Loecker
(2014)], for the case of China, David and Venkateswaran (2019 forthcoming) show that dynamic adjustment costs only accounts for
about 10% of the variation in average factor product in the data. Naturally, we also cannot separate out variations in average factor
product caused by firm-specific characteristics, for instance firm-specific markup or capital share. However, we argue that it would
require empirical implausible variations of such parameters to generate the patterns of the data we observe.
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Source: CNEC. All panels are plotted in log scale. Lines are least square fit. Data of the Paper and Paper Product Industry are
plotted.
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The Generic Tax Function
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The actual output tax function used in the quantitative exercises, given the calibrated values for ¢ and ¢

implies 1 + 73, ~ 1+ 7;,.° Since we cannot separately identify the three wedges, for simplicity, we assume
Tr, = 7, = 0 and attribute all the variations in the average product of factors to the wedges in the product
market 7,,. Whether we assume 7, = 7;, = 0 or alternatively 7., = 0 does not affect our results, but the
interpretations need to be changed accordingly.®

As a result, following Hsieh and Klenow (2014) and Bento and Restuccia (2017), we model these distor-
tions as implicit progressive output taxes; and the tax function takes the form used in the main text:

(D.4) T, = max {0, 1 ¢Oz¢1} .

where ¢g determines the mean level of the taxes, and ¢; determines the progressivity of the taxes. When
¢1 < 0, the tax rates are increasing in firm TFP z, and the progressivity of the tax is decreasing in ¢;.” The
actual tax function used in the quantitative exercises is plotted against log productivity in Figure D.2, which
is increasing and concave in z given our calibrated values for ¢ and ¢;.

As we explained in the main text, the firm-level distortions 7, are meant to capture a variety of policies
and institutions that reallocate production factors from large productive to small unproductive firms, follow-
ing the indirect approach in the misallocation literature [Restuccia and Rogerson (2013)]. Examples include
size-dependent taxes and subsidies that favor small firms, imperfect tax enforcement that induces tax evasion
among small firms, financial constraints and contractual frictions that impede the growth of productive firms
[Cooley and Quadrini (2001), Clementi and Hopenhayn (2006) and Akcigit, Alp and Peters (2018)], and lo-
cal protectionism and internal trade barriers that disproportionately affect large productive firms [Eberhardt,
Wang and Yu (2016) and Tombe and Zhu (2019)]. While it is of great policy interest to study specific policies
and institutional features underlying 7., we leave this important task to future work.®

This also explains the reason why ¢y, ~ ¢y, , Vi.

®For example, we cannot distinguish between the data-generating process we use here and another process where Tk, and 7y,
increase simultaneously, while 7, is equal to zero.

"Notice that since ¢1 <0, decreasing ¢; increases its absolute value.

8 Adamopoulos and Restuccia (2014) and Wu et al. (2018) are two recent examples where observable policy distortions are
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TABLE D.1—PRICES OF DIFFERENT TREATMENT EQUIPMENTS

Technologies 25% 50% 75% Maximum Mean

Physical 1.4 3.5 10 1000 12.4
Biological 20 50 120 3056 109.6

Source: 2007 NGSPS. All the numbers are measured in CNY 10,000.

D.2  Treatment Technologies

In the main text, we model the cost of adopting the clean technology as a fixed cost kg independent of the
production scale of firms. In this subsection, we provide empirical evidence in support of this assumption
using the firm-level data from the NGSPS.

The assumption that the cost of technology adoption is independent of firm size has two implications. First,
larger firms are more likely to adopt clean technology, and as a result, we should see positive correlations
between production scale with both the possibility of adoption and total expenditure in treatment technology.
The linear probability model in the main text shows the first. Here we calculate the correlation between the
log value of production and treatment equipment investment. Not surprisingly, we find that it is positive
(0.64) as well.

The second and perhaps more important implication is that the ratio of treatment technology expenditure
over output should decrease with the size of the firm. We find that it is also the case in the NGSPS data.
For firms in the top-5 polluting industries, we calculate the average of the ratio of treatment equipment
expenditure to output value within each quintile of output. The means of the ratio from the first (smallest) to
the fifth (largest) quintile are 23%, 11%, 6.7%, 5.0%, and 2.7%, respectively. A linear regression model that
controls for the same set of covariates as in the main text delivers the same message:

Investment;
log (“Vesmenl> = —0.73— 0.40 x log(Output;) + Xy + &;.
Output; (0.11)  (0.004)

Together, the evidence supports our choice of modeling the adoption cost of clean technology as a fixed cost.

Prices of Physical versus Biological Equipment.—We assume in the main text that only the installation
of biological technologies requires a fixed cost. Here we provide evidence in support of this choice. The
distributions of the prices for physical and biological equipments in absolute term (in CNY 10,000) are
listed in Table D.1. As is shown in the table, the prices of biological equipments are 9 to 15 times of those
of physical equipments. In addition, the total installation costs of physical equipment for the top-5 polluting
industries over those of biological equipment is only 0.087. Therefore in our model we assume that only the
adoption of biological equipment is costly.’

Additional Technical Features of the Treatment Technologies.—We are interested in the following features
of these technologies: processing efficiency, designed processing capacity and installation costs. We proxy
the processing efficiency using one minus the ratio of emitted COD to generated COD. The designed pro-
cessing capacity (in tons) and actual installation costs are recorded directly in the data. We then calculate the
unit capacity costs by dividing the installation costs with the processing capacity. We use the unit capacity
costs as an indicator of the returns to scale of clean treatment equipment. In Figure D.3, in clockwise order

investigated. Adamopoulos and Restuccia (2014) study the observable farm-level price distortions while our own work Wu et al.
(2018) focuses on distortions created by migration and land policies in China.
°In fact, what is crucial here is that the cost to install clean technology is higher than that of dirty technology.
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Source: NGSPS. In all panels, the horizontal axes are in log-scale.

we plot the density functions of processing capacity, installation costs, total value of industrial output and
unit capacity cost by technology type. For all panels, log-scale is used in the horizontal axes.

Broadly speaking, biological technologies have the best processing efficiency, the largest processing ca-
pacity, the highest installation costs but the lowest unit capacity cost. More specifically, the mean and median
processing efficiency of biological technology are 17 and 10 percentage points higher those of physical tech-
nology. The evidence again points to a fixed costs type of mechanism behind the lower pollution intensity by
large firms. That is, although biological technologies are more advanced in terms of processing capacity and
efficiency, they are also more costly. Therefore, small firms lack the profit margins needed to take advantage
of the returns to scale exhibited by biological technologies, and hence large firms are more likely to adopt

these more advanced technologies.
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D.3 Environmental Regulations in China

In this section, we briefly summarize the environmental regulations in China. We follow the descriptions in
Lin (2013) closely here.

Environmental regulations in China are specified in The Environmental Protection Law of the People’s
Republic of China (EPL, ¥ % AN R 4= B 3R 35 4% 47 %). The EPL was launched on trial basis in 1979 and
was officially enacted by the National People’s Congress in 1989. It was later amended in 1993 and 2003.
The Ministry of Ecology and Environment (MEE, previously the State Environmental Protection Adminis-
tration and the Ministry of Environmental Protection) is in charge of the monitoring and administration of
China’s environmental issues. Two major policy instruments that the MEE uses are a pollution levy system
and command-and-control instruments.

The Pollution Levy System.—The pollution levy system charges firms a pollution fee based on their quan-
tity of effluent discharge of pollutants. Before 1993, firms were required to pay for the emissions that go
beyond the national standard. If a firm discharges multiple pollutants and the levels of more than one of the
pollutants are above the national standard, it only has to pay for the one that exceeds the standard by the
greatest amount (calculated according to the Pollutants Equivalent Factor). Starting from 1993, firms also
have to pay for within-standard emissions. After 2003, pollution levies are calculated based on the top three
above standard pollutants instead of only the top one. The 2015 revision of the EPL significantly increases
the financial penalties by allowing the environmental authorities to multiply the original penalties by the
number of days that firms are incompliant with the regulations specified in the law.

In practice, the MEE oversees the enforcement of the EPL and the implementation of environmental
policies. Local Environmental Protection Bureaus (EPBs) are the main authorities that do the field work.
In general, larger polluters are monitored by municipal EPBs while smaller ones are by district and county
EPBs. All polluting firms are required to submit an annual predicted volume of emissions at the beginning
of a year. Based on the actual production and abatement practice, firms are also required to revise the
actual emissions during the year. The EPBs send field staff to verify the credibility of firms’ reports. The
inspections include consistence between emissions, output, material usage and across historical data. Field
inspectors also conduct random on-site inspections of the emissions by firms without prior warning.

Pollution levies are then calculated based on the verified reports. False reporting are subject to financial
penalty with a ceiling. Serious fraudulent reports could lead to further non-financial penalties, including
temporary shut down from production, administrative detention of directly responsible personnel, and even
criminal charges.

The Command-and-Control Instruments.—The command-and-control instruments usually involve tempo-
rary shut down of firms incompliant with environmental emission standards, which would cost these firms a
fraction of their profits. Serious violation sometimes also leads administrative detention and criminal charges
similar to the case of fraudulent report of emissions. Because the pollution levy system is widely acknowl-
edged for being ineffective in providing firms with incentives to control pollution [Dasgupta et al. (2001),
Wang and Wheeler (2005) and Lin (2013)], command-and-control instruments are usually used as deter-
rence for potential violation by polluting firms. The command-and-control instruments prove to be effective
in many government-led campaigns against pollution. See for example, Te-Ping Chen, “China Cracks Down
on Water-Polluting Industries,” the Wall Street Journal, April 17th, 2015; or Trevor Nace, “China shuts down
tens of thousands of factories in widespread pollution crackdown,” Forbes, October 24th 2017.
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TABLE F.1—S1ZE DISTRIBUTION ON POLLUTION

Methods Paper  Agricultural Food Textile Chemistry Beverage Average
Non-parametric ~ 39.8% 60.7% 81.6% 102.5% 103.8% 63.5%
Piecewise-linear  34.8% 69.4% 93.5% 180.2% N/A? 75.4%
Parametric 43.5% 61.1% 97.5% 101.2% 89.0% 67.0%

f Note: For individual industries, the numbers reported are the pollution intensity from using
the U.S. firm size distribution as percentage of that using China’s distribution. We use the 1st
and 3rd quartile as the ends of the output range corresponding to each employment bin in the
non-parametric calculation. Column 6 (Average) calculates the weighted average of these ratios
using the percentage contribution in the first row of Table 1 in the main text as weights.

 Since the beverage industry has fewer firms than the others, there are employment size bins with
no corresponding firms in China, which invalidates the method. We set the ratio to 100% in the
calculation of the last average.

E The Firm Size Distributions of Individual Industries

In the main text, we present the firm size distributions for the pooled polluting industries and the manufac-
turing sector as a whole. In this section, we explain in details how the firm size distributions are constructed,
especially those for the U.S., and present the firm size distributions for each of the five polluting industries
in China and in the U.S.

We use the 2004 CNEC and 2004 Statistics of U.S. Businesses (SUSB) data to construct the firm size
distributions in China and in the U.S. respectively. The SUSB organizes data by enterprise size groups
instead of firm size groups. According to the definition in SUSB, a large enterprise could consist of firms that
belong to different industries. For each size bin, the SUSB reports the total number of firms, establishments
and employees along with other variables summed up across all enterprises that fall in that size bin. As a
result, we approximate the firm size distribution using the average firm size of a particular size group, which
is calculated by dividing the total employment by the number of firms. We then assign groups of firms to
different size bins according to their average size. Such imputation introduces approximation errors naturally.
To reduce the approximation noise, we group the size bins into four main groups: 1-19, 20-99, 100-399 and
400+. The firm size distributions for each of the top polluting industries and all industries pooled together
are shown in Figure E.1. As we can see, while there is substantial heterogeneity across individual industries,
large firms in China account for much smaller employment shares than those in the U.S. for each industry.

F Accounting Exercises

This section provides details on the accounting exercises.

Estimation Strategies.—ldeally, we would like to have information on pollution intensity over firms’ em-
ployment size bins. Unfortunately, the NGSPS only reports total output value and total amount of pollution
at the firm level. Therefore, we need to impute pollution intensity over the number of employees. To do this,
we use the CNEC to estimate a relationship between employment and output.

1. Non-parametric:

e For each U.S. employment bin, we compute the 1st and 3rd quartile of output level for Chinese
firms within that employment bin. The two quartiles are used as the lower and upper bounds for
the output bins in NGSPS.
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o We then use the median pollution intensity of firms within the newly defined output bins as the
average pollution intensity for those bins.

o Lastly, we calculate the aggregate pollution by assigning to each bin the corresponding share of
output.

2. Piecewise Linear:

e For each U.S. employment bin, we regress log-output on log-employment using the subset of
Chinese firms within that employment bin. The lower and upper bounds for the output bins in
this case are calculated as the predicted value of the above regression.

e We then run piecewise log-linear regression of pollution intensity on output within each new
production bin. The average pollution intensity is chosen to be the predicted intensity at the
midpoint of the new log-output bin.

o Lastly, the average intensity is applied to the output share distributions.
3. Parametric:

o Using the CNEC, we regress log-output on log-number of workers, which yields a parametric
relationship between the number of workers and output.

o Using the NGSPS, we regress log-intensity on log-output, which yields a parametric relationship
between intensity and output. From these two relationships, we can subsequently construct a
new parametric relationship between intensity and number of employees. The average intensity
is chosen to be the midpoint of each U.S. employment bin. Notice that in this case we have a
direct functional form for the relationship between employment and intensity.

e Lastly, the average intensity is applied to the output share distributions.

The estimation results are shown in Table F.1. Each of the three methods has its own advantages and
disadvantages. The two non-parametric methods capture more of the variation at the local level, which
could be washed out in the parametric estimation across the whole state space. However, this local nature
also introduces a lot of instability on the estimates. Further, there are situations when there are gaps not
covered by adjacent output bins and situations when these output bins overlap with each other. Under these
conditions, some information will be lost with other being used for multiple times. Nevertheless, the results
are reasonably robust across different estimation strategies. In the Section I.C of the main text, we use the
results of the parametric method.

G Proofs and Additional Analytical Results

In this section, we provide formal proofs to Propositions 1 and 2 in Section II.D of the main text. The two
propositions are proved respectively in Sections G.1 and G.2. We also include additional analytical results in
this section. Specifically, in Section G.1, Lemma 1 and Corollary 1 highlight the key trade-off that firms face
in deciding which type of treatment technology to install, depending on whether they are subject to correlated
distortions or not. Lemma 2 shows the standard results of the Lucas (1978) model where household members
choose their occupations according to their comparative advantage. In Section G.2, in a simple one-sector
model with a fixed number of firms and exogenous firm-level pollution intensity, we present the conditions
under which removing the progressiveness of the distortions would reduce average pollution intensity. In
Section G.3, we show the qualitative equivalence between the effects of distortions on aggregate output and
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pollution in the Lucas (1978) model with those in a closed-economy version of the Melitz (2003) model.
Many researchers working with heterogeneous firms models are more familiar with the Melitz (2003) setup
as opposed to the Lucas (1978) setting, especially in the trade and environment community. We demonstrate
in this section that the differences between the two settings are immaterial to our main findings. Finally, in
Section G.4, we use a simple model to study how uncorrelated distortions—defined as distortions that are
not correlated with firm TFP—affect aggregate output and pollution.

G.1 Correlated Distortions and Technology Adoption

In this section, we prove Proposition 1 of the main text. To simplify notation, we set ¢g = 1 in this section.
We begin with a couple of lemmas.

Lemma 1. In an economy with no correlated distortions, 7o(z) and m1(z) are both increasing and linear
with respect to z. In addition, the slope of m1(z) is steeper than that of mo(z):

omo(z) or1(z)
5, — (1=&—5

(G.1) Vz e Z.

Proof. Once the fixed cost kg is paid, it no longer affects a firm’s decision. The factor demand decisions for
the two types of firms are therefore the same. The first order conditions for capital and labor are respectively

G2) Omile) gt igeyi-ar — g
ok
(G.3) 8”55’2) L (L —a)y el = 0,1

Dividing (G.2) by (G.3) yields constant capital to labor ratio h

- koW
Tl (1-o)R’
which says more capital is demanded when technology is capital intensive (higher o) or when capital rental
price R low. Notice that the system of equations (G.2) with (G.3) is log-linear and thus has closed-form
solution. With some algebra, the solutions are characterized by

(G.4) I(2) = ®LRFTW =T . 2,
1+vy(a—1) y(1—a)
(G.5) k(z) = ®oR -1 W =1 .z
where
(1—a)* 151 a
o1 =|— oy = d,.
! [(1 — a)yay and l—a !

Substitute the optimal solutions (G.4) and (G.5) back to the definition of profits functions 71 (z) and mo(z2),
we have

mo(2) = (1-§) (9— 1;@)
() = <Q—

<I)1> kz — Rkg,
1l -«
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where

ay (1—a) a
Q:( “ > ®] and k= W -1 RA-1.

l—«

It can be seen that both functions are increasing and linear in 2, and hence Equation (G.1) holds. Ul

Corollary 1. Suppose that the correlated distortions are specified as max {0, 1— 2% } withl—vy+¢1 > 0,
then 7y(z) and 71(z) are both increasing and concave with respect to z. In addition, the slope of m1(z) is
steeper than that of wy(z):
omo(z)
0z

ori(z)

W Z.
0z Z€

=(1-9)

Proof. The proof is straightforward given Lemma 1. Substituting in the tax function, 7y(z) and 71 (z) now
becomes

1 1—y+¢q

mo(2) = (1 - €) (a—q>1> it

1l -«

1 1—v+¢1
m(z)=(Q— . oz(I)l kz -7 — Rkg,

where €2, ®; and k are defined as in Lemma 1.

The assumption 1 — v + ¢; > 0 guarantees the monotonicity of the profits functions. In the terminology
of Hopenhayn (2014), the assumption means that there is no rank reversal. Concavity is easily verified by
taking the second order derivatives. O

Lemma 2. There exists a unique threshold Z such that all household members with z < Z choose to be
workers and those with z > % become entrepreneurs. Further, Z is pinned down by W = 7 (Z2)

Proof. Since the overall profit function 7(2) is the upper envelope of m(z) and 71 (z), from Lemma 1 (and
Corollary 1) we know that 7(z) is monotonic increasing. It is easy to verify that 7(0) = 0. Therefore, as
long as 0 < W < 7(%), we can find a unique 2 such that 7(2) = W, where uniqueness follows from the
monotonicity. The condition 0 < W < 7(Z) is guaranteed in the general equilibrium version of our model
by Inada condition on the production function. O

PROOF OF PROPOSITION 1:

Proposition 1. When 1 —~v+ ¢1 > 0, a firm chooses to install clean technology only when its productivity is
higher than a threshold. Moreover, the threshold when the firm faces distortions Z is higher than that when
the firm is not subject to any distortions Z,.

Proof. Uniqueness follows from

omo(z) or1(z)
0z 0z

and monotonicity under both the cases with and without frictions.

=(1-¢) Vz e Z,

We can solve for the analytical expression for z,,:
Rkg
; .
5 <QI€’Y - m/{,)

Zn —
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Using expressions of the profits functions with correlated distortions and recall that ¢; < 0, we can show
that
1—y
1—v+¢q

= Z’f’

Rkgp < REkg
13 (QK,’Y — ﬁﬁ) & (QR’Y — ﬁﬁ)

which proves the proposition.

Zn —

One caveat is that the second inequality holds only if the number in the parentheses is greater than 1.
We verify this in our quantitative analysis but restrain ourselves from discussing extreme cases where the
condition does not hold. OJ

G.2 Correlated Distortions and Aggregate Pollution

In this section, we present a simple one-sector model with a fixed number of firms and exogenous firm-level
pollution intensity, which is based on Lucas (1978). We then derive the conditions under which removing the
progressiveness of the distortions would reduce aggregate pollution, which are summarized in Proposition 2
of the main text. We further show that similar results hold for average pollution intensity in Corollary 2. We
start with a formal description of the model setting.

The Model.—The model contains only the polluting sector. There is a representative household with a
continuum of members. A measure one of the members are managers, while a measure N are workers. The
occupations of household members are fixed once born. Each manager is endowed with z units of managerial
talent, which is drawn from a log-normal distribution G(z) with logarithmic mean and standard deviation
(1, 0). Workers supply one unit of labor inelastically in exchange for wage income; and managers run a
neoclassical firms and earn profits. In the simplified economy, labor is the only production factor. We set the
final good as the numeraire, and use W to represent wage rate.

The production function is given by
y=F(z,1) =270,

where as usual, 0 < v < 1 is the span-of-control parameter that supports a non-degenerate distribution of
firms in the equilibrium.

The production process generates pollutants e as by-products. Here we abstract from the treatment tech-
nology choice decision. Firm-level emissions now depend only on production scale y:

e(y) = @Z)Owal )

where —1 < 1)1 < 0 captures the negative correlation between output level and emission intensity as
documented in Section I.B of the main text.

Firm-level distortions take the same form as in the main text:
T,=1-— ¢Oz¢1>
where ¢ < 0 reflects the progressiveness of the distortions.
Proofs.—With the above setup, we prove the following results.

Proposition 2. In the simple model, there exists a threshold

by = P1(1 —7)
L= +n)’
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such that E is increasing in ¢1 when ¢ < (;Aﬁl, and decreasing in ¢, when ¢1 > qgl.

Proof. Our goal here is to find a relationship between E and ¢;. With no capital, the maximization problem
of the firm is
m(z) = max {(1- 7)Y — Wi}.

The first order condition is

1
f}/(ﬁozl_’y—"_d)l 1—v
G.6 l(2) = ———— .
@) 0= (25
The optimal labor demand leads immediately to output
¢ % 1—v+~¢
- —YTP1
(G.7) y(z) = <WI/VO) FAEECTN

We have assumed that
e(y) = Yoy 1.

Combining this equation with Equation (G.7), we get the pollution of firm-z
y(A+v1)

(G.8) e() = vy (7{?}0) (143 )

With Equation (G.8), all that remains is to compute the integral

E = /e(z)dG(z)
y(1+q)

(G.9) = 1o <7$)> o /z(Hm)(H%)dG(z).

In Equation (G.9), we need to solve for closed-form expression for W and the integral.
Recall that if z ~ Lognormal(y, 02), 2% ~ Lognormal(ap, a®c?) for a # 0. Hence

Y1 2
(G.10) /z<1+ﬁ”)(1+wl)dG(z) = exp { (1 + 3?17) (1+1)p+ % (1 + 1’7:?17> (1+ ¢1)202)} :

We use the labor market clearing condition

/l(z)dG(z) =N,

to solve for wage W. In particular, by substituting Equation (G.6) in the labor market clearing condition,
and using the property of log-normal distribution, we get

e 2
(G.11) N_(’Y{/ﬁo) exp{(l-ﬁ-lgil,y)/i-i-;(l-i-lqilfy) 02}.
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Substitute Equations (G.10) and (G.11) back to Equation (G.9), after some quite involved algebra, aggre-
gate pollution can be written as

(G.12) E:Qexp{(;Lw {w b1 +(+1’D1)7¢1H

where

Q:¢0N7(1+w1)exp{(1+d)1) [(1—7+w1> o’ +(1- )u”a

is a constant independent of ¢;. Notice that inside the bracket in Equation (G.12) is a parabola opening to
the bottom. Importantly, the symmetry axis of the parabola is

Y11 —7)
L—~(1+ 1)

Proposition 2 thus follows immediately. Ul

(G.13) ¢1 = 2 4.

Notice that by Equation (G.7),

Y = / 2)dG (= /(7%) Wz#dG(z).

Using again the labor market clearing condition (G.11) and the property of log-normal distribution, we have

- o? v o? ,
(G.14) Y-N”exp{(l—’y) <u+2>}exp{—1_72¢1}.

We see from Equation (G.14) that Y is always decreasing in ¢;. This echoes the finding in the literature that
correlated distortions lead to losses in output by misallocation.

Corollary 2. In the simple model, the relationship between the average pollution intensity E/Y and the
progressiveness of the distortions ¢ is such that

(i) when 11 < (1 — 27y) /7, the average pollution intensity is always increasing in ¢1;
(ii) when ¥y > (1 — 2)/~, there exists a threshold

5 _ (1+1)(1—7)
Pl -2y

such that when ¢1 < ¢, E/Y is increasing in ¢1; and when ¢1 > ¢, E/Y is decreasing in ¢1;
(iii) ¢y is increasing in both 11 and y;
(iv) ¢, < 1.

Proof. The proof is almost the same as that of Proposition 2. By Equations (G.12) and (G.14), and again
some pretty involved algebra, we can write the average pollution intensity as

P1(2y -1+ ¢17)¢2] }
v 1 )

Y 1

(G.15) £ —Fexp{fyﬁy [2@&1( + 1)1 + —
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where like before, I' is a constant independent of ¢1.

Notice that once again, inside the bracket in Equation (G.15) is a parabola. When ¢ < (1 — 27) /7, its
opening is to the top, and hence the intensity is always increasing in distortions ¢;1. On the other hand, when
1 > (1 — 2v)/~, the parabola is opening to the bottom with the symmetry axis being

A+9)1=7) a~

G.16 = = y
(G.16) $1="7— S )
which gives us items (ii) and (iii) of Corollary 2 immediately. Straight forward comparison of Equations
(G.13) and (G.16) yields item (iv). O

Remark.—Notice that, if we assume alternatively that firm-level pollution emission is a function of its

productivity z:
e

- = 1/}02:1/’1 ’
Y

instead of that in Equation (G.8), then Equations (G.12) and (G.15) are simplified to

2
E = Qexp %1(2%%—&) ;
1—7v 2

and

respectively.

The two equations show that first, the average pollution intensity is always increasing in distortions; and
second, aggregate pollution is increasing in distortions, as long as the elasticity of distortions to productivity
|¢1| is larger than that of pollution [¢;|. Intuitively, this simply says that when output is more responsive to
firm size, it dominates the effect of firm-level pollution intensity. Put differently, the scale effect dominates
the technique effect.

G.3  Monopolistic Competition

In this section, we show that our results carry through to the setting of monopolistic competition, or a closed-
economy version of Melitz (2003). The crucial elements of our analysis are the following. First, in the
equilibrium, there needs to be a non-degenerated distribution of firms with different levels of productivity.
Second, the model should feature resource allocation along both the extensive and intensive margin, where
we refer to the selection of firms into production as the extensive margin, and the distribution of factors
among active firms as the intensive margin. Mathematically, what we really need are decreasing returns to
scale in profits which prevents the most productive firm from taking over all the resources in the economy
and profits be a function in productivity which creates selection. The curvature could come from decreasing
returns to scale in production as in Lucas (1978), or from the demand and market structure as in Melitz
(2003). We need curvature from one source or the other, but not necessarily from both.'? To ease the
exposition, we first show the equivalence using only the backbone elements with no distortions or emissions.

"In fact, Hopenhayn (1992) had directly assumed that the profit function is increasing in productivity [Assumption A.2.(b)]
without specifying the underlying mechanism, and Bartelsman, Haltiwanger and Scarpetta (2013) had assumed diminishing returns
in production and utility coexist (page 319).
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We then show that a similar version of Proposition 2 holds under the monopolistic competition structure as
well.

Diminishing Returns to Scale and to Utility.—The model differs from the Lucas (1978) span-of-control
model in three aspects: the production function is linear, the utility function is a CES aggregation of a
continuum of varieties, and the market structure is monopolistic competition. Specifically, there is still a
representative household with a continuum of members. The representative household derives utility from
consuming a continuum variety of goods w aggregated according to a CES function:

PP e
U= {/ q(w) » dw} ,
we

where ( is the set of available varieties, g(w) is the quantity consumed for each variety w, and p > 1 is the
elasticity of substitution.

Each household member is once again endowed with z units of managerial talent, where z ~ G(z).
Household members choose between running a firm or working as a worker. Labor is the only production
factor, which the firm hires at wage W to produce a unique variety. Each variety is produced by only one
firm. The production function of the firm is given as

(G.17) y=F(z,1) =zl

Because firms now have market power, they can set the price of good p(w) as well. Since z and w can both
uniquely identify a firm in our setting, from now on, we will use z to refer to different varieties as well.
Therefore, price is now written as p(z), and y = ¢(z) = zl. Likewise, the set € is the same set of active
firms, which anticipating the results later, is interval [Z, Z] where as before Z is the threshold of selection into
production.

The profit maximization problem of the firm now becomes

G.18 —WI).
(G.18) {p(l;r)lzfz)}{p(Z)Q(Z) }

To solve (G.18), we need to solve for the demand function for each variety z by the household. Standard
results from Dixit and Stiglitz (1977) lead to

where

and

z =1 o1
Q- /q(z) Fax|

are the price and quantity of the composite good, respectively.

If we set the composite good to be the numeraire, i.e., P = 1, then

(G.19) qa(z) = Q[p(2)] "
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Notice that the production function (G.17) means that [ = ¢(z)/z. With Equation (G.19), firm’s problem
(G.18) is equivalent to

maXQ[p@fp—VVp@yw]v

p(z) z

where the first order condition directly leads to optimal labor demand

—p
(G.20) l(z):Q<pMip1> 2P~
and profit
—_ 1\~ !
(G.21) ﬂ(z)—Q<p1> P
p\ P

We see that both (G.20) and (G.21) are increasing in z. This means that with a non-degenerate distribution
of z, [ and 7 are also non-degenerate. Further, Equation (G.20) implies that if [ is log-normally distributed,
z will also be log-normally distributed, leaving us with a similar calibration strategy for G(z) as in the main
text. In addition, because (G.21) implies that 7(0) = 0, the selection threshold Z is also determined by

(G22) x(2) = W.

Recall that in the Lucas (1978) model, the counterparts of (G.20) and (G.21) are respectively

o= ()™

o[ )

With Equation (G.22) being the same, it can be seen immediately that the two models are equivalent, with the
elasticity of substitution p in the monopolistic setting plays the same role as the span-of-control parameter
. In fact, in the Lucas (1978) model, one can think of firms as earning rents over the managerial talent z.

and

Monopolistic Competition and Aggregate Pollution.—With the above notation, we now bring back the
distortions
Ty = 1- ¢OZ¢17

and further assume that firm level emissions are given by

e(2) = volp(2)a(2)] .

We shut down the selection margin Z as in Section G.2 by assuming that a measure one of the household
members are born as managers and a measure /N of them are born as workers. Following the same steps in
the proofs of Proposition 2, we can show that the aggregate pollution in the monopolistic competition case
can be shown as

2

B=Tyexp {20~ valp - 1716k + [~ 2o~ valp - 7] }.

where I'; is a constant. The expression indicates that there again exists a threshold

- p— /o’
=1
4 MTIT pa—El
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such that E is decreasing in ¢1 when ¢ > qgl, and increasing in ¢1 when ¢ < qgl.

Similarly, the aggregate output in the monopolistic competition case is

0'2 0'2
QzNeXP{M+2(P— 1) - 2045%}7

which is decreasing in the progressivity of distortions —¢;. The impact of distortions on aggregate output in
this case is equivalent to that in the Lucas span-of-control case of Section G.2 [Equation (G.14)].

G.4 Uncorrelated Distortions

In the main text, we focus on correlated distortions, which increase in firm TFP. However, as can be seen from
Figure D.1, there are also substantial variations in average products across firms with the same TFP level.'!
In the language of Restuccia and Rogerson (2008), these variations suggest the existence of uncorrelated
distortions, which are uncorrelated with firm TFP. In this section, we use the same model in Section G.2,
except that the firm-level distortions are now uncorrelated with firms’ productivity z, to study the impact
of uncorrelated distortions on aggregate output and pollution. We find that unlike the case of correlated
distortions, uncorrelated distortions lower both aggregate output and aggregate pollution.

The uncorrelated distortions are defined as an output tax whose rate 7 is randomly drawn and independent
of firm productivity z. Specifically, z is drawn from a log-normal distribution G(z) with log mean and
standard deviation (., 0), and 1 — 7 is independently drawn from another log-normal distribution H (7)
with log mean and standard deviation (pr, 077 ).

The firm’s profit maximization problem can be written as
w(z,7) = max {(1- ) — Wi},

First-order conditions yield

1

e =[50

w
(G.23) y(z,7) = [W] = z,
y(A+ey)
e(z,7) = P(lﬂ; T)] T e

The labor market clearing condition

/ / (2, 7)dG(2)dH(7) = N,

leads to

1 2 2
Y\ Hr o g

G.24 Nz(—) a L+ =5

( ) W exp{1_7+2(1_’y)2}exp{u 2}

"'We thank a referee for pointing this out.
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Combining Equations (G.23) and (G.24), we can compute the aggregate output for this economy

y — / / y(z,7)dG(2)dH (7)

{95}

Consistent with the results in Hsieh and Klenow (2009), aggregate output Y is decreasing in the dispersion
of firm-level distortions 2.

Similarly, the aggregate emissions can be written as

[+ )] — (1 + 1/11)02}
2(1 —)? TJ

where Q(vo, 11, ptz, 02, fir, N) is a constant independent of the dispersion of distortions. Since v < 1 and

11 < 0, E is also decreasing in the dispersion of firm-level distortions 02.

E = Q(¢07u}17ﬂ270’z,ﬂ7—,N) exp{

H Additional Discussions on the Environmental Economics Literature

In this section, we explain in greater detail the differences between our paper and the literature on how
international trade affects the environment through the reallocation across heterogeneous firms. Specifically,
our paper differs from this literature in following ways. First, we bring our general equilibrium model to
firm-level data directly, and provide a quantitative assessment of counterfactual policies using an internally-
consistent model disciplined by firm-level data. Second, using the firm-level data on treatment technologies,
we provide an explanation for the negative correlation between firm size and pollution intensity. Our model
also has different implications for the impact of environmental regulations, due to the different nature of the
distortions in our paper and the trade costs emphasized by the literature.

Quantitative General Equilibrium.—Most studies in this literature focus on reduced-form analysis, in
which the model is used to motivate the empirical analysis indirectly. See for example, Martin (2013),
Cherniwchan (2017), Forslid, Okubo and Ulltveit-Moe (2018), and Barrows and Ollivier (2018), among
others. Some studies, such as Andersen (2016), Holladay (2016) and Forslid, Okubo and Ulltveit-Moe
(2018) derive qualitative predictions under strong parametric assumptions, but do not bring their models to
the data directly. Instead, we provide a quantitative assessment of counterfactual policies using an internally-
consistent model disciplined by firm-level data. Our quantitative analysis explicitly takes into account the
general equilibrium effects of alternative policies, and it provides novel policy implications that are absent
from either reduced-form or partial equilibrium analysis. The quantitative nature makes our analysis suitable
for evaluating alternative policies. First, it allows us to quantify the trade-off between the technique and
scale effects, that is, whether a reduction in pollution intensity couples with an increase in output would
lead to an increase in aggregate pollution. This is important for our paper because the removal of distortions
necessarily leads to increase in output and decrease in pollution intensity. Second, while the reduced-form
analysis is able to identify how individual firm responds to changes in economic environment [for instance
Cherniwchan (2017)], the aggregation of these responses would result in general equilibrium feedback that
is more appropriately studied using a quantitative general equilibrium framework.

Technology Adoption.—A unique feature of our data is that we observe both the emissions and treatment
technologies at the firm-level. Using the data on treatment technologies, we provide an explanation for
the negative correlation between firm size and pollution intensity. It allows us to not only investigate the
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overall effects of distortions, but also quantify an important channel through which the distortions affect
emissions, namely, the adoption of clean technology. This differentiates our paper from empirical work
such as Andersen (2016) and Holladay (2016). Specifically, Andersen (2016) studies the effects of credit
constraints on pollution using regional data, which provides only indirect evidence on firm’s behavior; while
Holladay (2016) shows that on average exporters tend to be cleaner, the paper does not provide an explanation
for this fact. One exception is Barrows and Ollivier (2018), which uses product-level data to study how trade
liberalization affects pollution through the shift in the product-mix of exporting firms. Our paper differs from
theirs by our focus on a completely different channel.

Implications for Environmental Regulations.—The implication of our model for environmental regulations
distinguishes us from studies that emphasize the role of trade costs, most of which build their models on the
Melitz (2003) model. A major difference between the distortions in our model and the trade costs in an open-
economy Melitz model is that exporting is an endogenous choice of firms which brings extra revenues.'”A
productive firm can choose not to pay the trade costs if it decides to stay domestic, while the distortions in
our model are imperative and are purely deadweight losses. In addition, they interact with environmental
regulations in different ways. In our model, environmental regulations would worsen resource allocation
along the intensive margin, but this is not necessarily the case with trade costs, because the productive
exporting firms can use foreign markets as a cushion to buffer the burdens from environmental regulations
after paying the trade costs. We believe that such differences are policy-relevant, because in many cases
environmental authorities have to make policy decisions with the presence of distortions.

I Computational Algorithm for the Main Model

This section contains the computational algorithm we use to solve the version of the model in the main
text, namely the two-sector model where products from the polluting and non-polluting sectors are perfect
substitutes. The model is fairly standard to solve. In the stationary equilibrium, the Euler equation of the
household implies that the net interest rate is

1
L1 R=—-—-1+0.
1.1 5

As a result, once we find the equilibrium wage W, it is straightforward to compute the other allocations in
the equilibrium. Specifically, the pseudo-code goes as follows.

1. Calculate the equilibrium interest rate by Equation (I.1).
2. Find the equilibrium wage W. This includes the following steps.

(a) Make an initial guess of W.

(b) Given R and W, for each firm-z in both the polluting and non-polluting sectors, we can solve
for their profit functions 7%(z) and 7¢(z). Specifically, the first order conditions of firms in the
non-polluting sector are given by

(k) : ay(1 — 1) kAT = R
(1) : (1 —a)y(1 — 1)zt ke =1 — .

2In Section G.3, we establish the qualitative equivalence between the effects of distortions on aggregate output and pollution in
Lucas (1978), and those in a closed-economy version of Melitz (2003).
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With the optimal factor demand k(z) and I(z), the profit function of firms in the non-polluting
sector is given by

7¢(2) = (1 — )27 [k(2)%1(2) ) — Wi(2) — RE(2).

Notice that the first order conditions of firms in the polluting sector are similar, hence we can at the

same time solve the potential profits of polluting firms using dirty and clean technologies wg(z)

and 7¢(2):

m(2) = (1= O{(1 = 7)2" k(2)*U(2)' 77" = Wi(2) — Rk(2)},
mi(2) = (1 = 72) 2" [k(2)*1(2) ") = Wi(2) — R[k(2) + kg].

Now 7d(z), 7¢(2) and 7°(2) can be used to pin down the thresholds for occupational choices

{Z¢, 24} and technology adoption Z,. In particular,
w?(2) = max{n§(2), 7{ ()},

and 27s are such that ‘
W =m (%), j=cd.

When 7d(z) and 7¢(2) satisfy single-crossing condition,
Zg = min{z € [34,7]|7d(2) < 7{(2)}.
z

Notice that now for the polluting sector, Z; and Z; define two groups of firms: those that use dirty
technology z € [Z4, Z4], and those that use clean technology z € [Z4, Z].

If the labor market clearing condition

HGaa) + (1= )G(E) = 1 [ 1(GE) + (1) [ 12460,

does not hold, return to Step 2.(a) and update the guess for .

3. With the equilibrium prices W and R, all the allocations of the economy can be computed following

Definition 1 in the main text.

By Walras’ Law, if the household budget constraint, capital, and labor market clearing conditions all hold,
resource constraint is automatically satisfied. We now verify that this is the case. To simplify notation, first
let us define

7(2) = (1 — 1)z 7 (k*1Y7)Y — Wi — Rk,

y(z) = 2 (k)

where the optimal factor demands are implicitly substituted in. Government tax revenue I’ comes from two
sources here: from taxing firms using dirty technology

e [ T(2)dG(2),
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and from output taxes 7
z z
p [ G + (1= p) [ ()G,
Zd Zc
Recall that we have assumed that all taxes are rebated to the household as lump-sum transfers. Hence with
these notations, household income [ is given by

I =REK +W[uG(3) + (1 — p)G(2)] + T

wu[ [ at@aae + [ teua] + 0 [
= RK + W[uG(2q) + (1 — p)G(2)] + T + (1 — p) /z 7(2)dG(z)

Zc

T [(1 ~o) [ "R (2)da() + [ 7e1a00) - il - G@ﬂ]

24 Z4

12) = R+ WIHG(ia) + (1~ )G + (1= p) [ [7(:) + mep(2)dG(2)

b ] [ 76+ m(e)ice) - RislGE) - GE)|.

Because - d -
K=p { / KU(2)dG(2) + kp[G(Z) — G(Zd)]} (- p) / H(G(2),
and
7(2) = (1 = m2)y(z) — Wi(2) — Rk(z),

substitute these two equations and the labor market clearing condition into Equation (1.2), we get

=g [ w6+ 0 ) [ yiae)

24 Zc

Household budget constraint then leads directly to
1.3) C+6K=Y.

Equation (I.3) is used to construct the aggregate consumption.

J A Two-Sector Model with CES Aggregation

In the main text, we have assumed that the goods produced by polluting and non-polluting sectors are perfect
substitutes. Admittedly an extreme assumption, it is not critical to our quantitative results in the main text,
because the counterfactual experiments there cause little reallocation across sectors. However, if we want
to evaluate the effects of removing distortions from one sector only, this assumption is problematic because
it would imply a reallocation across sectors that is unrealistically large. To address this issue, we build a
two-sector model in which the final goods are produced by a representative producer, who combines the
intermediate goods from the polluting and non-polluting sectors using a constant elasticity of substitution
(CES) production function. We use the model to evaluate the effects of removing distortions from both
sectors, and those of removing distortions from the polluting sector only. In this section, we first describe
the model, and then explain the computational algorithm. In the end, we calibrate the model and report the
quantitative results from the counterfactual experiments.
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J.1  The Model

We assume that there is a single final good Y produced by a representative firm in a perfectly competitive
final good market. The final good producer manufactures ¥ by combining the intermediate goods from
the polluting sector Y; and non-polluting sector Y, respectively. The production function features constant
elasticity of substitution (CES) between the two goods:

p—1

Y = o) + (- )07

where p is the elasticity of substitution, ¢ is the average share of polluting goods in production. We assume
that the final good Y is the numeraire, and the relative prices of polluting and non-polluting goods are p, and
Pe, respectively.'® The optimization problem of the final good producer is thus

wa{ [o0) 7+ (10— 00T - paa = v

Yy, Ye
Yd_<<ﬁ .%)”
Y. I1—¢ pa

Since we pick the final good Y as the numeraire, the aggregate price index is

The first order conditions yield

1

J-1) [ () 7 + (1= )P (pe)*] 77 =1,

which implicitly defines a mapping between p, and p..

Because now there are relative prices, the optimization problems for firms in the two intermediate goods
sectors need to be modified accordingly. In particular, the profit maximization problem for firms in the
non-polluting sector is

m(z) = max {(1 = 7)pe2' 77 (k') — W1 — Rk},

while those for firms in the polluting sector using clean and dirty technologies are given respectively as

7d(z) = max {1 —7)pa2' (K1) = WI— R(k+ kg)}

and
md(z) = Hllﬁx {a-9 - 7.)paz (KT — W — Rk} .

As before, the profit function of firms in the polluting sector is the envelope of 7d(z) and 7¢(2):

74(2) = max {ﬂg(z), W?(z)} .

The rest elements of the model are identical to those in the main text.

The stationary equilibrium with CES aggregation is defined as follows.

B Notice that this setup is mathematically equivalent to the monopolistic competition setup in Section G.3.
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Definition J.1. A stationary equilibrium of this economy consists of prices {W, R,pq,p.}, allocations
{C, K, Yy, Y., Y}, firm’s policy functions {k?(2),1(2),y’(2), 7 (2)}, j = c,d, thresholds for household
members’ occupational choices {Z., 24} and polluting firms’ technology adoption Zg, as well as aggregate
pollution E, such that:

(i) Given prices {W,R,pa,p.}, {C, K, %, 24} solve the household’s optimization problem;
(ii) Given prices {pq,pc}, {Ya, Yc} solve the final good producer’s optimization problem;

(iii) Given prices {W, R,pgq,pc}, {k(2),1(2), 37 (2), 77 (2)}, j = ¢, d, and Zq solve the intermediate goods
producers’ optimization problems;

(iv) Prices {W, R,pq,pc} clear all markets:

o Labor Market:

HGea) + (1= )G) = i [ 1HGE) + (- ) [ 1(2)d60),

24 Zc
e Capital Market:
K= | [ K6 + kel66) — Gl + 1 - ) [ (e1a66),
24 2c
e [ntermediate goods produced by polluting and non-polluting sectors:
Vamn [ veuee),  ve=0-p [ ),
24 EX

o Final Good:

where

(v) Aggregate Pollution:

~d —

E=upu [/Z e (O,yd(z)> dG(z) +[

Zd 2d

e <1,yd(z)) dG(z)

1.2 Computational Algorithm

The stationary equilibrium can be computed in a similar way as depicted in Appendix I. The only difference
here is that instead of solving for the equilibrium wage W only, we need to also find the prices for the
intermediate goods, p. and py. With the equilibrium prices, the allocations in Definition J.1 can be calculated
accordingly. Recall that Equation (J.1) defines a 1-1 mapping between p. and p,, hence in practice we need
to solve for W and py. The pseudo-code is as follows.

1. Calculate the equilibrium interest rate again by Equation (I.1).
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2. Solve for the wage W and the price of the polluting sector intermediate good py in the equilibrium.
This includes the following steps.

(a)

(b)

(©

(d)

(e)

Make initial guesses for W and pg, using Equation (J.1) to back out p.:
1
(1= P(pa)t ] T
L e '

Given R, W, pg and p,, for each firm-z in both the polluting and non-polluting sectors, we can
solve for the profit functions 7¢(z) and w%(z). Specifically, the first order conditions of firms in
the non-polluting sector are given by:

(k) : ay(1 — 7)pezt kY = R,
(1) : (1—a)y(1— Tz)pczl—vkavl(l—a)y—l —w

With the optimal factor demand k(z) and I(z), the profit function of firms in the non-polluting
sector is given by

7¢(2) = (1 — 7.)pez 1 [k(2)¥(2) ™7 — Wi(z) — Rk(2).

Notice that the first order conditions of firms in the polluting sector are similar, hence we can at the

same time solve the potential profits of polluting firms using dirty and clean technologies wg(z)

and 7{(2):
76(2) = (1= (1 = m2)paz' T[k(2)*1(2)' ) = Wi(z) — Rk(2)},
7d(2) = (1 — 7)pazt TV [k(2)%1(2)1 7 — Wi(2) — R[k(2) + kg].

Now md(z), 7¢(z) and 7¢(2) can be used to pin down the thresholds for occupational choices

{Z¢, 24} and technology adoption Z,. In particular,
m(2) = max{r§(2), 7{(2)},

and 27s are such that ‘
W = (%), j=cd.

When 7 (z) and 7{(2) satisfy single-crossing condition,
Zg = min{z € [34, 7|7l (2) < 7i(2)}.
z

Notice that now for the polluting sector, Z4 and Z; define two groups of firms: those that use dirty
technology z € [Z4, Z4], and those that use clean technology z € [Z4, Z].

If the labor market clearing condition

HGa) + (1= WG o) = [ 192)d6(2) + (1= ) [ ()G,
24 Zc
and the first order condition of the final good producer

p .f;yd(z)dG(z)_< ¢ p>
Low [Zye(2)dG(z)  \1=w pa)

do not hold, return to Step 2.(a) and update the guesses for W and py.
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3. With the equilibrium prices W, R, pq4, pc, all allocations of the economy can be computed following
Definition J.1.

The resource constraint can be verified in the same way as in Appendix I, and hence is omitted here.

1.3 Quantitative Results

We use the model to evaluate the effects of removing distortions from one sector only, and study how cross-
sector reallocation affects our results. Specifically, we compare the results from two experiments. In Experi-
ment (i), we repeat Experiment (i) in the main text by setting 7, = 0 for both sectors. This experiment serves
two purposes. First, by comparing the results with those from the main text, we show that the alternative as-
sumption of finite and constant elasticity of substitution between the two sectors would not change our main
results materially. Therefore, the assumption that the products from the two sectors are perfect substitutes is
innocuous for the main results of this paper. Second, it provides a benchmark for us to compare the effects
of symmetric versus asymmetric changes in distortions. In Experiment (ii), we remove the distortions from
the polluting sector only, and evaluate the effects of cross-sector reallocation on our results.

The quantitative exercises in this section are for illustration purpose mainly. Therefore, we only carry out
a simple calibration of the model. We keep most of the parameters intact as in Section III of the main text.
There are two new parameters that we need to pin down, namely the elasticity of substitution p and the share
of the products of the polluting sector in the production of the final good (. Empirical estimates of p range
from 3 to 10 for narrowly defined industries [Broda and Weinstein (2006) and Hendel and Nevo (2006)].
Hsieh and Klenow (2009) use p = 3 for 4-digit industries. Because we divide the whole economy into two
broad sectors in our model, we begin with a smaller value of p = 1.5 and later consider p = 3 to gauge how
the change in p affects our results.'* Given p, we choose ( such that the revenues from the polluting sector
paYy is 20% of those from both sectors, p;Yy + p.Y.. In addition, due to the presence of relative price, we
adjust the adoption cost of clean technology so that the share of firms using clean technology is again 57%.

Table J.1 presents the results. In the upper panel, we report the results for p = 1.5 and in the lower panel
p = 3. For experiment (i), it is reassuring to see that for both levels of elasticity of substitution, the results
are quantitatively similar to the perfect substitutes case in the main text. Following the elimination of 7,
from both sectors, aggregate output in both sectors increases by about 30%. Again, there is little reallocation
across sectors, and the changes in the prices of the products in both sectors are negligible. The average
pollution intensity decreases by about 42%, so again the technique effect dominates, and the aggregate
pollution decreases by about 25%.

For Experiment (ii), we start with the case of p = 1.5. Following the elimination of 7, in the polluting
sector, there again are a large increase in output and a large decrease in average pollution in the polluting
sector. However, there is also a sizable reallocation of production factors from the non-polluting sector
to the polluting sector. Specifically, since the equilibrium wage increases due to the higher labor demand
from the polluting sector, firms in the non-polluting sector have to use less labor and capital. This causes a
2% decrease in the physical output of the non-polluting sector. The physical output of the polluting sector
increases by 35% in this case compared to 30% in Experiment (i). This composition effect partially offsets
the technique effect, and the aggregate pollution decreases by 20% compared to 25% in Experiment (i),
although the decreases in average pollution intensity are similar in these two cases (41% versus 42%).

When p = 3, the cross-sector reallocation of factors is much larger given a higher elasticity of substitution.

“Intuitively, the elasticity of substitution is larger across more narrowly defined industries, since it is easier to substitute apples
with oranges than with smartphones.
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TABLE J.1—THE EFFECTS OF REMOVING DISTORTIONS FROM POLLUTING SECTOR ONLY V.S. FROM BOTH SECTORS

Polluting Non-polluting
Statistics Benchmark @) (i) Benchmark @) (ii)
CES=1.5
Physical Output 100.00 129.64 134.63 100.00 129.94 98.03
Price 100.00 99.97 85.00 100.00 100.00 102.34
Revenue 100.00 129.60 114.42 100.00 129.94 100.32
# of Firms 100.00 42.63 46.44 100.00 41.87 95.38
Mean Size 64.31 152.21 176.17 51.16 123.50 49.38
Pollution 100 74.95 80.04
Intensity 100 57.81 59.45
Clean Share 56.18 83.80 73.10
CES =3.0
Physical Output 100.00 129.83 160.51 100.00 129.89 89.45
Price 100.00 100.02 87.38 100.00 100.00 100.46
Revenue 100.00 129.85 140.25 100.00 129.88 89.86
# of Firms 100.00 41.50 48.19 100.00 42.30 89.24
Mean Size 68.36 166.29 214.24 50.16 119.84 46.09
Pollution 100 74.69 89.60
Intensity 100 57.53 55.82
Clean Share 56.48 84.04 74.37

T Note: All of the values are percentages except for mean size, which is the numbers of workers.

The physical output of the polluting sector increases by 60% instead of 35% in this case, while physical out-
put of the non-polluting sector decreases by 11% instead of 2%. As a result, although the average pollution
intensity decreases by 44%, the aggregate pollution in this case decreases by only 10% as opposed to 20%
when p = 1.5. If we increase p further, it is possible that at some point the the cross-sector reallocation
would be so strong that removing the distortions from the polluting sector would increase the aggregate pol-
lution. However, as we mentioned above, p = 3 is likely to be upper bound of the range for empirically
plausible elasticity of substitution in our model, given that we divide the whole economy into two broad
sectors. Hence, our results suggest that even if we remove the distortions from the polluting sector only, the
technique effect would still dominate within empirically plausible range of p.

Interestingly, if we compare Experiment (ii) with (i)—recall that the only difference between these two
is that we also remove distortions from the non-polluting sector in Experiment (i)—we find that removing
distortions from the non-polluting sector has positive spillovers to the polluting sector, which increases the
adoption rate of clean technology by about 10 percentage points. This is due to the demand effect that pulls
up the price of the polluting goods, allowing many medium sized firms to earn enough profits to install clean
technology. This result suggests that even the reduction of distortions in the non-polluting sector alone could
potentially have positive environmental implications.
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