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I study the optimal inflation target in a quantitative menu cost
model with a zero lower bound on interest rates. I find that the
optimal inflation target is 3.5%, which is higher than in models
commonly used for monetary policy analysis. Key to this result is
that inflation has a small effect on resource misallocation when the
model features firm-level shocks, which are necessary to match the
empirical distribution of price changes. A higher inflation target
decreases price flexibility at the zero lower bound, and through this
mechanism, it reduces the severity of recessions when the monetary
authority is constrained.
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Since the end of the 1980s, many countries have adopted a policy of inflation
targeting whereby the central bank explicitly aims for a particular medium-term
inflation rate. It is therefore crucial for monetary policy to address this question:
What inflation rate should central banks target?

Following the Great Recession, some economists have argued that increasing
the inflation target from the current level of 2%—a common practice across cen-
tral banks—may be beneficial in the presence of a zero lower bound (ZLB) on
nominal rates.1 According to these economists, a higher inflation target gives cen-
tral bankers more room to react to adverse macroeconomic shocks since it raises
average nominal interest rates. Increasing the inflation target, however, is costly.
In sticky–price models, inflation leads to inefficient dispersion of relative prices.
Hence, productivity losses stem from the dispersion in firms’ marginal product.
Intuitively, a higher inflation target increases the gap between recently-adjusted
prices and those that have not adjusted in a while.

This paper quantifies these trade-offs. Given that price dispersion is the main
cost of inflation, I quantify this cost with a menu cost (MC from hereon) model
that features idiosyncratic cost shocks. This pricing model reproduces micro–level
pricing behavior. I incorporate this pricing model into a medium-scale dynamic
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stochastic general equilibrium (DSGE) model with a Taylor rule subject to a ZLB
constraint. The rich general equilibrium framework allows my model to reproduce
U.S. business cycles and to quantify the main benefit of increasing the inflation
target concerning business cycle stabilization.

My main result is that the optimal inflation target is 3.5%, two times larger than
in an otherwise identical model with Calvo pricing. This quantitative result arises
from the fact that in the MC model, the cost of inflation—given by inefficient price
dispersion—does not vary much for low levels of inflation. Therefore, there is a
substantial leeway to increase the inflation target up to the level at which the
ZLB does not generate inefficient volatility of consumption and labor.

In my model, the cost of inflation is low because of the interaction between
idiosyncratic shocks and menu costs. To demonstrate the significance of this in-
teraction, I consider an alternative specification of my model where idiosyncratic
shocks are not present, and firms only respond to inflation. If firms respond only
to inflation, higher inflation increases the width of the adjustment triggers. Under
my benchmark specification with large idiosyncratic shocks, changes in inflation
do not affect the width of the adjustment triggers at low levels of inflation. In-
tuitively, in the latter economy, firms respond mainly to idiosyncratic shocks. A
constant width of the adjustment triggers is the first of two mechanisms that
imply a low cost of inflation from inefficient price dispersion.

Inflation also affects the law of motion of relative prices between price ad-
justments and, as a result, price dispersion within the adjustment triggers. Im-
portantly, the level of inflation relative to the volatility of idiosyncratic shocks
determines this relation. Therefore, when the volatility of idiosyncratic shocks is
significant, inflation has little effect on the dispersion of relative prices through
this mechanism. When I estimate my model on micro pricing behavior, I find
high volatility of idiosyncratic shocks and, thus, a low effect of inflation on price
dispersion through this mechanism. If there are no idiosyncratic shocks, then
a MC model has higher inflation costs than an analogous Calvo model for the
relevant range of optimal inflation targets.

Alternative pricing models deliver different levels of aggregate price flexibility.
Therefore, they affect not only the cost of inflation, but also, they produce alter-
native results regarding the beneficial role of higher inflation for business cycle
stabilization. For this reason, I extend an off–the–shelf MC model to deliver sim-
ilar macroeconomic dynamics to the main workhorse monetary model: the New
Keynesian model with Calvo pricing.

I enrich a MC model with random free price change opportunities and fat-tailed
idiosyncratic shocks. As Gertler and Leahy (2008), Midrigan (2011) and Álvarez,
Le Bihan and Lippi (2016) have shown, a MC model with these extensions de-
livers a similar slope of the Phillips curve as the Calvo pricing model under two
conditions. First, the frequency and the distribution of price changes do not re-
spond to aggregate shocks. Second, the proportion of price changes due to free
adjustments and fat-tailed idiosyncratic shocks is large enough. Intuitively, if
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firms adjust prices due to random price change opportunities or large idiosyn-
cratic shocks, then price adjustment probabilities across firms and the inflation
dynamics in my MC model are similar to a Calvo pricing model.

When I estimate the model to match the dispersion of price changes observed
in the data, these prerequisites hold whenever the ZLB is not sufficiently binding.
Indeed, at the optimal inflation target of 3.5%, my MC model replicates the same
business cycle properties as the Calvo model, but with a low cost of inflation.
Therefore, my MC model does not change the beneficial role of higher inflation
for business cycle stabilization near the optimal inflation target.

Interaction between endogenous price flexibility and the inflation tar-

get. — Price adjustment becomes responsive to aggregate shocks when the ZLB
is sufficiently binding (i.e. the inflation target is less than 2%). This property
leads to the following question: How does the inflation target affect this endoge-
nous price flexibility?

The role of the inflation target in mitigating recessions at the ZLB depends on
both the inflation dynamics within the ZLB episodes and the inflation dynam-
ics before the ZLB episodes. To understand the first mechanism, note that the
economy tends to be depressed at the ZLB with output gap and inflation below
trend. At low inflation targets, inflation below trend often leads to deflation;
this negative drift pushes firms toward their downward price adjustment trigger.
Thus, a broader set of firms will make sizable downward price changes. Since
the central bank is constrained, the output gap drops, putting more downward
pressure on prices. This “domino” effect amplifies the business cycle cost of the
ZLB at low inflation targets. At high inflation targets, inflation below the trend
is still inflation. Thus, firms only lower their prices in response to idiosyncratic
shocks (i.e., fat-tailed cost or free adjustment opportunity shocks) and not aggre-
gate shocks. Therefore the level of the inflation target is a crucial determinant of
price flexibility within ZLB episodes.

To understand the second mechanism, notice that inflation depends on reset
prices and the current distribution of relative prices. Intuitively, if ZLB episodes
arise with a large mass of firms close to the downward price adjustment trigger,
then these firms decrease their prices. These adjustments make ZLB episodes
more costly, with lower output and inflation. In the opposite direction, if a
significant number of firms has relative prices close to the upward price adjustment
trigger, then the frequency of price cuts does not increase. Thus, ZLB episodes
are less costly. Because the inflation target determines the average inflation before
ZLB episodes, a higher inflation target can shape the distribution of relative prices
to mitigate the decline of inflation during ZLB episodes.

In summary, a higher inflation target would raise average nominal interest rates,
thus relaxing the ZLB constraint. Additionally, it also mitigates the severity of
recessions at the ZLB by affecting the distribution of adjusting relative prices
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when the monetary authority is constrained.2

Robustness of the optimal inflation target. — I analyze the robustness of
the optimal inflation target under different values of critical parameters. The
optimal inflation ranges from 2.5% to 4% in all the exercises, and it is always
2–3 times higher than in the Calvo model. In all of these exercises, the following
result emerges: The optimal inflation target in the MC model is whenever the
incidence of the ZLB in equilibrium allocation is almost null.

Challenges for solving the model. — There are two challenges to solving,
numerically, a MC model in a medium-scale DSGE New Keynesian model. First,
the firm and aggregate equilibrium conditions have kinks, which renders pertur-
bation methods inappropriate. Therefore, I develop global projection methods
suitable for my model. The second challenge is that the state of the economy
includes the distribution of relative prices. Consequently, I use the Krusell and
Smith (1998) solution method to compute this economy. Because the standard
application of this algorithm fails in this context, I develop a modified version.

In my model, a direct application of the Krusell–Smith (KS from hereon) so-
lution approach consists of estimating the inflation policy function in the simu-
lation and then using this function to solve aggregate and idiosyncratic equilib-
rium conditions. However, replacing the Phillips curve with the inflation policy
function—when solving aggregate equilibrium conditions—implies an exogenous
nominal interest rate and indeterminacy. To avoid this problem, I apply the KS
algorithm to the components of inflation that depend only on the distribution of
relative prices, but not on reset prices, when solving the equilibrium conditions.

Related Literature. — The optimal inflation target in the presence of a ZLB
constraint was first studied quantitatively by Walsh (2009), Williams (2009) and
Billi (2011). The setting for all of these papers is a Calvo model linearized around
a zero trend inflation steady state and a central bank that optimizes a non-micro-
founded loss function. Each argues that the optimal rate of inflation is greater
than 2%.

Coibion, Gorodnichenko and Wieland (2012) and the literature that follows
also study a Calvo model, but one with positive trend inflation and a micro-
founded welfare function.3 They find an optimal inflation rate that is significantly

2Inflation dynamics in a MC model depend on the current distribution of relative prices. This
property does not imply that forward guidance is ineffective in the MC model. As I explain above,
inflation dynamics depend on the distribution of adjusting relative prices and reset prices—a forward–
looking variable. Thus, forward guidance could have an effect on inflation dynamics during ZLB periods,
since inflation is also forward–looking.

3Ascari, Phaneuf and Sims (2018) emphasize that raising the inflation target is very costly in models
featuring Calvo price and wage setting without a ZLB constraint. Dordal i Carreras et al. (2016) introduce
a regime–switching representation of risk premium shocks to match the rare and long run lived episodes
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lower, approximately 1.5%.4 In their Calvo pricing model, the main cost of a
higher inflation target is an increment to the steady–state price dispersion. The
main benefit is a reduction in inflation volatility and its impact on mean price
dispersion. This property means that the welfare contribution of consumption and
labor volatilities across inflation targets is negligible. Therefore, the business cycle
stabilization of consumption and labor is not the primary benefit of increasing
the inflation target in their model.5

Like Coibion, Gorodnichenko and Wieland (2012), I consider a micro-founded
welfare function. Unlike them, I consider pricing frictions capable of matching
large and heterogeneous price adjustments. I capture this micro-pricing behavior
with idiosyncratic shocks and a rich pricing framework. This heterogeneity turns
out to matter since it increases the optimal inflation target by two times as
compared with the identical model with Calvo pricing. Importantly, the business
cycle stabilization of consumption and labor is a primary benefit of increasing the
optimal inflation target, since price dispersion has a low sensitivity to inflation.

Several papers have analyzed the slope of the Phillips curve in MC models
with idiosyncratic shocks and monetary shocks as the only source of aggregate
fluctuations—for example, Golosov and Lucas (2007), Gertler and Leahy (2008),
and Midrigan (2011), among others. Other papers have studied the steady–state
cost of inflation in the Golosov and Lucas (2007) model, for example, Burstein

and Hellwig (2008), Álvarez et al. (2018), and Nakamura et al. (2018). My paper
unifies these two topics within a standard DSGE model with a ZLB designed
to study the trade-offs in the optimal inflation target quantitatively. To achieve
this objective, I use a MC model consistent with the dispersion in price changes
observed in micro-pricing behavior and aggregate U.S. business cycle fluctuations.

Road map. — Section I describes the model. Section II calibrates the model
and discusses the solution method. Section III analyzes the optimal inflation
target and the economic trade-offs for its determination. Section IV assesses the
robustness of the optimal inflation target. Section V concludes.

I. Model

This section describes a model to study the optimal inflation target in the U.S.
economy, which is similar to Coibion, Gorodnichenko and Wieland (2012). The

of a binding ZLB constraint. This feature duplicates the inflation target. See also Andrade et al. (2018),
Kiley and Roberts (2017), and Diercks (2019). For a comprehensive description of the optimal inflation
target across studies since the mid-1990’s, see Schmitt-Groh and Uribe (2010) and Diercks (2017).

4Importantly, they find that this result is robust to alternative specifications of firm price setting,
such as time-dependent (Taylor) pricing and state-dependent pricing as in Dotsey, King and Wolman
(1999).

5Online Appendix Section G shows that in the Coibion, Gorodnichenko and Wieland (2012) Calvo
model with their calibration, solution method and welfare evaluation, the optimal inflation target with
inefficient fluctuations of consumption and labor is the same as if they would be constant across inflation
targets.



6 AMERICAN ECONOMIC JOURNAL MONTH YEAR

model’s main departure from the original paper is a rich pricing framework that
is able to reproduce micro-pricing behavior. I present the model before discussing
the empirical motivation for the pricing and general equilibrium frameworks.

There are five types of agents in the economy: a representative household, a
final good competitive firm, a measure-one continuum of intermediate good firms
indexed by i ∈ [0, 1], a central bank, and a government. I now present the agent’s
optimization problems and define the equilibrium.

Representative household. — Household’s preferences are given by

U0 = E

[ ∞∑
t=0

βtut(Ct, Lt)

]
, with ut(Ct, Lt) =

(
Ct − ηtzL1+χ

t /(1 + χ)
)1−σ

1− σ .(1)

Period utility ut follows a Greenwood–Hercowitz–Huffman (GHH from hereon)
preferences specification, where Ct is aggregate consumption and Lt is labor sup-
ply. I scale the disutility of labor by aggregate productivity ηtz to generate a
balanced growth path.

The household’s budget constraint is given by

(2) PtCt +Bt = ηthWtLt +

∫
Φtidi+ ηt−1qRt−1Bt−1 + Tt.

Here Wt and Pt are the nominal prices of labor and consumption, respectively;
Φti denotes nominal profits for the intermediate producer; Tt is lump-sum trans-
fers from the government. The term Bt−1 is the stock of one-period nominal
bonds, and Rt−1 is the nominal interest rate.

Two exogenous stochastic processes affect household’s behavior: a risk pre-
mium shock and a cost–push shock denoted by ηtq and ηth, respectively. The
risk premium shock generates a wedge between the nominal interest rate (which
is controlled by the central bank) and the return on assets held by the house-
hold. The cost–push shock generates a wedge in the household’s marginal rate of
substitution between consumption and leisure, and the real wage. This shock is
akin to exogenous variations in wage markups in an economy with employment
agencies.

The representative consumer’s problem is given by

(3) max
{Ct,Lt,Bt}t

U0

subject to (2) for all periods. It follows from this problem that the time–zero
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stochastic nominal discount factor Qt is

(4) Qt+1 = βt+1uct(Ct+1, Lt+1)

uc0(C0, L0)

P0

Pt+1
.

Here uct(·) is the marginal utility of consumption.

Final good producer. — The final good firm produces output Yt using inter-
mediate firms’ production yti subject to random idiosyncratic shocks Ati

(5) Yt =

(∫ 1

0

(
yti
Ati

) γ−1
γ

di

) γ
γ−1

,

where the final output uses a Dixit–Stiglitz aggregator with elasticity γ.
The final good producer’s problem is given by

(6) max
{Yt,{yti}i}

E0

[ ∞∑
t=0

Qt

(
PtYt −

∫ 1

0
ptiytidi

)]

subject to (5), where pti denotes the price of intermediate firms’ production.
Given constant returns to scale and the zero-profit condition, we can state the
aggregate price level and firm’s demand as (respectively)

(7) Pt =

(∫ 1

0
(ptiAti)

1−γ di

) 1
1−γ

, and yt(Ati, pti) = Ati

(
Atipti
Pt

)−γ
Yt.

Intermediate good producers. — Intermediate good firms are monopolistically
competitive. Intermediate good firm i produces output yti using labor lti and ma-
terial nti, and that firm’s productivity is a function of an idiosyncratic component
Ati and an aggregate component ηtz according to

(8) yti = Atin
α
ti (ηtzlti)

1−α .

Following the literature, I refer to Ati as a quality shock.6 A decrease in Ati
increases the final good producer’s marginal product, but at the same time, it
reduces the intermediate good producer’s marginal product. These two effects
offset each other in such a way that the marginal product of labor in firm i for

6This formulation was first used by Woodford (2009) to keep his model tractable. It was also used

by Midrigan (2011), Álvarez and Lippi (2014), and Kehoe and Midrigan (2015), among others.
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the final output is independent of Ati. I add this quality shock to the Dixit–
Stiglitz aggregator to reduce the firm’s state (and that of the aggregate economy)
from relative prices and idiosyncratic productivity to their product (see equation
(13) in the intermediate firm problem to follow).

The quality shock growth rate follows a mixed normal distribution (fat-tailed
idiosyncratic shocks) given by

(9) log(Ati/At−1i) =

{
η1
ti with probability ψ
η2
ti with probability 1− ψ ,

with ηkti ∼i.i.d N(0, σak) for k = 1, 2.

Firms face a stochastic physical cost of changing their price. Every time the
firm changes its nominal price, it must pay a menu cost equal to θti units of labor.
The menu cost is an i.i.d. random variable that exhibits the following process over
time:

(10) θti =

{
θ with probability 1− ζ
0 with probability ζ

,

where the menu cost is fixed to a constant θ, but with some i.i.d. probability ζ
the firm has an opportunity to change the price without cost.

The intermediate firm’s problem is given by

(11) max
pti

E

[ ∞∑
t=0

QtΦti

]
,

where nominal profits Φti follow

(12) Φti = yt (Ati, pti)
(
pti − ι(1− τ) (Wt/ηtz)

1−α Pαt /Ati

)
−I(pt−1i 6= pti)Wtθti,

subject to (9), (10) and the initial conditions A−1 and p−1 given. Note that
the optimal choice of inputs is already included in the firm’s marginal cost (with
ι = (1− α)α−1 α−α). There is a subsidy to total cost τ that allows my model to
separate the demand elasticity from the average level of markups. We can now
rewrite nominal profits as
(13)

Φti =

(
Atipti
Pt

)−γ
Yt

(
ptiAti − ι(1− τ) (Wt/ηtz)

1−α Pαt

)
− I(pt−1i 6= pti)Wt,

where nominal profits are affected only by the product of nominal price and
idiosyncratic productivity.
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Monetary policy. — The central bank sets the nominal interest rate following
a Taylor rule given by

R∗t = R
(
R∗t−1

)φr [( Pt
Pt−1(1 + π̄)

)φπ
X
φy
t

]1−φr (
Xt

Xt−1

)φdy
ηrt,(14)

Rt = max {1, R∗t } ,(15)

R =

(
1 + π̄

β(1 + g)−σ

)1−φr
.(16)

Here Rt is the nominal interest rate, π̄ is the target inflation rate, ηrt is a monetary
policy shock, and Xt is the output gap—that is, the ratio between current output
and its natural level in an economy without price rigidities. I define R∗t as the
desired interest rate, i.e., the interest rate whenever the ZLB is not binding.

Aggregate feasibility and government policy. — Aggregate output is equal
to aggregate consumption plus government expenditures:

(17)

(
Yt −

∫
ntidi

)
= Ct +Gt,

where Yt is gross output and
(
Yt −

∫
ntidi

)
is gross domestic product (GDP). The

government’s expendituresGt follow the stochastic processGt =
(
Yt −

∫
ntidi

)
(1−

1/ηtg), where ηtg is an exogenous process. The government follows a balanced
budget each period.

Labor supply is allocated into the production of intermediate goods and the
physical cost of changing their prices; thus

(18)

∫ 1

0
(lti + I(pti 6= pt−1i)θti) di = Lt.

Aggregate exogenous shocks. — Aggregate shocks follow a first-order autore-
gressive process given by

(19) log(ηtj) = (1− ρj)ηj + ρj log(ηt−1j) + σjεtj , εtj ∼i.i.d. N(0, 1),

here j ∈ {r, q, g, h}. Productivity growth (dηtz = ηtz
ηt−1z

) follows

(20) log (dηtz) = (1−ρz) log (1 + g)+ρz log (dηt−1z)+σzεtz, εtz ∼i.i.d. N(0, 1),

where g is the economy’s growth rate.
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Equilibrium definition. — An equilibrium is a set of stochastic processes for (i)
a policy {C,L,B}t of the representative consumer; (ii) pricing policy functions
{pti}t of firms and input demands {nti, lti}ti of monopolistic firms; (iii) final
output and input demands {Yt, {yti}i}t of the final producer; and (iv) the nominal
and desired interest rate {Rt, R∗t }t. The following statements hold in equilibrium.

1. {C,L,B}t solve the consumer’s problem in (3).

2. {Yt, {yti}i}t solve the final good producer’s problem in (6).

3. The firm’s policy pti solves (11) and the demand for inputs is optimal.

4. The nominal and desired interest rates satisfy the Taylor rule (14) to (16).

5. The labor and good markets clear (equations (17) and (18) are satisfied in
each period).

Pricing framework and strategic complementarities. — Several features in
the pricing model allow my model to reproduce micro-pricing behavior. Idiosyn-
cratic shocks yield a large size of price changes with a moderate level and volatility
of inflation as in the U.S. economy. Nevertheless, a simple MC model with Gaus-
sian idiosyncratic shocks cannot reproduce the significant heterogeneity in the
price–change distribution that we observe in the data. To match this fact, I add
two features to the pricing model. First, I use fat-tailed idiosyncratic shocks,
which allows my model to generate the large size of price changes we see in the
data with empirical evidence on the small cost of price adjustment. Second, I use
random free cost of price adjustment to enable my model to produce small price
changes.

My model is flexible enough to nest the key pricing models used heretofore in
the literature: the Calvo (1983) model, the Golosov and Lucas (2007) model, the
Gertler and Leahy (2008) model, and intermediate combinations of these models,
such as the ones studied in Nakamura and Steinsson (2010) and Midrigan (2011).
Importantly, each calibration of the pricing model generates different slopes of the
Phillips curve, aggregate dynamics at the ZLB, and different cost of inflation. For
this reason, I estimate the parameters of the pricing model to match micro–pricing
behavior in the data.

This paper uses quality shocks in the final good aggregator. Online Appendix
Section E shows that this assumption is neutral concerning the main cost of
inflation given by the elasticity of price dispersion to the inflation target in the
steady–state. Since price dispersion with and without business cycles are almost
the same, I provide suggestive evidence that the assumption of quality shocks is
not quantitatively relevant for the main cost of inflation given by price dispersion.

General equilibrium framework. — The general equilibrium framework in my
model is similar to the one used in Coibion, Gorodnichenko and Wieland (2012).
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My model has the same structural shocks as their paper—productivity, govern-
ment expenditures, risk premium, monetary and cost–push shocks—together with
a similar Taylor rule.7 We both have strategic complementarities in our models,
but from different frictions: I use intermediate inputs, while they use segmented
labor markets. Qualitatively, they have the same effect on the cost of inflation,
and the slope of the Phillips curve.8

Another departure from Coibion, Gorodnichenko and Wieland (2012) is in the
specification of the household’s preferences. In the Coibion, Gorodnichenko and
Wieland (2012) benchmark specification, they use CRRA preferences with habit
formation. Instead, I calibrate period utility with GHH preferences. Abstracting
from habit formation and ceteris paribus a Frisch elasticity, the GHH specifica-
tion of preferences has a lower elasticity of real wages to output than the CRRA
specification; in a similar spirit of sticky wages. This departure from their envi-
ronment allows my model to match the volatility of real wages observed in the
U.S. economy.9

Inflation dynamics in menu cost models. — To analyze the solution method
and the business cycle dynamics, it is useful to understand and quantify how
important non-random price adjustment is for aggregate inflation dynamics. For
this reason, I use the inflation decomposition described below.

Inflation can be decomposed into three components: the frequency of price
changes Ωt, the relative reset price P ∗t , and the menu cost inflation ϕt.

10 Inflation
is given by

Πt =

(
1− Ωt

1− Ωt (P ∗t )1−γ

) 1
1−γ

ϕt,(21)

ϕt = Ei
[
(p̃t−1i exp(∆ log(At−1i)))

1−γ |no price adjustment in t
] 1

1−γ
.(22)

The menu cost inflation reflects the relative position of price changes since the
mean of relative prices is constant. Thus, it measures the component of inflation
coming from the distribution of relative prices and, therefore, the magnitude of
the “selection effect” after an aggregate shock, as argued in Golosov and Lucas

7The Taylor rule in my model depends on output gap growth (theirs, output growth) and it depends
only on one period lag of the interest rate (theirs, one and two periods lags of the interest rate).

8Quantitatively, the level of strategic complementaries in my calibration is lower than theirs. We
can measure this property in the slope of the Phillips curve coming from strategic complementarities.
In Coibion, Gorodnichenko and Wieland (2012) the slope of the Phillips curve is proportional to 1/(1 +
εfrischγ), where εfrisch stands for the Frisch elasticity; while in my model it is proportional to 1 − α.
With their calibration of γ = 10 and εfrisch = 1, the proportionality factor is approximately 0.1 while
mine is close to 0.5.

9Increasing the elasticity of real wages to output (e.g., with CRRA preferences) increases the optimal
inflation target since it magnifies the deflationary spiral.

10The relative reset price is equal to P ∗t = p∗tiAti/Pt where p∗ti is the nominal reset price. See Online
Appendix D for a proof of equations (21) and (22).
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(2007). The menu cost inflation has two properties: (i) It is equal to one in the
Calvo model; and (ii) it is bigger than one if the average price change comes from
low relative prices.

This decomposition exposes a critical property of the inflation process. While
the menu cost inflation relies heavily on the distribution of past relative prices,
the reset price depends only on current and future real marginal cost. Therefore,
the menu cost inflation is a primarily backward–looking variable, while the reset
price is a strictly forward–looking variable.

II. Calibration and Solution Method

A. Calibration

To calibrate the model, I first divide the parameters into three separate sets
related to (i) preferences and technology, (ii) menu costs and idiosyncratic shocks,
and (iii) the Taylor rule and aggregate shocks. I then externally calibrate the
parameters for preferences and technology using micro evidence on their empirical
counterparts. Lastly, I use the simulated method of moments (SMM) to estimate
the rest of the parameters. Table I details the parameters used in the MC model.

Preferences and technology. — A period in the model is a month. Therefore,
I choose a discount factor of β = 0.961/12(1 + g)σ and calibrate g = 0.0017 to
match the U.S. annual growth rate of 2%. The GHH preference parameters are
set to σ = 2 and χ = 0.8, following Greenwood, Hercowitz and Huffman (1988).11

I set ηg = 4/3 to match the average U.S. ratio of government expenditures to
output of 25%.

For the production function, I set the between–inputs elasticity γ equal to
3. This calibration choice falls within the range of estimates of the price to
quantity elasticity used in industrial organization and international trade. This
elasticity, as it determines the cost of price dispersion, is an important dimension
in my model.12 I set the elasticity output to materials equal to 0.53. This value
matches the ratio of intermediate inputs to total output in the U.S. economy—
intermediate inputs are 45% of output when markups are 17%. I calibrate τ to
match an aggregate markup of 17%.

Random menu cost and quality shock stochastic processes. — I estimate
the random menu cost and quality shock stochastic processes to match moments

11Greenwood, Hercowitz and Huffman (1988) calibrate χ = 0.6. I use χ = 0.8 to match the volatility
of wages relative to output.

12Macroeconomic estimates tend to be fairly large (about 10); industrial organization and international
trade estimates tend to be much smaller. Estimates of the elasticity of substitution equal to about 2
were given by Chevalier, Kashyap and Rossi (2003), Nevo (2001), and Barsky et al. (2003); Burstein and
Hellwig (2007) estimated a value between 1.55 and 4.64.
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Table I—Parameters Value and Targets

Parameter Value Target

Preferences and technology

β : Discount factor 0.961/12(1 + g)σ Standard
g : Growth rate 0.0017 2% GDP growth rate
σ : Intertemporal-consumption elasticity 2 Greenwood, Hercowitz and Huffman (1988)
χ : Labor supply elasticity 0.8 Greenwood, Hercowitz and Huffman (1988)
γ : Demand elasticity 3 Micro-estimates
α : Share of intermediate inputs 0.53 Intermediate inputs/total output of 45%
τ : Cost subsidy 0.2 Aggregate markup 17%

Random menu cost and quality shocks processes

(σa1, σa2) : Idiosyncratic shock innovations (0.235, 0.018) SMM—micro price statistics
ψ : Prob. of large idiosyncratic shock 0.070 SMM—micro price statistics
ζ : Prob. of free price adjustment 0.044 SMM—micro price statistics
θ : Menu cost 0.135 SMM—micro price statistics

Taylor rule and aggregate shocks

(φr, φπ , φy , φdy): Taylor rule (0.89, 2.62, 0.32, 0.001) SMM—US business cycles
(ρz , σz100) : Productivity shocks (0.980, 0.010) SMM—US business cycles
(ρg , σg100) : Gov. expenditure shocks (0.979, 0.139) SMM—US business cycles
(ρr, σr100) : Taylor rule shocks (0, 0.010) SMM—US business cycles
(ρq , σq100) : Risk premium shocks (0.979, 0.030) SMM—US business cycles
(ρh, σh100) : Cost push shocks (0.960, 0.322) SMM—US business cycles

Note: The table presents the parameter values assigned in the MC model. The coefficient of the Taylor
rule for the output gap is multiplied by four whenever I use the Taylor rule as a function of real marginal
cost since the elasticity of the output gap to the real marginal cost is 4.
Source: Author’s calculations

of the price–change distribution and the physical cost of price changes.13 I use
the steady–state moments of the MC model and verify ex–post that the model
incorporating business cycles reproduces similar moments of the price–change
distribution. This approach is valid since the price–change distribution depends
mainly on idiosyncratic shocks, and not aggregate shocks, given their relative
magnitude. Thus, the model with business cycle dynamics generates almost the
same price–change distribution as the steady-state economy.

Table II describes some selected moments in the data and the model. I set the
average resources spent on price adjustment equal to 0.4% of revenue computed
in Zbaracki et al. (2004) in the data. In the model, the physical cost of price
changes is the menu cost multiplied by the number of costly price adjustments
and then normalized by total revenue: Wtθ

Ωt−ζ
PtYt

. The rest of the moments involve
micro price statistics from the U.K. CPI. Next, I describe these data and the main
steps used to compute the moments in Table II.

I use monthly price quotes collected for the consumer price index micro dataset
of the United Kingdom’s Office for National Statistics (ONS). This dataset offers

13Estimated parameters are robust to excluding the physical cost of price adjustment; see Table B.II
column 4 in the Online Appendix.
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Table II—Micro–level Pricing Moments: Model and Data

Data Model
Moments Raw With filters Steady state Business cycle

Absolute value of price changes

Mean 0.154 0.153 0.153 0.154
Standar Deviation 0.159 0.137 0.143 0.139

Skewness 1.538 1.314 1.188 1.249

10th Percentile 0.014 0.020 0.010 0.012
25th Percentile 0.034 0.049 0.032 0.037
50th Percentile 0.096 0.114 0.130 0.130
75th Percentile 0.223 0.217 0.229 0.224
90th Percentile 0.386 0.356 0.360 0.353

Price changes

Standar Deviation 0.222 0.205 0.209 0.207
Kurtosis 4.672 3.809 3.810 3.841

Mean frequency of price changes 0.169 0.126 — —
Frequency with implied duration 0.119 0.097 0.097 0.097

Percentage of free to total price adjustments — — 48.228 46.032

Note: The table presents selected moments of the micro price statistics in the SMM estimation. The
first column describes the price statistics with standard filters, and the second column describes the same
moments computed with the filters explained in Online Appendix Section B.B.2. Columns 3 and 4 show
the price statistics in the model with and without business cycles.
Source: Columns II (i.e., Raw) and III (i.e., With filters) use data from United Kingdom’s Office for
National Statistics (ONS) micro-level price data. The micro-level price dataset for the period 1996-2005
is available online in United Kingdom’s Office for National Statistics (1996-2005) and for the period
2006-2017 is available online in United Kingdom’s Office for National Statistics (2006-2017). The rest of
the columns are author’s calculations

several advantages. First, it is representative of the whole economy because it re-
flects all prices in the consumer consumption basket. Second, data from January
1996 to the present is publicly available with a lag of only two months. Third,
when I treat the UK data in the same way Klenow and Kryvtsov (2008); Naka-
mura and Steinsson (2008), and Midrigan (2011) treat their US data, I find micro
price moments similar to theirs (see Table B.I in the Online Appendix).14

The distribution of price changes is critical to my calibration, and therefore, to
the cost of inflation. For that reason, I apply several filters to render the data
compatible with the model. First, I employ standard filters used in previous stud-
ies (e.g., Klenow and Kryvtsov 2008; Nakamura and Steinsson 2008).15 Second,

14See Alvarez et al. (2006) and Klenow and Malin (2010) for cross–country studies. For a comparison
between the U.K. and the U.S., see Table B.I in the Online Appendix.

15I complete price quotes for temporary missing observations (less than a year) and out-of-season
observations with the last available price, and I redefine a product as a new product whenever there
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since my model abstracts from sales and heterogeneity across sectors, I compute
micro-price moments filtering out unmeasured sales and controlling for sectoral
heterogeneity. I briefly describe these steps below and leave further details to the
Online Appendix Section B.

The sale filter drops price changes preceded and followed by the same (base)
price, even if there is no “sales and recovery” flag. Around 20% of price changes
have this property (see columns 1 and 2 in Table II). A mismeasurement of sales
using only sales flags increases the frequency of price changes and the magnitude
of the volatility of idiosyncratic shocks. Higher volatility of idiosyncratic shocks
reduces the cost of inflation.

The pervasive heterogeneity of pricing behaviors across sectors is well known.
For this reason, following the “Classification of Individual Consumption Accord-
ing to Purpose” (COICOP), I control for heterogeneity at class-level in two ways.

First, I target the inverse of the average duration of price at class-level, instead
of the average frequency of price changes. Thus, I target a frequency of price
changes equal to 0.097 instead of 0.126. Álvarez, Le Bihan and Lippi (2016),
Baley and Blanco (2018), and Blanco and Cravino (2019) have shown that this
is the correct method to map class–level heterogeneity in pricing data onto a
single–sector model.16

Second, I target the aggregate standardized price–change distribution at class–
level (cf. Klenow and Kryvtsov 2008). Intuitively, targeting the standardized
distribution of price changes homogenizes this variable for the mean and the vari-
ance across classes, lowering the dispersion in the price–change distribution. This
filter decreases the amount of small and large price changes reflected in the kur-
tosis of price changes, as we can see in Table II. The standardized price change
distribution affects the estimated ratio of the frequency of free price adjustments
to total price changes: that ratio is 62% without this filter, but 48% with it.
Online Appendix Section B.B.4 shows theoretical results that support this aggre-
gation in models with sectorial heterogeneity. Table B.II in the Online Appendix
shows the estimates of the structural parameters when I use different filters.

The final calibration specifies a model that is neither a Calvo model or a stan-
dard MC model, but a hybrid of the two. Thus, how close is the calibration of
my model to a benchmark MC model like the one in Golosov and Lucas (2007)
vis–a–vis to a Calvo model regarding the slope of the Phillips curve?

I answer this question by looking at the proportion of price changes due to zero

are more than twelve consecutive missing observations. I exclude price changes flagged as involving
noncomparable product substitutions, or “sales and recovery,” as well as outliers and observations in
months during which the value-added tax rate changed.

16The average frequency and the inverse of the average duration of price changes are given by
∑
i ωiΩi

and
(∑

i ωiΩ
−1
i

)−1
, respectively, where ωi and Ωi are CPI weights and the frequency of price changes at

the class level. Álvarez, Le Bihan and Lippi (2016) in Online Appendix E and Baley and Blanco (2018)
show that if shocks are i.i.d and there are no strategic complementarities, then the effects of monetary
shocks in a single-sector vs. a multi-sector model are the same if the two models are calibrated to match
the same average duration of price spells. Blanco and Cravino (2019) extend this result quantitatively
in a model with persistent aggregate shocks and strategic complementarities.
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menu cost plus price changes conditional on fat-tailed idiosyncratic shocks. From
the work of Gertler and Leahy (2008), Midrigan (2011) and Álvarez, Le Bihan and
Lippi (2016), we can use this number as a metric for the difference in the slope of
the Phillips curves between my model and the Calvo model. The intuition behind
this result is the following: if the frequency and distribution of price changes do
not respond to aggregate shocks, then firms change their prices if and only if they
receive a fat-tailed idiosyncratic shock or a zero menu cost. Since these two events
are independent of the aggregate state and i.i.d. across time and firms, inflation
dynamics are similar to the Calvo model.

When my model is consistent with micro-data, around 50% of price changes are
due to zero menu cost (see model’s columns in Table II, last row). Additionally,
if we sum up the price changes after fat-tailed idiosyncratic shocks, this quan-
tity increases to 93%. This quantitative result suggests that my MC model has
similar business cycle properties than an otherwise equivalent Calvo model if the
frequency and distribution of price changes do not fluctuate. Online Appendix
Section C shows that my MC model generates similar aggregate dynamics to the
Calvo model without a ZLB constraint and at a 2% inflation target.17

Taylor rule and aggregate shocks. — For the estimation of the Taylor rule
and aggregate exogenous shocks, I use SMM with business cycle moments in the
U.S. economy and the Calvo model at 2% inflation and no-ZLB. I verify ex–post
that the model with menu costs reproduces similar moments at a 3.5% inflation
with ZLB. This methodology gives a good approximation of the best fit with MC
and ZLB for two reasons. First, the Calvo model’s business cycle properties are
similar to those of the MC model with a low inflation target and no ZLB. Second,
the business cycle moments of the MC model with ZLB at 3.5% inflation target
are similar to those with no ZLB.

Table III presents the moments in the model and the U.S. data from 1960 to
2017, specifically the standard deviations, autocorrelations, and correlations with
output of each HP-filtered variable. My model yields a frequency of binding ZLB
of 3.5% at 3.5% inflation target and 12% at 3% inflation target. This frequency
is a conservative target concerning the U.S. historical frequency of binding ZLB
(i.e., 10% with average inflation of 3.4%), and closer to Coibion, Gorodnichenko
and Wieland (2012) (i.e., 3.5% with average inflation of 3.5%). I construct output
in the data as the sum of total consumption plus government expenditures instead
of gross domestic product to be consistent with my model.

The model reproduces the standard deviations of output and consumption, the
main inputs for welfare and the main target of my estimation, together with the
standard deviations of interest rate, real wages, and government expenditures.
Additionally, due to cost–push and productivity shocks, the model generates the

17Free adjustments due to zero menu cost and fat-tailed idiosyncratic shocks reduce the volatility of
inflation even when the ZLB is binding in comparison to an analogous MC model without these two
features.
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Table III—Business Cycle Moments: Model and Data

Model Model

Data Median [2,98] Data Median [2,98]

Standard deviation Autocorrelation

Output 0.95 1.05 [0.84,1.30] 0.83 0.78 [0.67,0.85]
Consumption 1.14 1.07 [0.86,1.31] 0.85 0.78 [0.68,0.85]
Interest rate 0.35 0.41 [0.32,0.51] 0.83 0.86 [0.81,0.90]
Real wage 0.86 0.67 [0.49,0.89] 0.71 0.87 [0.78,0.92]
Inflation 0.26 0.13 [0.11,0.15] 0.49 0.58 [0.45,0.68]
Gov. expenditure 1.42 1.40 [1.12,1.70] 0.82 0.77 [0.67,0.84]

Correlation with output

Output 1.00 1.00 [1.00,1.00]
Consumption 0.92 0.96 [0.94,0.98]
Interest rate 0.19 0.28 [0.00,0.50]
Real wage 0.25 0.65 [0.45,0.79]
Inflation 0.09 0.25 [0.05,0.44]
Gov. expenditure 0.42 0.80 [0.65,0.88]

Note: The table presents business cycle moments from the U.S. data and the simulated series of the model
at a 3.5% inflation target. Online Appendix Section A describes the variables in the U.S. data. Model
and data series are detrended with Hodrick-Prescott filter (λ = 1600) to remove the trend component.
The period in the data is from 1960 first quarter to 2017 fourth quarter. The moments in the MC model
are the median and a [2,98] percent confidence interval across simulations. I compute the statistics in
the model for over 5000 simulations with the same length as in the data.
Source: Author’s calculations

low to zero correlation between the interest rate and inflation with output. The
model does a relatively good job matching the persistence of the variables on
average, but it doesn’t match the relatively high (resp. low) persistence of real
(resp. nominal) variables.

The model overpredicts the persistence and the correlation with output of real
wages. Qualitatively, cost–push shocks generate these properties over real wages,
since they produce a wedge between real wages and the marginal rate of substitu-
tion of consumption and labor. Nevertheless, quantitatively, these shocks affect
mainly output and not real wages; therefore, the model cannot use these shocks
to “disconnect” the stochastic process of output and real wages.

Under this estimation, the model understates the relation between inflation and
real wages, i.e., the slope of the Phillips curve. To show this property, I compare
the stochastic process of inflation relative to real wages. The ratio of the standard
deviations of inflation to real wages in the data is 0.30 (resp. 0.19 in the model).
This property suggests that my model understates the slope of the Phillips curve,
and therefore also the optimal inflation target. Nevertheless, missing the standard
deviation of inflation alone does not necessarily imply that my model misses a
key statistic for the optimal inflation target. Intuitively, if my model misses i.i.d.
fluctuations of inflation that are not correlated with consumption and labor, then
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those fluctuations should not affect equilibrium dynamics. I analyze this insight
in Section IV.

Two observations are important. First, I do not use aggregate data on inflation
to estimate the slope of the Phillips curve. I use orthogonal evidence on micro-
pricing behavior, and the ratio of intermediate inputs to total output observed
in the U.S. economy. Second, the property by which my model understates the
frequency of the ZLB implies that the model’s optimal inflation is a lower bound
for the U.S. economy.

B. Solution Method

The two main challenges associated with the computation of the equilibrium
are that (i) the combination of a Taylor rule for monetary policy and an infinite-
dimensional aggregate state requires a nonstandard application of (and evaluation
of results from) the Krusell–Smith algorithm and (ii) both the aggregate and
idiosyncratic policy functions have kinks. Here, I briefly describe the solution
method regarding (i). Interested readers can find more details in the Online
Numerical Appendix, Sections J, K, and L.

Modification of Krusell–Smith algorithm. — Given that the distribution of
relative prices is a part of the state, I use the KS algorithm to solve this problem.
However, the standard method of implementing that algorithm does not work in
my model.

To understand why KS algorithm fails in this environment, consider the unique-
ness of the equilibrium with price rigidities and a Taylor rule. Assume a deviation
from the equilibrium with an increase in consumption. This increase in consump-
tion raises the output gap and also (because of the Phillips curve) inflation. If
the Taylor principle is satisfied, then this change in inflation affects the real rate,
feeding back to consumption and undoing the original increase. The general
equilibrium effect involving households, firms, and the central bank makes the
equilibrium unique.

In my model, the KS algorithm would ideally obtain the aggregate inflation
policy from the simulation and then use it to solve the equilibrium conditions.
However, replacing the Phillips curve—which captures the relation between in-
flation and real marginal cost—with an approximation of the inflation policy
function generates indeterminacy, as in a standard New Keynesian model with
exogenous inflation.

The problem is that there is no information on the relationship between in-
flation and real marginal cost (i.e., the Phillips curve) whenever we obtain the
inflation policy from the simulation. My proposed solution consists of applying
the KS algorithm to the components of inflation that depend on the distribu-
tion of relative prices (the frequency of price changes and the menu cost inflation



VOL. VOL NO. ISSUE OPTIMAL INFLATION 19

components in equation (21)), and then solving jointly the aggregate and id-
iosyncratic equilibrium conditions. Despite generating some (solvable) numerical
challenges, this method yields a cross-equation restriction of the intensive margin
of the Phillips curve (i.e., the relation between the relative reset price and the real
marginal cost) at the moment of solving the equilibrium policies, thereby break-
ing the indeterminacy I mention above. Such numerical computation seems to be
reliable in that it provides a unique solution whenever solving for the equilibrium
conditions.18

Accuracy of the modified Krusell–Smith algorithm. — I verify the accuracy
of the modified KS algorithm by checking the equilibrium conditions with the sim-
ulated values of inflation, price dispersion, and frequency of price changes.19 For
each variable in the model, I construct the solution with the KS projections and
the simulated version of the projected variables. I then compute the differences
between these two ways of calculating the equilibrium to verify the error in the
KS approximation. The Numerical Online Appendix L describes the construction
of the errors for each variable, and plots the time series. Table L.I in Numerical
Online Appendix L reports the Krusell-Smith errors for inflation targets 1.3%,
3% and 5%. Under the simulated level of inflation, the standard deviation of the
error in the nominal interest rate divided by the standard deviation of nominal
rate is 0.038% at a 1.3 inflation target with no ZLB; that ratio increases to 0.624%
in the model with a ZLB. At a 5% inflation target, the respective errors increase
to 0.084% and 0.133%. Thus, the KS algorithm yields a good fit, losing some of it
whenever the ZLB is binding by a large amount, but not at the optimal inflation
target or its neighborhood.

Aggregate state. — The assumption of idiosyncratic quality shocks implies
that the idiosyncratic state variable for the firm is p̃ti = ptiAti

Pt
, not p̃ti = pti

Pt
and

Ati separately. An additional implication is that the aggregate state consists of
the distribution of adjusted relative prices f(p̃ti) or markups that I approximate
with the first two moments.

III. The Optimal Inflation Target

This section analyzes the optimal inflation target in my MC model. To achieve
this goal, I proceed in three steps. In the first step, I show the optimal inflation

18Aggregate kinks precludes the use of methods employed by Reiter (2009) and implemented in MC
models by Costain and Nakov (2011).

19I did not use the R2 statistics, as most authors do. The main reason is that, if a variable has a small
effect on the equilibrium conditions, then the projection’s fit does not in itself inform us about whether
or not the KS approximation is valid. The only projected endogenous state variable is price dispersion,
but since that variable exhibits low volatility, there is no significant law of motion of the aggregate state
estimated in the simulation.
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target with and without a ZLB constraint in my MC model, alongside key vari-
ables to characterize the trade-offs mentioned in the introduction for the optimal
inflation target. In the second step, I analyze the importance of the pricing model
by computing the optimal inflation target in the same general equilibrium frame-
work and a Calvo pricing model. This exercise provides a quantitative description
of the main trade-offs in my MC model, and it compares my results relative to
Coibion, Gorodnichenko and Wieland (2012) and related literature. In the last
step, I explain how the primary mechanisms in my model generate a different
inflation target than that of a Calvo model.

A. The Optimal Inflation Target in a Menu Cost Model

The optimal inflation target in my MC model with a ZLB constraint is 3.5%.
This result presupposes a ZLB constraint on nominal interest rates, otherwise
the optimal level of inflation would be 0%. Figure I-Panel A describes welfare
using the consumption equivalent. Each point on the y-axis marks the percentage
increase in consumption needed to achieve the same welfare as under the optimal
inflation target. Formally, let Ũ π̄t be the value of the household normalized by
productivity,

(23) Ũ π̄t (Ψ) = E

 ∞∑
j=0

βjut+j

(
C π̄t+j

(
1 +

Ψ

100

)
, Lπ̄t+j

)
/η1−σ
t+jz

 .
Here C π̄t , and Lπ̄t are consumption and labor at the inflation target π̄ whenever
there is an increase in consumption by Ψ%. The consumption equivalent at
inflation target π̄, Ψ(π̄), is given by E[Ũ π̄t (Ψ(π̄))] = E[Ũ π̄

∗
t (0)], where π̄∗ is the

optimal inflation target.
Without a ZLB constraint, increasing the inflation target from 0 to 6% in the

MC model is equivalent to decreasing consumption by 0.15%. The consumption
equivalent changes by 0.04% following an increase in inflation from 0% to 3%. In
this case, the consumption equivalent is increasing for all levels of inflation. Notice
the consumption equivalent has the same order of magnitude as the cost of the
business cycles by Lucas Jr (2003) for levels of inflation less than 4%, i.e., 0.05% of
consumption equivalent. With ZLB, the consumption equivalent is decreasing at
low levels of inflation and then increasing. The consumption equivalent between
the optimal inflation target and a 1.3% inflation target is 0.03%.

The main cost of increasing inflation is a lower mean consumption-labor ratio.
Moreover, the mean consumption-labor ratio is the primary variable that explains
the consumption equivalent. Figure I-Panel C plots the mean consumption-labor
ratio business cycles alongside the steady–state consumption-labor ratio. I nor-
malize this variable with its value at the optimal inflation target. The consump-
tion equivalent is identical to the negative of the mean consumption-labor ratio
without a ZLB constraint. They both change by 0.15% when I increase the infla-
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Figure I. Menu Cost Model: Main Variables For Optimal Inflation

Note: Panel A describes the consumption equivalent in the MC model normalized by the optimal inflation
target. Panel B describes the frequency of a binding ZLB. The frequency of a binding ZLB without a
ZLB constraint refers to frequency of negative values of the interest rate. Panel C describes the mean

consumption-labor ratio given by (Eπ̄ [Ct/(Ltηtz)]/Eπ̄∗ [Ct/(Ltηtz)] − 1) × 100. Panel D describes the

standard deviation of output gap given by Stdπ̄ [log(mct)]× 100
χ(1−α)

. The light grey dashed line describes

the steady state moments, the solid black lines describe the moments without a ZLB and the dotted grey
lines describe the moments with a ZLB. The scale of this figure coincide with Figure II.
Source: Author’s calculations

tion target from 0% to 6%. Intuitively, changes in the inflation target only affect
this variable without a ZLB constraint.

With a ZLB constraint, the mean consumption-labor ratio is relatively constant
for levels of inflation less than 4%. Intuitively, a higher inflation target increases
the mean of inflation and decreases the volatility of inflation, since the economy
is avoiding the ZLB constraint. These two effects almost cancel each other out.
After a 4% inflation target, the change in the mean consumption-labor ratio with
and without ZLB is the same.

There are two reasons why the consumption-labor ratio decreases with inflation.
First, higher levels of inflation increase inefficient distortions in the relative prices
across firms, decreasing aggregate productivity. Second, higher inflation raises
the resources allocated for price changes since labor is not used for production
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and consumption, but for price adjustment. I ignore the physical cost of repricing
because it is quantitatively small. Next, I use the steady–state consumption-labor
ratio to explain the low cost of inflation, since it remarkably describes the mean
consumption-labor ratio across the business cycle.

Under a ZLB constraint and low inflation targets, welfare is increasing in infla-
tion. Intuitively, since the consumption-labor ratio does not change much for low
inflation targets, there are only benefits to increasing inflation as it reduces inef-
ficient fluctuations of consumption and labor due to the ZLB constraint. Figure
I-Panels B and D describe the frequency of a binding ZLB and the standard devi-
ation of the output gap. The standard deviation of the output gap measures the
fluctuations of labor and consumption resulting from inefficient movements of the
price-marginal cost ratio due to nominal frictions. The output gap is independent
of efficient variations due to real shocks or price dispersion. The standard devia-
tion of the output gap with a ZLB constraint coincides with the model without
a ZLB for levels of inflation target more than 3.5%.

Figure I describes the central intuition for the optimal inflation target in my
MC model. At the optimal inflation target, the equilibrium allocation of con-
sumption and labor are the same with or without a ZLB constraint. Since the
mean consumption-labor ratio is almost constant for levels of inflation less than
the optimal, the optimal inflation target is the level at which the ZLB does not
generate inefficient volatility of consumption and labor.

The stochastic processes of consumption and labor are the same with or without
a ZLB constraint at the optimal inflation target, even if the frequency of the ZLB
is positive. Intuitively, for the ZLB to have an incidence in equilibrium allocation,
this restriction has to be binding enough. If not, then interest rate smoothing of
the desired interest rate in the Taylor rule (14) and (16) is enough to generate
equilibrium allocations similar to those in the model without a ZLB constraint.

B. The Optimal Inflation Target in a Calvo Model

I compare my MC model with a Calvo model with no idiosyncratic shocks and
identical preferences and technology. The parameters for the Calvo model are the
same as in the MC model, except for σa,1 = σa,2 = 0, ξ = 0.097, and θ → ∞.
This calibration without idiosyncratic shocks yields a benchmark against which
I compare my model with the standard assumptions in the literature. A Calvo
model with idiosyncratic shocks has a higher cost of inflation than without them,
making the differences in the optimal inflation targets across models even larger
(see Subsection III.C). Figure II reproduces Figure I for a similarly specified
Calvo model.20

20I use indexation of prices for business cycle fluctuations in inflation in the Calvo model whenever
the inflation target exceeds 3%. I use this form of indexation only in the Calvo model and not in the MC
model. Absent this assumption, the model’s global and local solutions are not stable for high inflation
levels.
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The optimal inflation in the Calvo model without idiosyncratic shocks is 1.3%.
The optimal inflation target is close to the 1.5% optimal inflation in Coibion,
Gorodnichenko and Wieland (2012).21 The striking property we see in the Calvo
model is the significant cost of inflation reflected in the consumption equivalent.
Increasing the inflation target from 0% to 6% in the Calvo model is equivalent
to decreasing consumption by approximately 0.84% with and without a ZLB
constraint. The cost of inflation is high also at low inflation targets: increasing
the inflation target from 0% to 3% is equivalent to decreasing consumption by
approximately 0.17%. The consumption equivalent of the same policy change is
0.04% in the MC model.
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Figure II. Calvo Model: Main Variables For Optimal Inflation

Note: Panel A describes the consumption equivalent in the Calvo model normalized by the optimal
inflation target. Panel B describes the frequency of a binding ZLB. The frequency of a binding ZLB
without a ZLB constraint refers to frequency of negative values of the interest rate. Panel C describes the

mean consumption-labor ratio given by (Eπ̄ [Ct/(Ltηtz)]/Eπ̄∗ [Ct/(Ltηtz)]− 1)× 100. Panel D describes

the standard deviation of output gap given by Stdπ̄ [log(mct)] × 100
χ(1−α)

. The light grey dashed line

describes the steady state moments, the solid black lines describe the moments without a ZLB and the
dotted grey lines describe the moments with a ZLB. The scale of this figure coincide with Figure I.
Source: Author’s calculations

21The optimal mean inflation in the Calvo (resp. MC) model is 0.23% (resp. 3.5%). The ZLB has
a second-order effect on mean inflation, thereby generating a wedge between average inflation and the
target inflation, i.e., the average inflation with no zero lower bound.
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Similarly, as in the MC model, the consumption equivalent across inflation
targets mimics the mean consumption-labor ratio at different levels of inflation
with and without a ZLB at all levels of inflation. The elasticity of price dispersion
to mean inflation implies this quantitative relation since there is no physical cost
of price adjustment. Without a ZLB constraint, the consumption-labor ratio
decreases by 0.19% between 0% and 3%, and 0.83% between 0% and 6%. With a
ZLB, the mean consumption-labor is increasing between 1.0% and 1.3% inflation
targets and starts falling after a 1.6% inflation target.

There is another quantitative difference between the MC model and the Calvo
model: the ZLB constraint increases the volatility of the output gap more in
the MC model than in the Calvo model. The increase in the volatility of the
output gap in the MC (resp. Calvo) model is by 0.84% (resp. 0.52%) at the
optimal inflation target in the Calvo model. While this mechanism is important
to quantify the cost of the ZLB at low inflation targets, it is not crucial for
understanding the optimal inflation target in the MC model. The argument is
simple. Since the mean consumption–labor ratio is constant for levels of inflation
less than the optimal, there are only benefits of increasing the inflation target for
the stabilization of business cycles.

This paper focuses on the main consequence of changing the pricing model for
the optimal inflation target: a low elasticity of the consumption-labor ratio to
the mean inflation. Nevertheless, departing from a MC model to a Calvo model
adds a new cost of the ZLB constraint. This constraint increases the volatility
of inflation, therefore raising the mean of the dispersion of relative prices. If
this mechanism is strong enough, then the ZLB is costly because the central bank
cannot stabilize inflation and its effect on price dispersion. Thus, it is not because
a central bank cannot stabilize aggregate output. This is the main benefit in the
trade-off for the optimal inflation target in Coibion, Gorodnichenko and Wieland
(2012) (see Online Appendix Section G for a further discussion). This mechanism
is not quantitatively important in my model, as Figure I-Panel C shows.

C. Understanding the Optimal Inflation Target in the MC model

To understand the optimal inflation target in my model, one must first under-
stand how the interaction between menu costs and idiosyncratic shocks reduces
the cost of inflation given by price dispersion. Additionally, my MC model in-
creases the business cycle cost of the ZLB constraint at a low inflation target
compared to a Calvo model. In this section, I explain why the mean consumption-
labor ratio and the volatility of the output gap are different in my MC model.

Understanding the mean consumption-labor ratio. — My MC model with
93% of price changes due to fat-tailed idiosyncratic shocks or zero menu cost
of price adjustment generates a cost of inflation five times lower than a Calvo
model. I now demonstrate this result is the outcome of the interaction between
idiosyncratic shocks and menu costs.
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To this achieve this goal, I compute the consumption-labor ratio at different
levels of inflation in the Calvo and MC models with and without idiosyncratic
shocks. I show that the MC model with idiosyncratic shocks generates the low-
est cost of inflation, followed by the Calvo model without idiosyncratic shocks.
These two models generate a lower cost of inflation than the MC model without
idiosyncratic shocks and the Calvo model with idiosyncratic shocks. Thus, a low
cost of inflation results from the interaction between menu cost and idiosyncratic
shocks.

To maximize the clarity of the results reported here, I analyze how the cost of
inflation—i.e., the consumption–labor ratio—changes in the steady-state across
pricing models. As established above, the steady–state is a good approximation
of the mean with business cycles.22

Panels A and B of Figure III show the distribution of relative prices p̃ti at
different inflation targets in the MC model with and without idiosyncratic shocks.
Panels C and D plot the consumption–labor ratio, and the frequency of price
changes. Figure III-Panel E shows the width of the Ss bands in the MC model
with and without idiosyncratic shocks: the (log) percentage difference between
the adjustment triggers and the reset price.

At low levels of inflation, the consumption–labor ratio decreases faster in the
MC model without idiosyncratic shocks than in the two versions of the Calvo
model. This difference can be seen in panel C of Figure III. Three mechanisms
explain this significant difference. First, price dispersion is discontinuous at zero
in the MC model with no idiosyncratic shocks while it is continuous in the Calvo
models—with and without idiosyncratic shocks. Price dispersion in the Calvo
model is differentiable at zero (see the Online Appendix Section D for a formal
proof), and therefore continuous. In the MC model with no idiosyncratic shocks,
the width of the Ss bands is positive at all inflation levels. It follows that the dis-
tribution of relative prices jumps from a probability atom at zero inflation—since
all the prices are at the optimal reset price—to a uniform probability distribu-
tion at any positive level of inflation (see Figure III-Panel A). The jump from a
probability atom to a uniform distribution increases the cost of inflation because
of the sudden steep increase in the dispersion of relative prices.

Two more mechanisms increase the cost of inflation in a MC model without
idiosyncratic shocks. First, the width of the Ss bands is strictly increasing with
inflation. Intuitively, firms optimally choose to increase the width of the Ss bands
to save on the cost of price adjustment. Given that the mass of firms in the
Ss bands is positive, there is a first-order effect of increasing inflation on price
dispersion for the change within the width of the Ss bands. Second, an increase
in inflation raises the frequency of price changes and the associated physical cost

22I set the random menu cost sufficiently small (ζ = 0.001) to generate a unique ergodic distribution
in the MC model with no idiosyncratic shocks. I calibrate this version of the model with the same menu
cost as the MC model with idiosyncratic shocks. I calibrate the variance of the idiosyncratic shocks in
the Calvo model as 10% of the MC model. I keep the level of markups constant across inflation targets
to focus on price dispersion and the physical cost of adjustments.
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Figure III. Steady State Cost of Inflation

Note: Panels A and B describe the distribution of relative prices at 0%, 0.3%, and 3% inflation targets.
Panel C describes the normalized consumption–labor ratio in the Calvo and MC models with and without
idiosyncratic shocks. Panel D describes the frequency of prices across models. Panel E describes the (log)
percentage difference between the upper and lower adjustment triggers and the reset price in the menu
cost models. The distributions are rescaled by 100, and the probability atoms in these distributions are
rescaled to fit in the graph.
Source: Author’s calculations

of changing prices (see Figure III-Panel D).

The MC model with idiosyncratic shocks has a high level of price dispersion (see
Figure III-Panel B), and low elasticity of the consumption-labor ratio to inflation.
The presence of idiosyncratic shocks mitigates the mechanisms mentioned above
that create a high cost of inflation in a MC model without idiosyncratic shocks.
Whenever idiosyncratic shocks are present, the width of the Ss bands, the distri-
bution of relative prices, and frequency of price changes are almost constant for
low levels of inflation. To understand why the width of the Ss bands is practically
constant with inflation, note that due to large idiosyncratic shocks, firms respond
mainly to idiosyncratic shocks and not inflation. Therefore, changes in inflation
do not affect the width of the Ss bands at low levels of inflation.

Inflation also affects the law of motion of relative prices between price changes.
Consequently, the dispersion of relative prices within the Ss bands and the fre-
quency of price changes. The level of inflation relative to the volatility of id-
iosyncratic shocks determines these relations. Therefore, when the volatility of
idiosyncratic shocks is significant, inflation has little effect on the dispersion of
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relative prices.23

Large idiosyncratic shocks decrease the cost of inflation in the MC model, while
they increase the cost of inflation in the Calvo model. In this model, the presence
of idiosyncratic shocks moves relative prices further away from the mean at a
zero inflation target. Thus, changes in inflation have a considerable effect on the
variance of relative prices. Figure III-Panel C shows this property.24

Understanding the volatility of output gap. — The volatility of the output
gap in my MC model depends on the frequency of the ZLB. If the frequency of the
ZLB is not sufficiently binding, then the frequency and the distribution of price
changes do not respond to aggregate shocks. In this case, business cycle moments
of my MC model are similar to the Calvo model. Table IV shows business cycle
moments in the Calvo and MC models at the optimal inflation targets of the Calvo
and MC models. As we can see, business cycle fluctuations in the Calvo and MC
models at a 3.5% inflation target are similar. Below, I explain the volatility of
the output gap when the ZLB does bind enough.

In the MC and Calvo models, when the ZLB is binding, the real interest rate
is too high. A high real interest rate leads to excessive saving. Since the nominal
interest rate cannot decrease due to the ZLB, this exacerbates the depression of
spending and output, which in turn creates more deflationary pressure. Next,
I show how the response of inflation to the output gap at the ZLB depends on
the endogenous price flexibility in the MC model. I define the two mechanisms
as: “Price flexibility due to inflation during ZLB periods,” and “Price flexibility
due to inflation before ZLB periods.” Importantly, the inflation target affects the
magnitude of these two mechanisms. Table IV shows the relevant moments to
explain the mechanisms.

Mechanism 1: Price flexibility due to inflation during ZLB periods. —

At a 1.3% inflation target, depressed inflation implies a deflation. Thus, there
is an increase in the fraction of repricing firms at the ZLB. The key feature
in MC models is that this increase is not random across firms. A new mass
of repricing firms hits the downward price adjustment trigger with a significant
downward price adjustment (about 13%). These newly repricing firms reduce

23Formally, Álvarez et al. (2018) show that price dispersion and the frequency of price changes depend
on the ratio between inflation and variance of idiosyncratic shocks in a MC model with idiosyncratic
shocks.

24Formally, define ∆ss as the misallocation of labor due to inefficient price dispersion in the steady–
state. ∆ss satisfies

∆ss = Ω(P ∗ss)
−γ + (1− Ω)ΠγE

[(
Ati

At−1i

)−γ]
∆ss.

Here ΠγE
[(

Ati
At−1i

)−γ]
= Πγeγ

2/2(ψ(σ1
a)2+(1−ψ)(σ2

a)2) is the accumulated dispersion between price

changes. Therefore, the elasticity of price dispersion to inflation is increasing in the volatility of idiosyn-
cratic shocks.
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Table IV— Business Cycle Moments with ZLB in Calvo and Menu Cost Models

Menu Cost Calvo
Inflation Target 1.3 % 3.5 % 1.3% 3.5 %

Frequency of binding ZLB 0.309 0.035 0.270 0.042

Statistics for output gap and Inflation

Output gap
Unconditional std 1.539 0.808 1.456 0.864
Std conditional on binding ZLB 1.884 0.651 1.579 0.943
Std conditional on no binding ZLB 0.718 0.757 0.815 0.796

Inflation
Unconditional mean -0.57 3.50 0.25 3.65
Mean deviation conditional on binding ZLB -1.18 -0.53 -0.47 -0.50
Mean deviation conditional on no binding ZLB 0.52 0.02 0.17 0.02
Unconditional std 1.08 0.26 0.36 0.25
Std conditional on binding ZLB 1.23 0.11 0.30 0.14
Std conditional on no binding ZLB 0.34 0.24 0.20 0.23

Inflation Components

Frequency of price changes
Unconditional mean 9.846 9.846
Mean conditional on binding ZLB 10.225 9.672
Mean conditional on no binding ZLB 9.676 9.852

Menu cost inflation
Unconditional mean -0.07 0.39
Mean deviation conditional on binding ZLB -0.53 -0.25
Mean deviation conditional on no binding ZLB 0.24 0.01

Note: The table presents business cycle moments in the Calvo and MC models at 1.3% and 3.5%
inflation targets at a quarterly frequency. The statistics for output and inflation are (log) percentage
points. “Mean deviation” describes the log-deviation of the variable for the mean conditional on zero or
positive rates. “Std conditional” describes the standard deviation of the variables in logs conditional on
zero or positive rates.
Source: Author’s calculations

inflation. Since the ZLB is binding, this initial drop in inflation increases real
interest rates, thereby depressing the output gap and inflation even further.

We can see this mechanism in Table IV. Since inflation at the ZLB is nega-
tive (i.e., -1.70%), there is a negative drift with the increase in the frequency of
price changes, from an average of 9.84% to 10.22%. Moreover, this increment is
asymmetric across the distribution of price changes. The variable that reflects
this mechanism is the menu cost inflation. As we can see, the menu cost inflation
at the ZLB is -0.60% during ZLB periods. Therefore, the new price changes are
price drops, and these changes explain half of the decrease in inflation (-1.18%
decrease in inflation vs. -0.53% decrease in menu cost inflation).

At a higher inflation target, the MC model yields a much weaker deflationary
spiral. First, as shown in Table IV, there is a decline in the frequency of price
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changes. The intuition for this result is clear: with positive inflation on average,
if an economy hits the ZLB then there is a low inflation but not deflation. Even
more, the menu cost inflation is close to zero when the ZLB is active. Hence,
price changes are driven mostly by fat-tailed shocks and zero menu cost—not
aggregate shocks. For this reason, business cycles in the Calvo and the MC
models are similar at 3.5% inflation target.

Mechanism 2: Price flexibility due to inflation before ZLB periods. — The
distribution of relative prices at the moment of entering a ZLB period affects the
reaction of inflation to the output gap. The inflation target affects the average
inflation, and therefore it can shape this distribution to mitigate deflation during
ZLB periods. To show this mechanism, Figure IV plots the average distribution
of relative prices at 1.3% and 3.5% inflation targets across simulations. The
figure reveals that at a 1.3% inflation target, the distribution of relative prices
is asymmetric with more (resp. less) mass of firms close to the downward (resp.
upward) adjustment trigger than at a 3.5% inflation target. Thus, at a low
inflation target, there is a relatively large set of firms near the upper Ss bands
that explains the high elasticity of menu cost inflation to negative aggregate shocks
when the ZLB is binding.
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Figure IV. Distribution of Relative Prices at 1.3% and 3.5% Inflation Target

Note: This figure describes the mean distribution of relative prices conditional together with the average
Ss bands at 1.3% and 3.5% inflation targets. I shift the distribution of relative prices at 3.5% to make
the right Ss band equal at both levels of inflation targets.
Source: Author’s calculations

In conclusion, a higher inflation target reduces the business cycle volatility of
consumption and labor for three reasons. First, it reduces the likelihood of hitting
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the ZLB. Second, the inflation target determines the level of inflation whenever
the ZLB is active. The level of inflation (together with a depressed output gap)
implies the dynamics of the menu cost inflation at the ZLB, and therefore the
feedback from the output gap to inflation. Third, it moves prices further away
from the downward price adjustment trigger before entering periods with a bind-
ing ZLB. Consequently, it determines how much the menu cost inflation responds
to aggregate shocks.

IV. Robustness

This section analyzes the sensitivity of the optimal inflation target to different
calibrations of preferences and technologies. For each of these variant calibrations,
I solve and analyze my MC model and the analogous Calvo model and reproduce
Figures I and II in Online Appendix Section F. I perform this exercise in service of
two objectives. First, I demonstrate the robustness of an optimal inflation target
equal to 3.5% by changing and explaining critical parameters for the trade-offs of
the optimal inflation target. Second, I situate my results within the literature that
analyzes the optimal inflation target in the Calvo model. I show that while the
cost of inflation in the Calvo model is sensitive to alternative parameterizations,
the cost of inflation in my MC model is robust.

Are my results robust to the alternative specification of an analogous

Golosov and Lucas (2007) model?. — I analyze the importance of random free
price change opportunities and fat-tailed idiosyncratic shocks by calibrating the
model without these two frictions. The pricing model analyzed here is similar to
Golosov and Lucas (2007). I set ξ = ψ = σa1 = 0 and calibrate the menu cost
and the variance of idiosyncratic shocks to match the frequency and the size of
price change. This calibration matches the physical cost of price adjustment.

Table F.I reproduces the micro price statistics of Table II. As we can see in
the table, this calibration cannot reproduce the heterogeneity in the price–change
distribution. For example, the kurtosis of price changes is 1.15. Table F.II shows
aggregate moments found in Table II. As we can see in the table, this calibration
increases the volatility of inflation by two. The increment does not have much of
an effect on the rest of the business cycle statistics, since this increment is almost
i.i.d.. As the table shows, from the benchmark calibration to this new calibration,
the persistence of inflation falls from 0.58 to 0.44, and there is no change in the
correlation with output.25

The optimal inflation target in the Golosov and Lucas (2007) version of my
model is 4%. This calibration reduces significantly the cost inflation (see Figure
F.I.b). In this version of my model, increasing the inflation target from 0% to

25Inflation affects equilibrium dynamics throught the Euler equation and the Taylor rule. Since the
Euler equation depends on expected inflation and the Taylor rule has a high smoothing parameter, i.i.d.
fluctuations of inflation uncorrelated with the output gap do not affect equilibrium dynamics.
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6% decreases the mean consumption-labor ratio by 0.02%. For this reason, the
consumption equivalent is almost constant for levels of inflation greater than the
optimal inflation target. Intuitively, reducing the randomness in the price adjust-
ment policies, not only increases the slope of the Phillips curve but also decreases
the cost of inflation, as firms can respond more efficiently to their state.26

The characteristics of the optimal inflation target under this calibration support
two results. First, the central intuition I provide for the optimal inflation target
for my benchmark calibration in Section III.A holds in this case, even if inflation
is much less costly. Second, increasing inflation volatility without affecting other
business cycle moments, specifically by keeping the frequency of the ZLB constant,
does not raise the optimal inflation target by much.

Which parameters are important for the cost of inflation?. — I now an-
alyze the elasticity of the consumption-labor ratio to inflation. This elasticity
consists of two other elasticities: (1) the elasticity of inefficient price disper-
sion to inflation determined by the pricing model, and (2) the elasticity of the
consumption-labor ratio to inefficient price dispersion determined by the degree
of strategic complementarities and the demand elasticity.

The elasticity of the consumption-labor ratio to inefficient price dispersion is
important for calculating the cost of inflation. I show this result with two new
calibrations. First, I increase the demand elasticity from 3 to 7. In this exercise,
I adjust the labor subsidy to generate the same levels of markups. Since the
objective of this exercise is to increase the cost of inflation ceteris paribus the
frequency of the ZLB, I decrease the standard deviation of the innovations by
5%. Second, I change the level of strategic complementarities by increasing the
share of intermediate inputs from 0.53 to 0.63.

To understand the role of the demand elasticity for the cost of inflation, consider
an economy without intermediate inputs and government expenditures. In this
economy, the consumption–labor ratio is given by 1/∆t, where ∆t =

∫ 1
0 p̃
−γ
ti di

and γ is the demand elasticity. Under a second–order approximation, it is easy to
show that − log(∆t) = −γ

2Var [p̃ti]. Therefore, for a given inefficient dispersion
of relative prices, a larger demand elasticity increases the misallocation of inputs
of production across firms since firms’ output is more responsive to the price.

The optimal inflation target is 3% in my MC model with a demand elasticity
of 7. To comprehend this result, we need to understand how an increase in the
demand elasticity affects the cost of inflation in my model. The direct effect of
an increase in the demand elasticity is an increase in the misallocation of labor
ceteris paribus inefficient price dispersion. We can observe the direct effect in the
Calvo model. With a demand elasticity of 3 (resp. 7), an increase in inflation
from 0 to 5% decreases the consumption-labor ratio by 0.6% (resp. 1.4%).

26Baley and Blanco (2020) analyzes the relation between the slope of the Phillips curve and the cost
of inflation.
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In the MC model, there is also an indirect effect of increasing the demand
elasticity. Since firms internalize the social cost of inefficient price dispersion,
which is exacerbated by an increased demand elasticity, they respond by reduc-
ing the width of the Ss bands, which decreases the variance of relative prices.
Intuitively, a larger demand elasticity increases the static profit function’s curva-
ture and therefore reduces the Ss bands by 1/3.27 The indirect effect attenuates
the total effect of increasing the demand elasticity on the cost of inflation. In a
MC model with a demand elasticity of 7 (resp. 3), the consumption-labor ratio
now decreases by 0.14% (resp. 0.10%) whenever there is an increase of the target
inflation from 0 to 5%.

To understand the role of the intermediate inputs for the cost of inflation, I
assume a steady-state economy where the aggregate cost of price changes is zero.
Under this assumption, the (detrended) consumption labor ratio is given by
(24)

C̃ss/Lss =

(
αw̃ss
1− α

)α 1

∆ss

(
1−

(
αw̃ss
1− α

)1−α
∆ss

)
1

ηg,ss
, with w̃ss =

(
1

Mssι

) 1
1−α

.

Here C̃ss and w̃ss denote detrended consumption and real wages respectively. Mss

denotes the level of markups. Under the observation that
(
αw̃ss
1−α

)1−α
= α
Mss

, the

elasticity of the steady state consumption-labor ratio to price dispersion evaluated
at ∆ss = 1 is

(25)
dlog(Css/Lss)

dlog(∆ss)

∣∣∣∣
∆ss=1

= − 1

1− α/Mss
.

Therefore, the elasticity of the consumption–labor ratio to inefficient dispersion
prices increases with the share of intermediate inputs.28

The optimal mean inflation in the Calvo model is 1%, and in the menu cost
model is 3% with a share of intermediate inputs of 0.63. In both models, there is
an increase in the cost of inflation, as indicated by the consumption–labor ratio
in Figures F.II.a and F.II.b. Note that the increase in the cost of inflation is still
modest in the MC model: Increasing inflation from 0% to 4% decreases the mean
consumption-labor ratio by 0.05%.

Which parameters are important for the benefits of inflation?. — The
optimal inflation target in the MC model is the minimum level at which the
ZLB does not generate inefficient volatility of consumption and labor. Below, I
change parameters critical for the frequency of the ZLB constraint and analyze

27See the policy function in Figure F.VII in the Online Appendix
28This paper features strategic complementarities with intermediate inputs since it is easy to calibrate.

The finding that strategic complementaries affect the elasticity of the consumption–labor ratio to the
dispersion of relative prices holds under decreasing returns to scale and the Kimball aggregator.



VOL. VOL NO. ISSUE OPTIMAL INFLATION 33

the change of the optimal inflation target.

I recalibrate the model to yield a lower frequency of the ZLB by changing two
types of parameters. First, I reduce the standard deviation of the innovations of
all the exogenous shocks by 10%. My model hits the ZLB 2.5% of the time at a
3% inflation target under this calibration. Second, I decrease the discount factor
to 0.9551/12(1 + g)σnp .29 This calibration increases the steady state interest rate
from 4% to 4.5% and reduces the frequency of the ZLB to 5% of the time at a
3% inflation target. Both exercises have the minimum frequency of binding ZLB
supported by the empirical evidence in the literature.

The optimal inflation target with a lower volatility of aggregate shocks is 2.5%,
and the optimal inflation target with a lower discount factor is 3.5%. These
results depend on two key properties of my model. First, an increase of inflation
from 0% to 3% decreases the consumption-labor ratio by at most 0.02%. Second,
levels of inflation between 1% and 2% are never optimal for the reason explained
in Section III.C. Since at low levels of inflation, when the economy hits the ZLB
constraint, there is deflation and new price changes that magnifies the cost of the
ZLB constraint.

Increasing the cost of business cycles does not change the optimal inflation tar-
get. Intuitively, as Figure I shows, in my benchmark calibration the consumption-
labor ratio is almost constant for levels of inflation lower than the optimal one.
Thus, there are only (small) benefits from increasing target inflation for business
cycle stabilization. I show this argument by solving my model with Epstein-Zin
preferences. The advantage of solving the model with Epstein-Zin preferences is
that it increases the cost of business cycles without changing the properties of ag-
gregate fluctuations (see Figures F.IV.a and F.IV.b and Table F.III with business
cycle moments).

Household’s preferences with Epstein-Zin utility and negative period utility are
given by

Ut = ut(Ct, Lt)− βEt[(−Ut+1)1−ϑ]
1

1−ϑ .(26)

Here ϑ is the risk sensibility parameter.

To convey a simple intuition of the role of Epstein-Zin preferences, I compute
the coefficient of relative risk aversion characterized by Swanson (2012) with no
growth and no TFP shocks. Define the one period relative coefficient of risk aver-

sion when labor supply is fixed as Rap := −C d2U(C,L)
dC2 /dU(C,L)

dC . Rap stands for
the Arrow-Pratt coefficient of relative risk aversion. It measures the consumption
equivalent of a lottery over consumption. Then, following Swanson (2012) defini-
tion of the coefficient of relative risk aversion with endogenous labor supply and

29See Andrade et al. (2018) for a similar exercise with a Calvo pricing model.
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Epstein-Zin preferences, we have

R = Rap
(

1 + ϑ
1− σ
σ

)
.(27)

Equation (27) shows how recursive preferences increases risk aversion without
changing the intertemporal elasticity of substitution. I calibrate ϑ = −1 to in-
crease by 50% this measure of risk aversion. The optimal inflation target with
these preferences continues to be 3.5%.

Takeaway. — Across calibrations, the optimal inflation target in the MC model
is the minimum level at which the ZLB does not generate inefficient volatility of
consumption and labor.30

V. Conclusion

In this paper I employ a menu cost model with realistic idiosyncratic shocks
to identify an optimal inflation target of 3.5%. This undertaking required that I
extend a menu cost model with idiosyncratic shocks to a standard New Keynesian
framework with a Taylor rule subject to a ZLB constraint. The optimal inflation
is pinned down by: (i) the relative insensitivity of price dispersion (which is
the main cost in sticky price models) to the inflation target; (ii) the fact that
likelihood of hitting the ZLB, and the magnitude of the selection effect when the
ZLB is binding, are reduced with any increase in the inflation target.

Much could be learned from exploring the optimal inflation rate in different
environments. For instance, many countries with inflation targets are small open
economies, which may affect the optimal inflation target? Also, this paper focuses
on price rigidities while assuming flexible wages. How does the optimal inflation
change under sticky wages and downward wage rigidity? A framework similar
to this paper’s would be a suitable setting in which to answer these questions,
relying on careful quantification of the micro structure of wage setting.
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A. Data Description: U.S. Macroeconomic Time Series

Table A.I describes the data sources for the U.S. macroeconomic time series. I construct output
without investment and net exports to be consistent with my model. The following are the variables
used to compute business cycle moments in the data (after HP filter): U.S. Bureau of Economic Analysis
(1947-2017a)

• Output : log((GDP − I −NE)/(N × P )).

• Government expenditure: log(G/(N × P ))

• Consumption: log(C/(P ×N))

• Real wage: log(W/P ).

• Inflation: log(P/P (−1)).

• Nominal Interest Rate: log(1 + (DFF/100)1/4).

Table A.I— Macroeconomic Time Series: Description and Sources

Seasonally
Label Short description Source Frequency Adjusted

GDP Gross Domestic Product BEA (1947-2017) Q SA
G Gov. Cons. and Gross Investment BEA (1947-2017) Q SA
C Personal Consumption Expenditures BEA (1947-2017) Q SA

NE Net exports of goods and services BEA (1947-2017) Q SA
I Gross Private Domestic Investment BEA (1947-2017) Q SA
P GDP implicit price deflator FRED (1947-2017) Q SA

DFF Effective Federal Funds Rate, Percent FRED (1955-2017) Q NSA
W Business hourly compensation BLS (1947-2017) Q SA
N POPULATION LEVEL BLS (1948-1976) M NSA
N POPULATION LEVEL BLS (1996-2005) M NSA

Note: The table describes the aggregate data I use to compute aggregate business cycle statistics in
Table III. GDP, G, C, NE and I are in billions of dollars. Q and M denote frequency at monthly or
quarterly level, respectively. SA and NSA denote seasonally adjusted at annual rate and not seasonally
adjusted, respectively.
Source: GDP, G, C, NE, I: U.S. Bureau of Economic Analysis (1947-2017b). P: U.S. Bureau of Economic
Analysis (1947-2017a). DFF: Board of Governors of the Federal Reserve System (US). W: U.S. Bureau
of Labor Statistics (1947-2017b). N: U.S. Bureau of Labor Statistics (1948-1976) and U.S. Bureau of
Labor Statistics (1976-2017a).
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B. Computation and Description of Micro-Level Price Statistics

B.1. UK Data Description

The United Kingdom’s Office for National Statistics publishes the consumer price index (CPI) micro
database, containing data from 1996 to the present day at a monthly frequency. The product-level price
quotes and item-level price indexes used for the construction of the CPI were made publicly available on
September 2012. The data cover all of the UK—England, Wales, Scotland, and Northern Ireland—and
the data include a sample of items of the UK’s household final monetary consumption expenditures.
In total, there are 31 million price quotes in the period between 1996 until the present at a monthly
frequency. They cover more than 650 items. The Classification of Individual Consumption classifies each
product by Purpose (COICOP) at the sectoral, group, and class levels. It excludes the housing portion
of consumer prices, such as mortgage interest payments, house depreciation, insurance, and other house
purchase fees.

For most item categories, the ONS collects price quotes of individual products by sampling outlets at
150 locations in the UK. Each elementary price quote collected through this method represents a unique
product, sampled in a particular outlet. Prices for the remaining CPI items are collected centrally by the
ONS with no fieldwork. Such items include shelter, university tuition fees, rail fares, and other services.
Unfortunately, the ONS only provides item-level price indexes for these items. Since observing individual
price trajectories is central for the study of micro–level price statistics, I exclude these items from my
analysis.

For a small subset of items and regions, the ONS does not report outlet identifiers to comply with
confidentiality guidelines. In such cases, there could be multiple price quotes with the same product-
outlet identifier in a given month in the dataset. In most of these cases, there is no variation in prices
that share an identifier in a given month. For the few cases in which I do observe different prices with
the same identifier, I use information provided by the ONS on cumulative inflation at the unique good
level and the algorithm described in Blanco and Cravino (2019) to recover: i) a unique price–trajectory
associated with a product-outlet pair, and ii) a weight for each price trajectory reflecting the frequency
of each price under a particular identifier.

B.2. Computation of Micro-Level Price Statistics

I apply several filters in the computation of price statistics to render the data compatible with the
model. Table B.I describes the micro-level price statistics with the different filters.

Filter I: I drop outliers in the price change distribution (i.e., bottom and top 1% of price changes). I
also drop price changes with a sales flag and noncomparable product substitutions, but I do
include comparable product substitutions. I drop months in the sample with changes in the VAT
(December 2008, January 2011, and January 2011). Following Nakamura and Steinsson (2008)
and Klenow and Kryvtsov (2008), I impute price quotes for temporarily missing observations
(missing for less than a year) with the last available price and out-of-season observations with the
last available price. I redefine a product as a new product whenever there are more than twelve
consecutive missing observations.

Filter II: As it is well known, the “sales” and “recovery” flags do not cover all the sales in the data. For this
reason, I repeat the same filters described above with an additional filter on sales. The algorithm
to detect sales is as follows. I identify the upper and lower bounds of periods with sales of length
κ, by

(B.1) Fκ =

i, t :
κ∑
j=0

(
pit+j − pit−1+j

)
= 0

 , Lκ =

i, t :
κ∑
j=0

(
pit−j − pit−1−j

)
= 0

 ,

where pit is the price quote of item i at time t. Importantly, (i, t) ∈ Fκ, if and only if (i, t+κ) ∈ Lκ.
For any given (i, t∗) ∈ Fκ, I drop all price changes between t∗ and t∗ + κ. I choose κ = 3 at
monthly frequency for the implementation of this algorithm.

Filter III: I repeat the same filters described above (Filter II) with an additional filter on heterogeneity at
COICOP class–level. I assign each product id to a single class. If I denote each id with the
class-index i, then each id is in only one class Cj with j = 1, 2, ..., nC . I redefine the normalized
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price change by item as

(B.2) ∆p̃it =
∆pit − E[∆pit|i ∈ Cj ]

Std[∆pit|i ∈ Cj ]
Std[∆pit] + E[∆pit].

I then re-computed all price statistics with the normalized price changes. Online Appendix Section
B.B.4 establishes the result that this aggregation “cleans” heterogeneity in the Calvo, MC and
Taylor models.

Table B.I describes the price statistics with each filter using CPI weights to aggregate. As we can
see in this table, there is a large dispersion in the price change distribution. The average frequency of
price changes with Filter I is 0.16 at the monthly level. Computing the frequency as the inverse of the
average duration yields a value of 0.97.31 With the additional filter on sales (Filter II, column 2), the
average frequency of price changes and the frequency implied by the average duration decrease by 20%.
The intuition behind this result is that there are many price changes preceded and followed by the same
(base) price which the filter classified as unflagged sales. Finally, the filter concerning heterogeneity
(Filter III, column 3) increases the mass of price changes near the mean price change (in absolute value),
with the direct effect of decreasing the kurtosis of price change.

Comparison with the U.S. economy and other low-inflation economies. —
Blanco and Cravino (2019) compares the average frequency and duration of price changes using the same
methodology in Austria, Finland, and U.K., and find almost the same numbers in the three countries
at item-level disaggregation. It is important to note that they do not find the same average frequency

and duration in Chile and Mexico. Álvarez, Le Bihan and Lippi (2016) analyzes the kurtosis of price
changes. My computation of the kurtosis between 4 or 5 is close to their findings.

How do U.K. statistics compare with U.S. statistics? I compare the statistics in my data to the
statistics computed for U.S. by Nakamura and Steinsson (2008). I report these numbers in column US
(NaSt) in Table B.I. They find an average frequency of price changes between 0.18-0.20 and a median
frequency between 0.091-0.11—since they compute the frequency of price changes across two different
time periods. These numbers are close to the frequency I compute for the U.K. without the additional
filter on sales. For example, my average frequency is 0.169, while their average frequency is between 0.18
and 0.20. The median frequency in their data is between to 0.091 and 0.11, if I compute the median
frequency as they do, I find 0.11—slightly higher than the inverse of the average duration. They also find

a kurtosis of price changes equal to 5.1 (see Álvarez, Le Bihan and Lippi (2016) for more information
on this statistic) and a median size of price adjustment equal to 8.5%. Again, these statistics are close
to the kurtosis and the median size of absolute price changes in the U.K. with only the first filter (4.7
for the kurtosis and 9% for the median). With this comparison, I can conclude that my data produce
similar statistics that they report, when applying the same filters.

Klenow and Kryvtsov (2008) computes the mean and median of price changes excluding reported
sales. The paper finds a mean equal to 11.3% (resp. 15% with the U.K. data) and a median of 9.7%
(resp. 9.6% with U.K. data).

Midrigan (2011) computes the statistics for the absolute value of price changes for regular price changes
and all price changes using U.S. supermarket data. Column US (Mi-No Sales) describes the statistics
with his filter for sales. It is important to remark that his filter for sales is different from mine. While
he drops all the price changes different from the modal price in a rolling window, I only drop price
changes cumulated price changes equal to zero. The price change distribution I compute for the U.K.
has a larger mean and standard deviation of the absolute value of price changes. The percentiles of
the distribution are close except for the very large price changes. My data have a more dispersed price
change distribution.

B.3. SMM Estimation with Price Statistics under Different Filters

Table B.II describes the estimated parameters with micro-level price statistics with different filters.
The quantitative results are the following:

• Filter I: With this filter, idiosyncratic shocks are larger than with the final micro-level price
statistics with filter III. Additionally, there is a 10% increase in the number of price changes due
to zero menu costs.

31The inverse of the average duration is computed as
(∑

ωiΩ
−1
i

)−1
, where ωi is the class–level weight,

and Ωi is the class-level frequency.
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Table B.I—U.K. Micro-Level Price Statistics with Different Filters

Filters for UK
Moments I II III US (NaSt) US (Mi-No Sales)

Absolute Value of Price Change

Mean 0.154 0.139 0.153 – 0.110
Standar Deviation 0.159 0.151 0.137 – 0.080

Skewness 1.538 1.729 1.314 – –
Kurtosis 5.059 5.801 4.321 – 4.020

5th percentile 0.010 0.008 0.010 – –
10th percentile 0.014 0.014 0.020 – 0.030
25th percentile 0.034 0.031 0.049 – 0.050
50th percentile 0.096 0.080 0.114 0.085 0.090
75th percentile 0.223 0.194 0.217 – 0.013
90th percentile 0.386 0.357 0.356 – 0.210
95th percentile 0.507 0.470 0.447 – –

Price Change

Mean 0.004 0.005 0.005 – –
Standar Deviation 0.222 0.205 0.205 – –

Skewness -0.135 -0.263 -0.050 – –
Kurtosis 4.672 5.306 3.809 5.100 –

5th percentile -0.402 -0.362 -0.356 – –
10th percentile -0.272 -0.238 -0.248 – –
25th percentile -0.095 -0.071 -0.113 – –
50th percentile 0.019 0.021 0.012 – –
75th percentile 0.098 0.085 0.115 – –
90th percentile 0.252 0.223 0.254 – –
95th percentile 0.372 0.336 0.355 – –

Frequency 0.169 0.126 0.126 0.186-20.9 –
Inverse ave. duration 0.119 0.097 0.097 0.091-11.2 –

Note: The table describe micro-price statistics in U.K. and in U.S..

Source: The moments in column US (NaSt) are the ones computed by Nakamura and Steinsson (2008).
The moments in column US (Mi-No Sale) are obtained from Midrigan (2011) with his algorithm after
removing sales. Column I to III are author’s calculations
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• Filter II: With this filter the ratio of free price adjustments over total price adjustments is 62%
larger than with filter III.

• Filter IIIb: This filter puts zero weight on the physical cost of menu cost. It finds parameters
similar to the benchmark estimation.

Table B.II—SMM Estimation with Different Filters

(Data,model)
Moments Filter I Filter II Filter III Zero Weight Cost on P.A.(IIIb)

Absolute value of price change

Mean (0.154,0.150) (0.139,0.126) (0.153,0.155) (0.153,0.155)
Standar deviation (0.159,0.154) (0.151,0.138) (0.137,0.145) (0.137,0.142)

Skewness (1.538,1.540) (1.729,1.668) (1.314,1.156) (1.314,1.208)
Kurtosis (5.059,5.065) (5.801,5.685) (4.321,3.970) (4.321,4.197)

10th percentile (0.014,0.012) (0.014,0.009) (0.020,0.010) (0.020,0.014)
25th percentile (0.034,0.035) (0.031,0.024) (0.049,0.032) (0.049,0.037)
50th percentile (0.096,0.100) (0.080,0.075) (0.114,0.135) (0.114,0.130)
75th percentile (0.223,0.194) (0.194,0.164) (0.217,0.234) (0.217,0.228)
90th percentile (0.386,0.380) (0.357,0.327) (0.356,0.364) (0.356,0.360)

Price change

Mean (0.004,0.012) (0.005,0.018) (0.005,0.015) (0.005,0.019)
Standar deviation (0.222,0.215) (0.205,0.186) (0.205,0.211) (0.205,0.210)

Skewness (-0.135,-0.081) (-0.263,-0.131) (-0.050,-0.078) (-0.050,-0.134)
Kurtosis (4.672,4.673) (5.306,5.280) (3.809,3.757) (3.809,3.823)

10th percentile (-0.272,-0.236) (-0.238,-0.200) (-0.248,-0.262) (-0.248,-0.257)
25th percentile (-0.095,-0.073) (-0.071,-0.041) (-0.113,-0.094) (-0.113,-0.084)
50th percentile (0.019,0.011) (0.021,0.015) (0.012,0.014) (0.012,0.018)
75th percentile (0.098,0.133) (0.085,0.127) (0.115,0.135) (0.115,0.135)
90th percentile (0.252,0.245) (0.223,0.215) (0.254,0.275) (0.254,0.270)

Frequency of price change (0.119,0.120) (0.097,0.096) (0.097,0.097) (0.097,0.093)
Cost of price adjustment × 100 (0.004,0.004) (0.004,0.003) (0.004,0.004) (—,0.004)

Ratio free to total price adjustments (—,0.584) (—,0.622) (—,0.496) (—,0.484)

Estimated parameters

σah 0.300 0.261 0.240 0.242
σal 0.028 0.018 0.018 0.017
ψ 0.055 0.045 0.070 0.067
θ 0.126 0.139 0.135 0.137
ξ 0.070 0.060 0.044 0.045

Note: Columns 1 to 3 show SMM price statistics and the estimated parameters using different filters.
Column 4 describes the SMM estimates with a zero weight on the physical cost of price adjustments.
The filters are described in Section B.B.3.
Source: Author’s calculations
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B.4. Heterogeneity and Aggregation in the Calvo, Menu Cost and Taylor Models

In this section of the online appendix, I show a closed-form solution for aggregating heterogeneous
firms whenever their policy is described by MC, Calvo or Taylor pricing models. Assume a finite amount
of firms indexed by i, with i = 1, 2, ..., N . Each firm produces a share αi of output. For simplicity, I
assume continuous time.

• Menu cost pricing model: Each firm is described by a set of parameters {σi, p̄i}. The price
gap follows a Brownian motion dpit = σidW

i
t and the inaction region I is the set [−p̄i, p̄i]. The

distribution of price changes is given by

(B.3) ∆pi =

{
p̄i with probability 1/2
−p̄i with probability 1/2

with a kurtosis of 1. The aggregate price change distribution is given by

(B.4) ∆p =

{
p̄i with probability αi1/2
−p̄i with probability αi1/2

with a kurtosis higher than 1. The normalized distribution of price change is defined as ∆pi =
∆pi−E[∆pi]

Std[∆pi]
Std[∆p] + E[∆p] with density

(B.5) ∆p =

{
Std[∆p] with probability 1/2
−Std[∆p] with probability 1/2

with kurtosis equal to 1.

• Calvo pricing model: Each firm is described by a set of parameters {σi, λi}. The price gap
follows a Brownian motion dpit = σidW

i
t and the firm’s stopping time distribution follows an

exponential distribution with density f(τ) = λie
−τ/λi . The distribution of price changes is given

by

(B.6) f(∆pi) =

√
λi0.5

σi
exp

(
−

σi√
λi0.5

|∆p|
)

with a kurtosis of 6. The aggregate price change distribution is given by

(B.7) f(∆p) =
{
f(∆pi) with probability αi

with a kurtosis higher than 6. The normalized price change defined as ∆pi =
∆pi−E[∆pi]

Std[∆pi]
Std[∆p]+

E[∆p] with density

(B.8) f(∆p) =
1

√
2Std[∆p]

exp

(
−
√

2|∆p|
Std[∆p]

)
with kurtosis equal to 6.

• Taylor pricing model: Each firm is described by a set of parameters {σi, Ti}. The price gap
follows a Brownian motion dpit = σidW

i
t and the firm’s stopping time distribution is a degenerate

Pr(τ = Ti) = 1. The distribution of price changes is given by

(B.9) f(∆pi) = N (∆p, 0, σi)

with a kurtosis of 3. The aggregate price change distribution is a mixed normal distribution

(B.10) f(∆p) =
{
N (∆p, 0, σi) with probability αi

with a kurtosis higher than 3. The normalized price change is defined as ∆pi =
∆pi−E[∆pi]

Std[∆pi]
Std[∆p]+

E[∆p] with density

(B.11) f(∆p) = N (∆p, 0, Std[∆p])

with kurtosis equal to 3.
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C. Business Cycle Statistics with No ZLB and a 2% Inflation Target

The Calvo model and my MC model have similar aggregate dynamics at a 2% inflation target when
there is no ZLB constraint on the nominal interest rate. To formalize this claim, and to understand the
general equilibrium effects in my model with and without a ZLB, I show that an econometrician with
only aggregate data could not distinguish which model generates the data in finite samples.

To show the claim of similar aggregate dynamics, I compute two sets of statistics: impulse-response
functions for structural shocks and business cycle statistics such as standard deviation, persistence, and
correlations.

Impulse Response Function to Structural Shocks. — I compute the impulse re-
sponse function to each shock as an econometrician would; I then check to see whether (and when) these
two models differ over a finite sampling of 57 years—the length of the US time series in my sample.
Because the impulse responses in each model are random variables with their confidence intervals, I
can make statistical claims as an econometrician. Next, I describe the methodology to compute the
impulse-response functions from simulated data of both models, together with their interval confidence.

Let IRMy
tx be the linear impulse response of variable y to the structural shock x ∈ {z, g, r, q, h}, in

model M , after t periods. Let ˆIR
MyTs
tx be the estimate in a sample of length Ts. Next, I describe the

steps to generate the random variable ˆIR
MT
tx using a Monte Carlo method.

1. Simulate the model for a large T . Let {Xt}Tt=0 be the time series of the aggregate variables,

SXt the vector that includes real marginal cost, price dispersion, nominal interest rate, and the

exogenous variables, and SYt the vector that includes output, inflation, labor and consumption.

2. Generate a random i.i.d. sequence of dates {ti}Ni=1 and draw {{Xt}ti+Tsti
}Ni=1 samples of length

Ts.

3. For each random sample i = 1, 2, ...., N :

i. Estimate the state space model:

(C.1) SXt+1 = βxS
X
t + Ωxε

x
t+1 ; SYt = βyS

X
t + Ωyε

y
t

ii. Compute the impulse response to σx, where x denotes an aggregate exogenous variable
x ∈ {z, g, r, q, h}. Compute the impulse-response IRx(t, i)MyTs using the model (C.1)
from the simulated data.

4. {IRx(t, i)MyTs}Ni=1 is a random sample from the distribution ˆIR
MyTs
tx .

Figure C.I plots the median impulse–response function to a government expenditure shock for the
Calvo and MC models; it also shows the [2, 98] confidence interval of the difference between these two
models’ impulse responses. Figures C.II, C.III, and C.IV show similar graphs but for productivity, risk
premium, and cost-push shocks (I omit the impulse–response function to a monetary shock, since in the
final estimation they have almost no effect on any macroeconomic variable).

After a shock to government expenditure, the dynamics of all macroeconomic variables are close to
each other in the MC model and the Calvo model. We can see this property in the confidence interval of
the difference between the two impulse responses (marked by dashed black lines): the interval confidence
for the difference between the two impulse responses always includes zero for all the variables. The
only difference concerns inflation, which reacts more strongly the MC model than in the Calvo model
(although the difference is significant for only one quarter). This difference is mainly in the business
cycle fluctuations in the menu cost inflation and frequency of price changes, since, by construction, these
variables do not respond to aggregate fluctuations in the Calvo model. The same behavior is observed
after a cost-push shock, as Figure C.IV shows. For the risk premium shock and productivity shock, there
is a larger response of inflation in the MC model than in the Calvo model; see (respectively) Figures C.II
and C.III.

A second property we can observe from the impulse–response function across shocks is an increasing
relationship between the impact of a structural shock to inflation, and the difference in inflation dynamics
across both models. For example, after a cost-push shock or a government expenditure shocks, there is
a small variation in inflation in both models, and also in their difference. This property does not hold
for the risk premium shocks or productivity shocks. The main reason for this property is that as long as
the frequency and distribution of price changes do not react much to the structural shocks, the slope of
the Phillips curve is similar across models—slightly higher in the menu cost model.
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That the equilibrium dynamics are similar in both models arises from two properties: i) a similar
Phillips curve across models and ii) general equilibrium dynamics between households, firms, and the
central bank. The main idea behind (ii) is that higher inflation volatility caused by a steeper Phillips
curve is partially offset by the reaction of the nominal interest rate. Suppose, as a means of explaining
this argument, that there occurs a structural shock that increases the output gap. The nominal interest
rate depends on inflation, and so in the MC model, that interest rate will increase by more for a structural
shock of a given size. Hence, the equilibrium output gap responds less, and so inflation does as well. We
can see this effect in Figure C.II, where the nominal rate responds more in the MC model.

Business Cycle Statistics. The same properties hold for business cycle moments, as Table C.I shows.
I compute these statistics using the Monte Carlo simulation. The first four rows of Table C.I describe
the median business cycle statistics of the MC model, the second four rows describe the median business
cycle statistics of the Calvo model, and the last four rows confirm that the [2, 98] percentiles of the
difference in the standard deviations, persistences, and correlations of both models always includes zero.
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Figure C.I. Impulse-Response Function to a Government Expenditure Shock

Note: Panels A to I describe the impulse response functions of output, consumption, labor, reset price,
quarterly inflation, quarterly nominal rate, average frequency in the quarter, and average menu cost
inflation in the quarter to a government expenditure shock at a 2% inflation target in the models without
a ZLB constraint to the nominal interest rate. All variables are percentage deviations from the steady
state. The solid black lines describe the median impulse-response functions of the Calvo model. The
dotted gray lines describe the median impulse-response functions of the MC model. The dashed black
lines describe the 2nd and 98th percentiles of the difference in the impulse-response functions between
the two models over 5000 simulations of 57 years.
Source: Author’s calculations
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Figure C.II. Impulse-Response Function to a Productivity Growth Shock

Note: Panels A to I describe the impulse response functions of output, consumption, labor, reset price,
quarterly inflation, quarterly nominal rate, average frequency in the quarter, and average menu cost
inflation in the quarter to a productivity shock at a 2% inflation target in the models without a ZLB
constraint to the nominal interest rate. All variables are percentages deviation from the steady state.
The solid black lines describe the median impulse-response functions of the Calvo model. The dotted
gray lines describe the median impulse-response functions of the MC model. The dashed black lines
describe the 2nd and 98th percentiles of the difference in the impulse-response functions between the two
models over 5000 simulations of 57 years.
Source: Author’s calculations
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Figure C.III. Impulse-Response Function to a Risk Premium Shock

Note: Panels A to I describe the impulse response functions of output, consumption, labor, reset price,
quarterly inflation, quarterly nominal rate, average frequency in the quarter, and average menu cost
inflation in the quarter to a risk premium shock at a 0% inflation target in the models without a ZLB
constraint to the nominal interest rate. All variables are percentage deviations from the steady state.
The solid black lines describe the median impulse-response functions of the Calvo model. The dotted
gray lines describe the median impulse-response functions of the MC model. The dashed black lines
describe the 2nd and 98th percentiles of the difference in the impulse-response functions between the two
models over 5000 simulations of 57 years.
Source: Author’s calculations
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Figure C.IV. Impulse-Response Function to a Cost Push Shock

Note: Panels A to I describe the impulse response functions of output, consumption, labor, reset price,
quarterly inflation, quarterly nominal rate, average frequency in the quarter, and average menu cost
inflation in the quarter to a cost push shock at a 0% inflation target in the models without a ZLB
constraint to the nominal interest rate. All variables are percentage deviations from the steady state.
The solid black lines describe the median impulse-response functions of the Calvo model. The dotted
gray lines describe the median impulse-response functions of the MC model. The dashed black lines
describe the 2nd and 98th percentiles of the difference in the impulse-response functions between the two
models over 5000 simulations of 57 years.
Source: Author’s calculations
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D. Auxiliary Theorems

Let p̃ti = ptiAti
Pt

be the relative price times idiosyncratic productivity, ft(p̃) the distribution of relative

price, P ∗t the reset prices, Ψt = {p̃t : relative prices s.t. the firm chooses not to change the price in period t}
the non-adjusting relative prices, and Ωt the frequency of price changes. The following proposition char-
acterizes the inflation dynamics in the terms of the frequency of price changes, the relative reset price,
and the menu cost inflation.

PROPOSITION 1: Define

Ct =

{
(p̃t−−1,∆at) :

p̃t−1e∆at

Πt
∈ Ψt

}
.

Inflation dynamics are given by

Πt =

(
1− Ωt

1− Ωt(P ∗t )1−γ

) 1
1−γ

ϕt,

Ωt =

∫
(p̃−,∆a)/∈Ct

ft−1(dp̃−)g(d∆a),

ϕt =

(∫
(p̃−,∆a)∈Ct

(
p̃−e∆a

)1−γ
1− Ωt

ft−1(dp̃−)g(d∆a)

) 1
1−γ

,(D.1)

where g(∆a) is the distribution of quality shock innovations and ft−1(p̃−) is the distribution of relative
prices in the previous period.

PROOF:
From the price aggregator

P 1−γ
t =

∫
i
(ptiAti)

1−γdi ⇐⇒

1 = Ωt(P
∗
t )1−γ + (1− Ωt)

∫
(pt−1iAti)

1−γ

P 1−γ
t (1− Ωt)

di ⇐⇒

1 = Ωt(P
∗
t )1−γ + (1− Ωt)

∫ ∫
(pt−1iAt−1ie

∆ai )1−γ

P 1−γ
t−1 (1− Ωt)Π

1−γ
t

di g(d∆a) ⇐⇒

1 = Ωt(P
∗
t )1−γ + (1− Ωt)

∫ ∫
(p̃−e∆a)1−γ

(1− Ωt)Π
1−γ
t

ft−1(dp̃−)g(d∆a) ⇐⇒

Πt =

(
1− Ωt

1− Ωt(P ∗t )1−γ

) 1
1−γ

ϕt(D.2)

PROPOSITION 2: Let ∆ss(Πss) be the price dispersion in the Calvo model at a level of inflation Π.

Then ∆ss(Πss) is continuous, with
d∆ss(Πss)
dΠss

∣∣∣
Πss=1

= 0 and
d2∆ss(Πss)

dΠ2
ss

∣∣∣
Πss=1

> 0.

PROOF:
The price dispersion in steady state is given by

(D.3) ∆ss = Ω
P−γss

1− (1− Ω)Πγss
.

Using the steady–state reset price equations,

(D.4) ∆ss(Πss) = Ω
1

1−γ

(
1− (1− Ω)Πγ−1

ss

)− γ
1−γ

1− (1− Ω)Πγss
.

It is easy to see that ∆ss(Πss) is continuous, since it is the ratio of two continuous functions. For the

first–order derivative, let N(Π) =
(

1− (1− Ω)Πγ−1
ss

)− γ
1−γ

and D(Π) = 1− (1− Ω)Πγss. Then we have
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that

dN(Πss)

dΠss
=

γ

1− γ
(
1− (1− Ω)Πγ−1

ss

) 1
γ−1 (1− Ω)(γ − 1)Πγ−2

ss(D.5)

dD(Πss)

dΠss
= (1− Ω)γΠγ−1

ss(D.6)

Thus, the first derivative is given by

d∆ss(Πss)

dΠss

∣∣∣∣
Πss=1

= Ω
1

1−γ
Ω( γ

1−γΩ
−1

1−γ (1− Ω)(γ − 1))− (1− Ω)γΩ
− γ

1−γ

Ω2
,

= Ω
1

1−γ−2
γ(1− Ω)(Ω

1− 1
1−γ − Ω

− γ
1−γ ).

= 0.(D.7)

To show convexity, notice that ∆(Πss) has a minimum value of 1 at Πss = 1. Therefore, at Πss = 1,
this function must be convex.

For the next proof, I follow Swanson (2012) for the definition of relative risk aversion with labor supply
and generalized recursive preferences. Swanson (2012) defines the coefficient of relative risk aversion as

(D.8) R :=
− ∂

2u(C,L)

∂C2 + Λ(C,L)
∂2u(C,L)
∂C∂L

∂u(C,L)
∂C

C

1 + Λ(C,L)w
+ ϑC

∂u(C,L)
∂C

u(C,L)

with Λ =
w
∂2u(C,L)

∂C2 +
∂2u(C,L)
∂C∂L

∂2u(C,L)

∂L2 +w
∂2u(C,L)
∂C∂L

. Here, w denotes real wages.

PROPOSITION 3: Define the household’s preferences as

Ut = u(C,L)− β
(
Et [−Ut+1]1−ϑ

)1/(1−ϑ)
,(D.9)

u(C,L) =

[
C − κL

1+χ

1+χ

]1−σ
1− σ

.(D.10)

Then the coefficient of relative risk aversion evaluated at the steady state is given by

(D.11) R = Rap
(

1 + ϑ
1− σ
σ

)
,

where Rap denotes the Arrow-Pratt coefficient of relative risk aversion given by Rap = −
C
∂2u(C,L)

∂C2

∂u(C,L)∂C

PROOF:

Departing from the definition

R :=
− ∂

2u(C,L)

∂C2 + Λ(C,L)
∂2u(C,L)
∂C∂L

∂u(C,L)
∂C

C

1 + Λ(C,L)w
+ ϑC

∂u(C,L)
∂C

u(C,L)

=
σ
[
C − κL

1+χ

1+χ

]−σ−1
+ Λ(C,L)σ

[
C − κL

1+χ

1+χ

]−σ−1
κLχ[

C − κL1+χ

1+χ

]−σ C

1 + Λ(C,L)w
+ ϑC

[
C − κL

1+χ

1+χ

]−σ
[
C−κL1+χ

1+χ

]1−σ
1−σ

=
σ + σΛ(C,L)κLχ[
C − κL1+χ

1+χ

] C

1 + Λ(C,L)w
+ ϑC

1− σ[
C − κL1+χ

1+χ

] .
(D.12)
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Using the optimality condition for labor supply, κLχ = w, we have that

R =
σ + σΛ(C,L)w[
C − κL1+χ

1+χ

] C

1 + Λ(C,L)w
+ ϑC

1− σ[
C − κL1+χ

1+χ

]
=

σC

C − κL1+χ

1+χ

(
1 + ϑ

1− σ
σ

)
.(D.13)

The term σ

C−κL1+χ

1+χ

is the Arrow-Pratt coefficient of relative risk aversion since

(D.14) Rap = −
C
∂2u(C,L)

∂C2

∂u(C,L)∂C
= σC

[
C − κL

1+χ

1+χ

]−σ−1

[
C − κL1+χ

1+χ

]−σ =
σC

C − κL1+χ

1+χ

.

Assume that the physical cost of price adjustment does not enter in the demand of labor. Then the
feasibility constraint in the economy at the steady state is given by

Lss = Yss

(
1− α
αwss

)α
∆ss,(D.15)

Css = Yss

(
1−

(
αwss

1− α

)1−α
∆ss

)
1

ηg,ss
.(D.16)

PROPOSITION 4: Assume that the physical cost of price adjustment does not enter in the demand
for labor. Then

(D.17)
dlog(Css/Lss)

dlog(∆ss)
= −

1

1− α/Mss
.

PROOF:
The consumption-labor ratio at the steady–state is given by

Css/Lss =

(
αwss

1− α

)α 1

∆ss

(
1−

(
αwss

1− α

)1−α
∆ss

)
1

ηg,ss
.(D.18)

Since wss =
(

1
Mssι

) 1
1−α

withMss denoting the aggregate markup at the steady state, taking logs and

differentials

dlog(Css/Lss)

dlog(∆ss)

∣∣∣∣
log(∆ss)=0

= −1 + d log

(
1−

(
α

1− α

)1−α 1

Mssι
elog(∆ss)

)

= −1 + d log

(
1−

(
α

1− α

)1−α 1

Mss (1− α)α−1 α−α
elog(∆ss)

)

= −1 + d log

(
1−

α

Mss
elog(∆ss)

)
= −1−

α
Mss

1− α
Mss

= −
1

1− α/Mss
.(D.19)
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E. Cost of Inflation without Quality Shocks

This section computes the steady state cost of inflation in two versions of my model: the model with
quality shocks and the model without quality shocks. The two versions of the model produce a similar
(if not the same) steady state cost of inflation. Since price dispersion with and without business cycles
is almost the same—as I show in the main text—I provide suggestive evidence that the assumption of
quality shocks is not quantitatively relevant for the main cost of inflation that is given by inefficient
dispersion of relative prices.

The general equilibrium framework in the two versions of the model is the same as in Section I; thus, I
skip its description. I only change the technology of the intermediate good producer and the technology
for price changes, which I describe next.

Model with quality shocks. — The technology of the final good producer is given by

(E.1) Yt =

∫ 1

0

(
yti

Ati

) γ−1
γ


γ
γ−1

,

where Yt denotes output, yti denotes intermediate firms’ output, and Ati is the firms’ quality shocks.
The intermediate good firm i produces output yti using labor lti and material nti, and that firm’s

productivity is a function of an idiosyncratic component Ati and an aggregate component ηtz according
to

(E.2) yti = Atin
α
ti (ηtzlti)

1−α .

Here Ati follows the stochastic process described in equation (9) in the main text. The technology
for price changes and the firms’ problem are the same as in the main text, and they are described in
equations (10) and (11), respectively.

Model without quality shocks. — Following the same notation as before, the technology
of the final good producer is given by

(E.3) Yt =

(∫ 1

0
y
γ−1
γ

ti

) γ
γ−1

.

The intermediate good firm i produces output using the technology described in (E.2).
The quality shock Ati follows a first order auto-regressive process given by

(E.4) log(Ati) =

{
ρ log(At−1i) + η1

ti with probability ψ
ρ log(At−1i) + η2

ti with probability 1− ψ ; ηkti ∼i.i.d N(0, σak).

Firms face a stochastic physical cost of changing their price equal to θWtA
γ−1
ti . I scale the adjustment

cost by the factor Aγ−1
ti to keep the firm’s decision problem homogeneous as its size varies. Finally, with

probability ζ the firm faces a zero menu cost.
The intermediate firm’s problem is given by

max
pti

E

[ ∞∑
t=0

QtA
γ−1
ti Φti

]
subject to

Φti =

(
Atipti

Pt

)−γ
Yt
(
ptiAti − ι(1− τ) (Wt/ηtz)1−α Pαt

)
− I(pt−1i 6= pti)Wtθti,(E.5)

where I continue using the same notation as in Section I.

Calibration of the models and micro-level pricing moments. — I calibrate the
model with quality shocks as in the main text. In the case of the model without quality shocks, I use the
same parameters as in the model with quality shocks, and I set ρ = 0.98. The results are robust to values
of ρ = 0.94 and ρ = 0.99 as long as there is an appropriate adjustment of the variance of idiosyncratic
shocks. Table E.I shows the micro-level price moments in both models. As we can see, both models
generate similar micro-level price statistics.
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Table E.I—Micro Pricing Moments: Models with and without Quality Shocks and Data

Data Model with Quality Shocks Model with No Quality Shocks
Absolute value of price changes

Mean 0.153 0.152 0.143
Standard deviation 0.137 0.137 0.129

Skewness 1.314 1.137 1.232
Kurtosis 4.321 4.329 4.421

10th percentile 0.020 0.013 0.011
25th percentile 0.049 0.036 0.034
50th percentile 0.114 0.127 0.122
75th percentile 0.217 0.220 0.206
90th percentile 0.356 0.351 0.325

Price changes

Standar deviation 0.205 0.204 0.192
Kurtosis 3.809 3.810 3.823

Frequency with implied duration 0.097 0.097 0.096

Note: The table presents selected moments of the micro-level price statistics in the models with and
without quality shocks.
Source: Author’s calculations
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Figure E.I. Steady State Price Dispersion with and without Quality Shocks

Note: This figure describes price dispersion as a function of the inflation target in the MC models with
and without quality shocks. The dotted black line plots price dispersion in the model with quality shocks

given by (∆Q
ss − 1)× 100, where ∆Q

ss =
∫
p̃−γf(p̃)dp̃ and f(p̃) denotes the distribution of relative prices.

The solid gray line plots price dispersion in the model with no quality shocks (∆Q̄
ssΨ− 1)× 100 , where

∆Q̄
ss =

∫
p̃−γAγ−1f(p̃, A)dp̃dA and f(p̃, A) denotes the distribution of relative prices and productivities.

The factor Ψ is chosen to match the level of price dispersion in both models.
Source: Author’s calculations
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Steady state price dispersion. — The elasticity of price dispersion to inflation is the main
cost of inflation in sticky price models. Figure E.I shows steady–state price dispersion as a function of
the inflation target in the models with and without quality shocks. In the case of the model with quality
shocks, it shows the percentage deviation with respect to 1, as in the main text. In the case of the model
with no quality shocks, I renormalize the price dispersion to match its counterpart in the model with
quality shocks at a 0% inflation target. The argument for this decision is that the level of labor dispersion
across models is different, since in the model without quality shocks, there is an efficient dispersion of
output across firms. As we can see in Figure E.I, the cost of inflation across models is almost identical.
Therefore, we can conclude that the main cost of inflation related to price dispersion is not affected by
the assumption of quality shocks.
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F. Robustness Exercises
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Figure F.I.a. Optimal Inflation Target: Benchmark Calibration in the Calvo Model
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Figure F.I.b. Optimal Inflation Target: Golosov and Lucas Menu Cost Model

Note: Panels A describes the consumption equivalent in the MC and Calvo models normalized by the
optimal inflation target. Panels B describe the frequency of a binding ZLB. The frequency of a binding
ZLB without a ZLB constraint refers to frequency of negative values of the interest rate. Panels C

describe the mean consumption-labor ratio given by (Eπ̄ [Ct/(Ltηtz)]/Eπ̄∗ [Ct/(Ltηtz)]− 1)× 100. Panel

D describes the standard deviation of the output gap given by Stdπ̄ [log(mct)]× 100
χ(1−α)

. The solid black

lines describe the moments without a ZLB and the dotted gray lines describe the moments with a ZLB.
The scale of figures F.I.a and F.I.b coincide.
Source: Author’s calculations
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Figure F.II.a. Optimal Inflation Target: Share of Intermediate Input of 0.63 in the Calvo

Model
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Figure F.II.b. Optimal Inflation Target: Share of Intermediate Input of 0.63 in the Menu

Cost Model

Note: Panels A describes the consumption equivalent in the MC and Calvo models normalized by the
optimal inflation target. Panels B describe the frequency of a binding ZLB. The frequency of a binding
ZLB without a ZLB constraint refers to frequency of negative values of the interest rate. Panels C

describe the mean consumption-labor ratio given by (Eπ̄ [Ct/(Ltηtz)]/Eπ̄∗ [Ct/(Ltηtz)]− 1)× 100. Panel

D describes the standard deviation of the output gap given by Stdπ̄ [log(mct)]× 100
χ(1−α)

. The solid black

lines describe the moments without a ZLB and the dotted gray lines describe the moments with a ZLB.
The scale of figures F.II.a and F.II.b coincide.
Source: Author’s calculations
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Figure F.III.a. Optimal Inflation Target: Demand Elasticity Equal to 7 in the Calvo Model
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Figure F.III.b. Optimal Inflation Target: Demand Elasticity Equal to 7 in the Menu Cost

Model

Note: Panels A describes the consumption equivalent in the MC and Calvo models normalized by the
optimal inflation target. Panels B describe the frequency of a binding ZLB. The frequency of a binding
ZLB without a ZLB constraint refers to frequency of negative values of the interest rate. Panels C

describe the mean consumption-labor ratio given by (Eπ̄ [Ct/(Ltηtz)]/Eπ̄∗ [Ct/(Ltηtz)]− 1)× 100. Panel

D describes the standard deviation of the output gap given by Stdπ̄ [log(mct)]× 100
χ(1−α)

. The solid black

lines describe the moments without a ZLB and the dotted gray lines describe the moments with a ZLB.
The scale of figures F.III.a and F.III.b coincide.
Source: Author’s calculations
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Figure F.IV.a. Optimal Inflation Target: Recursive Utility in the Calvo Model
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Figure F.IV.b. Optimal Inflation Target: Recursive Utility in the Menu Cost Model

Note: Panels A describes the consumption equivalent in the MC and Calvo models normalized by the
optimal inflation target. Panels B describe the frequency of a binding ZLB. The frequency of a binding
ZLB without a ZLB constraint refers to frequency of negative values of the interest rate. Panels C

describe the mean consumption-labor ratio given by (Eπ̄ [Ct/(Ltηtz)]/Eπ̄∗ [Ct/(Ltηtz)]− 1)× 100. Panel

D describes the standard deviation of the output gap given by Stdπ̄ [log(mct)]× 100
χ(1−α)

. The solid black

lines describe the moments without a ZLB and the dotted gray lines describe the moments with a ZLB.
The scale of figures F.IV.a and F.IV.b coincide.
Source: Author’s calculations
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Figure F.V.a. Optimal Inflation Target: Lower volatility of aggregate shocks in the Calvo

Model
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Figure F.V.b. Optimal Inflation Target: Lower volatility of aggregate shocks in the Menu

Cost Model

Note: Panels A describes the consumption equivalent in the MC and Calvo models normalized by the
optimal inflation target. Panels B describe the frequency of a binding ZLB. The frequency of a binding
ZLB without a ZLB constraint refers to frequency of negative values of the interest rate. Panels C

describe the mean consumption-labor ratio given by (Eπ̄ [Ct/(Ltηtz)]/Eπ̄∗ [Ct/(Ltηtz)]− 1)× 100. Panel

D describes the standard deviation of the output gap given by Stdπ̄ [log(mct)]× 100
χ(1−α)

.The solid black

lines describe the moments without a ZLB and the dotted gray lines describe the moments with a ZLB.
The scale of figures F.V.a and F.V.b coincide.
Source: Author’s calculations
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Figure F.VI.a. Optimal Inflation Target: 4.5% of steady state real interest rate in the Calvo

Model
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Figure F.VI.b. Optimal Inflation Target: 4.5% of steady state real interest rate in the Menu

Cost Model

Note: Panels A describes the consumption equivalent in the MC and Calvo models normalized by the
optimal inflation target. Panels B describe the frequency of a binding ZLB. The frequency of a binding
ZLB without a ZLB constraint refers to frequency of negative values of the interest rate. Panels C

describe the mean consumption-labor ratio given by (Eπ̄ [Ct/(Ltηtz)]/Eπ̄∗ [Ct/(Ltηtz)]− 1)× 100. Panel

D describes the standard deviation of the output gap given by Stdπ̄ [log(mct)]× 100
χ(1−α)

. The solid black

lines describe the moments without a ZLB and the dotted gray lines describe the moments with a ZLB.
The scale of figures F.VI.a and F.VI.b coincide.
Source: Author’s calculations
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Figure F.VII. Policy Function with Different Demand Elasticities

Note: The figure plots the Ss bands and reset relative prices of a firm with a demand elasticity of 3 and
7. The gray dotted lines describe the Ss bands and the reset price with a demand elasticity of 7. The
black solid lines describe the same variables with a demand elasticity of 3.
Source: Author’s calculations
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Figure F.VIII. Mean and Target inflation in the Calvo Model

Note: The light gray solid lines describe the mean inflation without a ZLB constraint, the grey dotted
lines describe the same variables with a ZLB constraint and the black lines describe the optimal inflation
target across all the calibration.
Source: Author’s calculations



VOL. VOL NO. ISSUE OPTIMAL INFLATION 67

Table F.I—Micro Pricing Moments: Golosov and Lucas (2007) and Data

Data Model
Moments Raw With filters Steady state Business cycle

Absolute value of price changes

Mean 0.154 0.153 0.155 0.156
Standar deviation 0.159 0.137 0.025 0.026

Skewness 1.538 1.314 1.264 1.203

10th percentile 0.014 0.020 0.128 0.129
25th percentile 0.034 0.049 0.138 0.137
50th percentile 0.096 0.114 0.147 0.150
75th percentile 0.223 0.217 0.166 0.170
90th percentile 0.386 0.356 0.189 0.192

Price changes

Standar deviation 0.222 0.205 0.156 0.158
Kurtosis 4.672 3.809 1.180 1.154

Mean frequency of price change 0.169 0.126 — —
Frequency with implied duration 0.119 0.097 0.100 0.100
Cost of price adjustment × 100 0.400 0.400 0.408 0.408

Ratio free to total price adjustments — — 0.000 0.000

Note: The table presents selected moments of the micro price statistics in the SMM estimation. The
first column describes the price statistics with standard filters, and the second column describes the same
moments computed with the filters explained in Online Appendix Section B.B.2. Columns 3 and 4 show
the price statistics in the model with and without business cycles.
Source: Author’s calculations



68 AMERICAN ECONOMIC JOURNAL MONTH YEAR

Table F.II—Business Cycle Moments: Golosov and Lucas (2007) and Data

Standard deviation Autocorrelation Correlation with output

Model Model Model

Data Median [2,98] Data Median [2,98] Data Median [2,98]

Output 0.95 1.06 [0.82,1.34] 0.83 0.79 [0.69,0.86] 1.00 1.00 [1.00,1.00]
Consumption 1.14 1.07 [0.85,1.36] 0.85 0.79 [0.69,0.86] 0.92 0.96 [0.93,0.98]
Interest rate 0.35 0.43 [0.33,0.54] 0.83 0.84 [0.77,0.89] 0.19 0.30 [0.04,0.51]
Real wage 0.86 0.68 [0.49,0.98] 0.71 0.88 [0.80,0.93] 0.25 0.66 [0.43,0.83]
Inflation 0.26 0.28 [0.23,0.33] 0.49 0.44 [0.28,0.59] 0.09 0.22 [0.02,0.43]
Gov. expenditure 1.42 1.43 [1.15,1.79] 0.82 0.78 [0.69,0.84] 0.42 0.81 [0.66,0.88]

Note: The table presents business cycle moments from the U.S. data and the simulated series of the
Golosov and Lucas (2007) model at a 3.5% inflation target. Online Appendix Section A describes the
variables in the U.S. data. Model and data series are detrended with Hodrick-Prescott filter (λ = 1600)
to remove the trend component. The period in the data is from 1960 first quarter to 2017 fourth quarter.
The moments in the MC model are the median and a [2,98] percent confidence interval across simulations.
I compute the statistics in the model for over 5000 simulations with the same length as in the data.
Source: Author’s calculations

Table F.III—Business Cycle Moments: Model with Epstein-Zin preferences and Data

Standard deviation Autocorrelation Correlation with output

Model Model Model

Data Median [2,98] Data Median [2,98] Data Median [2,98]

Output 0.95 1.07 [0.87,1.29] 0.83 0.78 [0.68,0.85] 1.00 1.00 [1.00,1.00]
Consumption 1.14 1.08 [0.88,1.32] 0.85 0.78 [0.68,0.85] 0.92 0.97 [0.94,0.98]
Interest rate 0.35 0.40 [0.31,0.50] 0.83 0.86 [0.80,0.90] 0.19 0.30 [0.06,0.53]
Real wage 0.86 0.68 [0.49,0.93] 0.71 0.88 [0.78,0.93] 0.25 0.67 [0.46,0.81]
Inflation 0.26 0.12 [0.10,0.14] 0.49 0.56 [0.40,0.68] 0.09 0.26 [0.07,0.49]
Gov. expenditure 1.42 1.42 [1.15,1.75] 0.82 0.77 [0.66,0.84] 0.42 0.80 [0.67,0.89]

Note: The table presents business cycle moments from the U.S. data and the simulated series of the
model with Epstein-Zin at a 3.5% inflation target. Online Appendix Section A describes the variables in
the U.S. data. Model and data series are detrended with Hodrick-Prescott filter (λ = 1600) to remove
the trend component. The period in the data is from 1960 first quarter to 2017 fourth quarter. The
moments in the MC model are the median and a [2,98] percent confidence interval across simulations. I
compute the statistics in the model for over 5000 simulations with the same length as in the data.
Source: Author’s calculations
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G. Optimal Inflation Target With Coibion, Gorodnichenko and Wieland

(2012) Welfare Approximation in the Calvo Model

This section uses Coibion, Gorodnichenko and Wieland (2012) calibration of the Calvo model and their
welfare approximation to show the following result: In the Calvo model, the optimal inflation target is
determined by a trade-off between the mean and volatility of inflation, given their respective impact on
the mean of price dispersion. Thus, the main benefit of a higher inflation target in the Calvo model is
not a reduction of inefficient fluctuations of consumption and labor implied by the ZLB constraint, but
the reduction of inflation volatility and its effect on the dispersion of relative prices.

Coibion, Gorodnichenko and Wieland (2012) provides an excellent tool to analyze welfare in the Calvo
model with positive trend inflation. This paper shows that welfare in the New Keynesian model with
producers setting prices á la Calvo can be approximated as:

(G.1) W = Θ0 + Θ1Var(ŷt) + Θ2Var(π̂t) + Θ3Var(ĉt).

Here Θ0 represents the steady–state cost of inflation in the form of higher markups and price dispersion,
and Θ1Var(ŷt) and Θ3Var(ĉt) represent the business cycle cost associated with inefficient fluctuations
of consumption and labor. Θ2Var(π̂t) represents the cost due to inflation volatility coming from the
following mechanism: A rise in the volatility of inflation increases the mean of price dispersion, and
therefore it reduces average labor productivity.32

Each term in (G.1) is a function of the inflation target. If the term given by Θ1Var(ŷt)+Θ3Var(ĉt) is
almost insensitive to the inflation target, while the terms Θ0 and Θ2Var(π̂t) are sensitive to the inflation
target, then business cycle stabilization of consumption and labor is not the primary force for the optimal
inflation target.

Figure G.I. Figure 3 in Coibion, Gorodnichenko and Wieland (2012)

Note: The figure plots the different components of welfare for the optimal inflation target.

Source: Coibion, Gorodnichenko and Wieland (2012)

Figure G.I shows each term from Coibion, Gorodnichenko and Wieland (2012). The steady cost of
inflation goes from 0 to -0.017, the cost of inflation volatility goes from -0.012 to -0.005, and the terms
representing the business cycle cost go from -0.00035 to -0.00065. These orders of magnitude for the
costs and benefits of inflation suggest that the main trade-offs are related to the stochastic process of
inflation. Next, I define two welfare evaluations to show this result formally.

Let W bc denote the welfare function with inefficient business cycle fluctuations, and let Wnbc denote
the welfare function without inefficient business cycle fluctuations. Formally, W bc and Wnbc are given
by

W bc = Θ0 + Θ1Var(ŷt) + Θ2Var(π̂t) + Θ3Var(ĉt),(G.2)

Wnbc = Θ0 + Θ2Var(π̂t).(G.3)

Figure G.II Panel A shows Θ0, Θ1Var(ŷt), Θ2Var(π̂t), and Θ3Var(ĉt) in the same scale, and Figure G.II
Panel B shows W bc and Wnbc. This figure shows that the effect of the inflation target on welfare through
inefficient business cycles is quantitatively insignificant, and it does not affect the optimal inflation target.

32For a proof with zero trend inflation, see Woodford (2002); for the proof with positive trend inflation,
see Coibion, Gorodnichenko and Wieland (2012).
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Figure G.II. Coibion, Gorodnichenko and Wieland (2012) Welfare Decomposition
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Note: Panel A plots the four component of welfare in equation (G.1) from their benchmark calibration.
Panel B plots W bc defined in equation (G.2) and Wnbc defined in equation (G.3).
Source: Author’s calculations using original codes in Coibion, Gorodnichenko and Wieland (2012)
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H. Numerical Algorithm for the Computation of the Calvo Model

An important problem in the Calvo model with positive trend inflation is that the model does not
satisfy the Blanchard and Khan conditions for large inflation targets. For this reason, I add business
cycle indexation: nominal prices adjust automatically to business cycle fluctuations of inflation. If pti is
the nominal price of the firm i at time t, then

pit+1 =

{ (
Πt+1

(1+π̄)

)λ
pit if no price change with prob. 1− Ω

P ∗t if price change with prob. Ω
(H.1)

Notice that this form of indexation does not affect the steady state of the Calvo economy. Therefore
I can describe the steady–state cost of inflation in this model accurately.

H.1. Equilibrium Conditions of the Calvo Model

Let X denotes a detrended variable and X̃ denotes the original variable. Let S be the aggregate

state of the economy, given by S =
(
mc−,∆−, R̃−, dηz , ηg , ηq , ηh

)
. Next, I describe the equilibrium

conditions with and without trend.

• Household’s optimality conditions

m̃ut = βηq,tRtEt
[
m̃ut+1

Πt+1

]
(H.2)

Σt = Et [Ut+1](H.3)

m̃ut = ū

(
C̃t − κηz,t

L̃1+χ
t

1 + χ

)−σ
(H.4)

ηz,tκL̃
χ
t = ηh,tw̃t(H.5)

ũt = ū

(
C̃t − ηz,tκ

L̃
1+χ
t

1+χ

)1−σ

1− σ
(H.6)

Ũt = (1− β)ũt + βΣt(H.7)

• Stationary household’s optimality conditions

mu(S) = βηq−(S)R(S)ES′

[(
ηz(S′)

ηz(S)

)−σ mu(S′)

Π(S′)

∣∣∣∣∣S
]

(H.8)

Σ(S) = ES′

[((
ηz(S′)

ηz(S)

)1−σ U(S′)

Uss

)∣∣∣∣∣S
]

(H.9)

mu(S) = ū(C(S)− κ
L(S)1+χ

1 + χ
)−σ(H.10)

κL(S)χ = ηh,−(S)w(S)(H.11)

u(S) = ū

(
C(S)− κL(S)1+χ

1+χ

)1−σ

1− σ
(H.12)

U(S) = (1− β)u(S) + βUssΣ(S)(H.13)
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– The original variables can be obtained as:

C̃t = C(St)ηz,t ; m̃ut = mu(St)η
−σ
z,t ; L̃t = L(St) ; Π̃t = Π(St)

ũt = u(St)η
(1−σ)
z,t ; Ũt = U(St)η

(1−σ)
z,t ; w̃t = w(St)ηz,t(H.14)

• Firms’ optimality conditions, inflation, and price dispersion

H̃t =
γ

γ − 1
(1− β)m̃utỸtmct + β(1− Ω)Et

[(
Π

(1−λ)γ
t+1 (1 + π̄)λγ

)
H̃t+1

]
F̃t = m̃utỸt(1− β) + β(1− Ω)Et

[(
Π

(1−λ)(γ−1)
t+1 (1 + π̄)λ(γ−1)

)
F̃t+1

]
P ∗t =

H̃t

F̃t

P ∗t =

[
1− (1− Ω) (1 + π̄)λ(γ−1) Π

(1−λ)(γ−1)
t

Ω

] 1
1−γ

∆t =
(

Ω (P ∗t )−γ + (1− Ω)
(

Π
(1−λ)γ
t (1 + π̄)λγ

)
∆t−1

)

• Stationary firms’ optimality conditions, inflation, and price dispersion

H(S) =
γ

γ − 1
(1− β)mu(S)Y (S)mc(S) + . . .

. . . +β(1− Ω)ES′

[(
ηz(S′)

ηz(S)

)1−σ (
Π(S′)(1−λ)γ(1 + π̄)λγ

)
H(S′)

∣∣∣∣∣S
]

F (S) = mu(S)Y (S)(1− β) + . . .

. . . +β(1− Ω)ES′

[(
ηz(S′)

ηz(S)

)1−σ (
Π(S′)(1−λ)(γ−1)(1 + π̄)λ(γ−1)

)
F (S′)

∣∣∣∣∣S
]

P ∗(S) =
H(S)

F (S)

P ∗(S) =

[
1− (1− Ω) (1 + π̄)λ(γ−1) Π(S)(1−λ)(γ−1)

Ω

] 1
1−γ

∆(S) =
(

Ω (P (S)∗)−γ + (1− Ω)
(

Π(S)(1−λ)γ (1 + π̄)λγ
)

∆−(S)
)

– The original variables can be obtained as:
(H.15)

m̃ct = mc(St), Ỹt = Y (St)ηz,t, P̃
∗
t = P ∗t (St), H̃t = H(St)η

(1−σ)
z,t , F̃t = F (St)η

(1−σ)
z,t
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• Monetary policy and aggregate feasibility with change of variables

mct = (1− τmc)ι
(
wt

ηtz

)1−α
(H.16)

Mt =
1− τmc
mct

(H.17)

R∗t = R̃t−1R1/(1−φr)

((
Πt

(1 + π̄)

)φπ ( mct

mcss

)φ̃y)1−φr (
mct

mct−1

)φ̃dy
(H.18)

R̃t+1 =
(
R−1/(1−φr)R∗t

)φr
ηr,t+1(H.19)

Rt = max{1, R∗t }(H.20)

η1−α
z,t Lt = Yt

(
(1− α)

αwt

)α
∆t(H.21)

Ct = Yt

(
1−

(
wtα

1− α

)1−α ∆t

η1−α
z,t

)
1

ηg,t
(H.22)

• Stationary monetary policy and aggregate feasibility with change of variable

mc(S) = (1− τmc)ιw(S)1−α(H.23)

M(S) =
1− τmc
mc(S)

(H.24)

R∗t (S) = R̃−(S)R1/(1−φr)

((
Π(S)

(1 + π̄)

)φπ (mc(S)

mcss

)φ̃y)1−φr (
mc(S)

mc−(S)

)φ̃dy
(H.25)

R̃(S′) =
(
R1/(1−φr)R∗(S)

)φr
η′r(H.26)

R(S) = max{1, R∗(S)}(H.27)

L(S) = Y (S)

(
(1− α)

αw(S)

)α
∆(S)(H.28)

C(S) = Y (S)

(
1−

(
w(S)α

1− α

)1−α
∆(S)

)
1

ηg−(S)
(H.29)

• Exogenous shocks

log(ηg)(S′) = (1− ρg) log(η∗g) + ρg log(ηg(S)) + σgε
′
g(H.30)

log(η′z/ηz)(S′) = (1− ρz) log(1 + g) + ρz log(η′z/ηz)(S) + σzε
′
z(H.31)

log(ηr)(S
′) = σrε

′
r(H.32)

log(ηq)(S
′) = (1− ρq) log(η∗q ) + ρq log(ηq(S)) + σqεq(H.33)

log(ηh)(S′) = (1− ρh) log(η∗q ) + ρq log(ηh(S)) + σhεh(H.34)

H.2. Solution Method for the Calvo Model

The solution method has three steps:

1) Solve the model using 2nd-order perturbation methods.
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• Compute the steady state.

• Set the hypercube limits for the solution with the global solution.

• Get initial the condition for the coefficients in the policy functions.

2) Solve the model using global methods without the zero lower bound.

• I use an iterative method in this step. The previous step gives the initial condition for the
policy functions.

3) Solve the model using global methods with the zero lower bound.

• I use an iterative method in this step. The previous step gives the initial condition for the
policy functions.

Step 1: Perturbation Method Around the Steady State. — First, I compute the
steady state of the model. It is given by:

ηq,ss = 1 ; ηz,ss = ηz

ηg,ss = ηg ; ηr,ss = 1

P ∗ss =

(
1− (1− Ω)(1 + π̄)γ−1

Ω

)1/(1−γ)

; mcss =
P ∗ss(γ − 1)

γ

1− βηq,ss(1− Ω)(1 + g)1−σn (1 + π̄)γ

1− βηq,ss(1 + g)1−σn (1− Ω)(1 + π̄)γ−1

wss =

(
mcss

(1− τmc)ι

)1/(1−α)

; Lss =
(wss
κ

) 1
χ

∆ss =
Ω(P ∗ss)

−γ

1− (1− Ω)Πγss
; Yss =

Lss(
1−α
αwss

)α
∆ss

Css = Yss

(
1−

(
wssα

1− α

)1−α
∆ss

)
(1− 1/ηg,ss) ; muss = ū

(
Css − κ

L1+χ
ss

1 + χ

)−σ

uss = ū
(Css − κ

L1+χ
ss

1+χ
)1−σ

1− σ
; Uss = uss

1− β
1− β(1 + g)1−σ

Hss =
γ

γ − 1

(1− β)mussYssmcss

1− βg1−σn (1− Ω)(1 + π̄)γ
; Fss = (1− β)

mussYss

1− βg1−σn (1− Ω)(1 + π̄)γ−1

Rss =
1 + π̄

βg−σ
; Πss = (1 + π̄)

Σss = (1 + g)1−σ ; CCMss = (1− τL)/mc

Then, I solve the system of equations described in the previous section without ZLB with second–order

perturbation methods. I apply the log transformation Xt = XsseX̂t for all the positive variables. I didn’t
use log transformation for negative variables.

• Positive variables:{
mu,Π,Σ, C, L,w, S, Y, P ∗, F,mc,∆, , R∗, R, ηG, ηZ , ηR, ηQ

}
.

• Non-positive variables: {u, U}.

Step 2: Solving the model without ZLB. — I use an iterative method to find the
equilibrium.

• Step 2.1: Initiate

(H.35) mu0(S), R0(S), R̃0(S),Π0(S), U0(S), H0(S), F 0(S),∆0(S)

using second–order perturbation methods.
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• Step 2.2: Given mui(S), R̃i(S),Πi(S), U i(S), Hi(S), F i(S),∆i(S), I use the Euler equation to
get

Σi+1(S) = ES′
[(

dη(S′)1−σ U
i(S′)

Uss

)∣∣∣∣S]
mui+1(S) = βg−σnηq(S)Ri(S)ES′

[
mui(S′)

Πi(S′)

∣∣∣∣S]
• Step 2.3: With mui+1(S) I solve the following system

κLi+1(S)χ = ηh(S)wi+1(S)

mui+1(S) = ū(Ci+1(S)− κ
Li+1(S)1+χ

1 + χ
)−σn

Li+1(S) = Y i+1(S)

(
(1− α)

αwi+1(S)

)α
∆i(S)

Ci+1(S) = Y i+1(S)

(
1−

(
wi+1(S)α

1− α

)1−α
∆i(S)

)
/ηg(S).

Compute the marginal cost and period utility given by

mci+1(S) = (1− τmc)ι
(
wi+1(S)

)1−α
& ui+1(S) = ū

(Ci+1(S)− κL
i+1(S)1+χ

1+χ
)1−σ

1− σ

• Step 2.4: Update forward looking policies U(S), H(S), F (S)

U i+1(S) = (1− β)ui+1(S) + βUssΣ
i+1(S)

Hi+1(S) =
γ

γ − 1
(1− β)mui+1(S)Y i+1(S)mci+1(S) + . . .

· · ·+ βg1−σ(1− Ω)ES′
[(

(Πi(S′))(1−λ)γ(1 + π̄)λγ
)
Hi(S′)

∣∣∣S]
F i+1(S) = mui+1(S)Y i+1(S)(1− β) + . . .

· · ·+ βg1−σ(1− Ω)ES′
[(

(Πi(S′))(1−λ)(γ−1)(1 + π̄)λ(γ−1)
)
F i(S′)

∣∣∣S]
• Step 2.5: Update policies R(S), R̃(S),Π(S),∆(S)

Πi+1(S) =

(
1− Ω

1− Ω(((P ∗)i+1(S)))1−γ

)1/((1−γ)(1−λ))

(1 + π̄)
−λ
1−λ

∆i+1(S) =
(

Ω
(
(P ∗)i+1(S))

)−γ
+ (1− Ω)

(
Πi+1((S))(1−λ)γ(1 + π̄)λγ

)
∆i(S)

)
(R∗)i+1(S) = R̃−(S)

(
1 + π̄

β(1 + g)−σ

)((
Πi+1(S)

(1 + π̄)

)φπ ( m̃ci+1(S)

mcss

)φy)1−φr (
mci+1(S)

m̃c(S)

)φdy
R̃i+1(S) =

((
β(1 + g)−σ

1 + π̄

)
(R∗)i+1(S)

)φr
Ri+1(S) = (R∗)i+1(S);

• Step 2.6: If

(H.36) error = meanS
(
|mui(S)−mui+1(S)|+ |Πi(S)−Πi+1(S)|+ |U i(S)− U i+1(S)|

)
< ε,

stop. Otherwise go back to step 2.2.

Remark. — I use a Smolyak sparse grid with anisotropic construction for the projection method.

Remark. — I use Gauss-Legendre quadrature and the inverse of the accumulated normal distribution
in the nodes to recover the nodes in the normal distribution.
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Remark. — I use Golden search to obtain the labor supply in step 3. Specifically, labor supply in
the i–th iteration satisfies

(H.37) Li+1(S) = arg min
X

(
mui(S)−

(
C(X)− κ

X1+χ

1 + χ

)−σ)2

with

(H.38) C(X) =
1

ηg(S)∆i(S)
X

(
κXχα

ηh(S)(1− α)

)α(
1−

(
κXχα

(1− α)ηh(S)

)1−α ∆i(S)

1

)

Remark. — I evaluate every function in min {max {S′, Smin} , Smax} whenever I compute the
expectation. Here, Smin is the lower bound for the hypercube and Smax is the upper bound for the
hypercube.

Step 3: Solving the model with ZLB. — I repeat the same algorithm as in step 2, using
the policy function of the model without ZLB with the global solution as the initial condition. The only
difference comes in step 2.4, where I solve the following system:

∆i+1(S) =
(

Ω
(
(P ∗)i+1(S))

)−γ
+ (1− Ω)

(
Πi+1((S))(1−λ)γ(1 + π̄)λγ

)
∆i(S)

)
(R∗)i+1(S) = R̃−(S)

(
1 + π̄

β(1 + g)−σ

)((
Πi+1(S)

(1 + π̄)

)φπ ( m̃ci+1(S)

mcss

)φy)1−φr (
mci+1(S)

m̃c(S)

)φdy
R̃i+1(S) =

((
β(1 + g)−σ

1 + π̄

)
(R∗)i+1(S)

)φr
Ri+1(S) = max

{
1, (R∗)i+1(S)

}
For the model with the ZLB, I make sure the interest rate R̃ always stays inside the hypercube. To

achieve this goal, let us define R and mc to be the lower bounds of the hypercube for the interest rate
and the real marginal cost. I add the following wedge, τC , into the Euler equation:

mu(S) = β(1− τC(S))(1 + g)−σηq−(S)R(S)ES′
[
mu(S′)

Π(S′)

∣∣∣∣S]

τc(S) =

{
0 if R(S) ≥ R & mc(S) ≥ mc
1− 1

β(1+g)−σηq−(S)R(S)ES′
[
mu(S′)
Π(S′)

∣∣∣S] otherwise .
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I. Numerical Algorithm for the Computation of the Menu Cost Model

This section describes the computation of the menu cost model in the steady state and with business
cycles.

I.1. Recursive Equilibrium Conditions

I divide the equilibrium conditions into five blocks: household optimality conditions, firms’ optimality
conditions, monetary policy and aggregate feasibility, Krusell-Smith cross-equation approximations and
exogenous shocks. For simplicity, I denote with X the detrended version of variable of X̃ and by S the

aggregate state of the economy given by S =
(
mc−,∆−, R̃−, dηz , ηg , ηq , ηh

)
.

• Household optimality conditions:

mu(S) = βηq−(S)R(S)ES′
[
dηz(S′)−σ

mu(S′)

Π(S′)

∣∣∣∣S]
Σ(S) = ES′

[(
dηz(S′)1−σ U(S′)

Uss

)∣∣∣∣S]
mu(S) = ū

(
C(S)− κ

L(S)1+χ

1 + χ

)−σ
κL(S)χ = ηh−(S)w(S)

u(S) = ū

(
C(S)− κL(S)1+χ

1+χ

)1−σ

1− σ
U(S) = (1− β)u(S) + βUssΣ(S)

– The original variables can be obtained as:

C̃t = C(St)ηzt ; m̃ut = mu(St)η
−σ
zt ; L̃t = Lt ; Π̃t = Π(S)

ũt = u(St)η
(1−σ)
zt ; Ũt = U(St)η

(1−σ)
zt ; w̃t = w(St)ηzt

• Firm’s optimality conditions:

v(p̃, S) = ES,x
[(

(1− ζ) max
c,nc

{
vc(S)− θ̄(S′), v(p̃′(p̃), S′)

}
+ ζvc(S)

)]
P ∗(S) = arg max

p̃

{
Φ(p̃, S) + β(1 + g)1−σv(p̃, S)

}
vc(S) = Φ (P ∗(S), S) + β(1 + g)1−σv (P ∗(S), S)

vnc(p̃, S) = Φ (p̃, S) + β(1 + g)1−σv (p̃, S)

Φ(p̃, S) = mu(S)Y (S)p̃−γ (p̃−mc(S))

p̃′(p̃) =


p̃e∆al

Π(S′) with prob. p

p̃e∆ah

Π(S′) with prob. 1− p

with θ̄(S) = θw(S′)mu(S′) and ∆ak ∼ N(0, σa,k) with k ∈ {l, h}.
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• Monetary policy and aggregate feasibility:

Π(S) =

(
1− Ω(S)

1− Ω(S)(P ∗(S))1−γ

) 1
1−γ

ϕ(S)

mc(S) = ι(1− τmc)w(S)1−α

R∗(S) = R̃−(S)R1/(1−φr)

((
Π(S)

(1 + π̄)

)φπ (mc(S)

mcss

)φy)1−φr (
mc(S)

mc−(S)

)φdy
R̃(S′) =

(
R−1/(1−φr)R∗(S)

)φr
η′r

R(S) = max{1, R∗(S)}

1 =
Y (S)

(L(S)− θ(Ω(S)− ζ))

(
(1− α)

αw(S)

)α
∆(S)

C(S) = Y (S)

(
1−

(
w(S)α

1− α

)1−α
∆(S)

)
1

ηg−(S)

– The original variables can be obtained as:

m̃ct = mc(St) ; Ỹt = Y (St)ηzt

• Krusell-Smith cross-equation approximation: Let P 2(S) be a 2nd-order polynomial for the
aggregate state

log (∆(S)) = P 2(log(S)) ; log (Ω(S)) = P 2(log(S)) ; log (ϕ(S)) = P 2(log(S))

• Exogenous shocks:

log
(
ηg(S′)

)
= (1− ρg) log(η∗g) + ρg log(ηg(S)) + σgε

′
g

log
(
dηz(S′)

)
= (1− ρZ) log(1 + g) + ρz log(dηz(S)) + σzε

′
z

log
(
ηr)S

′)
)

= σrε
′
r

log
(
ηq(S

′)
)

= (1− ρq) log(η∗q ) + ρq log(ηq(S)) + σqεq

log
(
ηh(S′)

)
= (1− ρh) log(η∗h) + ρh log(ηh(S)) + σhεh

I.2. Menu Cost Model: Steady State

The equilibrium conditions in the steady state of the menu cost are given by

• Household optimality conditions

muss = ū

(
Css − κ

L1+χ
ss

1 + χ

)−σ
κLχss = wss

uss = κ

(
Css − κ

L1+χ
ss

1+χ

)1−σ

1− σ
Uss = (1− β)uss + β (1 + g)1−σ Uss
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• Idiosyncratic equilibrium conditions

v(p̃) = Ep̃′
[(

(1− ζ) max
c,nc

{
max
p̃

V (p̃)− θwssmuss, V (p̃′(p̃))

}
+ ζmax

p̃
V (p̃)

)]
V (p̃) = Φ(p̃) + βg1−σv(p̃)

Φ(p̃) = mussYssp̃
−γ(p̃−mcss)

p̃′(p̃) =

 p̃e∆ah

1+π̄
with prob. p

p̃e∆al

1+π̄
with prob. 1− p

p̃∗ = arg max
p̃

V (p̃)

Ψ = {x : V (p̃∗)− θwssmuss ≤ V (p̃)}

C =

{
(p̃−,∆a) :

p̃−e∆a

1 + π̄
∈ Ψ

}
• Aggregate feasibility and monetary policy

mcss = (1− τmc)ιw1−α
ss

Mss =
(1− τmc)
mcss

R∗ss =

(
1 + π̄

β (1 + g)−σ

)
Rss =

((
βg−σ

1 + π̄

)
R∗ss

)φr
1 + π̄ =

(
1− Ωss

1− Ωss(p̃∗ss)
1−γ

) 1
1−γ

ϕss

Ωss = ζ + (1− ζ)
∫

(p̃−,∆a)/∈C
f−(dp̃−)g(d∆a)

ϕss =

(∫
(p̃−,∆a)∈C

(
p̃−e∆a

)1−γ
1− Ωss

(1− ζ)f−(dp̃−)g(d∆a)

) 1
1−γ

∆ss =

∫
p̃
p̃−γf(p̃) ; f(p̃) := distribution of posted prices

Lss = Yss

(
(1− α)

αwss

)α
∆ss

Css = Yss

(
1−

(
wssα

1− α

)1−α
∆ss

)
/ηg,ss

Numerical Algorithm for the Computation of the Steady State Equilib-
rium. — The algorithm to compute the equilibrium consists in finding the solution to the following
system of equations, F (Xss) = 0,

Π(Xss)−Π = 0(I.1)

Ωss − Ω(Xss) = 0(I.2)

∆ss −∆(Xss) = 0,(I.3)

where Xss = [mcss,Ωss,∆ss] (i.e., real marginal cost, frequency of price changes and price dispersion) are
arguments in the functions. Π(Xss), Ω(Xss), and ∆(Xss) are equilibrium implied inflation, frequency of
price changes, and price dispersion, respectively. Next, I describe the operations inside the F (z) function.
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1) Step 1: Given (mcss,Ωss,∆ss) solve

w(Xss) =

(
mcss

(1− τmc)ι

) 1
1−α

L(Xss) =

(
w(Xss)

κ

) 1
χ

Y (Xss) =
L(Xss)− (Ωss − ζ) θ

∆ss

(
αw(Xss)

1− α

)α
C(Xss) = Y (Xss)

(
1−

(
w(Xss)α

1− α

)1−α
∆ss

)
1

ηg,ss

u(Xss) = ū
(C(Xss)− κL(Xss)1+χ

1+χ
)1−σ

1− σ

mu(Xss) = ū

(
C(Xss)− κ

L(Xss)1+χ

1 + χ

)−σ
U(Xss) =

u(Xss)(1− β)

1− βg1−σ

Π(Xss) = 1 + π̄

R(Xss) =
1 + π̄

βg−σ

Σ(Xss) = 1

R̃(Xss) = 1

2) Step 2: Given (Y (Xss),mu(Xss), w(Xss), L(Xss)), solve

vXss1 (p̃) = (1− ζ) max
{

max
z

ΦXss (z) + βg1−σvXss1 (z)−mu(Xss)w(Xss)θ,Φ
Xss (p̃) + βg1−σvXss1 (p̃)

}
+ . . .

· · ·+ ζmax
z

(
Φ(z) + βg1−σvXss1 (z)

)
vXss2 (p̃) = Ep̃′

[
vXss1 (p̃′)

]
ΦXss (p̃) = mu(Xss)Y (Xss)p̃

−γ (p̃−mcss)

p̃′(p̃) =

 p̃eσ
h
aε
a

1+π̄
with pr. p

p̃eσ
l
aε
a

1+π̄
with pr. 1− p

and get p̃∗,Xss ,ΨXss and CXss .

a) Technical remark 1 : I use 3rd order splines to approximate the value function in the firm’s
problem. It is important not to use 1st order splines, since this method generates jumps
in the reset price in the iterations.

b) Technical remark 2 : I use value function iteration together with collocation to solve the
firm’s Bellman equation.

c) Technical remark 3 : I use the Brent optimization method to solve the firm’s problem.

3) Step 3: Fix a grid between [p̃min,s, p̃max,s] with ns points close to the continuation region

implied by the policy. Construct the three transition matrices F∆a, FΠ, Fp′ with CXss and ΨXss

using linear splines over the grid [p̃min,s, p̃max,s]. The definitions of F∆a, FΠ, Fp′ are:

a) F∆a is given by the transition probability p̃1 = p̃A
′

A
.

b) FΠ is given by the transition probability p̃2 = p̃1
Πss

.

c) FXss
p′ is given by the transition probability

p̃3 =

{
p̃2I(p̃ ∈ CXss ) + I(p̃ /∈ CXss )p∗,Xss with prob. 1− ζ
p∗,Xss with prob. ζ

.
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I compute the ergodic distribution as the eigenvector of the unit eigenvalue of F∆aFΠFp′ . The

eigenvector associated to the unit eigenvalue gives the ergodic distribution nXss . After obtaining
the ergodic distribution, I compute the reset inflation, price dispersion, and frequency of price
changes.

• nXssaux = (nXssF∆aFΠ)I(p ∈ Cz)(1− ζ).

• Ω(Xss) = 1−
∑
i naux(i).

• ϕ(Xss) = (1 + π̄)

(∑
i p̃(i)

1−γ nXssaux (i)∑
i n
Xss
aux (i)

) 1
1−γ

.

• Π(Xss) =
(

1−Ω(Xss)

1−Ω(Xss)(p∗,Xss )1−γ

) 1
1−γ

ϕ(Xss).

• ∆(Xss)∗ =
∑
i p̃(i)

−γnXss (i)

I.3. Menu Cost Model: Business Cycle Computation Algorithm

The algorithm to solve the model has three steps:

Step 1: It uses a perturbation method to approximate the equilibrium dynamics without the ZLB with
the reset price of the Calvo pricing model. It projects price dispersion, menu cost inflation and
frequency of price changes onto the state.

Step 2: It solves the equilibrium conditions with global methods ignoring the zero lower bound.

Step 3: It solves the equilibrium conditions with global methods with the zero lower bound.

I.4. Step 1: Approximation of the Equilibrium

1) Step 1: Initiaze the Krusell-Smith projection

(I.4) ∆(S) = P1(log(S)) ; Ω(S) = P1(log(S)) ; ϕ(S) = P1(log(S)) ; τC1

where P 1 denotes a linear projection.

2) Step 2: Given

(I.5) ∆(S) = Pi(log(S)) ; Ω(S) = Pi(log(S)) ; ϕ(S) = Pi(log(S)) ; τCi

solve the aggregate equilibrium equations using a first order perturbation method (with Ω∗ =
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p+ ζ)

mui(S) = βηq−(S)Ri(S)ES′
[
dηz(S′)−σ

mui(S)

Πi(S′)

∣∣∣∣S]
Σi(S) = ES′

[(
dηz(S′)1−σ Ui(S

′)

Uss

)∣∣∣∣S]
mui(S) = ū

(
Ci(S)− κ

Li(S)1+χ

1 + χ

)−σ
κLi(S)χ = ηh,−(S)wi(S)

ui(S) = ū

(
Ci(S)− κLi(S)1+χ

1+χ

)1−σ

1− σ
Ui(S) = (1− β)ui(S) + βUssΣi(S)

Πi(S) =

(
1− Ωi(S)

1− Ωi(S)(P ∗i (S))1−γ

) 1
1−γ

ϕi(S)

mci(S) = ι((1− τMC)wi(S))1−α

Ri(S) = R̃−(S)

(
1 + π̄

βg−σ

)((
Πi(S)

(1 + π̄)

)φπ (mci(S)

mcss

)φy)1−φr (
mci(S)

mc−(S)

)φdy
R̃i(S

′) =

((
βg−σ

1 + π̄

)
Ri(S)

)φr
η′r

0 = −(Li(S)− θ(Ωi(S)− ζ)) + Yi(S)

(
(1− α)

αwi(S)

)α
∆i(S)

Ci(S) = Yi(S)

(
1−

(
wi(S)α

1− α

)1−α
∆i(S)

)
1

ηg−(S)

Hi(S) =
γ

γ − 1
(1− β)mui(S)Yi(S)mci(S)τCi + . . .

· · ·+ βg1−σ(1− Ω∗)ES′
[
dηz(S′)1−σnΠi(S

′)γHi(S
′)
∣∣S]

Fi(S) = mui(S)Yi(S)(1− β) + . . .

· · ·+ βg1−σ(1− Ω∗)ES′
[
dηz(S′)1−σnΠi(S

′)γ−1Fi(S
′)
∣∣S]

P ∗i (S) =
Hi(S)

Fi(S)

a) Warning: The order of the projection has to be equal to the order of the perturbation. I
use first order in both, the perturbation and the Krusell-Smith approximation.

∆i(S) = Pi(log(S))

Ωi(S) = Pi(log(S))

ϕi(S) = Pi(log(S))

log(ηg(S′)) = (1− ρg) log(η∗g) + ρg log(ηg(S)) + σgε
′
g

log(ηz(S′)) = (1− ρZ) log(η∗z ) + ρz log(ηz(S)) + σzε
′
z

log(ηr(S
′)) = σrε

′
r

log(ηq(S
′)) = (1− ρq) log(η∗q ) + ρq log(ηq(S)) + σqεq

3) Step 3: Given

(I.6) mui(S),mci(S), Ui(S), Yi(S), wi(S),Πi(S)
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solve the firm’s problem

vi(p, S) = (1− ζ) max {vci (S)−mui(S)wi(S)θ, vnci (p̃, S)}+ ζvci (S)

vci (S) = max
x

Φ(x, S) + βvi2(x, S)

vnci (p̃, S) = Φ

(
p̃

Πi(S)
, S

)
+ βvi2

(
p̃

Πi(S)
, S

)
Evi(p, S) = Ep̃′

[
dηz(S′)1−σnvi1(p̃′, S′)

]
Φ(p̃, S) = mui(S)Yi(S)p̃−γ (p̃− (1− τL)mci(S))

p̃′(p̃, S′) =

{
p̃eσaε

a
h with prob. p

p̃eσaε
a
l with prob. 1− p

and get Pmci (S),Ψi(S), Ci(S)

Pmci (S) = arg max
x

Φ(x, S) + βg1−σvi1(x, S)

Ψi(S) = {p̃ : vnci (p̃, S) ≥ vci (S)−mui(S)wi(S)θ}

Ci(S) =
{

(p̃−,∆a) : p̃−e
∆a ∈ Ψ(S)

}
a) Technical remark 1 : I use splines to approximate the firm’s relative price state and Smolyak

polynomials for the aggregate state (see section J).

b) Technical remark 2 : I use value function iteration together with collocation to solve the
firm’s Bellman equation.

c) Technical remark 3 : I use the Brent optimization method to solve the firm’s problem.

d) Technical remark 4 : To solve this problem and avoid the Kronecker product in the expec-
tation, I preallocate the base in the optimization before solving the firm’s problem

Φ̃(s, S) =
∑
εs,εS

w(εs)w(εS)dηz(S′)1−σnΨ(s′(s, εs), S
′(S, εS))

=
∑
εS

∑
εs

w(εs)w(εS)dηz(S′)1−σn
(
Ψs(s

′(s, εs))⊗ΨS(S′(S, εS)
)

=

(∑
εs

w(εs)Ψs(s
′(s, εs))

)
⊗

∑
εS

w(εS)dηz(S′)1−σnΨS(S′(S, εS)

 .

Here w(εs) and w(εS) are the weights in the quadrature and Ψ denotes the base for the
functional approximation.

Step 4: Given the policy

(I.7) Πi(S),mci(S), R̃i(S), Pmci (S), Ci(S)

and some initial conditions sidio and Sagge, simulate the model.

a) Compute the distribution after repricing decision

(I.8) n1
aux,t = (nt−1F∆a)I(p̃e∆ ∈ Ci(St−1))(1− ζ)

b) Compute frequency of price changes Ωt = 1−
∑
i naux,t(i).

c) Compute menu cost inflation

(I.9) ϕt =

(∑
i

p̃(i)1−γ naux,t(i)∑
i naux,t(i)

) 1
1−γ

d) Compute inflation

(I.10) Πt =

(
1− Ωt

1− ΩtP
1−γ
t

)1/(1−γ)

ϕt
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e) Update the distribution nt = nt−1F∆AFΠtFp

f) Compute price dispersion ϕt =
∑
i p̃
−γnt

g) Update state St from St−1

4) Step 5: Check convergence of the policy.

max
S∈Serg

(abs(
Ci(S)− Ci−1(S)

Ci−1(S)
,
Li(S)− Li−1(S)

Li−1(S)
,
mci(S)−mci−1(S)

mci−1(S)
, . . .(I.11)

. . . , Ri(S)−Ri−1(S),
Pmci (S)− Pmci−1(S)

Pmci−1(S)
,

Πi(S)−Πi−1(S)

Πi−1(S)
)) < tolconv(I.12)

where S = {S1, S2, S3, ...} is obtained from the simulation in the model’s ergodic set. Stop if
convergence. Go to step 6 if no convergence.

5) Step 6: Update the coefficients in the projection

(I.13) ∆t = Pi+1(log(St)) ; Ωt = Pi+1(log(St)) ; ϕt = Pi+1(log(St)).

Update τCi+1 in such a way the inflation in the simulation is equal to the inflation target. Go to
step 2.

I.5. Step 2: Global Solution Ignoring the Zero Lower Bound.

1) Step 1: Initiate the Krusell-Smith projection

∆(S) = P 2
1 (log(S)) ; Ω(S) = P 2

1 (log(S)) ; ϕ(S) = P 2
1 (log(S))

where P 2 denotes a quadratic projection.

2) Step 2: Fix ξ as the limit in the iteration in the global solutions. i denote the i-th iteration in
the Krusell-Smith projection and j denoted the j-th iteration in the global solution. Given

∆(S) = P 2
i (log(S)) ; Ω(S) = P 2

i (log(S)) ; ϕ(S) = P 2
i (log(S))

and
Π1,i(S) ; U1,i(S) ; Σ1,i(S) ; mu1,i(S)

• Step 2.1: Given muj,i(S), Uj,i(S),Σj,i(S),muj,i(S), use the Euler equation to get

Σj+1,i(S) = ES′
[(

dηz(S′)1−σn Uj+1,i(S
′)

Uss

)∣∣∣∣S]
muj+1,i(S) = βηq(S)Rj,i(S)ES′

[
dηz(S′)−σ

muj,i(S
′)

Πj,i(S′)

∣∣∣∣S]
• Step 2.2: With muj+1,i(S) solve the following system

κLj+1,i(S)χ = ηh,−(S)wj+1,i(S)

muj+1,i(S) = ū

(
Cj+1,i(S)− κ

Lj+1,i(S)1+χ

1 + χ

)−σ
Lj+1,i(S) = Y i+1(S)

(
(1− α)

αwj+1,i(S)

)α
∆i(S)

Cj+1,i(S) = Yj+1,i(S)

(
1−

(
wj+1,i(S)α

1− α

)1−α
∆i(S)

)
1

ηg(S)

Compute the marginal cost and period utility given by

mcj+1,i(S) = ι(1− τmc)wj+1,i(S)1−α uj+1,i(S) = ū
(Cj+1,i(S)− κLj+1,i(S)1+χ

1+χ
)1−σ

1− σ
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• Step 2.3: Update the forward looking variable U(S) and the Taylor rule

Uj+1,i(S) = (1− β)uj+1,i(S) + βUssΣj+1,i(S)

R∗j+1,i(S) = R̃−(S)

(
1 + π̄

βg−σ

)((
Πj+1,i(S)

(1 + π̄)

)φπ ( m̃cj+1,i(S)

mcss

)φy)1−φr (
mcj+1,i(S)

m̃c(S)

)φdy
R̃j+1,i(S) =

((
βg−σ

1 + π̄

)
(R∗)j+1,i(S)

)φr
Rj+1,i(S) = (R∗)j+1,i(S);

• Step 2.4: If j + 1 = ξ go to step 2.5. If

error = meanS
(
|mui(S)−mui+1(S)|+ |Πi(S)−Πi+1(S)|+ |U i(S)− U i+1(S)|

)
< ε

go to step 2.5. Otherwise, go to step 2.1.

• Step 2.5: Solve firm’s Bellman equation

vj+1,i(p, S) = (1− ζ) max
{
vcj+1,i(S)−muj+1,i(S)wj+1,i(S)θ, vncj+1,i(p̃, S)

}
+ ζvcj+1,i(S)

vcj+1,i(S) = max
x

Φ(x, S) + βg1−σEvj+1,i(x, S)

vncj+1,i(p̃, S) = Φ

(
p̃

Πj+1,i(S)
, S

)
+ βEvj+1,i

(
p̃

Πi(S)
, S

)
Evj+1,i(p, S) = Ep̃′

[
dηz(S′)1−σvj+1,i(p̃

′, S′)
]

Φ(p̃, S) = (1− β)muj+1,i(S)Yj+1,i(S)p̃−γ (p̃−mcj+1,i(S))

p̃′(p̃, S′) =

{
p̃ with prob. p

p̃eσaε
a−σ

2
a
2 with prob. 1− p

and get Pj+1,i(S) from

Pmcj+1,i(S) = arg max
x

Φ(x, S) + βg1−σvi1(x, S)

Πj+1,i(S) =

(
1− Ωi(S)

1− Ωi(S)(P ∗j+1,i(S))1−γ

) 1
1−γ

ϕi(S)

• Step 2.6: If

max
S∈Serg

(abs(
Cj+1,i(S)− Cj,i(S)

Cj,i(S)
,
Lj+1,i(S)− Lj,i(S)

Lj,i(S)
,
mcj+1,i(S)−mcj,i(S)

mcj,i(S)
, . . .(I.14)

. . . , Rj+1,i(S)−Rj,i(S),
Pj+1,i(S)− Pj,i(S)

Pj,i(S)
,

Πj+1,i(S)−Πj,i(S)

Πj,i(S)
)) ≥ tolconv(I.15)

go to step 2.1. If

max
S∈Serg

(abs(
Cj+1,i(S)− Cj,i(S)

Cj,i(S)
,
Lj+1,i(S)− Lj,i(S)

Lj,i(S)
,
mcj+1,i(S)−mcj,i(S)

mcj,i(S)
, . . .

. . . , Rj+1,i(S)−Rj,i(S),
Pj+1,i(S)− Pj,i(S)

Pj,i(S)
,

Πj+1,i(S)−Πj,i(S)

Πj,i(S)
)) < tolconv

Set

C1,i+1(S) = Cj+1,i(S) ; L1,i+1(S) = Lj+1,i(S)

mc1,i+1(S) = mcj+1,i(S) ; Π1,i+1(S) = Πj+1,i(S)
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and check if

max
S∈Serg

(abs(
Cj,i+1(S)− C1,i(S)

C1,i(S)
,
L1,i+1(S)− L1,i(S)

L1,i(S)
,
mc1,i+1(S)−mc1,i(S)

mc1,i(S)
, . . .

. . . , R1,i+1(S)−R1,i(S),
P1,i+1(S)− P1,i(S)

P1,i(S)
,

Π1,i+1(S)−Π1,i(S)

Π1,i(S)
)) < tolconv

If this is the case, we found the equilibrium. If previous inequality doesn’t hold, go to step
3.

Step 3: Given the policy

(I.16) Πi(S),mci(S), R̃i(S), Pmci (S), Ci(S)

and some initial conditions n0 and S0 simulate the equilibrium.

a) Compute the distribution after repricing decision

naux,t = (nt−1F∆a)I(p̃e∆ ∈ Ci(St−1))(1− ζ)

b) Compute frequency of price change Ωt = 1−
∑
i naux,t(i).

c) Compute menu cost inflation

ϕt =

(∑
i

p̃(i)1−γ naux,t(i)∑
i naux,t(i)

) 1
1−γ

d) Compute inflation

Πt =

(
1− Ωt

1− ΩtP
1−γ
t

)1/(1−γ)

ϕt

e) Update the distribution nt = nt−1F∆AFΠtFp

f) Compute price dispersion ϕt =
∑
i p̃
−γnt

g) Update state St from St−1

3) Step 4: Update the coefficient in the projection

∆t = P 2
i+1(log(St−1)) ; Ωt = P 2

i+1(log(St−1)) ; ϕt = P 2
i+1(log(St−1))

Go to step 2.

I.6. Step 3: Global Solution with ZLB

I repeat the same algorithm as in step 2 using the global solution of the model without the zero lower
bound from Step 2 to initialize the policy function. The only difference comes in step 2.4 where I solve
the following system:

(R∗)i+1(S) = R̃−(S)

(
1 + π̄

β(1 + g)−σ

)((
Πi+1(S)

(1 + π̄)

)φπ ( m̃ci+1(S)

mcss

)φy)1−φr (
mci+1(S)

m̃c(S)

)φdy
R̃i+1(S) =

((
β(1 + g)−σ

1 + π̄

)
(R∗)i+1(S)

)φr
Ri+1(S) = max

{
1, (R∗)i+1(S)

}
For the model with ZLB, I make sure the interest rate R̃ stays always inside the hypercube. In order

to achieve this goal, let R and mc be the lower bound of the hypercube for the interest rate and the
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marginal cost. I add the following wedge τC into the Euler equation:

mu(S) = β(1− τC(S))(1 + g)−σηq−(S)R(S)ES′
[
mu(S′)

Π(S′)

∣∣∣∣S]

τc(S) =

{
0 if R(S) ≥ R & mc(S) ≥ mc
1− 1

β(1+g)−σηq−(S)R(S)ES′
[
mu(S′)
Π(S′)

∣∣∣S] otherwise .

This wedge is never active at the optimal inflation target.
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J. Projection Method for the Firm’s Recursive Problem in the MC Model

This section discusses the projection method I use to approximate the firm’s value function in the MC
model. The approximation method is important since the optimal reset price and Ss bands come from
the numerical approximation of the value function; hence, it is important to have a reliable method to
approximate the firm’s value function. The main idea of this method is to use 2nd–order splines for the
firm’s state variable dimension and a Smolyak sparse grid for the aggregate state variables dimension.
First, I will describe the construction of the grid and then the approximation method.

• Grid: Let s = [p̃1, p̃2, . . . , p̃ns ]′ ∈ Rns×1 be the grid on the firm’s idiosyncratic state variable
with ns− 1 breakpoints and let S = [S1, S2, . . . , S7]′ ∈ RnS×7 be the grid on the aggregate state
variables. I follow Judd et al. (2014) to construct a sparse grid in S. If we order the firm’s state
last, so that the state vector is (S, s), then I construct the grid for the firm’s state as

(J.1) (S, s) := [Ins×1 ⊗ S, s⊗ InS⊗1] ∈ R(ns∗nS)×8

• Function bases: let Z ∈ RH×8 be H arbitrary point in the grid (S, s). To generate the base
for Z, I generate the base for the idiosyncratic state variable Φs(Zs) ∈ RH×ns using 2nd–order
splines, and I generate the base for the aggregate state variable ΦS(ZS) ∈ RH×nS using Smolyak
polynomials as in Judd et al. (2014). Then I take the Kronecker product

(J.2) Φ(Z) = Φs(Zs)⊗ ΦS(ZS) ∈ RH×(ns∗nS)

Figure J.II describes the values of changing the price and not changing the price, the optimal price, and
the expected continuation value in the steady state and in the model with business cycle fluctuations.
In the steady state, I’m using 3rd–order splines. In the model with business cycles fluctuations, I’m
using Smolyak sparse grid in the dimensions for the idiosyncratic and aggregate state variables. We can
see three properties: (i) There is a large difference in the value of not changing the price in the steady
state and in the model with business cycles, (ii) the expected continuation value with business cycles
has oscillations that the steady state expected value function doesn’t have, and (iii) the Ss bands in
the model with business cycle are bigger than the Ss bands in the steady state since it cannot capture
the concave-convex shape of the value function. These properties are errors coming from the inaccurate
approximation in the interpolation method. The main reasons for this numerical errors are: (i) the
sparsity in the grid of the idiosyncratic state, and (ii) the Chebyshev polynomial cannot capture the
shape of the value function.

Figure J.I describes the values of changing the price and not changing the price, the optimal price,
and the expected value in the steady state and the model with business cycle fluctuations. In the steady
state, I’m using 3rd–order splines. In the model with business cycle fluctuations, I’m using 2nd–order
splines for the firm’s state variable dimension and a Smolyak sparse grid for the aggregate state variables
dimension. As we can see, all of the previous problems disappear.
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Figure J.I. Value Functions with Completed Smolyak Sparse-Grid Interpolation Method

Note: Panel A describes the value function, the optimal price, the value of changing the price—without
the menu cost—and the expected continuation value in the steady state. Panel B to D describe the same
variables with business cycle. All the value functions are normalized.
Source: Author’s calculations
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Figure J.II. Value Functions with Smolyak Sparse-Grid Interpolation Method

Note: Panel A describes the value function of no changing the price, the optimal price, the value of
changing the price—without the menu cost—and the expected continuation value in the steady state.
Panel B to D describe the same variables with business cycle. All the value functions are normalized.
Source: Author’s calculations
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K. Krusell-Smith in Sticky Price Models with a Taylor Rule

This section of the Online Appendix explains the solution method to compute the equilibrium in
a simplified environment, since the computation of the equilibrium poses a sizeable challenge: The
combination of a Taylor rule for monetary policy and an infinite-dimensional aggregate state requires
a nonstandard application and evaluation of accuracy of the Krusell-Smith algorithm. I explain the
challenge and the solution, and provide an analytical example in which it is easy to see this problem.

For exposition, and for exposition only, I simplify the model in several dimensions: Preferences are

given by period utility u(C,L) = log
(
C − L1+χ

1+χ

)
; the only input of production is labor yi = Aili and

menu costs are constant; the risk premium shock is the only structural shock in the economy; and the

Taylor rule is given by Rt = max

{
1+π̄
β

(
Πt

1+π̄

)φπ
, 1

}
. I abstract from productivty growth rate; thus

g = 0.

K.1. Equilibrium Conditions

Firm’s equilibrium conditions. — The relevant idiosyncratic state variable for firm i at time

t is p̃ti = ptiAti
Pt

, the relative price multiplied by productivity. For simplicity, I refer to this object as the

relative price. The assumption that productivity shocks also affect the demand of the intermediate input
implies that the firm’s static profits depend only on the relative price; thus, it is the only idiosyncratic
state variable for the firm. Let v(p̃−, S) be the present discounted value of a firm with previous relative
price p̃− and current aggregate state S. Then v(p̃−, S) satisfies

v(p̃−, S) = E∆a

[
max

change,no change

{
V c(S), V nc

(
p̃−e∆a

Π(S)
, S

)}]
,

V nc(p̃, S) = mu(S)C(S)p̃−γ(p̃− w(S)) + βES′
[
v
(
p̃, S′

)
|S
]
},

V c(S) = −θw(S)mu(S) + max
p̃

{
mu(S)C(S)p̃−γ(p̃− w(S)) + βES′

[
v
(
p̃, S′

)
|S
]}
,(K.1)

where mu(S), C(S), w(S) and Π(S) denote the marginal utility, aggregate consumption, real wage, and
inflation, respectively. The timing of the firm’s optimization problem is as follows: First, aggregate and
idiosyncratic uncertainty are realized; then the firm has the option of either changing the price or keeping
it the same. If it changes the price, it has to pay the menu cost θ.

The policy of the firm is characterized by two objects: (1) a reset price and (2) a continuation region.
Let P ∗(S) be the reset price, i.e., the firm’s relative price with respect to the aggregate price level. Then

(K.2) P ∗(S) = max
p̃

{
mu(S)C(S)p̃−γ(p̃− w(S)) + βES′

[
v
(
p̃, S′

)
|S
]}
.

The firm’s relative price does not depend on the idiosyncratic shock; it only depends on the aggregate
state of the economy, and therefore it is the same across resetting firms. The continuation region is given
by all relative prices such that the value of changing the price is less than the value of not changing the
price. Let Ψ(S) be the continuation region. Then

(K.3) Ψ(S) = {p̃ : V nc(p̃, S) ≥ V c(S)}.

Since the firm makes the pricing decision after aggregate and idiosyncratic shocks are realized, the
firm’s policy is given by changing the price and setting a relative price equal to P ∗(S) if and only if
p̃−e

∆a

Π(S)
/∈ Ψ(S).

As is typical in models with heterogeneity, the firm needs to forecast equilibrium prices and quantities
and the aggregate state law of motion. If the firm knows these functions, then it has all the elements to
make the optimal decision in (K.1).
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Aggregate conditions. — The aggregate equilibrium conditions are given by the household
optimality conditions, feasibility, and the monetary policy rule:

mu(S) = βR(S)ηq(S)ES′
[
mu(S′)

Π(S′)
|S
]
,(K.4)

κL(S)χ = w(S) ; mu(S) = ū(C(S)− (1 + χ)−1 L1+χ)−1,(K.5)

R(S) = max

{
1 + π̄

β

(
Π(S)

1 + π̄

)φπ
, 1

}
; C(S) =

L(S)− Ω(S)θ

∆(S)
,(K.6)

where ∆(S) is labor productivity depending on inefficient price dispersion, given by

(K.7) ∆(S) =

∫
p̃γf(dp̃);

here, f(p̃) is the distribution of relative prices after repricing, and Ω(S) is the measure of firms changing
the price.

Aggregate equilibrium conditions depend on two outcomes of the firm problem: inflation and price
dispersion. Price dispersion only depends on the distribution of relative prices. This is a direct con-
sequence of the assumption of idiosyncratic quality shocks. To see this, notice that the technological
assumptions over the idiosyncratic shocks imply that labor demand is given by

(K.8)

∫
li(S)di = C(S)

[∫
p̃γf(dp̃)

]
+ θΩ(S),

where li(S) are firms’ demand functions.
The key cross-equation restriction in which the MC model deviates from the Calvo model is the cross-

equation restriction with respect to inflation. The next proposition shows the equilibrium condition for
inflation:

PROPOSITION 5: Define

C(S) =

{
(p̃−,∆a) :

p̃−e∆a

Π(S)
∈ Ψ(S)

}
.

Inflation dynamic is given by

Π(S) =

(
1− Ω(S)

1− Ω(S)P ∗(S)1−γ

) 1
1−γ

ϕ(S),

Ω(S) =

∫
(p̃−,∆a)/∈C(S)

f(dp̃−)g(d∆a),

ϕ(S) =

(∫
(p̃−,∆a)∈C(S)

(
p̃−e∆a

)1−γ
1− Ω(S)

f(dp̃−)g(d∆a)

) 1
1−γ

,(K.9)

where g(∆a) is the distribution of quality shock innovations and f(p̃−) is the distribution of relative
prices previous period.

Inflation is a function of three elements: the reset price, the firm’s inaction set, and the distribution
of relative prices from the previous period. Inflation depends on forward-looking variables like the reset
price and the continuation set—they are forward–looking because they solve the firm’s problem—and a
backward-looking variable given by the distribution of relative prices, which is backward–looking because
it depends on the history of firms’ previous choices.

Aggregate state. — Given that inflation and price dispersion are the aggregation of the relative
prices, the distribution of relative prices is a state in the economy. I denote with S the state of the
economy with the law of motion Γ(S′|S). Therefore, in this simplified economy, the state of the economy
is S = (f(p̃−), ηQ) with the law of motion Γ(S′|S).

K.2. Solution Method

To solve this model numerically, I modify the KS algorithm. Next, I describe this development.
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Modification of the KS algorithm. — Given that the distribution of relative prices
is part of the state, I use the Krusell-Smith algorithm to solve this problem. However, the standard
way of implementing Krusell-Smith does not work for this problem. The main reason is the following:
Whenever solving equilibrium conditions, the KS algorithm replaces a model’s equilibrium conditions
with an approximation of the equilibrium policies obtained in the simulation. In this model—as in many
others—this could generate indeterminacy at the time of solving the aggregate equilibrium equations.
Next, I explain the steps in Krusell-Smith and indicate where it fails. Then, I describe the modification
of the Krusell-Smith algorithm and evaluation of its accuracy in this model.

The Krusell-Smith algorithm consists of projecting aggregate prices and quantities on a small set of
moments of the distribution of relative prices—one of the states of this economy—and the exogenous
state. Let us define SSK as the set of finite moments of the distribution in Krusell-Smith together with
the exogenous shock ηQ; Γ(S′SK |SSK) the law of motion of the state; and Π(SSK), Ω(SSK) and ∆(SSK)
the projections of inflation and price dispersion onto the state. Formally, the algorithm is given by

1) Given Π(SKS),∆(SKS), Ω(SKS) and Γ(S′KS |SKS), solve aggregate conditions (K.4) to (K.6).

2) With the solution of (K.4) to (K.6), solve the firm’s value function (K.1).

3) Simulate and update Π(SKS), ∆(SKS), Ω(SSK) and Γ(S′KS |SKS). Check convergence. If
Π(SKS),∆(SKS) and Γ(S′KS |SKS) haven’t converge, go to step 1.

To my knowledge, all Krusell-Smith formulations use this approach. The next proposition shows how
the standard method generates multiplicity of solutions of equilibrium equations at the step of solving
aggregate conditions.

PROPOSITION 6: For any Π(SKS),∆(SKS),Γ(S′KS |SKS) and λ > 0, if

(K.10) {mu(SKS), C(SKS), L(SKS), R(SKS), w(SKS)}

is a solution for (K.4) to (K.6) , then {λmu(SKS), C̃(SKS), L̃(SKS), R(S), w̃(S)} is a solution, where

C̃(SKS), L̃(SKS), and w̃(S) solve

κL̃(SKS)χ = w̃(SKS) ; C̃(SKS) =
L̃(SKS)− Ω(SKS)θ

∆(SKS)
; λmu(SKS) = ū

(
C̃(SKS)−

L̃1+χ

1 + χ

)−1

.

(K.11)

PROOF:
It is easy to see that {λmu(SKS), C̃(SKS), L̃(SKS), R(S), w̃(S)} satisfies all the equilibrium condi-

tions.
From Proposition 6, we can extract three observations. First, since we didn’t make any assumption

about SKS , the main result in Proposition 6 does not depend on the selected moments in the Krusell-
Smith approximation. Second, the result does not depend on using global or projection methods. Third
and more importantly, this is not saying that the economy has multiplicity of equilibria, but rather saying
that the method for computing the equilibrium generates multiplicity at the moment of solving aggregate
equilibrium conditions.

To understand the implication of previous propositions, we need to understand how models with price
rigidities work. Assume a deviation from the equilibrium with an increase in consumption. This increase
in consumption raises the real marginal cost, and due to the Phillips curve, it also raises inflation. If the
Taylor principle is satisfied, this change in inflation impacts the real rate, feeding back to consumption,
and undoing the original increase. It is the general equilibrium effect between households, firms, and the
central bank that generates uniqueness of equilibrium. The KS algorithm breaks this general equilibrium
effect at the moment of solving equilibrium equations since the Phillips curve is replaced by the inflation
policy obtained in the simulation.

The main problem until now is that in the aggregate equilibrium conditions, there is no information on
the relationship between inflation and real marginal cost, i.e., the Phillips curve. The solution I propose
is to apply the Krusell-Smith algorithm to the frequency of price changes, and menu cost inflation,
and solve jointly the aggregate and idiosyncratic equilibrium conditions. Even if this method generates
some numerical challenges—which I have solved—it provides the central bank with the cross-equation
restriction of the intensive margin of the Phillips curve, breaking the multiplicity mentioned above in
step 1. Through numerical computation, it seems a reliable method, since it provides a unique solution
when solving equilibrium conditions.33

33Aggregate kinks eliminate from considernation methods like that of Reiter (2009), and implemented
in menu cost models by Costain and Nakov (2011).
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Before describing the solution, I need to find the state. In models with nominal rigidities, the important
object for the repricing of the firm is the markup, the ratio between the relative price and real marginal
cost. Therefore, I use real marginal cost in the previous period as the state in Krusell-Smith. This
variable is significant for predicting menu cost inflation. Moreover, I use price dispersion in the previous
period. This variable approximates the second moment of the relative prices distribution and predicts
menu cost inflation and itself. Next, I describe the algorithm used to solve the model.

1) Guess ∆(w−,∆−, ηQ),Ω(w−,∆−, ηQ), ϕ(w−,∆−, ηQ) as functions of the state.

2) Solve the equilibrium conditions: the joint system of (K.1), (K.4) to (K.6), and (K.9). Get the
law of motion for inflation and real wage (mu,C,w,Π)(w−,∆−, ηQ), and the continuation set
and reset price (Ψ(w−,∆−, ηQ), P ∗(w−,∆−, ηQ)).

3) Simulate a measure of firms and compute {Ω, ϕ, S}t.
4) Project ∆, Ω, and ϕ on the state. Check convergence. If convergence has not been achieved,

update and go to step 2.

Note that the only law of motion of the state obtained in the simulation is that of price dispersion.
Since the business cycle fluctuations of price dispersion are small, the laws of motion for all relevant
endogenous states comes from solving the aggregate and idiosyncratic equilibrium conditions in step
2—not from the simulation. Second, even without the ZLB, I need to solve the model globally, given
the kinks in the idiosyncratic policies. Third, this method breaks the separability in the equilibrium
solution. With the previous implementation of Krusell-Smith, it was possible to solve the aggregate
conditions separate from idiosyncratic conditions, dividing the system into two subsystems. Now, the
aggregate and idiosyncratic equilibrium conditions must be solved together.
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L. Evaluation of Accuracy of the Modified Krusell-Smith Algorithm

I evaluate the accuracy of the KS algorithm in the simulation. First, I construct the time series of
simulated inflation, price dispersion, and frequency of price changes, together with the simulated marginal
cost, interest rate, and structural shocks—i.e., the states in the economy. Let Xt be the simulated vector
with these variables, given by

(L.1) Xt =
{
mc−(Sst ),∆s

t−1, R̃−(Sst ), dηz(Sst ), ηg(Sst ), ηq(S
s
t ), ηh(Sst ),Πst ,Ω

s
t

}
t
.

Let Yt be the model–implied equilibrium functions in the simulation using the projections,

(L.2) Yt = {mc(Sst ),mu(Sst ), R(Sst ), R∗(Sst ), Y (Sst ), C(Sst ), L(Sst ), P ∗(Sst ), w(Sst )}t ,

and let Y st be the solution of the equilibrium equations in the simulation using Xt,

(L.3) Ŷ st =
{
m̂cst , m̂u

s
t , R̂

s
t , R̂
∗s
t , Ŷ

s
t , Ĉ

s
t , L̂

s
t , P̂
∗,s
t , wst

}
t
.

Next, I describe the construction of each function. Table L.I shows the standardized errors σerrory =
Std[log(|Ŷ st /Yt|)]

Std(log(Yt))
× 100 for each variable and Figures L.I to L.VI show the time series for Ŷ st and Yt (with

and without the ZLB).

• Method for the construction of Ŷ st using the static equations and mu(Sst ). Given

mu(Sst ) and Xt, I construct Ŷ st solving the static system of equations

R̂∗,st = R̃−(Sst )

(
1 + π̄

β(1 + g)−σnp

)((
Πst

(1 + π̄)

)φπ (mc−(Sst+1))

mcss

)φy)1−φr (
mcst

mc−(Sst )

)φdy
R̂st = max{1, R̂∗,st }

mu(Sst ) =

(
Ĉst − κ

(L̂st )
1+χ

1 + χ

)−σ
ηshκ(L̂st )

χ = ŵst ηh−(Sst )

(L̂st − θ(Ωst − hz)) = Ŷ st

(
(1− α)

αŵst

)α
∆s
t

Ĉst = Ŷ st

(
1−

(
ŵstα

1− α

)1−α
∆s
t

)
1

ηg−(S)

m̂cst = ι(1− τmc)(ŵst )1−α

• Method for the construction of the marginal utility m̂ust using forward–looking equa-
tions. I construct m̂ust using the household Euler equation. First, I project realized inflation

onto the state. Let Π̃(S) be this function. Then, I construct the marginal utility in the simulation
as

m̂ust = βηq−(Sst )R̂stES′
[
dηz(Sst )−σ

mu(S′)

Π̃(S′)

∣∣∣∣Sst ]
where Sst = (mc−(Sst ),∆s

t−1, R̃−(Sst ), dηz(Sst ), ηg(Sst ), ηq(Sst ), ηh(Sst )).
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Table L.I—Accuracy of the Krusell-Smith Algorithm

Annual Inflation Target (σerrory no ZLB , σerrory ZLB)

Variables 1.3 3 5

Nominal rate (0.038,0.624) (0.053,0.329) (0.086,0.133)
Gross output (0.511,3.518) (0.577,0.968) (1.359,1.217)

Real wage (0.001,0.005) (0.001,0.001) (0.001,0.001)
Consumption (0.505,4.358) (0.571,0.989) (1.378,1.223)
Period utility (0.055,1.924) (0.062,0.070) (0.170,0.141)

Note: The table describes the ratio between the variance of predicted errors to the total variance for
nominal interest rate, gross output, real wages, consumption, and period utility.
Source: Author’s calculations
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Figure L.I. Predicted and Simulated Aggregate Time Series with no ZLB at a 1.3% Inflation

Target

Note: The figure describes the macroeconomic time series for one simulation at a 1.3% inflation tar-
get with no ZLB constraint. Panels A to F plot (in the following order) nominal interest rate, gross
output, real wages, consumption, labor supply, and period utility. Black solid lines describe the model–
implied aggregate variables with Krusell-Smith projections, and gray dotted lines describe the implied
macroeconomic time series with simulated inflation, frequency of price changes, and price dispersion.
Source: Author’s calculations
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Figure L.II. Predicted and Simulated Aggregate Time Series with no ZLB at a 3% Inflation

Target

Note: The figure describes the macroeconomic time series for one simulation at a 3% inflation target with
no ZLB constraint. Panels A to F plot (in the following order) nominal interest rate, gross output, real
wages, consumption, labor supply, and period utility. Black solid lines describe the model–implied aggre-
gate variables with Krusell-Smith projections, and gray dotted lines describe the implied macroeconomic
time series with simulated inflation, frequency of price changes, and price dispersion.
Source: Author’s calculations
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Figure L.III. Predicted and Simulated Aggregate Time Series with no ZLB at a 5% Inflation

Target

Note: The figure describes the macroeconomic time series for one simulation at a 5% inflation target with
no ZLB constraint. Panels A to F plot (in the following order) nominal interest rate, gross output, real
wages, consumption, labor supply, and period utility. Black solid lines describe the model–implied aggre-
gate variables with Krusell-Smith projections, and gray dotted lines describe the implied macroeconomic
time series with simulated inflation, frequency of price changes, and price dispersion.
Source: Author’s calculations
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Figure L.IV. Predicted and Simulated Aggregate Time Series with ZLB at a 1.3% Inflation

Target

Note: The figure describes the macroeconomic time series for one simulation at a 1.3% inflation target
with the ZLB constraint. Panels A to F plot (in the following order) nominal interest rate, gross
output, real wages, consumption, labor supply, and period utility. Black solid lines describe the model–
implied aggregate variables with Krusell-Smith projections, and gray dotted lines describe the implied
macroeconomic time series with simulated inflation, frequency of price changes, and price dispersion.
Source: Author’s calculations
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Figure L.V. Predicted and Simulated Aggregate Time Series with ZLB at a 3% Inflation

Target

Note: The figure describes the macroeconomic time series for one simulation at a 3% inflation target
with the ZLB constraint. Panels A to F plot (in the following order) nominal interest rate, gross
output, real wages, consumption, labor supply, and period utility. Black solid lines describe the model–
implied aggregate variables with Krusell-Smith projections, and gray dotted lines describe the implied
macroeconomic time series with simulated inflation, frequency of price changes, and price dispersion.
Source: Author’s calculations
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Figure L.VI. Predicted and Simulated Aggregate Time Series with ZLB at a 5% Inflation

Target

Note: The figure describes the macroeconomic time series for one simulation at a 5% inflation target
with the ZLB constraint. Panels A to F plot (in the following order) nominal interest rate, gross
output, real wages, consumption, labor supply, and period utility. Solid black lines describe the model–
implied aggregate variables with Krusell-Smith projections, and dotted gray lines describe the implied
macroeconomic time series with simulated inflation, frequency of price changes, and price dispersion.
Source: Author’s calculations


