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A Markup shocks

A.1 Leptokurtic Risk at the Firm-Level

In order to match micro-price statistics, the parametrization of our model uses a large volatility of
the infrequent shocks (σ2

u). Such calibration implies that markups’ growth rate has a leptokurtic
distribution. A leptokurtic distribution has heavy tails, which means that more of the variance is
the result of infrequent extreme deviations as opposed to frequent modestly sized deviations, as in
a Gaussian distribution. In this section, we provide empirical evidence of leptokurtic growth rates
in several firm variables: profit rate, employment, sales, and capital. We think of this evidence as
suggestive of the presence of large infrequent shocks affecting firms, which in turn generate leptokurtic
distributions of firm outcomes.

A.1.1 Variables’ Definition

We use annual data from COMPUSTAT for publicly traded firms for the period between 1980 to
2015. Here we describe how we construct the variables of interest and their corresponding acronyms
in COMPUSTAT.

• Profits rate changes: We define the profit rate as Operating Income Before Depreciation
(oibdp) divided by a measure of capital given by Property, Plant and Equipment (ppent): πti ≡
oibdpti/ppentti. The profit rate changes are given by

∆πti = πti − πt−1i (A.1)

• Employment growth rate: We used Number of People Employed (emp) as a measure of
employment (nti ≡ empti), and define employment growth rate as

∆nti =
empti − empt−1i

0.5 ∗ (empti + empt−1i)
(A.2)

• Sales growth rate: We use the Sales/Turnover ratio (sale) as a measure of sales (yti = saleti),
and define sales growth rate as

∆yti =
saleti − salet−1i

0.5 ∗ (saleti + salet−1i)
(A.3)

• Capital growth rate: We use Property, Plant and Equipment (ppent) as a measure of capital
(kti = ppentti), and Capital Expenditures over Sale of Property (capx − sppe) as a measure of
investment. We define capital growth as

∆kti =
(capx− sppe)ti

0.5 ∗ (ppentti + ppentt−1i)
(A.4)

Normalized growth rate For each x ∈ {π, n, y, k}, we construct a normalized growth rate as
follows:

∆x̃ti = ∆xti −
∑
i

∆xti
I(t)

−
∑
t

∆xti
T (i)

(A.5)

where I(t) is the average growth rate across firms in period t, and T (i) is the average growth rate
across periods for firm i. This normalized growth rate allows us to control for aggregate fluctuations
and heterogeneity across firms.
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Data cleaning We drop observations with negative total assets, negative capital or negative sales;
firms with less than 5 years; firms operating in financial or regulated sectors (from SIC); and the ±1%
outliers in growth rates.

Weights For each variable, we compute unweighted and weighted statistics [w], where we consider
Total Assets (atq) as weights in order to control for size.

Table I: COMPUSTAT Raw Data Description

Label Short description Unit of measure

gvkey Firm Identifier -
sic Standard Industry Classification -
oibdp Operating Income Before Depreciation Millions of dollars
ppent Property, Plant and Equipment - Total (Net) Millions of dollars
emp Employees Thousand
capx/sppe Capital Expenditure/Sale of Property Millions of dollars
sale Sales/Turnover (Net) Millions of dollars
atq Asset Total Millions of dollars
All variables measured at annual frequency.
Link: https://wrds-web.wharton.upenn.edu/wrds/ds/crsp/ccm a/funda/index.cfm?navId=120;
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A.1.2 Cross-Sectional Moments

Table II computes cross-sectional moments of the normalized growth rates. We find that after con-
trolling for aggregate fluctuations, heterogeneity in the growths across firms, and firms’ relative size,
all variables’ growth rates are largely leptokurtic, with kurtosis above 6 for all unweighted moments
and above 10 for all weighted moments (recall that the benchmark level of kurtosis is 3 for a Normal
random variable).

Table II: Cross-Sectional Moments of Variables’ Growth Rates

Moment Profits Employment Output Capital

Unweighted Cross-Sectional Moments

Mean 0.039 -0.000 0.001 -0.001
Median 0.098 -0.005 -0.004 -0.018
Standard Deviation 2.578 0.231 0.294 0.197
Skewness 0.295 0.122 0.134 1.007
Kurtosis 15.547 6.286 7.436 6.125

Weighted Cross-Sectional Moments

Mean [w] -0.035 0.002 0.004 -0.002
Median [w] 0.078 -0.002 -0.004 -0.005
Standard Deviation [w] 1.337 0.150 0.179 0.101
Skewness [w] -0.170 0.483 0.539 0.699
Kurtosis [w] 30.324 11.174 11.097 10.488

Correlations

Corr. with sales 0.005 0.442 1.000 0.232
Corr. with sales [w] 0.056 0.478 1.000 0.223

Persistence

AR(1) coefficient -0.036 0.050 0.069 0.193
AR(1) coefficient [w] 0.033 0.060 0.149 0.455
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A.1.3 Kernel Densities

Figure I plots the kernel estimate of the growth rate density for each variable. These figures provide
a visual corroboration of the cross-sectional moments computed above. Densities are slender and
fat-tailed, i.e. leptokurtic.

Figure I: Kernel Density of Profit Rate, Employment, Sales and Capital Growth
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A.2 Alternative interpretation for markup-gap shocks

We think of markup fluctuations as the result of idiosyncratic productivity, but the setup allows
for alternative interpretations. For instance, if firm’s demand function comes from a Dixit-Stiglitz
structure as in the general equilibrium model in the main text, fluctuations in costs are isomorphic
to fluctuations in the demand elasticity, as both shocks enter markup gaps in the same way. While
the interpretation of imperfect information on the demand structure might be more adequate in some
applications, the effects on markups are the same under either assumption and the results do not
change.

This section derives the stochastic process of the markup-gap process and shows that it can be
driven either by demand shocks—shocks to the demand elasticity with homothetic preferences—or
by supply shocks—technology shocks to firm-level productivity. Following the environment proposed
by Woodford (2009) and used by Álvarez, Lippi and Paciello (2011), Kehoe and Midrigan (2015),
Midrigan (2011) and others, we specify preferences and technology to derive the following demand
function ydit(pit), cost function cit(yit), and the real profit function πit(pit):

ydit(pit) = CtAit

(
pit
Pt

)−γit
(A.6)

cit(yit) =
yitEt
Ait

(A.7)

πit(pit) = P−1
t ydit(pit)(pit − cit(ydit(pit)) (A.8)

where Ct is aggregate consumption, Ait is a quality shock, pit is the firm price, Pt is the aggregate
price level, γit is the demand elasticity of good i, and Et is the nominal wage. We can write the profits
in term of markups and we have that

πit(µit) = Ct

(
Et
Pt

)1−γit
µγitit (µit − 1) (A.9)

where the markup is given by µit = pitEt
Ait

. The markup-gap is defined as log(µit/µ
∗
it) where µ∗it is

the optimal static markup given by µ∗it = γit
γit−1 . In a steady state with constant nominal wages E,

whenever the firm does not change the price, the stochastic process of the markup-gap is given by

d log(µit/µ
∗
it) = −d log (Ait) + d log

(
γit

γit − 1

)
(A.10)

Therefore, it is equivalent to assume a process for log productivity or for the demand elasticity,
as both translate into a process for the markup gap, i.e. either d log (Ait) = σfdWt + σuutdQt or

d log
(

γit
γit−1

)
= σfdWt + σuutdQt delivers the stochastic process in the main text.
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B Comments on Filtering

B.1 Alternative Filters for Non-Gaussian Models

The key assumptions to have a finite state representation in bayesian updating are Normality and
linearity, see Davis (1977). The compound Poisson process in our model breaks the former assumptions,
thus the firm’s problem has an infinite state space. This is impossible to solve even numerically. The
crucial assumption that we made to address this challenge is that the firm knows the arrival of a regime
change. This allows us to keep the problem within a finite dimensional state Gaussian framework, as
we show in Proposition 1, where only the first two moments of posterior distributions are needed for
the firm’s decision problem. Other approaches proposed in the literature that are infeasible in our
framework are the following:

• Discretization of the state space: This approach was develop by Hamilton (1989). The main
idea is to discretize the firm’s state space and keep track the probability of being in each bin.
This is infeasible, even numerically, since to capture a realistic stochastic process for markup and
therefore the option value effect there has to be at least 5 points (zero, two symmetric points
in the interior of Ss bands and two symmetric points in the exterior of the Ss bands). This will
imply a five dimensional state space and the course of dimensionality.

• Particle filter : This method to estimate non-linear model is unfeasible due to the infinite space
state and the computational intensity.

• Approximation of the Posterior : The first approximation is to ignore jump-process in the filtering
equations and approximate the compound poisson process with a Brownian motion with variance
given by λσ2

u and apply the standard Kalman filter. This approach undoes the mechanism of
state dependency in the estimation and the state dependency of our filtering. There are different
types of approximation. For example, one approximation is proposed in Kim (1994). The main
idea is to estimate an approximation of the current regime. This method has a very large state
space or a short memory to update the state.

B.2 Technical Discussion over the Filter

This section discusses the stochastic process of the markup-up gap and the markup-gap estimate. The
state stochastic process is given by

dµt = σfdWt + σuutdQt (B.11)

dst = µtdt+ γdZt (B.12)

where Wt is a Wiener process, utQt is a compound Poisson process with the Poisson counter’s intensity
λ, and σf and σu are the respective volatilities. When dQt = 1, the markup gap receives a Gaussian
innovation ut ∼ N (0, 1). The process Qt is independent of Wt and ut.

Figure II illustrates the evolution of the markup gap and the signal process. It assumes that there
is a regime change at time t∗. At that moment, the average level of the markup gap jumps to a
new value; nevertheless, the signal has continuous paths and only its slope changes to a new average
value. This continuity together with the zero mean of ut implies continuous path for the markup-gap
estimates.

It is also worth noticing that both the filtered estimates µt|It and smoothed estimates µt−δ|It
with δ > 0 are Gaussian. In contrast, the predicted estimate (µt+δ|It) is not. For instance, in the
case σf = 0, the predicted markup converges to a Laplace distribution with fat tails. We focus our
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Figure II: Illustration of the Markup Gap and the Signal Processes
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Left panel: describes a sample path of the markup gap. The dashed line describes the compound
Poisson process and the solid line describes the markup gap (the sum of the compound Poisson
process and the Wiener process). t∗ is the date of an increase in the Poisson counter. Right panel:
describes a sample path for the signal. The dashed line describes the drift and the solid line describes
the signal (the sum of the drift and the local volatility).

attention on the filtered estimate since it is the only input in our firm’s decision problem. We leave
for further research the analysis of other estimates.

B.3 Filter and Policy Function with Non-Zero Mean Compound Process

This section characterizes the filter and the policy function whenever there ut has a non-zero mean ū.

Proposition 1 (Filtering Equations, Including Drift) Let the following processes define the state
and the signal

(state) dµt = Fµtdt+ σfdWt + σuutdQt (B.13)

(observation) dst = Gµtdt+ γdZt

(initial conditions for state) µ0 ∼ N (a, b)

(initial conditions for observations) s0 = 0

where Wt, Zt ∼Wiener Process, Qt ∼ Poisson(λ), ut ∼ N (ū, 1)

Let the information set (with continuous sampling) be It = σ {sh, Qh : h ∈ [0, t]}. Then the posterior
distribution of the state is Normal, i.e. µt|It ∼ N (µ̂t,Σt), where the posterior mean µ̂t ≡ E[µt|It] and
posterior variance Σt ≡ E[(µt − µ̂t)2|It] satisfy the following stochastic processes:

dµ̂t =
(
F − G2Σt

γ2

)
µ̂tdt+ GΣt

γ2 dst + ūdQt, µ̂0 = a (B.14)

dΣt =
(

2FΣt + σ2
f −

G2Σ2
t

γ2

)
dt+ σ2

udQt, Σ0 = b

9



To characterize the policy in our specific example, we use the values F = 0 and G = 1 we have the
new representation of the state space

dµ̂t = ΩtdẐt + ūdQt (B.15)

dΩt =
σ2
f − Ω2

t

γ
dt+

σ2
u

γ
dQt

Next we characterize the policy function whenever ū is sufficiently large or sufficiently small. The
case where ū is sufficiently small, the effect of ū in the policy can be ignored up to a first order; and
the case where ū is sufficiently large, the policy is independent of ū and similar to a mean reverting
process for the markup-gap estimat.

Proposition 2 Let µ̄ū(Ω) be the boundary of the continuation region whenever the markup-gap esti-
mate and uncertainty follows B.15. Let maxΩ µ̄

0(Ω) ≤ A, then µ̄A(Ω) = µ̄ū(Ω) for all |ū| > A and
can be approximated by

V (µ̂,Ω) = max
τ

E
[∫ τ

0
e−rtµ̂2dt+ e−rτ (−θ + V (0,Ωτ ))

]
(B.16)

dµ̂t = −λµ̂dt+ ΩtdẐt (B.17)

dΩt =
σ2
f + λσ2

u − Ω2
t

γ
dt (B.18)

Proof. Assume For any ū In the interior of the inaction region the value function solves V solves the
HJB equation:

rV ū(µ̂,Ω) = −µ̂2 +

(
σ2
f − Ω2

γ

)
V ūΩ(µ̂,Ω) +

Ω2

2
V ū
µ̂2(µ̂,Ω) (B.19)

+ λ

[
max

{
V ū

(
0,Ω +

σ2
u

γ

)
− θ, V ū

(
µ̂+ ū,Ω +

σ2
u

γ

)}
− V ū(µ̂,Ω)

]
(B.20)

the value matching and the smooth pasting condition given by

V ū(0,Ω)− θ̄ = V ū(±µ̄(Ω),Ω) (B.21)

V ū
µ̂ (±µ̄(Ω),Ω) = 0, V ū

Ω (±µ̄(Ω),Ω) = V ū
Ω (0,Ω) (B.22)

Using the assumption that |ū| > A we have that

rV ū(µ̂,Ω) = −µ̂2 +

(
σ2
f − Ω2

γ

)
V ūΩ(µ̂,Ω) +

Ω2

2
V ū
µ̂2(µ̂,Ω) + λ

[
V ū

(
0,Ω +

σ2
u

γ

)
− V ū(µ̂,Ω)

]
(B.23)

Therefore

(λ+ r)V ū(µ̂,Ω) = −µ̂2 +

(
σ2
f − Ω2

γ

)
V ū

Ω (µ̂,Ω) +
Ω2

2
V ū
µ̂2(µ̂,Ω) + λV ū

(
0,Ω +

σ2
u

γ

)
(B.24)

Notice that the policy is independent of ū. Moreover up to first order V ū
(

0,Ω + σ2
u
γ

)
= V ū (µ,Ω) −

V ū
µ (µ,Ω) µ̂+ V ū

Ω (µ,Ω) Ω
γ , thus

rV (µ̂,Ω) = −µ̂2 +

(
σ2
fλσ

2
u − Ω2

γ

)
VΩ(µ̂,Ω)− λµ̂Vµ̂(µ,Ω) +

Ω2

2
Vµ̂2(µ̂,Ω) (B.25)
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Thus we have the result.
The main intuition of the previous proposition is simple: large changes in the markup-gap trigger

price changes and therefore a drift in the markup-gap estimate toward zero. See Álvarez and Lippi
(2014) for more details in the characterization of the function with respect to this stochastic process.

Proposition 3 Let µ∗,ū(Ω) be the reset markup and µ̄ū(Ω) the positive boundary of the continuation
region. Then µ̄ū(Ω)− µ∗,ū(Ω) = µ̄(Ω) + o(Ω2) where µ̄(Ω)+ is the policy in the main text.

Proof. Let µ̄ū(Ω) the positive boundary of the continuation region and µū(Ω) the negative boundary
of the continuation region. Given the symmetry of the problem we have that µ̄ū(Ω) − µ∗,ū(Ω) =
−(µ−ū(Ω) − µ∗,−ū(Ω)), thus µ̄ū(Ω) − µ∗,ū(Ω) is symmetric over ū around 0 and there is zero order
effect over Eu.

The main intuition of the previous proposition is simple: positive or negative value of ū have
second order effect in the width of the Ss bands since they are similar to changes in the drift. This
shock only changes the level of the domain of the markup-up gap estimate.

B.4 Discrete time approximation (for simulation)

Consider a small time interval ∆. Let bWt and bZt be two binomial random variables that take values
of 1 and -1 with probability 1/2 and qQt be an additional binomial random variable that takes value 1
with probability λ∆ and a value 0 otherwise. Using these elements, we can approximate the continuous
laws of motion above as follow (note that it is convenient to track desired price changes ∆p, which
only materialize when they fall outside the inaction region):

∆p = µ̂t−∆ −
Ωt−∆

γ
µ̂t−∆∆ +

Ωt−∆

γ
(st − st−∆) (B.26)

µt = µt−∆ + σf
√

∆bWt + σuutq
Q
t −∆p 1{|∆p|>µ(Ω)}, (B.27)

st = st−∆ + µt−∆∆ + γ
√

∆bZt , (B.28)

µ̂t = ∆p 1{|∆p|≤µ(Ω)}, (B.29)

Ωt = Ωt−∆ +
σ2
f − Ωt−∆

γ
∆ +

σ2
u

γ
qQt (B.30)

The left panel in the next figure shows the evolution of the signal process st; its slope tracks the
true markup. In the right panel, we also plot the signal but reseting it to zero every time the price is
adjusted, i.e. we show the the accumulated variation in the signal between price changes. In the same
figure, we also show the two signal components, which are its trend (the true markup), and the noise
process γdZt.
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Figure III: Sample Paths For One Firm
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simulates one realization of the stochastic processes using the finite difference method and uses the analytical
approximation of the inaction region.

Figure IV: Sample Paths For Signals
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D. Signal
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E. Normalized Signal

∫ t+h
t

µsdt

γ (Zt+h − Zt)∫ t+h
t

µsdt+ γ (Zt+h − Zt)

Panel A: Signal. Panel B: Normalized Signal. This figure simulates one realization of the stochastic processes
using the finite difference method and uses the analytical approximation of the inaction region.
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C Infinitesimal Generator and Adjoint Operator

This section derives the infinitesimal generator and its adjoint operator. These two functional equations
are use to characterize the policy, micro-price statistics and the effect of a money shock.

(A) Infinitesimal generator. The infinitesimal generator of (µ̂,Ω) denoted by A, applied to a
continuous bounded function φ is given by

Aφ(X(t)) ≡ lim
dt↓0

E[φ(X(t+ dt))− φ(X(t))]

dt

For our problem, the generator is given by:

Aφ(µ̂t,Ωt) =
σ2
f − Ω2

t

γ
φΩ(µ̂t,Ωt) +

Ω2
t

2
φµ̂2(µ̂t,Ωt) + λ

[
φ

(
µ̂t,Ωt +

σ2
u

γ

)
− φ(µ̂t,Ωt)

]
(C.31)

Note: A key property of our generator A is the lack of interaction terms between uncertainty
and markup gap estimates. This property is implied by the passive learning process in which
the firm cannot change the quality of the information flow by changing her markup.

Proof. First we need to get a formula for a jump-diffusion process analogous to Itø’s formula that
computes changes in φ(X(t)). We follow the general description in Theorem 1.16 of Øksendal and
Sulem (2010). Let B(t) be an m-dimensional Brownian motion and {N(dt)} are l independent
Poisson random measures each with intensity λj . Then consider a multidimensional Itō-Lévy
process X(t), where each component is given by

dXi(t) = αi(t)dt+

m∑
j=1

σij(t)dBj(t) +

l∑
j=1

∫
R
γij(t)Nj(dt)

Let Xc(t) be the continuous part of X(t) (obtained by removing the jumps). Changes in φ(X(t))
arise from increments in Xc(t) plus the jumps coming from N(dt):

φ(X(t+ dt))− φ(X(t)) =
∂φ

∂t
(t,X(t))dt+

n∑
i=1

∂φ

∂xi
(t,X(t))[αi(t)dt+ σi(t)dBt]

+
1

2

n∑
i,j=1

(σσ′)ij(t)
∂2φ

∂xi∂xj
(t,X(t))dt

+

l∑
k=1

∫
R

{
[φ(t,X(t−) + γk(t)]− φ(t,X(t−))

}
Nk(dt)

where γk is column k of the n× l matrix γ and σi is row i of σ. To obtain the generator A, take
expectations of the previous formula (note that E[dBt] = 0 and E[Nj(dt)] = λjdt), divide by dt
and take the limit as dt→ 0, yields:

Aφ(X(t)) ≡ lim
dt↓0

E[φ(X(t+ dt))− φ(X(t))]

dt
=

∂φ

∂t
(t,X(t)) +

n∑
i=1

∂φ

∂xi
(t,X(t))αi(t)

+
1

2

n∑
i,j=1

(σσ′)ij(t)
∂2φ

∂xi∂xj
(t,X(t))

+

l∑
k=1

λj

{
[φ(t,X(t−) + γk(t)]− φ(t,X(t−))

}

13



To apply this formula in our context, use the following relationships to obtain formula A.1 in
the Appendix:

X(t) = [µ̂t, Ωt]
′, B(t) = [dẐt, 0]′, N(t) = [0 q(t)]′, α1(t) = 0, α2(t) =

σ2
f − Ω2

γ
, σ11(t) = Ωt, γ11(t) =

σ2
u

γ

and all other entries equal to zero. Also, since we will work in a stationary environment, we set
∂φ
∂t (t,X(t)) = 0.

(A∗) Adjoint operator. The adjoint of A, denoted by A∗, is such that < Aφ, f >=< φ,A∗f >,
where <,> denotes the L2-inner product. It is given by

A∗f(µ̂,Ω) = −
σ2
f − Ω2

γ
fΩ(µ̂,Ω) +

2Ω

γ
f(µ̂,Ω) +

Ω2

2
fµ̂2(µ̂,Ω) + λ

[
f

(
µ̂,Ω− σ2

u

γ

)
− f (µ̂,Ω)

]
(C.32)

Proof. To obtain the adjoint operator, let us apply the definition.

< Aφ, f >=

∫ ∞
σf

∫
|µ̂|≤µ̄(Ω)

{
σ2
f − Ω2

γ
φΩ(µ̂,Ω) +

Ω2

2
φµ̂2(µ̂,Ω) + λ

[
φ

(
µ̂,Ω +

σ2
u

γ

)
− φ(µ̂,Ω)

]}
f(µ̂,Ω)dµ̂dΩ

Let us simplify each integral and isolate φ(µ̂,Ω) from other terms. We highlight it in bold to
make it easier to track.

(i) The first integral is computed by integration by parts with respect to Ω. We also assume
that limx→∞ φ(µ̂, x) = 0.∫ ∫

φΩ(µ̂,Ω)
σ2
f − Ω2

γ
f(µ̂,Ω)dµ̂dΩ =

∫
φ(µ̂, x)

σ2
f − x2

γ
f(µ̂, x)

∣∣∣∞
σf
dµ̂︸ ︷︷ ︸

=0

−
∫ ∫

∂

∂Ω

(
σ2
f − Ω2

γ
f(µ̂,Ω)

)
φ(µ̂,Ω)dµ̂dΩ

=

∫ ∫ (
−
σ2
f − Ω2

γ
fΩ(µ̂,Ω) +

2Ω

γ
f(µ̂,Ω)

)
φ(µ̂,Ω)dµ̂dΩ

(ii) The second integral is computed integrating by parts twice with respect to µ̂:∫ ∫
Ω2

2
φµ̂2(µ̂,Ω)f(µ̂,Ω)dµ̂dΩ

=

∫
Ω2

2

[
f(x,Ω)φµ̂(x,Ω)− fµ̂(x,Ω)φ(x,Ω)

∣∣∣µ̄(Ω)

−µ̄(Ω)
+

∫
fµ̂2(µ̂,Ω)φ(µ̂,Ω)dµ̂

]
dΩ

=

∫ ∫
Ω2

2
fµ̂2(µ̂,Ω)φ(µ̂,Ω)dµ̂dΩ

where the first term is equal to zero since f(µ̄(Ω),Ω) = f(−µ̄(Ω),Ω) = 0 and φ(µ̄(Ω),Ω) =
φ(−µ̄(Ω),Ω) = 0.

(iii) For the third integral, we split the Ω domain in two disjoint sets and use a change of

14



variable to rewrite it as:∫ ∫
λ

[
φ

(
µ̂,Ω +

σ2
u

γ

)
− φ(µ̂,Ω)

]
f(µ̂,Ω)dµ̂dΩ

=

∫ ∞
σf+

σ2
u
γ

∫
|µ̂|≤µ̄(Ω)

λ

[
f

(
µ̂,Ω− σ2

u

γ

)
− f (µ̂,Ω)

]
φ (µ̂,Ω) dµ̂dΩ

−
∫ σf+

σ2
u
γ

σf

∫
|µ̂|≤µ̄(Ω)

f(µ̂,Ω)φ(µ̂,Ω)dµ̂dΩ

=

∫ ∫
λ

[
f

(
µ̂,Ω− σ2

u

γ

)
− f (µ̂,Ω)

]
φ(µ̂,Ω)dµ̂dΩ

For the second equality, notice that f ’s second argument only takes positive values. We

define f to be equal to zero outside its domain, and therefore f
(
µ̂,Ω− σ2

u
γ

)
φ(µ̂,Ω) = 0

for all Ω ∈ [σf , σf + σ2
u
γ ]. Therefore, we can add the missing terms and integrate over the

complete domain.

Putting all the integrals together we recover the adjoint operator A∗:

∫ ∫ {
−
σ2
f − Ω2

γ
fΩ(µ̂,Ω) +

2Ω

γ
f(µ̂,Ω) +

Ω2

2
fµ̂2(µ̂,Ω) + λ

[
f

(
µ̂,Ω− σ2

u

γ

)
− f (µ̂,Ω)

]}
︸ ︷︷ ︸

A∗

φ(µ̂,Ω)dµ̂dΩ = < φ,A∗f >
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D Conditions for the Optimality of the Continuation Region

The proof of our Proposition 3 applies Theorem 2.2 in Øksendal and Sulem (2010) to obtain sufficient
conditions that characterize the value function and the optimal policy, i.e. the HJB equation, value
matching and smooth pasting conditions. Our strategy for characterizing the policy function is to
impose the SPC following Theorem 2.2 in Øksendal and Sulem (2010) (or alternatively, Theorem
10.4.1 in Øksendal 2007 for diffusion processes) assuming the necessary conditions for the theorem
hold, and then we check the validity of such assumptions in the Online Appendix Section E.3. In
this section we provide further detail regarding the conditions needed for that Theorem to apply. We
also provide some examples that illustrate the conditions. Importantly, the theorem does not require
Brownian Motion in any dimension, but imposes other conditions. Among these, the key condition
related to the SPC that needs to be verified is that the problem has a zero local measure at the
boundary of the continuation region (ZLM). This condition imposes regularity of the stochastic
process at the boundary of the continuation set. Lastly, we check numerically the validity of the value
matching and smooth pasting conditions by solving exactly the value function using a finite difference
method (see Section E.3).

D.1 Setup

In order to apply Theorem 2.2 in Øksendal and Sulem (2010), we need to extend the stochastic process
of the state to include time. Let Yt = (µ̂t,Ωt, zt) be a jump diffusion process given by

dµ̂t = ΩtdẐt (D.33)

dΩt =
σ2
f − Ω2

t

γ
dt+

σ2
u

γ
dQt (D.34)

dzt = dt (D.35)

where the third element is just capturing the evolution of time. Let Ft be the filtration generated by
the previous stochastic process and let T be the set of stopping times with respect to Ft. Finally, let
f and g be the payoff and terminal functions respectively

f(Yt) = −e−rzt µ̂2
tdt (D.36)

g(Yt) = e−rzt
(
−θ̄ + V (0,Ωt)

)
(D.37)

Then the firm problem is given by

V (µ̂0,Ω0) = max
τ∈T

E
[∫ τ

0
−e−rzs µ̂2

sds+ e−rzτ
(
− θ̄ + V (0,Ωτ )

)∣∣∣I0

]
(D.38)

subject to the stochastic process above. Note that we have replaced zt in the payoff and terminal
functions. For simplicity we have already used that the optimal control (reset markup gap) is µ′ = 0.

D.2 Theorem

Now we enunciate Theorem 2.2 in Øksendal and Sulem (2010).

Theorem 1 Let S be a set. Suppose that we can find a function φ : S̄ → R such that

1. φ ∈ C1(S) ∩ C(S) .

2. φ ≥ g.
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Define the continuation region D ≡ {y ∈ S : φ(y) > g(y)} and define the first exit time τD ≡ inf{t >
0 : Yt /∈ D} <∞ a.s. ∀y. Suppose the following conditions also hold:

3. Ey
[∫ τS

0 1∂D(Yt)dt
]

= 0 (zero local mass at the boundary of the continuation region).

4. Aφ+ f = 0 on D, where A is the infinitesimal generator.

5. The boundary of the continuation region (∂D) is a Lipschitz surface.

6. Y (τS) ∈ ∂S a.s. on {τS <∞} and limt→τ−S
φ(Yt) = g(Yτs)1{τS<∞}.

7. Ey
[
|φ(Yτ )|+ |

∫ τS
0 |Aφ(Yt)|dt

]
<∞ for all τ ∈ T .

8. {φ(Yt); τ ∈ T , τ ≤ τD} is uniformly integrable of all y.

Then φ(y) = V (y), i.e. the function φ solves the firm problem, and τD is an optimal stopping time.

D.3 Explanation of conditions

First of all, notice that the theorem states sufficient conditions to find the optimal policy, i.e. if a
candidate function satisfies these conditions then we have found the optimal policy. This is what we
state in the paper. Now, let us discuss each condition.

Condition 1 Establishes the smooth pasting condition by imposing differentiability of φ in the bound-
ary ∂D. To see this, note that φ is differentiable outside D since φ(y) = g(y)∀y /∈ D and
g(y) is differentiable. Also, the value function is differentiable in the interior Do by Con-
dition 4. Therefore, by requiring differentiability of φ in S, it is requiring differentiability
at the boundary of D.

Condition 2 It is related to the value matching condition.

Condition 3 The most important condition to check. We call it the zero local measure at the
boundary of the continuation region (ZLM). This condition imposes regularity
of the stochastic process at the boundary of the continuation set. In words, the ZLM
requires that the expected time the process spends in the boundary is zero, regardless of
the point where the process started. Another way to think about this condition is that it
requires a zero probability of positive expected duration at the boundary for any initial
condition. Following the books’ notation, this condition is stated as follows:

E
[∫ τG

0
1{∂D}(Yt) dt

∣∣∣Y0 = y

]
= 0 for all y ∈ G (D.39)

where y is the initial condition, G is a domain that includes the continuation set, τG =
inf{t ≥ 0 : Yt /∈ G} is a stopping time, and 1{∂D}(Yt) is an indicator function equal to
one if the process Yt is at the boundary ∂D.

Condition 4 Requires differentiability of φ in D.

Condition 5 It says that there exists a function such that its graph is a Lipschitz surface.

Condition 6 Trivial if we assume S is a closed set that contains the continuation region.

Condition 7 Discards infinite values of the value function.

Condition 8 It is a technical condition.
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D.4 Necessity of Condition 3 (ZLM)

Let us first illustrate the necessity of the ZLM through the means of two examples without Brownian
motion. In the first example, we consider a deterministic problem with positive drift that satisfies
the ZLM and thus the SPC holds too; this shows that Brownian motion is not needed. In the second
example, we consider a jump process that does not satisfy the ZLM and thus the SPC does not hold;
this shows the necessity of ZLM. Then we revisit our numerical checks. We hope that this analysis is
clear and convinces you of our strategy.

Example 1: ZLM and SPC hold without Brownian Motion

• Environment: Consider a profit maximizing firm that chooses the price at which to sell its
product, subject to inflation π > 0. To change the price, it must pay a menu cost θ in units of
product. After the first price change, the firm disappears. Following the exposition in our main
text, the problem can be described in terms of markup gaps µt as follows:

V (µ) = max
T≥0

{
−
∫ T

0
e−ρtµ2

tdt− e−ρT θ
}

(D.40)

µt = µ− πt, π > 0

• ZLM: Assume that the continuation region is a connected set D = [a, b]. To verify that ZLM
in (D.39) holds, notice that for any stopping time T and initial condition y, the presence of the
drift brings the stochastic process outside the boundary and thus its local measure is equal to
zero. Formally, the following condition holds∫ T

0
1{∂D}(y − πt)dt = 0, ∀y, T (D.41)

Together, the positive drift and the countable number of point in the boundary of the contin-
uation region imply a zero expected time at the boundary. It is important to remark that the
ZLM holds only for π > 0. It is easy to verify that the ZLM does not hold for the case π = 0,
since then the boundary would not be regular.

• Characterization Given that ZLM (and other assumptions) hold, we can apply Theorem 2.2
and obtain the following conditions for an optimal solution:

(i) a symmetric continuation region D = [−
√
ρθ,
√
ρθ], with ∂D = ±

√
ρθ,

(ii) the HBJ within the continuation region D, namely V ′(µt) =
µ2
t−ρV (µt)

π for all µt ∈ D,

(iii) the value matching condition: V (±
√
ρθ) = −θ, and

(iv) the smooth pasting condition: V ′(±
√
ρθ) = 0.

• Verification of SPC from first principles

First, we obtain the optimal stopping time and the value function. Taking FOC in (D.40) we
have that

µ2
T (µ) ≥ ρθ with equality if T (µ) > 0. (D.42)

From the previous equation we obtain the optimal stopping time as a function of µ

T (µ) =

{
0 if |µ| >

√
ρθ

µ−
√
ρθ

π otherwise
. (D.43)
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Using the optimal stopping time, the value function is

V (µ) =

 −θ if |µ| >
√
ρθ

−
(∫ µ−

√
ρθ

π
0 e−ρt (µ− πt)2 dt+ e

−ρ
(
µ−
√
ρθ

π

)
θ

)
otherwise

. (D.44)

and its first derivative given by

V ′(µ) =


0 if |µ| >

√
ρθ

−
∫ µ−

√
ρθ

π
0 2e−ρt (µ− πt) dt+ 1

πe
−ρ
(
µ−
√
ρθ

π

)
(ρθ − ρθ)︸ ︷︷ ︸

=0

otherwise . (D.45)

where the last term is always equal to zero by the envelope condition. It is easy to see that V ′(µ)
is continuous in |µ| >

√
ρθ and in |µ| <

√
ρθ (the Riemann Integral is continuous in the limit of

integration).

Next, we show that the SPC holds. Since V ′(µ) is constant outside the continuation region, it is
continuous in such domain. To check the continuity at the boundary of the continuation region,
we need to verify that the right and left limits at the boundary are equal. When approaching
the left and right boundaries from outside, both the continuity is immediately verified:

lim
µ↓
√
ρθ
V ′(µ) = lim

µ↑−
√
ρθ
V ′(µ) = 0

And when approaching the left boundary from inside, we obtain

lim
µ↓−
√
ρθ

∫ µ−
√
ρθ

π

0
e−ρt (µ− πt) dt = lim

µ↓−
√
ρθ

1− e−ρ
µ−
√
ρθ

π

ρ
+

1− e−ρ
µ−
√
ρθ

π (ρµ−
√
ρθ

π + 1)

ρ2

 = 0.

Analogously, it is shown that the limit when approaching the right boundary from inside is also
zero, i.e. limµ↑

√
ρθ V ′(µ) = 0. Since the limits from inside and outside the continuation region

towards the boundary are equal, the SPC holds.

• Discussion: The SPC holds in this example even if we do not have a Brownian Motion for the
state; moreover, the SPC is a necessary condition.

Example 2: ZLM and SPC do not hold

• Environment: Now idiosyncratic shocks follow a compound Poisson process φtdNt, where dNt

is a counter with arrival rate λ and φt are uniform innovations. For every price change, the firm
must pay a menu cost θ in units of product. Again, following the exposition in the main text,
the problem can be described in terms of markup gaps as follows:

V (µ) = max
T≥0

E
[
−
∫ T

0
e−ρtµ2

tdt+ e−ρT
[
−θ + max

µ∗
V (µ∗)

]]
µt = φtdNt, µ0 = µ

• ZLM: To show that there is a positive local measure at the boundary, i.e. ZLM in (D.39) does
not hold, let D = [a, b] be the continuation region and assume that the initial condition is exactly
at the boundary, i.e. y = a. Then the expected time that the state will be at the boundary
has a positive measure, because it will only get out if there is a Poisson shock. Formally, the
expectation is bounded below by the probability that there is a Poisson shock:

E
[∫ T

0
1{D}(µt) dt

∣∣∣µ = a

]
≥
∫ ∞

0
e−λtdt =

1

λ
> 0
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• Optimal stopping time and value function Since ZLM does not hold, we cannot apply
Theorem 2.2 Øksendal and Sulem (2010). We derive the conditions by first principles. The HBJ
is given by

(r + λ)V (µ) = −µ2 + λEφ [max{V (0)− θ, V (µ+ φ)}] for all µ ∈ D (D.46)

Since φ is Uniform, the expectation Γ ≡ λEφ [max{V (0)− θ, V (µ+ φ)}] is independent of µ.
With this notation, the value function becomes

V (µ) = max

{
−µ2 + Γ

r + λ
,−θ +

Γ

r + λ

}
with the continuation region given by D =

[
−
√
θ(r + λ),

√
θ(r + λ)

]
.

• SPC: The smooth pasting condition does not hold in this example, since the limits from outside
and inside the continuation region towards its lower boundary are not equal:

lim
µ↑−
√
θ(r+λ)

V ′(µ) = 0 and lim
µ↓−
√
θ(r+λ)

V ′(µ) = 2
√
θ(r + λ). (D.47)

Analogously, one can show that the limits do not coincide for the upper boundary.

• Discussion: In this example, the ZLM and SPC condition do not hold. Note, however, that if
we added a drift in the process of µ, then zero expected time at the boundary holds as in our
previous example and Theorem 2.2 Øksendal and Sulem (2010) could be used.

D.5 Check conditions for our problem

Now we check the conditions in the Theorem. To show these conditions we will use the solution to
the value function in Proposition 4.

Condition 1 It is imposed for the solution, so it is satisfied.

Condition 2 Satisfied outside D by the value matching condition. To check in the interior of the
continuation region, fix an Ω. Moving in the µ̂ direction, the value function is decreasing
in |µ̂| until µ̄(Ω) where the value is φ(0,Ω)− θ.

Condition 3 This is the problematic condition in the previous examples but in our model it holds.
Notice that

E
[∫ τS

0
χ∂D(Yt)dt

∣∣∣µ̂0,Ω0

]
=

∫ ∞
0

Prµ̂0,Ω0 [Yt = (µ̄t(Ωt),Ωt)]dt

To show the previous condition, it is sufficient to show that the boundary is regular. Take
any point s.t. (µ̂0,Ω0) satisfies µ̂0 = µ̄(Ω0). Then if |µ̄′(Ω0)| < ∞ the Brownian Motion
for µ̂ generates Prµ̂0,Ω0 [τD = 0] = 1. Moreover if µ̄′(Ω0) > 0, the drift in Ω generates
Prµ̂0,Ω0 [τ = 0] = 1. Thus the boundary set is regular.

Condition 4 Notice that the function f(Ω) = (µ(Ω),Ω) is Lipschitz continuous as long µ̄′(Ω) is
bounded. This property holds in our solution.

Condition 5 It is imposed for the solution.

Condition 6 Trivially satisfied.
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Condition 7 Satisfied by Condition 8 and discounting.

Condition 8 We need to check that ∣∣∣∣∫ t

0
ΩsdZt

∣∣∣∣ ≤ µ̄(Ωt)

for some finite t a.s. Notice that there is an uncertainty level Ω∗ such that
σ2
f+σ2

u−Ω∗

γ < 0,

which implies dΩt < 0 with probability 1 − o(dt2). Therefore, checking the previous
condition is equivalent to checking the following∣∣∣∣∫ t

0
ΩsdZt

∣∣∣∣ ≤ sup
Ω∈[σf ,Ω∗]

µ̄(Ω)

Since Ωt ≥ σf the previous condition is satisfied if∣∣∣∣∫ t

0
σfdZt

∣∣∣∣ ≤ sup
Ω∈[σf ,Ω∗]

µ̄(Ω)

for some finite t a.s. Checking the previous condition is standard.

D.6 Numerical Verification of Smooth Pasting Condition

Besides the proofs above, we also use numerical methods to check ex-post the validity of the smooth
pasting condition. We use a finite difference method to compute the value function. Please see Section
C.3 of the Online Appendix for all the details.
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E Accuracy of Analytical Approximations

In this section we show that the analytical characterization of policies and price statistics in continuous
time are indeed good approximations. For this task, we solve the model in continuous time numerically
and plot the analytical and numerical counterparts for different sets of parameters.

E.1 Numerical solution of the model in continuous time

We implement the continuous time model following the finite difference method to approximate the
differential equations.

1. Construct grids for µ̂ and Ω. Fix the number of grid points for uncertainty, nΩ, and define

h ≡ σ2
u

γnΩ
. The respective grids are given by

Sµ̂ = {0,±h, 2± h, . . . ,±µ̄}
SΩ = {σf , σf + h, . . . , Ω̄}

2. Find a discrete stochastic process that is locally consistency to the continuous stochastic process
given by:

dµt = ΩtdẐt (E.48)

dΩt =
σ2
f − Ω2

t

γ
dt+

σ2
u

γ
dQt (E.49)

Define δ(Ω, h) ≡ Ω2 +
Ω2−σ2

f

γ h and ∆(Ω, h) ≡ h2

δ(Ω,h) . For simplicity, we write δ and ∆ without

their dependence on (Ω, h). The discrete stochastic process for (µ̂′,Ω′)|(µ̂,Ω) is defined by

(µ̂′,Ω′)|(µ̂,Ω) =


(µ̂− h,Ω) with prob. Ω2

2δ (1− λ∆)

(µ̂+ h,Ω) with prob. Ω2

2δ((1− λ∆)

(µ̂,Ω− h) with prob.
(Ω2−σ2

f )h

γδ (1− λ∆)

(µ̂,Ω + nΩh) with prob. λ∆

(E.50)

It is straightforward to check the local consistency of this process. For instance, for µ̂ process,
we have that:

E[∆µ] = (h− h)
Ω

2δ
(1− λ∆) = 0

E[(∆µ)2] = 2h2

[
Ω2

2δ
(1− λ∆)

]
= Ω2∆− λΩ2∆2 = Ω2∆ + o(∆)

3. Let V C be the value of changing the markup, V NC the value of not changing and V the upper
envelope of the previous values. The recursive problem of the firms is given by:

V (µ̂,Ω) = max
{
E[V C(µ̂′,Ω′s)|(µ̂,Ω)], E[V NC(µ̂′,Ω′s)|(µ̂,Ω)]

}
V C(µ̂,Ω) = −θ̄ + max

x

[
− x2∆(Ω, h) + e−r∆(Ω,h)v(x,Ω)

]
V NC(µ̂,Ω) = −µ̂2∆(Ω, h) + e−r∆V (µ̂,Ω)

Notice the timing assumption in the recursive formulation: in the first equation we have the
maximum of the expectation instead of the expectation of the maximum, this is, the firm has to
make the pricing decision before the realization of the shock.
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E.2 Calibration in continuous time

We solve the continuous time model using the same calibration of the discrete time model at weekly
frequency, except for three parameters. First, the discount rate is set very small at r = 0.001 to
approximate the continuous time approximation. This tiny discount rate makes it difficult to solve
numerically for the optimal policy as the Bellman equation has trouble converging. By increasing the
volatility of the frequent shocks to σf = 0.05 and decreasing the menu cost to θ = 0.005 we obtain
convergence and maintain the main features of the calibration, such as the size and frequency of price
adjustment.

E.3 Numerical Verification of Smooth Pasting Condition

Recall that smooth pasting conditions imply that

Vµ̂(µ̄(Ω),Ω) = VΩ(µ̄(Ω),Ω)− VΩ(0,Ω) = 0

Using the finite difference method, we can check numerically that these conditions are indeed satisfied.
Given the locally consistent process in (E.50), as the number of grid points n grows, the time period ∆
shrinks, and the discrete approximation of the value function converges to the continuous time value
function. In the limit, the smooth pasting conditions should also hold:

lim
n→∞

Vµ̂(µ̄(Ω),Ω) = lim
n→∞

VΩ(µ̄(Ω),Ω)− VΩ(0,Ω) = 0

For each grid point µ̂ni ∈ Snµ̂ , the numerical (left) partial derivative with respect to markup gap
estimate µ̂ is computed as

Vµ̂(µ̂i,Ω) =
V (µ̂i,Ω)− V (µ̂i−1,Ω)

µ̂i − µ̂i−1
, ∀Ω ∀n

Analogously, for each grid point Ωn
i ∈ SΩ, the numerical (left) partial derivative with respect to

uncertainty Ω is computed as

VΩ(µ̂,Ωi) =
V (µ̂,Ωi)− V (µ̂,Ωi−1)

Ωi − Ωi−1
− V (0,Ωn

i )− V (0,Ωi−1)

Ωi − Ωi−1
, ∀µ̂ ∀n

Table III checks the smooth pasting condition at the border of the inaction region µ̄ for increasing
values of n. The smooth pasting condition for µ̂ is evaluated at three values of uncertainty Ω ∈
{0.11, 0.29, 0.46}, and the smooth pasting condition for Ω is evaluated at three values of the inaction
border −µ̄ ∈ {−0.3,−0.21,−0.11}. To avoid numerical error, we compute a weighted average of left
and right partial derivatives. All the numerical partial derivatives converge to zero as n increases.

To see the results graphically, Figures V and VI plot three functions: V (µ̂,Ω) − (V (0,Ω)− θ),
Vµ̂(µ̂,Ω) and VΩ(µ̂,Ω)− VΩ(0,Ω) for different values of n ∈ {25, 50, 100, 200}. The first column illus-
trates the validity of the value matching condition. It plots the value function V (µ̂,Ω) minus the reset
value (V (0,Ω)− θ) in the markup gap space, for the three levels of uncertainty Ω ∈ {0.11, 0.29, 0.46}.
Outside the continuation region this difference is equal to zero, while inside the continuation region the
difference is clearly positive. The second column plots the numerical partial derivative with respect to
the first state µ̂ for the same three levels of uncertainty. We can clearly see that partial derivatives out-
side the continuation region are equal to zero and inside the continuation region they converge to zero
as µ̂ gets closer to the border. Moreover, as n increases, the partial derivates become smoother since
the grid size and the time interval also shrink. The third column plots the numerical partial derivative
with respect to Ω evaluated at the lower border of the inaction region −µ̄ ∈ {−0.3,−0.21,−0.11}.
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Table III: Numerical Check of Smooth Pasting Conditions

n Vµ̂(µ̄,Ω1) Vµ̂(µ̄,Ω2) Vµ̂(µ̄,Ω3)

25 0.01818 0.00520 0.00472
50 0.00680 0.00405 0.00192
100 0.00389 0.00217 0.00108
150 0.00340 0.00152 0.00116
200 0.00169 0.00118 0.00047

n VΩ(µ̄1,Ω)− VΩ(0,Ω) VΩ(µ̄2,Ω)− VΩ(0,Ω) VΩ(µ̄3,Ω)− VΩ(0,Ω)

25 0.00554 0.00204 0.00047
50 0.00555 0.00108 0.00046
100 0.00548 0.00059 0.00015
150 0.00222 0.00049 0.00014
200 0.00167 0.00030 0.00006

E.4 SPC for Ωt → 0

Let D = {(µ̂,Ω : |µ̂| ≤ µ(Ω))} be the inaction region as in the main text. While we cannot ensure
that the smooth pasting holds at Ω = 0, be are certain that we cannot apply Theorem 2.2 Øksendal
and Sulem (2010). The reason is that the probability of having a positive expected duration when the
initial condition is at a boundary with zero uncertainty, i.e. (µ̂,Ω) = (µ(0), 0), is equal to one, and
therefore the ZLM does not hold:

E
[∫ T

0
1{∂D}(µt) dt

∣∣∣(µ̂,Ω) = (µ(0), 0)

]
> 0

To circumvent this issue, in the new version of the paper we impose that σf > 0 and therefore the
domain of uncertainty becomes Ω ≥ σf > 0. Therefore, we do not need to worry about this case.

The failure of the SPC at (µ(0), 0) can be illustrated numerically by computing the derivatives
Vµ(µ(σf ), σf ) and VΩ(µ(σf ), σf )−VΩ(0, σf ) and letting σf → 0. If the SPC holds, the two derivatives
must converge to zero. We compute the continuous time derivatives via their discrete time counterparts
with an interval of size 1/n, and then letting n→∞.

Table IV reports the values of Vµ(µ(σf ), σf ) and VΩ(µ(σf ), σf )−VΩ(0, σf ) for the same calibration
as in the Online Appendix, as we change σf ∈ {0.05, 0.03, 0.015, 0.007}.

We observe that as σ → 0, the convergence gets slower and slower. We believe that in the limit,
the SPC does not hold. We stopped at the value σ = 0.007 because of numerical limitations.
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Table IV: Numerical Check of the Smooth Pasting Conditions as σf → 0

σf = 0.05 Vµ(µ(σf ), σf ) VΩ(µ(σf ), σf )− VΩ(0, σf )

n

25 0.031222591 0.035146856
50 0.034124272 0.028067058
100 0.019449471 0.018448208
150 0.013731089 0.013689865
200 0.010706146 0.01094095

σf = 0.03 Vµ(µ(σf ), σf ) VΩ(µ(σf ), σf )− VΩ(0, σf )

n

25 0.093510512 0.051680683
50 0.038828027 0.046182415
100 0.042477751 0.043705967
150 0.024824886 0.029960388
200 0.015064022 0.020877406

σf = 0.015 Vµ(µ(σf ), σf ) VΩ(µ(σf ), σf )− VΩ(0, σf )

n

25 0.123042962 0.069711777
50 0.119909825 0.101925469
100 0.056650951 0.079162753
150 0.024193621 0.054974091
200 0.034310558 0.054951835

σf = 0.007 Vµ(µ(σf ), σf ) VΩ(µ(σf ), σf )− VΩ(0, σf )

n

25 0.150226757 0.060828156
50 0.133000685 0.150474393
100 0.099869453 0.148578787
150 0.079621951 0.135200803
200 0.066961644 0.122585445

27



E.5 Inaction Region

The following figure compares the inaction region R = [−µ̄(Ω), µ̄(Ω)] obtained with the analytical
approximation with the one obtained by solving the continuous time model numerically. It shows the

region for an uncertainty domain Ω ∈ [σf , σf + 2σ
2
u
γ ]. Given the calibration, 95% of firm uncertainty

falls between [σf , σf + σ2
u
γ ]. We conclude that the approximation is adequate for the domain of interest.

Figure VII: Inaction Region: Numerical vs. Analytical
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Comparative statics We vary each parameter at a time, considering half and double its benchmark
value. Then we plot the approximation error defined as the absolute value of the difference between
the analytical and the numerical policy. For all cases considered, the margin of error is less than 0.1.

Figure VIII: Inaction Region: Approximation Error
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E.6 Expected Time

The following figure compares the expected time between price changes E[τ
∣∣(0,Ω)] obtained with the

analytical approximation with the one obtained by solving the continuous time model numerically.

Figure IX: Expected Time: Numerical vs. Analytical
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Comparative statics We now vary each parameter at a time, considering half and double its
benchmark value. For each parameter, we plot the difference between the analytical and the numerical
expected time. We observe that for all cases considered, the margin of error is less than 4.

Figure X: Expected Time: Approximation Error
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E.7 Hazard Rate

In all the following cases (analytical and numerical), we focus on the computation of the stopping
time distribution f(τ). Given the stopping time distribution, the conditional hazard rate is computed
using its definition:

h(τ) ≡ f(τ)∫∞
τ f(s)ds

Analytical approximation with constant inaction region Following Kolkiewicz (2002) and
Álvarez, Lippi and Paciello (2011)’s Online Appendix, the density of stopping times with constant
inaction region [−µ̄0, µ̄0] is given by:

f(τ) =
π

2
x′(τ)

∞∑
j=0

αj exp (−βjx(τ)) , where x(τ) ≡
σ2
fτ

µ̄2
0

, αj ≡ (2j+1)(−1)j , βj ≡ (2j+1)2π
2

8

The process x(τ) is equal to the ratio of the state’s unconditional variance to the width of the inaction
region. In our case, we consider the estimate’s unconditional variance which is given by Vτ (Ω0);
furthermore, we compute densities conditional on the initial level of uncertainty Ω0. For the border
of inaction we set it equal to our approximation evaluated at initial uncertainty: µ̄0 = µ̄(Ω0). With

these elements, we can apply the previous formula using x ≡ Vτ (Ω0)
µ̄2

0
and the same sequences of αj and

βj to obtain:

f(τ |Ω0) =
πx′(τ)

2

∞∑
j=0

(2j + 1)−1(−1)j exp

(
−(2j + 1)2π

2

8
x

)
, where x ≡ Vτ (Ω0)

µ̄2
0

Analytical approximation with linear inaction region Now we assume constant inaction re-
gions of the form α + βt. The formula for the stopping time distribution is found on Theorem 3.2 of
Kolkiewicz (2002). We apply the formula with values x0 = 0, b1 = 2(α + βt), b2,j = b3,j = α(2j + 1)
and obtain:

f(τ |Ω) =
2αV ′τ (Ω0)√
Vτ (Ω0)3

φ

(
α+ βτ√
Vτ (Ω0)

)
× (E.51)

∞∑
j=0

[
(4j + 1) exp

(
−4j(2j + 1)(α+ βτ)α

Vτ (Ω0)

)
− (4j + 3) exp

(
−4(j + 1)(2j + 1)(α+ βτ)α

Vτ (Ω0)

)]

where φ(·) is the density of a standard Normal.

Numerical hazard rate To compute numerically the hazard rate, we use a Monte Carlo simulation.
For this purpose, we start with a large number of firms whose state is initialized at (0,Ω0). Then we
hit firms with shocks and record the date at which a firm has her first price change. After her first
price change, a firm is discarded. In this way, we make sure that the hazard rate we are computing is
conditional on an initial level of uncertainty of Ω0 and also we do not generate right censoring. Once we
have a large number of observations of stopping times, we estimate the density f(τ |Ω0) using a kernel

smoothing function. Lastly, we compute the hazard rate using its definition: h(τ |Ω0) = f(τ |Ω0)∫∞
τ f(s|Ω0)ds

.
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Figure XI: Numerical Hazard Rates and Analytical Approximation
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B. Hazard Rate (medium Ω0)
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Left panel: hazard rate for Ω0 = σf . Center panel: hazard rate for Ω0 = 2σf . Right panel: hazard rate for Ω0 = 5σf .
See section E.7 for the description of the calibration of the rest of the parameters.

F Alternative Models for Uncertainty

A commonly held idea is that heterogeneity alone generates a decreasing hazard rate. This is not
the case in state dependent models, as we below with counter-examples. The main intuition is that
the hazard rate’s shape depends on the dynamics of the re-pricing probability, and if the model
cannot generate a large spike in this probability, followed with a decrease, then the cannot generate a
decreasing hazard rate. The following are three additional counter-examples:

1. Our model of upward uncertainty cycles with signal noise γ → 0 or γ →∞. In either case, the
model obtains a non-decreasing hazard. See Proposition 6.

2. An AR(1) process for firm–level volatility, as in Vavra (2014), analyzed in Section F.1 below.

3. A model with “downward” uncertainty cycles analyzed in Section F.2 below.

The next two subsections describe each model, and analyze their micro and macro implications.

F.1 Autoregressive Volatility

In this section we compare the implications of assuming an AR(1) process for (log) idiosyncratic
volatility (versus assuming a Poisson process), which is a simplified version of our learning model. In
both cases, we present first the continuous time environment and then the discrete time versions that
we use for computational purposes.

Autoregressive Volatility in Continuous Time Consider a profit maximizing firm that chooses
the price at which to sell its product, subject to idiosyncratic markup shocks. Let µt be the markup
gap and Π(µt) = −Bµ2

t , B > 0 be the quadratic loss function. Every price change entails paying a
fixed menu cost θ.

The markup gap is perfectly observables, thus the information set is given by It = σ{µs : s ≤ t}.
The stochastic process for the mark gap is given by diffusion process: dµt = ΣtdWt where Σt follows
a an Ornstein-Uhlenbeck process given by

d log (Σt) = −(1− ρv)((log (Σt))− log (σf )) + σvdZt, (F.52)
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here Zt is a Weiner process.

Environment in Discrete Time Let V (µ,Σ) the value of a firm with current markup µ and
stochastic volatility ν. Analogously, let V nc(µ, ν) and V c(ν) be the values of not changing and changing
the price respectively. The the firm’s recursive problem

V (µ−, ν−) = E
[
max
c,nc
{V c(ν), V nc(µ, ν)}

]
V nc(µ, ν) = −Bµ2 + βV (µ, ν)

V c(ν) = max
x

θ −Bx2 + βV (x, ν)

subject to

µ = µ− + νε

log ν = (1− ρν) log σf + ρν log ν− + σνη

η, ε ∼ N (0, 1).

For comparison, observe that the model studied in the main text has the following recursive problem
over the estimates

V (µ−,Σ−) = E
[
max
c,nc
{V c(Σ), V nc(µ,Σ)}

]
V nc(µ,Σ) = −Bµ2 + βV (µ,Σ)

V c(Σ) = max
x
−θ −Bx2 + βV (x,Σ)

µ = µ− +
Σ√

Σ + γ2
ε

Σ =
γ2

Σ− + γ2
Σ− + σ2

uJ

ε ∼ N (0, 1) J =

{
1 with prob. p
0 with prob. 1− p

Calibration The calibration of the baseline model is in the same as in the main text. For the AR(1)
model, we use the same menu cost and discount factor. For ν∗, ρν , σν we match the frequency of price
changes in the data, as well as the autocorrelation and cross-sectional variance of Σ in the baseline
model (with a persistence of 0.62 and a standard deviation of 0.0067 without the normalization by γ).
Table V describes parameters values and compares micro-price statistics.

Distribution of Uncertainty and Markup Gap (Estimates) Figure XII plots the steady-state
distributions of uncertainty and markups–gap in the stochastic volatility model and markups–gap
estimates in the baseline model. The distribution of uncertainty in the baseline model is not normalized
by γ. Note that the distribution generated by the BB-model is more leptokurtic (as in the data) than
the AR-model. Trivially, this property implies a larger spike in the probability of price change and
therefore a decreasing hazard rate.

Hazard Rate Figure XIII compares the re-pricing hazards for the two alternative models of het-
erogenous uncertainty discussed in this note. The hazard rate in the baseline model model is decreasing;
the hazard rate in the AR-model is increasing then flat, and resembles the hazard rate in standard
menu-cost models. The main inutition of this result, as we can see in the sample, path is that in the
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Table V: Parameters and Targets

Uncertainty Cycles Autoregressive Volatility

Parameters

σf 0 0.016
σu 0.198 0
λ 0.016 0.011
γ 0.233 0.467

Moments

E[τ ] in months 10 10∗

std[|∆p|] 0.07 0.02
hazard rate slope −0.009 0.0069
kurtosis[∆p] 1.96 1.29

Figure XII: Marginal Distributions of Markups and Uncertainty
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Panel A plots the the distribution of markup-gap estimates in both models and Panel B plots the the distribution
of uncertianty in both models .
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stochastic volatility model there isn’t this large spikes in uncertainty follow up by a continuous and
relative large decrease of uncertainty.

Figure XIII: Hazard Rate of Price Adjustment
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This figure plots the hazard rate of price duration for the model with learning as in the main text and the model
with stochastic volatility.

Impulse-response of real output Figure XIV shows the impulse-response of real output to an
aggregate monetary shock, for the case in which this shock is perfectly disclosed (α = 1). The BB-
model amplifies the real output effects with respect to the AR-model since the two mechanism we
explain in the main text are stronger: dispersion of frequency and endogenous positive correlation
between selection and frequency.

Figure XIV: Output Response to a Monetary Shock
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F.2 H-model of Heterogeneity

In this subsection we explore an alternative model for generating time-varying uncertainty,1 which we
label H-model, in which firms perfectly learn their idiosyncratic state at random times and at other
times they observe noisy signals. This model generates downward uncertainty cycles.

We discover that such a model produces very different predictions for micro-level price statistics,
particularly the re-pricing hazard, and for the propagation of aggregate nominal shocks compared to
our model in the main text, that we called BB-model. Therefore, our model of uncertainty shocks
plays an important role beyond a micro-foundation for heterogeneity.

H-model Environment in Continuous Time Markup gaps µt follows a diffusion process: dµt =
σfdWt. A Poisson process Q̃t, with intensity λ, determines the dates at which the firm can perfectly
observe the realization of its state. At other dates, the firm observes a noisy signal: st = µtdt+ γdZt.
With these assumptions, the information set is given by Ĩt = σ{sr, Q̃r, r ≤ t; µk if dQ̃k = 1}.
The filtering equations that describe the evolution of the markup estimate µ̂t ≡ E[µt|Ĩt] and the

uncertainty around it Ωt = E[(µt−µ̂t)2|Ĩt]
γ are given by:

(estimate) dµ̂t = Ωt dẐt + γ Ωt−εt dQ̃t (F.53)

(uncertainty) dΩt =
σ2
f − Ω2

t

γ
dt − Ωt− dQ̃t︸ ︷︷ ︸

downward jumps

(F.54)

where dẐt is a Wiener process under Ĩt; εt ∼ N (0, 1) captures the difference between the current
unbiased estimate and its true value; and Ωt− = lim∆→0+ Ωt−∆ is the realization “immediately”
before period t. Observe that (F.53) and (F.54) imply downward uncertainty cycles. With a “Calvo
arrival of information”, uncertainty jumps down to zero and then grows over time. The estimate
follows a diffusion, but at those Calvo dates, it is corrected by its difference from the truth (upwards
or downwards):

if dQ̃t = 1 =⇒ Ωt = 0, µ̂t = µ̂t− + γΩt−εt

With the same logic as in our model, these cycles generate heterogeneous uncertainty across a contin-
uum of firms facing iid shocks.

H-model Environment in Discrete Time The firms’ recursive problem solves

V (µ̂−,Σ−) = E
[
max
c,nc

{
V c(Σ)− θ̄, V nc(µ̂,Σ)

}]
V c(Σ) = max

x
−x2 + βV (x,Σ)

V nc(µ̂,Σ) = −µ̂2 + βV (µ̂,Σ)

µ̂ = µ̂− +

[
(1− J)

Σ√
Σ + γ2

+ J
√

Σ

]
ε

Σ = (1− J)
γ2Σ−
γ2 + Σ−

+ σ2
f

ε ∼ N (0, 1) J =

{
1 with prob. p
0 with prob. 1− p

This recursive problem can be interpreted a time-varying noise model, where the noise is known every
period.

1We thank Christian Hellwig for suggesting us to explore this alternative model.
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Calibration The common parameters across uncertainty models are r = 0.04, θ̄ = 0.064, γ = 0.233
and λ = 0.016. The specific parameters in our model are σu = 0.219 and σf = 0.00, as in the main
text; while in the H-model we set σf = 0.018 to match the expected time of a price change.

Table VI: Parameters and Targets

Upward Uncertainty Cycles Downward Uncertainty Cycles

Parameters

σf 0 0.016
σu 0.198 0
λ 0.016 0.018
γ 0.233 0.233

Moments

E[τ ] in months 10 10∗

std[|∆p|] 0.05 0.02
std[∆p] 0.14 10
hazard rate slope −0.005 0.007
kurtosis[∆p] 1.84 1.17

Distribution of Uncertainty and Markup Gap Estimates Figure XV plots the steady-state
distributions of uncertainty and markups–gap estimates. Note that the distribution generated by the
BB-model is more leptokurtic (as in the data) than the H-model. Interestingly, both models have
similar average uncertainty (0.065 in the BB-model and 0.062 in the H-model), but the BB-model
generates a right-skewed distribution of uncertainty while the H-model a left-skewed distribution.

Figure XV: Marginal Distribution of the Upward and Downward Uncertainty Cycles
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Panel A plots the the distribution of markup-gap estimates in both models and Panel B plots the the distribution
of uncertianty in both models .

Ilustration of Sample Paths Figure XVI shows a sample path for a firm outcomes in each model.
We plot uncertainty and the variance of markup estimates (left), inaction regions and the markup gap
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estimates (center), and size of price changes (right).

Figure XVI: Upward and Downward Uncertainty Cycles Dynamics
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Panels 1.A to 1.C plot a sample path in the model with upward uncertainty cycles and Panels 2.A to 2.C plot a
sample path in the model with downward uncertainty cycles.

Hazard rate Figure XVII compares the re-pricing hazards for the two alternative models of het-
erogenous uncertainty discussed in this note. The hazard rate in the BB-model is non-monotonic,
with a decreasing segment; the hazard rate in the H-model is increasing then flat, and resembles the
hazard rate in standard menu-cost models.2

Impulse-response of real output Figure XVIII shows the impulse-response of real output to an
aggregate monetary shock, for the cases in which this shock is perfectly disclosed (α = 1, Panel A)

2This result is robust to different set of parameters, for instance, if γ → 0, then the model obtains a constant hazard,
if γ →∞ or λ→ 0, the model obtains an increasing hazard.
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Figure XVII: Upward and Downward Uncertainty Cycles Hazard Rate
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This figure plots the hazard rate of price duration for the model with downward and upward uncertainty cycles.

and not disclosed (α = 0, Panel B). In both cases, the BB-model amplifies the real output effects
with respect to the H-model. In Panel C, we plot average forecast errors for the case of undisclosed
money shock; it shows that behind the larger output effect in the BB-model is the larger persistence
of forecast errors.

Figure XVIII: Output Response to a Monetary Shock for the Two Types of Uncertainty Cycles
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Left panel: output response for a disclosed shocks. Center panel: output response for a undisclosed shocks. Right
panel: forecast error for a undisclosed shocks.
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G Firm Pricing Problem in Discrete Time

In this section, we develop a discrete time version of the firm pricing problem and show that there exists
a continuous time representation when the length of the periods tends to zero. This is the continuous
time problem that appears in the paper that allows us derive analytical solutions for policies and
statistics.

The signal extraction problem in continuous time described in the paper—with frequent and infre-
quent shocks to the state together with a noisy signal—can be reinterpreted, when written in discrete
time, as a problem with frequent and infrequent permanent shocks to the state together with transitory
shocks, where the firm cannot distinguish between the permanent and transitory shocks. That is, the
signal noise in continuous time can be reinterpreted as transitory volatility affecting the state. That
is, the noise coming from the signal in the continuous time case can be thought of a transitory shock
that affects the state. We prefer this second interpretation for building the economic interpretation of
our model, and it is the interpretation used in the Introduction of the paper.

We will establish the link between the discrete and continuous time formulations through the
filtering problem and the optimal stopping policy, this is, the time when to change the price and
reset the markup process. We show that the discrete time stopping converges to the continuous time
stopping as the interval length goes to zero. Although the policies converge, the values of a firm under
the different measures of time do not necessarily converge.

G.1 Environment

Time is discrete at intervals of size ∆. Consider an infinitely lived firm. The per period flow profits is
given by

Π(pt∆, p
∗
t∆) = −B(pt∆ − p∗t∆)2∆

which is the distance between the currently charged log price pt∆ and the target log price p∗t∆. Firms
choose whether to keep the price they charged last period or to change it, in which case they pay a
menu cost denoted with θ.

Let V be the present discounted value of profits, then the sequential problem is given by:

V (·) = max
{p(t)∆}∞t=0

E

[ ∞∑
t=0

e−rt∆
[
−B(pt∆ − p∗t∆)2∆− θ1{pt∆ 6=p(t−1)∆}

]]
(G.55)

where r is the discount rate and pt∆ is the price charged during [t∆, (t+ 1)∆). We have omitted the
firm’s state because it will depend on the particular information structure assumed below.

Observation Notice that in the absence of menu costs, the problem becomes static and then the
solution is pt∆ = p∗t∆. Since prices will track the realization of the optimal price, markups are constant
at all times, regardless of the stochastic process of the optimal price or the information set. As a
consequence, as discussed by Hellwig and Venkateswaran (2014), there will be no output effects from
a monetary shock even in the presence of information frictions.

Productivity Process Let at∆ ≡ log(At∆) denote the log of marginal productivity at t∆ and define
aAt∆ ≡

∑t
s=0 as∆∆ as the accumulated productivity from 0 to t∆ periods. We can recover productivity

as at∆ =
aAt∆−a

A
(t−1)∆

∆ taking aA−∆ = 0. We will define the stochastic process for accumulated produc-
tivity since it will be easier to work with and it will help us map the problem into continuous time for
characterization3.

3See Øksendal (2007) for further details on continuous time filtering.
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We assume that aAt∆ satisfies the following system of stochastic differential equations:

aAt∆ = aA(t−1)∆ + aPt∆∆ + aTt∆

aPt∆ = aP(t−1)∆ +
√

∆σ2
f εt∆ +

√
σ2
uut∆Jt∆ (G.56)

aTt∆ =
√

∆γ2ηt∆

εt∆, ηt∆, ut∆ ∼i.i.d N (0, 1)

aP−∆ ∼ N (0,Σ−∆)

where Jt∆ =

{
1 w.p. 1− e−λ∆

0 w.p. e−λ∆ is an binomial random variable that takes the value of 1 with

probability 1− e−λ∆.
This formulation says that changes in accumulated productivity (current productivity) have a

stochastic trend component aPt∆∆ and an iid transitory shock aTt∆ with variance γ2. Innovations to
the trend follow a unit root process and has two types of Normal shocks: εt∆ is a frequent shock with
variance σ2

f and ut is a shock with variance σ2
u but is only received with probability (1− e−λ∆). The

variance of the initial draw is Σ−∆.

Markup Gap Process Let µ̃t∆ ≡ pt∆ + at∆ be the log of the current markup and µ∗ ≡ p∗t∆ + at∆
the target markup. Also define µt∆ ≡ µt∆−µ∗ as the markup gap. Note that when the price is fixed,
µt∆ is driven exclusively by productivity. In accordance to the previous section, we will define the
accumulated markup gap µAt∆ ≡

∑t
s=0 µs∆∆ which allows us to recover the markup gap process as

µs∆ =
µAt∆−µ

A
(t−1)∆

∆ .
We use an analog decomposition into permanent and transitory shocks:

µAt∆ = µA(t−1)∆ + µPt∆∆ + µTt∆

µPt∆ = µP(t−1)∆ +
√

∆σ2
f εt∆ +

√
σ2
uut∆Jt∆ (G.57)

µTt∆ =
√

∆γ2ηt∆ (G.58)

εt∆, ηt∆, ut∆ ∼i.i.d N (0, 1)

µP−∆ ∼ N (µ−∆,Σ−∆)

Jt∆ =

{
1 w.p. 1− e−λ∆

0 w.p. e−λ∆

When the price is changed, the markup process is reset to some initial condition (that will be

the optimal markup gap as shown below). The shock σfε
f
t is analogous to the continuous time

frequent shocks σfdWt modeled through the Brownian motion; the shock σuε
U
t Jt is analogous to the

continuous time infrequent shocks σuutdQt modeled through the compound Poisson process; the shock
γεTt is analogous to the signal noise process γdZt; and the binomial random variable Jt with probability
1− e−λ of receiving a shock is analogous to the Poisson counting process Qt with arrival rate λ.

Timing assumption We assume that the firm has to set the price before the realization of the
shocks in that period. We model this assumption by requiring pt∆ to be I(t−1)∆-measurable, where
It∆ denotes the time t∆ information set. The objective is to eliminate the effect of the transitory shock
on the pricing policy that operates through the profit function and focus only on its effect through
the information structure. Under this assumption, policies will only depend on permanent shocks and
we ignore price changes that respond to the transitory shocks as these are not the main point of our
paper. See Kehoe and Midrigan (2015) for a paper where prices react to transitory shocks to explain
discounts.
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Information Sets We will consider two scenarios that differ in the information available for the firm
at the time she makes the price adjustment decision. In the first case the firm can distinguish perfectly
between permanent and transitory components of productivity. Therefore, her relevant information
set at period t∆ is given by Ft∆ = σ{µPs∆∆, µTs∆; s ≤ t}, where σ(·) stands for the generated σ-
algebra, i.e. she knows the difference between the permanent and transitory components. Under
the second scenario firms have imperfect information since they cannot distinguish between the two
shocks and only observe accumulated productivity. Their information set at time t∆ is given by:
Gt∆ ≡ σ{µAs∆, Js∆; s ≤ t}. We will use It∆ to denote either filtration.

A comment on the discrete time process The previous process, with the shocks happening to
the growth rate of markups, is the one that converges to the stochastic process in continuous time:

(State) dµt = σfdWt + σuutdQt, µ0 ∼ N (a, b)

(Signal) dst = µtdt+ γdZt, s0 = 0

where Wt, Zt are Wiener processes, Qt is a Poisson process with intensity λ, ut ∼ N (0, 1), and a, b are
constants.

For building intuition, it is also convenient to show a process where the shocks occur to the level
of markups and not the growth. All the results can be extended to this model. This process, although
it does not converge to the continuous time process, does not change any of the ideas and results in
the paper.

(Total) µt = µPt + µTt

(Permanent) µPt = µPt−1 + σfε
f
t + σuε

u
t Jt, µP0 = 0

(Transitory) µTt = γεTt

Jt =

{
1 w.p. 1− e−λ
0 w.p. e−λ

εft , ε
u
t , ε

T
t ∼ N (0, 1)

G.2 Characterization

Expected Profits First we convert the profit to be a function of price gaps into a function of
markup gaps using that (pt − p∗t ) = µ̃t∆ − at∆ − (µ∗ − at∆) = µ̃t∆ − µ∗ = µt∆:

Π(pt − p∗t ) = Π(µt∆)

Now substituting the various components of the markup process we can express the profit function in
terms of the underlying shocks:

Π(µt∆) = −Bµ2
t∆∆

= −B
(
µPt∆∆ + µTt∆

∆

)2

∆

= −B
(
µP(t−1)∆ + σf

√
∆εt∆ + σuut∆Jt∆ + γ

ηt∆√
∆

)2

∆

The expectation of profits given an information set It takes into account the timing assumption that
implies orthogonality of εt∆, ηt∆, and ut∆ with respect I(t−1)∆ = σ{µPs∆, µTs∆s ≤ t− 1}:

E[Π(µt∆)|I(t−1)∆] = −BE[(µP(t−1)∆)2|I(t−1)∆]∆−B
(
σ2
f∆2 + σ2

u(1− e−λ∆)∆ + γ2
)

︸ ︷︷ ︸
sunk costs
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Observe that expected profits depend exclusively on the permanent component of markup gap (or its
expectation) and all the volatilities enter as sunk costs and will not affect the firm’s policy through
the profit channel, only through the information structure.

Stopping time representation The following lemmas restate the problem in stopping time rep-
resentation, which will be used to cast the problem in continuous time. Lemma 1 in particular shows
that with perfect information the firm only cares about permanent shocks as transitory shocks enter
as a sunk costs and do not affect her policies via the profit channel.

Lemma 1 (Stopping time with perfect information) Let V (µP−∆) be the value of a firm with
perfect information and an initial permanent markup gap µP∆. Let τ∆ denote the optimal stopping time
policy. Then V (µP−∆) is the solution to

V (µP−∆) = max
τ∆

E

[
τ∆∑
t=0

−e−rt∆B
(

(µP(t−1)∆)2∆ + ∆2σ2
f + σ2

u(1− e−λ∆) + γ2
)

+ e−rτ∆∆
[
−θ + max

x
V (x)

]]
(G.59)

with
µPt∆ = µP(t−1)∆ + σf

√
∆εt∆ + σuut∆Jt∆

Proof. From the sequential problem in (G.55) we have

V (µP−∆) = max
{pt∆}∞0

E

[ ∞∑
t=0

e−rt∆[Π(µt∆)− θ1{pt∆ 6=p(t−1)∆}

]

By the law of iterated expectations4 and given that µt∆ is measurable with respect to F(t−1)∆ =

σ{µPs∆∆, µTs∆; s ≤ t}:

V (µP−∆) = max
{µt∆}∞t=0

∞∑
t=0

e−rt∆E
[
Π(µt∆)∆− θ1{pt∆ 6=p(t−1)∆}

]
= max

{µt∆}∞t=0

∞∑
t=0

e−rt∆E
[
E[Π(µt∆)∆− θ1{pt∆ 6=p(t−1)∆}|F(t−1)∆]

]
= max

{µt∆}∞t=0

∞∑
t=0

e−rt∆E
[
E[Π(µt∆)∆|F(t−1)∆]− θ1{pt∆ 6=p(t−1)∆}

]
= max

{µt∆}∞t=0

∞∑
t=0

e−rt∆E
[
−B

(
(µP(t−1)∆)2∆ + σ2

f∆2 + σ2
u(1− e−λ∆)∆ + γ2

)
− θ1{pt∆ 6=p(t−1)∆}

]
By the Principle of Optimality

V (µP−∆) = max
τ∆

E

[
τ∆∑
t=0

−e−rt∆B
(

(µP(t−1)∆)2∆ + ∆2σ2
f + σ2

u(1− e−λ∆) + γ2
)

+ e−rτ∆∆
[
− θ + max

x
V (x)

]]

where permanent shocks follow

µPt∆ = µP(t−1)∆ + σf
√

∆εt∆ + σuut∆Jt∆

4We also apply the Monotone Convergence Theorem to exchange the expectation and infinite sum operators since
each random variable is non-negative.
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Now consider the case with imperfect information. The firm will forecast the permanent markup
gap using the Kalman Filter to extract information from the signal given by the accumulated markup
gap. Let µ̂Pt∆ = E[µPt∆|G(t−1)∆] the forecast of the permanent markup conditional on the information

set G(t−1)∆ ≡ σ{µAs∆, Js; s ≤ t} and Σt∆ = E[(µ̂Pt∆ − µPt∆)(µ̂Pt∆ − µPt∆)′|G(t−1)∆] the variance of such

forecast. The state of the firm in this case is (µ̂Pt∆,Σt∆).

Lemma 2 (Stopping time with imperfect information) Let V (µ̂P−∆,Σ−∆) be the value of a firm
with imperfect information, initial forecast µ̂P−∆ and forecast variance Σ−∆. Let τ∆ denote the optimal
stopping time policy. Then V (µ̂P−∆,Σ−∆) solves

V (µ̂P−∆,Σ−∆) = max
τ∆

E

[
τ∆∑
t=0

−e−rt∆B
(
(µ̂Pt∆)2∆ + Σt∆∆ + γ2

)
+ e−rτ∆∆

[
− θmax

x
V (x,Σ(τ−1)∆

)
]]

(G.60)
subject to the forecasting equations of the Kalman Filter:

µ̂Pt∆ = µ̂P(t−1)∆ +Kt∆[µ(t−1)∆ − µ̂P(t−1)∆]

Σt∆ = (1−Kt∆)2Σ(t−1)∆ +K2
t∆

γ2

∆
+ σ2

f∆ + σ2
uJt∆ (G.61)

Kt∆ =
Σ(t−1)∆

Σ(t−1)∆ + γ2

∆

(µ̂P−∆,Σ−∆) Given (G.62)

Proof. Let V (µ̂P−∆,Σ−∆) be the value of a firm with imperfect information. We apply the Law of
Iterated Expectations to condition on G(t−1)∆ = σ{µAs∆, s ≤ t− 1} and use the definition of the profit

function recalling that µ(t−1)∆ =
µA

(t−1)∆
−µA

(t−2)∆

∆ to get:

V (µ̂P−∆,Σ−∆) = max
{µt∆}∞t=0

∞∑
t=0

e−rt∆E
[
E[Π(µt∆)|G(t−1)∆]∆− θ1{pt∆ 6=p(t−1)∆}

]
= max

{µt∆}∞t=0

∞∑
t=0

e−rt∆E
[
−BE

[
µ2
t∆

∣∣∣µ(t−1)∆

]
∆− θ1{pt∆ 6=p(t−1)∆}

]
(G.63)

In order to work out the expression for E
[
µ2
t∆

∣∣∣µ(t−1)∆

]
, we need to establish the laws of motion for

the forecasts. The state-space representation of the hidden Markov process µPt∆ and of its noisy signals

µt∆ =
µAt∆−µ

A
(t−1)∆

∆ is the following:

µPt∆ = µP(t−1)∆ + σf
√

∆εt∆ + σuut∆Jt∆

µt∆ = µPt∆ +

√
γ2

∆
ηt∆

µP−∆ ∼ N(µ−∆,Σ−∆) (G.64)

εt∆, ηt∆, ut∆ ∼ N (0, 1)

Jt∆ =

{
1 w.p. 1− e−λ∆

0 w.p. e−λ∆

Let µ̂Pt∆ = E[µPt∆|µ(t−1)∆] the conditional forecast and Σt∆ = E[(µ̂Pt∆ − µPt∆)(µ̂Pt∆ − µPt∆)′|µ(t−1)∆]
the conditional variance of such forecast. Applying the Kalman Filter to the previous system yields
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the forecasting equations:

µ̂Pt∆ = µ̂P(t−1)∆ +Kt∆[µ(t−1)∆ − µ̂P(t−1)∆]

Σt∆ = (1−Kt∆)2Σ(t−1)∆ +K2
t∆

γ2

∆
+ σ2

f∆ + σ2
uJt∆ (G.65)

Kt∆ =
Σ(t−1)∆

Σ(t−1)∆ + γ2

∆

(µ̂P−∆,Σ−∆) Given (G.66)

where Kt∆ is the Kalman gain. Using the previous equations on the expression of interest:

E[µ2
t∆|µ(t−1)∆] = E[µt∆|µ(t−1)∆]2 + V[µt∆|µ(t−1)∆]

= (µ̂Pt∆)2 + Σt∆ +
γ2

∆
(G.67)

From (G.63) and (G.67) we have that

V (µ̂P−∆,Σ−∆) = max
{µt∆}∞t=0

E

[ ∞∑
t=0

e−rt∆
(
−B

(
(µ̂Pt∆)2∆ + Σt∆∆ + γ2

)
− θ1{pt∆ 6=p(t−1)∆}

)]
Finally, from the Principle of Optimality

V (µ̂P−∆,Σ−∆) = max
τ∆

E

[
τ∆∑
t=0

−e−rt∆B
(
(µ̂Pt∆)2∆ + Σt∆∆ + γ2

)
+ e−rτ∆∆

[
− θ + max

x
V (x,Σ(τ−1)∆

)
]]

subject to (G.65).
When the price is changed, the markup process is reset to µ̂P−∆ ∼ N (x,Σ(τ−1)∆), where x is the

argmax above. Note that the forecast variance Σt∆ is not reset and it keeps following its path.
By using the forecast of permanent markup instead of the actual value, firms with imperfect

information have larger uncertainty coming from the forecasting process. Since the markup gap
is Normally distributed, only the first two moments of the distribution are necessary for Bayesian
updating and the estimate provided by the Kalman Filter is optimal. Lastly, note that the innovations
are white noise.

G.3 Continuous Time Limit of Discrete Problem

In this section, we show that there exists a continuous time representation of the problems above when
the length of the periods tends to zero. This is the continuous time problem which appears in the
paper that allows us derive analytical solutions for policies and statistics.

Proposition 4 (Convergence of discrete time policy with perfect information) Let τ∆∆ be
the optimal stopping policy of the perfect information given by (G.59). Then τ∆∆→ τ where τ solves

V (µP0 ) = max
τ

E0

[∫ τ

0
−e−rtB(µPt )2dt+ e−rτ

[
− θ + max

x
V (x)

]]
(G.68)

subject to the stochastic process

dµPt = σfdFt + σuεtdQt, µP0 given

where Ft a standard Brownian Motion, Qt is a Poisson process with arrival rate λ and εt ∼ N (0, 1).
The process is reset to µP0 = x with every price change.
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Proposition 5 (Convergence of discrete time policy with imperfect information) Let τ∆∆
be the optimal stopping policy of the imperfect information problem given by (G.60). Then τ∆∆→ τ
where τ solves

V (µ̂0,Ω0) = max
τ

E
[∫ τ

0
−e−rtBµ̂t2dt+ e−rτ

[
− θ + max

x
V (x,Ωτ )

]]
(G.69)

subject to the stochastic processes

dµ̂t = ΩtdWt (G.70)

dΩt =
1

γ

[
σ2
f − Ω2

t

]
dt+

σ2
u

γ
dQt with Ω0 = Σ0/γ given

where Wt is a standard Brownian motion and Qt is a Poisson process with arrival rate λ. Ωt = Σt
γ

is a normalized forecast variance. When the price is changed, the process for markup gaps is reset to
µ̂0 = x but Ωt is not reset, it continues its path given by (G.70).

Proof. (Proposition 1 and 2) We give the proof for Proposition 2, for 1 is analogous. Start with
the discrete time problem in stopping time representation (G.60) from Lemma 2:

V (µ̂P−∆,Σ−∆) = max
τ∆

E

[
τ∆∑
t=0

−e−rt∆B
(
(µ̂Pt∆)2∆ + Σt∆∆ + γ2

)
+ e−rτ∆∆

[
− θmax

x
V (x,Σ(τ−1)∆

)
]]

µ̂Pt∆ = µ̂P(t−1)∆ +Kt∆[µ(t−1)∆ − µ̂P(t−1)∆] (G.71)

Σt∆ = (1−Kt∆)2Σ(t−1)∆ +K2
t∆

γ2

∆
+ σ2

f∆ + σ2
uJt∆ (G.72)

Kt∆ =
Σ(t−1)∆

Σ(t−1)∆ + γ2

∆

(µ̂P−∆,Σ−∆) given

Now we proceed in three steps:

a) Write the value function without sunk costs

Define v∆ and W∆ as follows:

v∆(µ̂P−∆,Σ−∆) ≡ max
τ∆

E

[
τ∆∑
t=0

−Be−rt∆(µ̂P(t−1)∆)2∆ + e−rτ∆∆[−θ + max
x

v(x,Σ(τ−1)∆)

]

W∆(Σ−∆) ≡
∞∑
t=0

−Be−rt∆[Σ(t−1)∆∆ + γ2]

By standard arguments, we rewrite the original value function as:

V (µ̂P−∆,Σ−∆) = v∆(µ̂P−∆,Σ−∆) +W∆(Σ−∆)

Since the stopping time can be characterized with v∆(µ̂P−∆,Σ−∆), we will work directly with this
formulation.

b) Local consistency of stochastic processes
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Given that µ(t−1)∆ − µ̂P(t−1)∆ ∼ N(0,Σ(t−1)∆ + γ2

∆ ), we can rewrite (G.71) and (G.72) as

µ̂Pt∆ = µ̂P(t−1)∆ + Σ(t−1)∆

√
∆

∆Σ(t−1)∆ + γ2
εt∆

Σt∆ = Σ(t−1)∆ + σ2
f∆ + σ2

uJt∆ +
∆Σ2

(t−1)∆γ
2

(∆Σ(t−1)∆ + γ2)2
−

2Σ2
(t−1)∆∆

∆Σ(t−1)∆ + γ2
+

∆2Σ3
(t−1)∆

(∆Σ(t−1)∆ + γ2)2

Or equivalently

µ̂Pt∆ = µ̂P(t−1)∆ + Σ(t−1)∆ϕ
I(∆)εt∆

Σt∆ = Σ(t−1)∆ + (σ2
f − ϕII(∆))∆ + σ2

uJt∆ + ϕIII(∆)

Where the ϕ functions have the following limits

ϕI(∆) =

√
∆

∆Σ(t−1)∆ + γ2
with

ϕI(∆)
√

∆
γ

→∆→0 1

ϕII(∆) =
2Σ2

(t−1)∆

∆Σ(t−1)∆ + γ2
−

Σ2
(t−1)∆γ

2

(∆Σ(t−1)∆ + γ2)2
with

ϕII(∆)
Σ2

(t−1)∆

γ2

→∆→0 1

ϕIII(∆) =
∆2Σ3

(t−1)∆

(∆Σ(t−1)∆ + γ2)2
with ϕIII(∆) = o(∆)

Now, note that with probability 1− e−λ∆

E[µ̂Pt∆ − µ̂P(t−1)∆] = 0; E[(µ̂Pt∆ − µ̂P(t−1)∆)2] =
Σ2

(t−1)∆

γ2
∆ + o(∆)

E[Σt∆ − Σ(t−1)∆] = ∆

(
σ2
f −

Σ2
(t−1)∆

γ2

)
+ o(∆); E[(Σt∆ − Σ(t−1)∆)2] = o(∆)

and with probability e−λ∆

(µ̂Pt∆,Σt∆|(µ̂P(t−1)∆,Σ(t−1)∆) = (µ̂P(t−1)∆,Σ(t−1)∆ + σ2
u)

Therefore the process is locally consistent with the process

dµ̂Pt =
Σt

γ
dWt

dΣt = (σ2
f −

Σ2
t

γ2
)dt+ σ2

udQt

where Wt is a Brownian motion and Qt is a Poisson process with arrival late λ.

c) Apply Convergence Theorem

Let v and τ satisfy the following Bellman equation

v(µ̂P0 ,Σ0) = max
τ

E
[∫ τ

t=0
−Be−rt(µ̂Pt )2dt+ e−rτ [−θ + max

x
v(x,Στ )]

]
dµ̂Pt = ΩtdWt

dΩt =
σ2
f − Ω2

t

γ
dt+

σ2
u

γ
dQt

46



Then by Theorem 2.1 in chapter 10 in Kushner and Dupuis (2013) we have that

(v∆, τ∆)→weakly (v, τ)
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H Uncertainty cycles vs. fixed heterogeneity

In this section we discuss the differences between fixed heterogeneity and uncertainty cycles. With fixed
heterogeneity, there is constant but different uncertainty across firms. In our model with uncertainty
cycles, uncertainty is time-varying at the firm-level, but all firms are ex-ante identical. To analyze the
different implications, we set up an environment analogous to ours but with fixed heterogeneity. In
this environment we show there are two key difference between fixed heterogeneity and time varying
heterogeneity: (1) Time-varying heterogeneity allows us to identify the variance of the noise shocks;
(2) Time-varying heterogeneity generates an endogenous negative covariance between the expected
time between price changes and the selection effect embedded in price changes, and we show that this
covariance increases the effect of a monetary shock.

H.1 Two alternative models

Our model with ex-ante identical firms and time varying uncertainty we have 5 parameters: the
normalized menu cost given θ, the variance of the Brownian process for persistence innovations in
markup-shocks given by σf , the variance and the arrival of the compound Poisson process for the
persistence innovations of the markup-shocks given by (λ, σu), and the variance of the transitory
shocks given by γ.

In the model with fixed uncertainty, each firm has a variance σif and we shut down the Poisson
process σui = 0. The following table describes the set of parameters in each model:

Table VII: Parameter Space in Each Model

Time-Varying and Ex-ante Homogeneous Uncertainty Fixed and Heterogeneous Uncertainty

Menu Cost (θ) Menu Cost (θ)
Brownian permanent innovation (σf ) Brownian Permanent innovation (σif )
Poisson permanent innovation (λ, σu) -
Brownian transitory innovation (γ) Brownian transitory innovation (γ)

H.2 Identification of noise shock volatility

In the main text we show that our model is able to identify γ using micro-price statistics, in particular
the hazard rate. The model with fixed and heterogeneous uncertainty cannot. The proof is trivial
since the process for the mark-up gap estimate is independent of γ and given by dµ̂t = σidZt, thus
micro-price statistics do not depend on γ.

H.3 Endogenous covariance between expected time and selection effects

We will characterize the effect of a monetary shock in the model with fixed uncertainty. Although we
will only assume heterogeneity in uncertainty, our results are valid for heterogeneity in all parameters.
Since each firm has different uncertainty the expected time and the kurtosis of price changes are
different across firms. Let Ki, Ti denote the idiosyncratic kurtosis and expected time, and K, T the
aggregate kurtosis of price change and expected time.
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Proposition In the model with fixed and heterogeneous uncertainty, the effect of a disclosed small
money shock is given by

M(δ)

δ
=

E[Ki]E[Ti] + Cov[Ki, Ti]]
6

=
Ei[σ2

i ]
2KT − Cov(KiTi, σ4

i )

6Ei[σ4
i ]

(H.73)

Proof. To show this result we proceed in 5 steps.

1. Calculation of the Renewal Distribution: In each period of time ∆, a measure ∆T −1
i of type i

are changing the price. Thus, the renewal distribution over types is given by ri = T −1
i E[T −1

i ]−1.
Let us define T =

∫
i Tiridi = E[T −1

i ]−1.

2. Calculation of the Aggregate Kurtosis of a Price Change: To compute the kurtosis notice that
the second and the fourth moment of the price change distribution is given by

E[∆p2] =

∫
i
riEi[∆p2|µ̂ = 0]di = E[T −1

i ]−1

∫
i

Ei[∆p2]

Ei[τ ]
di = E[T −1

i ]−1

∫
i
σ2
i di = T E[σ2

i ]

E[∆p4] =

∫
i
riEi[∆p4|µ̂ = 0]di = E[T −1

i ]−1

∫
i

Ei[∆p4]

Ei[τ ]
di = E[T −1

i ]−1

∫
i
Kiσ4

i Tidi = T E[KiTiσ4
i ]

Therefore the aggregate kurtosis is given by

K =
E[∆p4]

E[∆p2]2
=

E[KiTiσ4
i ]

E[σ2
i ]

2T
(H.74)

3. Calculation of the Effect of a Monetary Shock: The effect of a monetary shock is given:

M(δ) =

∫ ∞
0

∫ 1

0
ŷtididt =

∫ 1

0

∫ ∞
0

ŷtidtdi =

∫ 1

0
Mi(δ)di ≈

E[KiTi]
6

δ (H.75)

Where the last equality comes from Álvarez, Le Bihan and Lippi (2016). Importantly, the effect
of a monetary shocks depends on average statistics (computed with the ergodic distribution
across firms) and not the aggregate statistics (computed in the previous point with the renewal
distribution, which are the ones measured in the data).

4. Relationship between the Effect of a Monetary Shock and Aggregate Price Statistics: Using the
previous results we have that

KT =
E[Kiσ4

i Ti]
E[σ2

i ]
2

=
E[σ4

i ]E[KiTi] + Cov[KiTi, σ4
i ]

E[σ2
i ]

2
=

E[σ4
i ]M(δ)6

δ + Cov[KiTi, σ4
i ]

E[σ2
i ]

2
(H.76)

Solving for M(δ), we have the result:

M(δ)

δ
=

Ei[σ2
i ]

2KT − Covi(KiTi, σ4
i )

6Ei[σ4
i ]

(H.77)

The first amplification effect arises from the Jensen inequality applied to the quadratic term Ei[σ2
i ]

2.
For a given frequency, an increase in the dispersion of uncertainty increases the effect of a monetary
shock.

The second effect arises from the covariance term. Firms with low uncertainty behave more like
Calvo (low selection effects, high kurtosis) since they are more likely to change the price following
a Poisson shock; while firms with high uncertainty behave more like Golosov-Lucas (large selection
effect, low kurtosis) since they are more likely to change the price due to the Brownian motion.
This relationship between uncertainty and selection effects creates a negative covariance term, which
further amplifies monetary effects. Our model with uncertainty cycles can generate these two forces
endogenously.
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I Numerical Solution of the Model in Discrete Time

In this section we describe the steps to solve numerically, estimate and compute impulse-response in
our model. In this section, we extend our model to include random adjustment probabilities and at
the end of the section we analyze the introduction of this property.

I.1 Model with Perfect Information

The firms’ recursive problem with perfect information is given by

V (µ−) = E
[
(1− h) max

c,nc

{
V c − θ̄, V nc(µ)

}
+ hV c

]
V c = max

x
−x2 + βV (x)

V nc(µ) = −µ2 + βV nc(µ)

µ = µ− + σf ε
f + σuε

uJ

εu, εf ∼ N (0, 1) J =

{
1 with prob. p
0 with prob. 1− p

If p = 0 we have a similar model to Golosov and Lucas (2007); and in the case σf = 0 we have
have a similar model to Gertler and Leahy (2008) and Midrigan (2011). Since we only study these
two cases, this problem is equivalent to

V (µ−) = E
[
(1− h) max

c,nc

{
V c − θ̄, V nc(µ)

}
+ hV c

]
V c = max

x
−x2 + βV (x)

V nc(µ) = −µ2 + βV nc(µ)

µ = µ− + σεJ

ε ∼ N (0, 1) J =

{
1 with prob. p
0 with prob. 1− p

To solve this recursive problem numerically, we solve the following equivalent problem

v(µ) = (1− h) max
c,nc

{
vc − θ̄, µ2 + βEv(µ)

}
+ hvc

vc = max
x
−x2 + βEv(x)

Ev(µ) = E [v(µ+ σεJ)]

To solve this problem we use function interpolation using 3rd order splines, golden search for the
optimization and normal quadrature to compute the expectation. We solve the functional equation
with a combination of iterative and colocation methods.

I.1.1 Model with Perfection Information: Steady-State Price Statistics

We discretize the state space. Given the original distribution of markups in a the compact set [−µ, µ],
we define a finite set of grid pointM = {µ1, µ2, . . . , µn}. We compute the transition probability FM′|M
and the ergodic distribution under FM′|M. Let n(µ) the ergodic distribution of markups. With the
ergodic distribution of markups, we compute the frequency of price change and the distribution of
price change using the following formulas

Nss =
∑
i

Λ(µi)n(µi) ; n(∆pj) =
ñ(∆pj)

Nss
ñ(∆pj) =

∑
i

Ψ(∆pj |µi)n(µi) (I.78)
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where Λ(µ0) is the probability of a price change between periods given the initial state µi and Ψ(∆pj |µi)
is the probability of price change ∆pj departing from the state µi. Notice that by construction∑

j Ψ(∆pj |µi) = Λ(µi). Finally, let F̃M′|M be the transition probability of only no price changes

(thus, the sum of columns is less than one). Departing from an initial condition S̃0(0) = 1, we can
compute the survival distribution after t periods of price change recursively

S̃t(µ) = F̃M′|MS̃t−1(µ) (I.79)

Given the survival rate St =
∑

i S̃t(µi), it is easy to compute the hazard rate.

I.1.2 Model with Perfection Information: Impulse-Response

Given the initial steady state distribution of markups, n(µ), we compute the initial distribution after
a money shock and before re-pricing ñ0(µi)

ñ0(µi) = n(µi + δ) (I.80)

The distribution of markups after re-pricing is given by

n0(µi) = ñ(µi)I(µi ∈ [−µ, µ]) + I(µi = 0)

(∑
i

ñ(µi)I(µi /∈ [−µ, µ])

)
(I.81)

With the initial distribution we compute the distribution of markups at period t, nt(µ), with following
stochastic process

µ1+1 =

{
0 if Jht+1 = 0 and vc − θ ≥ vnc(µ̄t+1) or Jht+1 = 1
µ̄t+1 otherwise

µ̄1+1 = µt + σεt+1J
q
t+1

where Jpt+1 = 1 with probability p and Jht+1 = 1 with probability h. Both variables are i.i.d. across
time. Once we have the distribution of markups at period t, we can compute output gap and frequency
of price change

Yt = −
∑
i

µint(µi) ; Nt =
∑
i

Λ(µi)nt(µi) (I.82)

I.2 Model with Imperfect Information

The firms’ recursive problem with imperfect information is given by

V (µ̂−,Σ−) = E
[
(1− h) max

c,nc

{
V c(Σ)− θ̄, V nc(µ̂,Σ)

}
+ hV c(Σ)

]
V c(Σ) = max

x
−x2 + βV (x,Σ)

V nc(µ̂,Σ) = −µ̂2 + βV (µ̂,Σ)

µ̂ = µ̂− +
Σ√

Σ + γ2
ε

Σ =
γ2Σ−
γ2 + Σ−

+ σ2
f + σ2

uJ

ε ∼ N (0, 1) J =

{
1 with prob. p
0 with prob. 1− p
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We skip the derivation of this recursive problem (see section G to derive it). To solve this recursive
problem numerically, we solve the following equivalent problem

v(µ̂,Σ) = (1− h) max
c,nc

{
vc(Σ)− θ̄, µ̂2 + βEv(µ̂,Σ)

}
+ hvc(Σ)

vc(Σ) = max
x
−x2 + βEv(x,Σ)

Ev(µ̂−,Σ−) = E

[
v(µ̂− +

Σ√
Σ + γ2

ε,
γ2Σ−
γ2 + Σ−

+ σ2
f + σ2

uJ)

]

To solve this problem we use function interpolation using 3rd order splines, golden search for the
optimization and normal quadrature to compute the expectation.

To solve this problem we use function interpolation using 3rd order splines, golden search for the
optimization and normal quadrature to compute the expectation. We solve the functional equation
with a combination of iterative and colocation methods.

I.2.1 Model with Imperfection Information: Steady-State Price Statistics

We use a discretization of the state space. Given the original distribution of markups in a the compact
set

[− max
Σ∈[Σ,Σ]

µ(Σ), max
Σ∈[Σ,Σ]

µ(Σ)]× [Σ,Σ] (I.83)

we define a finite set of grid point X = {µ̂1, µ̂2, . . . , µ̂n}×{Σ1,Σ2, . . . ,Σm}. We compute the transition
probability FX ′|X and the ergodic distribution under FX ′|X . Let n(µ̂,Σ) the ergodic distribution of
markups and uncertainty. With the ergodic distribution of markups and uncertainty, we compute the
frequency of price change and the distribution of price change using the following formulas

Nss =
∑
i

Λ(µ̂i,Σi)n(µ̂iΣi) ; n(∆pj) =
ñ(∆pj)

Nss
ñ(∆pj) =

∑
i

Ψ(∆pj |µ̂iΣi)n(µ̂iΣi) (I.84)

where Λ(µ̂0,Σ0) is the probability of a price change between periods given the initial state (µ̂i,Σi)
and Ψ(∆pj |µ̂i,Σi) is the probability of price change ∆pj departing from the state (µ̂i,Σi). Finally, let
F̃X ′|X be the transition probability of only no price changes (thus, the sum of columns is less than one).

Departing from the renewal distribution S̃t−1(0,Σ) = R(Σ), we can compute the survival distribution
after t periods of price change recursively

S̃t(µ̂) = F̃X ′|X S̃t−1(µ̂) (I.85)

Given the survival rate St =
∑

i S̃t(µ̂i), it is easy to compute the hazard rate.

I.2.2 Model with Imperfection Information: Impulse-Response

Given the steady state distribution of markups gap estimate and uncertainty, n(µ̂,Σ), we compute
the initial distribution of markups gap estimate, forecast error and uncertainty after a money shock.
This distribution depends of three parameters: the size of the monetary shock δ; the size of the
uncertainty shock of size κΣ; and the observe fraction of the money shock incorporate in the estimate
α. Given these three parameters the distribution of distribution of markups gap estimate, uncertainty
and forecast error after a money shock and before re-pricing ñ0(µi,Σi, ϕi) is given by

ñ0(µi,Σi, ϕi) = n(µi + αδ,Σi − κΣ)I (ϕi = −(1− α)δ)
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The distribution after re-pricing is given by

n0(µi,Σi, ϕi) = ñ0(µi,Σi, ϕi)I(µi ∈ [−µ(Σi), µ(Σi)]) + I(µi = 0)

(∑
i

ñ0(µi,Σi, ϕi)I(µi /∈ [−µ(Σi), µ(Σi)])

)

Given the initial state the stochastic process for the firm state is given by

µ1+1 =

{
0 if Jht+1 = 0 and vc(Σt+1)− θ ≥ vnc(µ̄t+1,Σt+1) or Jht+1 = 1
µ̄t+1 otherwise

µ̄1+1 = µt +
Σt√

Σt + γ2
εt+1 + ϕt

Σt

Σt + γ2

Σ1+1 =
γ2

Σt + γ2
Σt + σ2

f + σ2
uJ

p
t+1

ϕ1+1 = ϕt
γ2

Σt + γ2

Once we have the distribution of firms at period t, we can compute forecast error, output gap and
frequency of price change

Ft =
∑
i

ϕint(µi,Σi, ϕi)

Yt = −
∑
i

(µ̂i + ϕi)nt(µi,Σi, ϕi)

Nt =
∑
i

Λ(µi,Σi)nt(µi,Σi, ϕi)
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J Robustness of the Dynamic Effect of a Monetary Shock

In the main text, we calibrate the model using the evidence in Zbaracki et al. (2004) and Levy et al.
(1997) for the size of the menu cost; and we use hazard rate in Nakamura and Steinsson (2008). Since
there is a reasonable amount of empirical disagreement about these two target, this section presents
robustness exercises with these two targets. Subsection J.1 presents robustness with respect to the
size of the menu cost and J.2 presents robustness with respect the hazard rate.

J.1 Robustness with Respect to the Menu Cost

This subsection re-calibrates the model for different menu cost and it shows the changes in the real
effect of a monetary shock under the these calibration. Figure XIX shows when we calibrate the
menu cost 20% higher or lower than the baseline case in the main text and table VIII shows the price
statistics. Notice

Table VIII: Parameters and Moments For Different Menu Cost

(1) Baseline (2) Low Menu Cost (3) High Menu Cost

Parameters

θ 0.064 0.051 0.077
σf 0 0 0
σu 0.198 0.198 0.198
λ 0.016 0.016 0.016
γ 0.233 0.233 0.233

Moments

E[τ ] in months 10 10 9.9
std[|∆p|] 0.07 0.07 0.07
hazard rate slope −0.009 −0.009 −0.009
kurtosis[∆p] 1.98 1.96 1.94

Models: (1) Baseline: as the main text; (2) Menu cost 20% lower than baseline; (3) Menu cost 20% higher than
the baseline.

J.2 Robustness with Respect to the Hazard Rate

This subsection re-calibrates the model to different hazard rate and it shows the changes in the real
effect of a monetary shock under the these calibration. We cover 4 cases: (i) Baseline, where we repeat
the calibration in the main text with the target of Nakamura and Steinsson (2008); (ii) Constant, where
we repeat the calibration with perfect information and fat-tail shocks; (iii) Increasing-decreasing, where
we recalibrate a zero slope of the hazard rate with first increasing and then decreasing; (iv) Highly
decreasing, where we duplicate the slope of the hazard rate by from -0.009 to -0.012. Since we cannot
generate a decreasing and then increasing cases, we do not cover this case. Table IX shows each
calibration.

Figure XX shows the hazard rate in the different cases, together with the renewal and marginal
distribution of uncertainty in the fourth cases (notice that with γ = 0 the distribution of uncertainty
is trivially 0 and therefore we don’t show it). As we can see in Panel C, the increasing-decreasing case
has a lower dispersion uncertainty—in all firm and in all firms conditional of adjustment—than in the
benchmark case. The opposite direction is the highly-decreasing hazard rate. In this case, as we can
see in panel D, there is a large dispersion of uncertainty across firms and even a highly difference in
between the renewal and the marginal distribution of uncertainty. In conclusion, we can see clearly
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Table IX: Parameters and Targets

(1) Baseline (2) Constant (3) Increasing-Decreasing (4) Highly decreasing

Parameters

σf 0 0 0 0
σu 0.198 0.146 0.198 0.2729
λ 0.016 0.013 0.015 0.0134
γ 0.233 0 0.500 0.233

Moments

E[τ ] in months 10 10 10 10
std[|∆p|] 0.07 0.08 0.05 0.10
hazard rate slope −0.009 0 −0.001 −0.019
kurtosis[∆p] 1.96 2.226 1.7416 2.85

Models: (1) Baseline: Same calibration as the main text; (2) Perfect info and fat-tailed shocks; (3) Heterogeneous
uncertainty. Hazard rate’s slope - average between 1 and 18 months.

how the slope of the hazard rate implies different dispersion in the uncertainty distribution across
firms.

Figure XXI shows the impulse-response functions of output, inaction errors, forecast errors, fre-
quency of price change and average uncertainty dynamics. From these figures we can extract the
following conclusion: i) lower heterogeneity in uncertainty implies lower effect of monetary shocks in
the disclosed monetary shock, ii) these relation is reverted in the case of undisclosed monetary shocks,
since the amplification given by the dispersion of the forecast error is cancel with a higher γ.
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Figure XX: Hazard Rate for Different Values of λ
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Panel A plots the hazard rates for different calibration and int he Data. Panels B to D show the distribution of uncertainty in
the baseline case as in the main text, increasing-decreasing hazard rate and in the highly decreasing hazard rate, respectively.
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K CalvoPlus Model with Imperfect Information

In this section we extend our model to include random menu costs. It is a version of the CalvoPlus
model as in Nakamura and Steinsson (2008). With this model, we can fix two shortcomings of our
benchmark setup: (1) we are able to obtain small price changes, and (2) we reduce the elasticity of the
adjustment frequency to uncertainty. Moreover, in this case our model generates more propagation of
nominal shocks than Gertler and Leahy (2008). We target a kurtosis of 4, and the same statistics as
the main text. We also target the physical cost of changing the price, taking into account that there
are some free price changes. Table X describes the parameters in the CalvoPlus model. As we can
see, now all the models can match the kurtosis of price change with a different ratio between free-price
changes and costly price changes.

Table X: Model Parameters and Data Targets

US Data (1) Benchmark (2) Fat-tailed shocks (3) Imperfect Info

Parameters

θ 0.06994 0.0647 0.0647
σf 0.0037 0
σu 0.1236 0.29
λ 0.01960 0.0085
γ 0.3
h 0.0236 0.0120 0.0065

Moments

E[τ ] in months 10 10∗ 10∗ 10∗

std[|∆p|] 0.08 0.0158 0.08∗ 0.101∗

Hazard rate’s slope −0.007 0.0009 0 −0.012∗

kurtosis[∆p] 3.95 3.938∗ 3.9585∗ 3.70∗

Cost of price change 0.0064 0.0068∗ 0.0064∗ 0.0060∗

Data: CPI Data from US.
Models: (1) Benchmark: Perfect info with only frequent shocks; (2) Perfect info with only fat-tailed shocks;
(3) Imperfect info with fat-tailed shocks. Hazard rate’s slope is the average between 1 and 18 months.
Asterisk = target moment in calibration.

Figure XXII describes the impulse-response for the same experiments we did in the main text.
Panel A describes three cases: Perfect information benchmark, perfect information and fat-tailed
shocks and our model with disclosed shocks. The impulse-responses are similar, with the qualitative
property that the model with uncertainty cycles generates less real effect on impact but more persis-
tence. The last property is the same as in the main text without CalvoPlus. Panel B describes our
model with disclosed monetary shock, undisclosed monetary shock and undisclosed monetary shock
with an uncertainty shock. As we can see, when forecast errors are calibrated to match micro-price
statistics, there are large effects of monetary shocks that are dampened when uncertainty is high.
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Figure XXII: Output Response to a Monetary Shock for CalvoPlus Model
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Left panel: output response for a disclosed shock in the three models with random menu cost. Right panel:
output response for different shocks in CalvoPLus model with uncertainty cycles.

L Overidentifying Restrictions: Age and Price Statistics

In this section, we conduct robustness checks of our calibration by exploiting the tight connection
between the age of price and firm uncertainty produced by our model. Price age is measured as the
number of periods that a price has remained unchanged. In particular, our model predicts that young
(uncertain) prices are larger, more dispersed, and more likely to be reset than older (certain) prices.
These predictions are documented by Campbell and Eden (2014) using weekly scanner data. We use
this evidence as an over-identifying restriction for our model.

L.1 Relationship between uncertainty Ω and age a

Figure XXIII describes the relation age and uncertainty. Panel A plots the ergodic density of price
age. Panel B plots the ratio of conditional to unconditional uncertainty E[Ω|a]/E[Ω]. A price with
uncertainty equal to average uncertainty (E[Ω] = 0.0026) has an age of 20 weeks, whereas the median
and average age are 32 and 42 respectively. Young prices have almost twice the average level of
uncertainty, whereas old prices have about 75% of the average level of uncertainty. Panel C plots
the distribution of prices conditional on age. Young prices are more dispersed than old prices. Panel
D plots the accumulated distribution of uncertainty normalized by the mean. The distribution of
uncertainty of young prices first-order stochastically dominates the distribution of old prices. Young
prices are twice as flexible as old prices.
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Figure XXIII: Age dependent statistics and uncertainty
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L.2 Scanner data vs. Model

Campbell and Eden (2014) define a young price if its age is less than three weeks and an old price if
its age is more than four weeks. That paper finds that conditional on adjustment, young prices have
double the dispersion of old prices (7% vs. 15%) and that price changes in the extreme tails of the
price change distribution tend to be young. Regarding the frequency, it finds that young prices are
three times more likely to be changed than old prices (36% vs 13%).

We compute analogous numbers in our model, defining young prices to be in the 20th quintile of
the price age distribution (2 months) and old prices to be in the 80th quintile (12 months). We obtain
that price dispersion is 1.5 times higher for young prices compared to old prices, and that adjustment
frequency is 2 times higher for young prices. Interestingly, the uncertainty faced by young prices is
also three times the uncertainty faced by old prices, thus the relative adjustment frequency seems to
be informative about the relative uncertainty faced by firms. See Figure XXIV.

Figure XXIV: Price Gap Distribution (Data vs. Model)
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All Young Old Ratio All Young Old Ratio

Frequency % 15 36 13 2.8 10.00 13.12 6.44 2.0
std(Price gap) 11.4 15.1 6.9 2.2 3.61 4.0 3.0 1.33
Uncertainty*100 0.014 0.027 0.008 3.3704
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L.3 Summary of price statistics by age

Table XI: Micro-Price Statistics in Calibrated Model

moments All Young Old

Absolute Value of Price Change

Mean 0.130 0.157 0.1258
Std Deviation 0.059 0.045 0.069
Skewness 0.905 1.493 0.580
Kurtosis 4.266 7.448 2.910

Price Change

Mean -0.00 -0.00 -0.00
Std Deviation 0.029 0.164 0.143
Skewness 0.039 -0.012 0.029
Kurtosis 1.891 1.449 2.060

This table describes micro-price statistics for all, young and old prices.
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M Impact Effects: Continuous vs. Leptokurtic Processes

This section compute the impulse-response after a monetary shock of the Golosov and Lucas (2007)
and the Gertler and Leahy (2008) models up to first order. We show that: i) the impact effect on
output of a monetary shock in the leptokurtic model of Gertler and Leahy (2008) is lower than the
Brownian model in Golosov and Lucas (2007), ii) the persistence of the output effects generated in
Gertler and Leahy (2008) is higher than in Golosov and Lucas (2007) for a sufficiently small menu
cost.

The environment is as in the main text. The markup gap law of motion is given by

dµt = σfdWt + ztdQt, (M.86)

here Wt is a Brownian motion, zt is an uniform distribution with support [−φ
2 ,

φ
2 ] and Qt is a Poisson

counter with intensity λ. For simplicity we assume a positive money shock δ.

Impulse-response function in Gertler and Leahy 2008: We proceed to compute the impulse-
repulse response in the case with σf = 0. For simplicity we assume that φ

2 > 2
√
θ(r + λ). The HJB

is given by
(r + λ)V (µ) = −µ2 + λEφ [max {V (µ+ φ), V (0)− θ}] . (M.87)

Given that φ is uniform, the Eφ [max {V (µ+ φ), V (0)− θ}] is independent of µ. With this property,
it is easy to show that the continuation region is given by [−µu, µu] with µu =

√
θ(r + λ).

The steady state distribution of markups is given by an uniform distribution with a probability
atom at µ = 0. The probability atom P in steady state satisfies the zero net entry. The exit rate is
given by Pλdt, where P is the mass as zero and λdt is the probability of exit in a time period dt. The
entry rate is given by λdt[1 − 2µ

φ ], where 1 is the measure of all firms and [1 − 2µ
φ ] is the probability

of a price change conditional of receiving an idiosyncratic shock. Given that the entry rate has to be

equal to the exit rate, we have that P =
[
1− 2µ

φ

]
. Since there is a measure 1 of firms, the distribution

of markups for all µ /∈ [−µu, µu] is given by

f(µ) =
1

φ
, (M.88)

with a probability atom P =
[
1− µ

φ

]
in µ = 0.

To compute the impulse-response we proceed in two steps: 1) the impact effect, and 2) the dynamic
effect. The impact effect is given by the decrease of markup of size δ minus the average price change

−
∫ −µ
−µ−δ x

1
φdx = δ 1

φ [µ − δ/2], therefore the impact effect is given by δ
[
1− 1

φ (µ+ δ/2)
]

and Ŷ0 =

δ
[
1− 1

φ (µ+ δ/2)
]
. Since conditional of receiving an idiosyncratic shock, the new markup has average

zero, the mean reversion of the output is given by λdt, with the impulse response given up to a first
order

Ŷt
δ

= e−λt
[
1− µ+ δ/2

φ

]
= e−λt

[
1− µ

φ

]
+ o(δ) (M.89)

Notice that the impact effect is linear in δ and the persistence is given by λ.
Impulse-response function in Golosov and Lucas 2007: For computing the λ = 0, we follow
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Kolkiewicz (2002) and Álvarez and Lippi (2014)’s Online Appendix for the case n = 1. In this case

Ŷt
δ

= 1−
µf
δ

∞∑
k=1

1− exp
(
−k2π2t/(2E[τ ])

)
kπ

× . . . (M.90)

· · ·+
∫ −δ/µf
−1

[sin(kπ(1 + x))− sin(kπ(1− x))]× λ(x,
δ

µf
, 1)dx+ o(δ) (M.91)

λ(x, δ, µf ) =


1
µf

(
1 + δ

µf
+ x

µf

)
if x

µf
∈
[
−1− δ

µf
,− δ

µf

]
1
µf

(
1− δ

µf
− x

µf

)
if x

µf
∈
(
− δ
µf
, 1− δ

µf

] (M.92)

µf =
(
6θσ2

f

)1/4
(M.93)

Discussion: Figure XXV shows that the price response is larger with leptokurtic shocks, which
implies that the output effects are smaller (we follow the same calibration as the main text with
φ = 0.25 as in Gertler and Leahy (2008)). We observe that the impact effect on output is lower for
leptokurtic shocks, but the persistence is lower for the Brownian case, because the infinite sum forces
the exponential function to converge faster to zero.

Figure XXV: Output Impulse-Response with Leptokurtic and Brownian Shocks
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N Intensive and Extensive Margin Decomposition

In this section we analyze a decomposition of the output effects into an intensive and extensive margin.
The strategy is as follows:

1.1 We revisit Caballero and Engel (2007)’s standard decomposition of price adjustments after a mon-
etary shock into extensive and intensive margins; we show that the nature of their decomposition—
static and to a first order—is problematic for a continuous time framework as ours.5 We exemplify
this through a simple menu cost model with Brownian motion and then in our model with infor-
mation frictions.

1.2 As an alternative, we propose a decomposition in Caballero and Engel (2007)’s spirit that computes
the extensive margin as a residual. We explain how to implement this decomposition for the impact
response and then a dynamic response. Since it does not rely on first order effects, it is meaningful
for our model.

1.3 We implement the dynamic decomposition for the case of disclosed (fully observable) nominal
shocks.

1.4 We implement the dynamic decomposition for the case of partially disclosed nominal shocks and
discuss some challenges.

1.5 We quantify the relative importance of the two margins for the same set of exercises in the main
text.

N.1 Challenges with Standard Decomposition

We follow closely the notation and strategy in Caballero and Engel (2007). Consider an economy with
a continuum of firms represented by an idiosyncratic state µ (markup gaps) and let f(µ) be its steady
state cross-sectional density. Let Λ(µ) be the probability of price adjustment given the state µ, or the
adjustment hazard, which is increasing. With these objects at hand, we can express the aggregate
price adjustment when there is a small monetary shock of size ∆m = δ > 0, denoted by ∆p(δ), as
follows:6

∆p(δ) = −
∫

(µ− δ)Λ(µ− δ)f(µ) dµ. (N.94)

After a first order Taylor approximation around δ = 0 we obtain

∆p(δ)

δ
=

∫
Λ(µ)f(µ) dµ︸ ︷︷ ︸
Intensive I

+

∫
µΛ′(µ)f(µ) dµ︸ ︷︷ ︸
Extensive E

+o(δ) (N.95)

The first term I, called the intensive margin, corresponds to the adjustment frequency and de-
scribes the additional price increase resulting from a change in the size of the adjustment in firms that
were going to adjust anyway. In contrast, the second term E , called the extensive margin, reflects the
price changes resulting from a change in the fraction of adjusters. Note that these quantities reflect
impact effects and are static measures.

5In their discussion about the extensive margin, Caballero and Engel (2007) recognizes that their extensions with
idiosyncratic shocks “[...] are more easily implemented in discrete time.”

6The negative sign comes from the fact that a positive markup gap implies a negative desired price change.
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Application to Brownian state Before applying this decomposition into our model, we consider
a simple menu cost model where the state follows a Brownian motion and the inaction region is the
interval R ≡ [µ, µ]. The adjustment hazard is given by Λ(µ) = ∆(µ−µ) + ∆(µ−µ), where ∆ denotes
the Dirac delta function around zero.7 It is easy to see that the probability mass at either boundary
of the inaction region ∂R = {µ, µ} is equal to zero, because as soon as the state touches the boundary
the price is reset and mass cannot accumulate at those points. Therefore, f(µ) = f(µ) = 0. Putting
things together, and using properties of the Dirac delta8, we obtain

∆p(δ)

δ
=

∫ [
∆(µ− µ) + ∆(µ− µ)

]
f(µ) dµ+

∫
µΛ′(µ)f(µ) dµ+ o(δ)

=

∫
∆(µ− µ)f(µ) dµ+

∫
∆(µ− µ)f(µ) dµ−

∫
µΛ(µ)f ′(µ) dµ+ o(δ)

= 0

Therefore, the intensive and extensive margins as defined in (N.95), are always zero: I = E = 0. The
reason is that, on impact, a menu cost model with continuous idiosyncratic shocks does not generate
first order effects.

Application to our model Now we apply the Caballero and Engel (2007) decomposition to our
model, where the state is given by the markup estimate and its uncertainty (µ̂,Ω) and the inaction
region is symmetric and two-dimensional R = [−µ(Ω), µ(Ω)]. It follows that the aggregate price
adjustment following a fully observable monetary shock (disclosed shock) δ > 0 is given by:

∆p(δ) = −
∫

Ω

∫ −µ(Ω)+δ

−µ(Ω)
(µ̂− δ)f(µ̂,Ω) dµ̂ dΩ. (N.96)

where we have substituted the adjustment hazard (equal to 1 for all firms that fall outside the inaction
region). After the first order Taylor approximation around δ = 0, we obtain:

∆p(δ)

δ
=

∫
Ω
µ(Ω) f(−µ(Ω),Ω)︸ ︷︷ ︸

=0

dΩ +

∫
Ω

[F (−µ(Ω),Ω)− F (−µ(Ω),Ω)]︸ ︷︷ ︸
=0

dΩ

+ o(δ) = o(δ), (N.97)

where the first term f(−µ(Ω),Ω) = 0 is equal to zero due to regularity of the boundary of the
continuation region (the probability that there is positive expected duration at the boundary is equal
to zero). Again, we obtain that on impact there are no first order effects and therefore the intensive
and extensive margins, as defined in (N.95), are both equal to zero. Similar outcomes are obtained
when solving the model numerically in discrete time at the weekly frequency.

N.2 Static Residual Decomposition

From the previous examples, we learn that focusing on first order effects on impact produce non-
informative statistics in our model, since all the effects are second order. We now propose a decompo-
sition that considers the extensive margin as a residual. First, we consider the a static response upon
the impact of the aggregate shock and then generalize it to dynamic responses.

Let f δ(µ) be the density of the state after an aggregate shock of size δ, E [∆p|µ] be the expected
size of a price change conditional on adjustment when the initial state is µ, and Λ(µ) be the probability

7The Dirac delta function is defined formally as
∫∞
−∞∆(x−a)f(x)dx = f(a), or informally as ∆(x) =

{
∞ if x = 0
0 if x 6= 0

.

8We use: ∆(x− a)f(x) = ∆(x− a)f(a), ∆′(x)f(x) = −∆(x)f ′(x), and xn∆(x) = 0∀n > 0.
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of price change conditional on the state. Then, starting from the definition of inflation and doing a
few manipulations:

∆p(δ) ≡
∫

E [∆p|µ] Λ(µ)f δ(µ) dµ

=

∫
δΛ(µ)f δ(µ)dµ+

∫
(E [∆p|µ]− δ) Λ(µ)f δ(µ)dµ

= δ

[∫
Λ(µ)f δ(µ)dµ+

∫ (
E [∆p|µ]− δ

δ

)
Λ(µ)f δ(µ)dµ

]
we obtain the following decomposition, that computes the extensive margin as a residual:

∆p(δ)

δ
= I(δ) + E(δ), (N.98)

I(δ) ≡
∫

Λ(µ)f δ(µ), (N.99)

E(δ) ≡
∫ (

E [∆p|µ]− δ
δ

)
Λ(µ)f δ(µ). (N.100)

As an example, consider the Calvo model with constant Λ(µ) = Λ, which implies that

E(δ) = Λ

[∫ (
E [∆p|µ]− δ

δ

)
f δ(µ)dµ

]
=

Λ

δ

(∫
E [∆p|µ] f δ(µ)dµ

)
− Λ =

Λ

δ
δ − Λ = 0

since the cross-sectional average of price changes is equal to the size of the money shock. Thus our
decomposition respects the standard result that with Calvo pricing there is only an intensive margin
of adjustment. Next we extend this new definition to compute dynamic responses.

N.3 Dynamic Residual Decomposition (Disclosed Nominal Shock)

Now we decompose the impulse-response function into intensive and extensive margins. First, we will
focus in the case with perfect observability of the nominal shock and then we analyze the case with
partially disclosed monetary shock. From now on, we consider our model with information frictions,
but the decomposition is analogous in other models.

Let E [∆p|µ̂,Ω] be the expected size of a price change conditional on adjustment when the initial
state is (µ̂,Ω), Λ(µ̂,Ω) be the conditional probability of price change, and f δt (µ̂,Ω) be the density of
firms at time t. Let ∆pt(δ) be inflation at time t following a monetary shock of size δ, which can
expressed as:

∆pt(δ) =

∫
µ̂,Ω

E [∆p|µ̂,Ω] Λ(µ̂,Ω) f δt (µ̂,Ω) dµ̂dΩ. (N.101)

Since the nominal shock is disclosed (perfectly observed by all firms), once a firm adjusts its price
it fully incorporates the nominal shock. As we discussed in the main text, only the first price change
matters for the effects of nominal shocks; further price changes only reflect idiosyncratic shocks that
wash out in the aggregate. For this reason, we can replace the density f δt (µ̂,Ω) with the density

conditional on inaction between {0, 1, ..., t}, that we denote with f I,δt (µ̂,Ω), and only track the firms
that have not adjusted yet. Our dynamic residual decomposition then becomes:

∆pt(δ)

δ
= It(δ) + Et(δ), (N.102)

It(δ) =

∫
Λ(µ̂,Ω)f I,δt (µ̂,Ω), (N.103)

Et(δ) =

∫ [
E [∆p|µ̂,Ω]− δ

δ

]
Λ(µ̂,Ω)f I,δt (µ̂,Ω) dµ̂dΩ. (N.104)
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Notice that Iδt satisfies the same definition as Caballero and Engel (2007) for the static impact effects,

since in the first period the densities satisfy f I,δ0 (µ̂,Ω, δ) = f δ0 (µ̂,Ω, δ). The difference lies in that this
decomposition considers higher orders beyond the first. In the Calvo model, since Λ(µ̂,Ω) = Λ and

f I,δt (µ̂,Ω) ∝ f I,δ0 (µ̂,Ω), we have that Λ
∫ [E[∆p|µ̂,Ω]

δ

]
f I,δt (µ̂,Ω, δ) = 1 and Eδt (Ω) = 0 for all t.

N.4 Dynamic Residual Decomposition (Partially Disclosed Nominal Shock)

Following the notation as in the main text, let α denote the observability of the nominal shock and
ϕ0 = (1 − α)δ be the biased component of forecast errors on impact. The case with a partially
disclosed nominal shock (α < 1) is challenging. The problem lies in that firms do not fully incorporate
the nominal shock after the first price change (recall that in this case forecast errors arise), and

therefore, inflation cannot longer be defined using f I,δt (µ̂,Ω) as before:

∆pt(δ) 6=
∫
µ̂,Ω,ϕ

E [∆p|µ̂,Ω, ϕ] Λ(µ̂,Ω, ϕ)f I,δt (µ̂,Ω, ϕ) dµ̂dϕdΩ. (N.105)

Our proposed solution is to replace the density f δt (µ̂,Ω, δ) with a new density f II,δt (µ̂,Ω, ϕ), which
keeps track of firms that have positive forecast errors or firms that have a zero forecast error but have
not adjusted. In other words, the density f II,δt (µ̂,Ω, ϕ) has dropped firms that satisfy the following
two requirements:

• have a zero biased component of the forecast error ϕ = 0, and

• have changed the price between {0, 1, ..., t}.

Intuitively, if a firm has adjusted its price after she has fully updated its information set, then it means
that it has fully incorporated the money shock into its price; consequently, additional price changes
have a zero mean and can be ignored for computing the effects of a monetary shock. Therefore, we
have that inflation can be computed as

∆pt(δ, α) =

∫
µ̂,Ω,ϕ

E [∆p|µ̂,Ω] Λ(µ̂,Ω)f II,δt (µ̂,Ω, ϕ)dµ̂dΩdϕ. (N.106)

Now we can decompose ∆pt(δ, α) into the intensive margin and the extensive margin as before, but
including a normalization factor that takes into account the observability α:

∆pt(δ, α)

δ
= It(δ, α) + Et(δ, α), (N.107)

It(δ, α) =

∫
Λ(µ̂,Ω)

(
δ − ϕ
δ

)
f II,δt (µ̂,Ω, ϕ)dµ̂dΩdϕ, (N.108)

Et(δ, α) =

∫ [
E [∆p|µ̂,Ω]− (δ − ϕ)

δ

]
Λ(µ̂,Ω)f II,δt (µ̂,Ω, ϕ)dµ̂dΩdϕ. (N.109)

N.5 Computation

Figure XXVI shows the inflation decomposition and the adjustment frequency for a disclosed monetary
shock of size δ = 1% together with an aggregate uncertainty shock of size κE[Ω], with κ ∈ {0, 1, 4}.
We consider fully disclosed (α = 1) and fully undisclosed shocks (α = 0). We show statistics at the
monthly frequency so that they are comparable to the data.

We can extract several conclusions from this exercise.

i) On impact, the intensive margin and the adjustment frequency always increase.
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ii) Since the inflation change is larger than the intensive margin on impact (and in the first few
months), the extensive margin also increases.

iii) As the aggregate uncertainty shock gets larger (κ increases), the relative importance of the inten-
sive margin increases on impact.

On Impact: No Ω shock Small Ω shock Large Ω shock
κ = 0 κ = 1 κ = 4

Intensive/Total 30% 37% 45%
Extensive/Total 70% 63% 55%

iv) Without an aggregate uncertainty shock, the frequency becomes constant after the first months.
The extensive margin disappears and the intensive margin is akin to that of the Calvo model.
However, this property breaks with aggregate uncertainty shocks,

v) In the first months, the extensive margin is always positive, then it falls below zero, until it
stabilizes. The reason is that after the monetary shock, a larger fraction of firms hit the lower
boundary and increase their prices, while in the following months a larger fraction of firms hits
the upper bound and lowers its prices.
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Figure XXVI: Inflation Decomposition into Intensive and Extensive Margins Disclosed Shock
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Figure XXVII: Inflation Decomposition into Intensive and Extensive Margins Undisclosed Shock
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O Uncertainty and pass-through

In the previous exercises, we established connections between the dynamics of aggregate uncertainty,
aggregate forecast errors, and the propagation of monetary shocks. In this section, we study these con-
nections at the individual level using the concept of pass-through, which measures the responsiveness
of individual prices to the monetary shock. We establish two results. First, we find that information
frictions, disciplined via micro-price data, reduce pass-through. Second, we find a positive relationship
between firm uncertainty and pass-through.

We follow the methodology used to estimate the pass-though of nominal shocks into prices as in
Gopinath, Itskhoki and Rigobón (2010). We consider a random walk process for the log deviations of
money supply from its steady state, lnMt+1 = lnMt + σMεt+1, with εt+1 ∼ N (0, 1), with volatility
σM = 0.007 at weekly frequency. We then generate a panel of prices for N = 10, 000 firms denoted
with i and for T = 100, 000 periods denoted with t. For each firm, we record the size of the price
change ∆pit and the cumulative nominal shock ∆cM i

t measured as the money supply deviations from
steady state between her price changes: ∆cM i

t ≡ lnMt − lnM i
t−nit

, where nit denotes the number of

periods since her last price change.
We regress the size of price changes into the cumulative monetary shock ∆cM

i
t , firm uncertainty

Ωi
t, and an interaction term between firm uncertainty and the monetary shock (∆cM

i
t × Ωi

t).

∆pit = βM ∆cM
i
t + βΩ Ωi

t + βM,Ω (∆cM
i
t × Ωi

t) + εit (O.110)

Results from different specifications of this regression are reported in Table XII. Columns (1) to (3)
report results for three models with perfect information: Calvo; menu cost with only frequent shocks;
and menu cost with only infrequent shocks. In these cases, the coefficient on the cumulative monetary
shock βM measures the average pass-through of the nominal shock into the price. Unsurprisingly, we
find that pass-though is complete (βM is very close to unity): conditional on a price change, the firms
fully incorporate the money shock into their prices.

The last four columns report results for our model with heterogenous firm uncertainty, with and
without disclosed money shocks. When we include the interaction term, the average pass-through is
measured by βM +βM,Ω Ω̄, where average uncertainty level is Ω̄ = 0.056. In the model with a disclosed
monetary shock in Columns (4a) and (4b), average pass-through is equal to 1.02 or 1.05 if we include
the interaction; thus pass-through is complete. In the model with undisclosed monetary shock in
Columns (5a) and (5b), average pass-through is equal to 0.23 or 0.20 if we include the interaction
term; thus it is five times smaller. The information friction delays the updating of the permanent
component of marginal costs. This is a success of the model as it brings the pass-through coefficient
closer to the small numbers found in the data.

Uncertainty on its own is not statistically significant, but its interaction with the cumulative
money shock yields very interesting results. When monetary shocks are observable in an environment
of uncertain idiosyncratic productivity (Column 4b), the coefficient βM,Ω is negative: when firm
uncertainty is high, idiosyncratic productivity shocks become relatively more important than monetary
shocks for pricing decisions; this reduces selection effects and average pass-through. In contrast, when
the monetary shocks are unobservable (Column 5b), the coefficient βM,Ω is positive. In this case, highly
uncertain firms assign a larger Bayesian weight to observations that contain the monetary shock, and
incorporate a larger fraction of the shock into their prices. Given the positive relationship between
uncertainty and standard deviation of price changes in Proposition 8, our results imply a positive
relationship between the standard deviation of price changes and pass-through, as documented in
Berger and Vavra (2017) in the context of import price-setting.

The low pass-through of nominal shocks into individual prices is often attributed to strategic com-
plementarities across firms. Our results show that information frictions about the nominal shock is an
alternative way to decrease pass-through. Complementarities achieve it by decreasing the elasticity of
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Table XII: Firm Uncertainty and Nominal Pass-Through

Regressor Coefficient (1) (2) (3) (4a) (4b) (5a) (5b)

Monetary shock βM 1.00 1.03 1.02 1.02 1.12 0.23 0.18
(0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.02)

Uncertainty βΩ 0.02 -0.05
(0.04) (0.04)

Interaction βM,ΩΩ̄ -0.07 0.02
(0.01) (0.01)

R2 0.14 0.14 0.11 0.005 0.005 0.0003 0.0003

Robust standard errors in parenthesis. The interaction term is evaluated at average uncertainty
Ω̄ = 0.056. Models: (1) Calvo; (2) Perfect info with only frequent shocks; (3) Perfect info with
only infrequent shocks; (4) Imperfect info and disclosed monetary shock; and (5) Imperfect info and
undisclosed monetary shock.

the size of price changes with respect to nominal marginal costs, whereas information frictions achieve
it because firms take time to realize that costs have changed. However, the two mechanisms make
opposite predictions regarding the relationship between idiosyncratic uncertainty and pass-through.
For instance, Berger and Vavra (2017) shows that in model with strategic complementarities that
arise from Kimball demand, larger volatility of idiosyncratic shocks reduces pass-through; while in
our model with undisclosed nominal shocks, larger uncertainty about idiosyncratic shocks increases
pass-through. This appears as an interesting implication for empirical research.
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P Additional Steps in Proof of Kalman-Bucy Filter with Jumps

In this section we show formally the convergence of the discrete time sampling observation. To show
the convergence result we used Theorem 1.1 in Chapter 10 of Kushner and Dupuis (2013), where it
shows weak convergence for Īto-Levy processes when the jumps are given by a compound Poisson
process. To show this first we write the estimates as a function of the orthogonal innovation for the
discrete sampling. We write the estimate in this way to apply the theorem in Kushner and Dupuis
(2013). Then we show that the orthogonal innovation for the estimate is a Weiner process and for the
variance is a Poisson process.

The following theorems are used in several of our proofs. These are standard so they are provided
without proof.

Theorem 2 Fix a probability space (Λ,F , P ). Let Xj : Λ → R are Normal random variables. Then
X = (X1, X2, . . . , Xn) is Normal if and only if Y =

∑
i λiXi is Normal.

Theorem 3 Suppose that Xk : Λ → R is normal for all k and that Xk → X is L2 . Then X is
normal

Theorem 4 Let Bt be a normal random variable for all t. Then
∫ t

0 Bsds is normal.

Theorem 5 Let Y,X|Z = z are normal random variables, then Y |(X = x, Z = z) are normal random
variables.

Theorem 6 Let yt be a continuous process and S a dense set in [0, T ]. Then σ {ys : s ∈ S} =
σ {ys : s ∈ [0, T ]}

Theorem 7 Let Y : Λ → R be a random variable. Let Fn be an increasing sequence of σ-algebra.
Then Xn = Y |Fn is a martingale with respect to Fn

Theorem 8 Let Mk be a discrete time martingale with respect Fk. Assume that supk E[|Mk|p] <
∞ for some p Then there exist a M ∈ L1 s.t. Mt →M a.e. (P ) and

∫
|Mk −M |dP → 0 as k →∞.

Theorem 9 Let X ∈ L1, let Fk and increasing sequence of σ-algebra, Fk ∈ F and define F∞ =
σ {∪∞i=1Fi}, then E[X|Fk]→ E[X|F∞] a.e. in P and in L1.

The following Lemma shows that the markup gap estimate can be written as a function of previous
period estimate plus Normal orthogonal innovations.

Lemma 3 Let t = 0, 1/2n, 2/2n, . . . and ∆ = 1
2n . Define then n−estimate and n−variance as follows:

µ̂nt = E[µt|In,∗t ]

Σn
t = E[(µt − µ̂nt )2 |In,∗t ]

Then it follows that

µ̂t+∆ − µ̂t = Fµ̂t∆ + ϕI(∆)DXt+∆

Σt+∆ − Σt =
(
ϕII(∆)− σ2

f

)
∆ + I(Qt+∆ −Qt)σ2

u + o(∆2)

where

ϕI(∆)→n→∞
ΣtG

γ

ϕII(∆)→n→∞ 2FΣt −
G2Σ2

t

γ2

DXt ∼i.i.d N (o(∆),∆ + o(∆2))
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Proof. From the main text we have that

µ̂nt+∆ − µ̂nt =
(
F −GϕI(∆)

)
µ̂t∆ + ϕI(∆) (st − st−∆) + o(∆2)

Σn
t+∆ − Σn

t =
(
ϕII(∆) + σ2

f

)
∆ + I(Qt+∆ −Qt)σ2

u + o(∆2) (P.111)

where

ϕI(∆) =
ΣtG

ΣtG2∆ + γ2
→∆→0

ΣtG

γ2

ϕII(∆) = (1 + ∆F )2(1−KtG∆)2Σt + (1 + ∆F )2K2
t γ

2 − Σt →∆→0 2FΣt −
G2Σ2

t

γ2
(P.112)

Given that
st = st−∆ +G∆µt +

√
∆γ2ηt + o(∆2) (P.113)

and E[µt − µ̂nt |I
n,∗
t ] = 0, we have that ϕI(∆)γ

st−st−∆−Gµ̂t∆
γ − o(∆2) = DXt where DXt is an i.i.d.

Normal with mean o(∆) and variance ∆ + o(∆). Therefore

µ̂t+∆ − µ̂t = Fµ̂t∆ + ϕI(∆)DXt+∆

with DXt ∼ N (o(∆),∆ + o(∆))
To show convergence we extend the estimation for all t to a right continuous process in the following

way

(µ̂nt , Σ̂
n
t ) = (µ̂ntt , Σ̂

n
tt) with ti =

k

2n
and t ∈ [ti, ti +

1

2n
) (P.114)

Proposition 6 Let ξnt = (µ̂nt , Σ̂
n
t ) be the solution of (P.111) and let ϑt = (µ̂t,Σt) be the solution of

dµ̂t = Fµ̂tdt+
G2Σt

γ
dXt (P.115)

dΣt =

(
2FΣt + σ2

f −
G2Σ2

t

γ2

)
dt+ σ2

udQt

The ξnt converge weekly to ϑt.

Proof. We follow the proof of Theorem 1.1, Chapter 10 of Kushner and Dupuis (2013). Let τn =
inft{(µ̂nt ,Σn

t ) ∈ KK : KK is compact} and define ξ̃nt = ξnmin{t,τn}. Notice that assumption A1.1 to

A1.4 of Chapter 10 for ξ̃. The proof consists of 3 steps:

1. Show that ξnt is tight;

2. Show that the innovations are given by a Weiner or Poisson measure;

3. Show that ξn weakly converges to ϑt. To show convergence, we need to generate a bound on the
drift and variance of the process.

Tightness of the process ξ̃nt . For all stopping times νn measurable with respect to the filtration
generated by ξt, Fnt , and such that νn ≤ τn we have that

E
[(

(µ̂νn+∆ − µ̂νn)2 , (Σνn+∆ − Σνn)2
)
|Fnt

]
= E

[
ξnνn+∆ − ξnν |Fnt

]2
+ E

[(
ξnνn+∆ − ξnν − E[∆ξnνn |Fnt ]

)2 |Fnt ]
=

[
(Fµ̂nνn)2,

(
2FΣn

νn + σ2
f + σ2

uλ−
G2(Σn

νn)2

γ2

)2
]

∆2 +

(
G2(Σn

νn)2

γ2
, σ4

uλ

)
∆ + o(∆)

≤ (P1, P2)∆2 + (P3, σ
2
uλ)∆ + o(∆)

= O(∆)
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where we have defined

P1 ≡ max
(x,y)∈KK

F 2x2 P2 ≡ max
(x,y)∈KK

(
2Fy + σ2

f + σ2
uλ−

G2y2

γ2

)2

P3 ≡ max
(x,y)∈KK

G2y2

γ2

Given that KK is compact and all the functions are continuous, the maximum exists.

Innovations to markups gap estimates follow a Weiner process Define the stochastic process

w∆
t ≡

n−1∑
i=0

γ

GΣ∆
ti

(
∆µ̂ti − Eξ∆

ti
[∆µ̂∆

ti ]
)

for t ∈ [t∆n , t
∆
n+1)

Then for all f ∈ C2(KK)

= f(w∆
t+j)− f(w∆

t )−
∫ t+j

t
0.5f ′′(w∆

s )ds

=

N∆(t+j)−1∑
i=N∆(t)

f ′(wh(ti))
γ

GΣ∆
ti

(
∆µ̂ti − Eξ∆

ti
[∆µ̂∆

ti ]
)

+

. . . +0.5

N∆(t+j)−1∑
i=N∆(t)

f ′′(wh(ti))
γ2

G2(Σn
ti

)2

(
∆µ̂ti − Eξ∆

ti
[∆µ̂∆

ti ]
)2
− . . .

. . . −0.5

N∆(t+j)−1∑
i=N∆(t)

f ′′(wh(ti))∆ + ε∆ + o(∆2)

where N∆(t) is the number of jumps up to time t and E[|ε∆t |] → 0 as ∆ → 0. Using the local
consistency properties of the process, which are given by:

Eξ∆
t

[∆µ̂nt ] = Fµ̂∆
t ∆ + o(∆)

Eξ∆
t

[(
∆µ̂nt − Eξnt [∆µ̂∆

t ]
)2]

=
G2Σ2

t

γ2
∆ + o(∆)

we have that for all function H(ξt1 , ..., ξtq , wt1 , ..., wtq) with tq ≤ t bounded and continuous, the fol-
lowing holds:

E[H(·)
(
f(w∆

t+j)− f(w∆
t )−

∫ t+j

t
0.5f ′′(w∆

s )ds

)
] ≤ E[ε∆] + o(∆2)→ 0

From tightness we have that wn(·) converges (see Chapter 9 of Kushner and Dupuis (2013) for the
complete explanation of convergence) and the limit satisfies

E[

(
f(wt+j)− f(wt)−

∫ t+j

t
0.5f ′′(ws)ds

)
|Ft] = 0

where Ft is the filtration generated by the limit random variable. If the limit random variable has
continuous paths, then it is a Weiner process. Moreover, since

E[|wnt+∆ − wnt |n]

∆
=

(√
∆ + o(∆)

)n
∆

→∆→0 0

using the Kolmogorov Continuity Theorem we have continuity of the limit w. Therefore w is a Wiener
process.
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Innovations to estimate’s variance follow a Poisson process Define the stochastic process

Qnt ≡
n−1∑
i=0

(
∆Σ̂n

ti − Eξ∆
ti

[∆Σ̂n
ti ]
)

Following similar steps as before, and using the local consistency conditions for Σn
t we get that

Eξ∆
t

[∆Σn
t ] =

(
2FΣt + σ2

f + σ2
uλ−

G2Σ2
t

γ2

)
∆

Eξ∆
t

[(
∆Σ∆

t − EΣ∆
t

[∆Σ∆
t ]
)2
]

= σ4
uλ∆ + o(∆)

Then for all f ∈ C2(KK) with support KK and for all function H(ξt1 , ..., ξtq , wt1 , ..., wtq) with tq ≤ t
bounded and continuous,

E[H(·)
(
f(Qnt+j)− f(Qnt )

)
]→ E[H(·)λ

∫ t+j

t

(
f(Qs + σ2

u)− f(Qs)
)
ds] = E[H(·) (f(Qt+j)− f(Qt))]

As before Qt the limit of Qnt is a Poisson measure. The rest of the proof is identical to Kushner and
Dupuis (2013).

Proposition 7 Let Yt = (µ̂Yt ,Σ
Y
t ) be the solution of (P.115) and let Mt = (µ̂Mt ,Σ

M
t ) be the solution

of

dµ̂t =
(
F − G2Σt

γ2

)
µ̂tdt+ GΣt

γ2 dst

dΣt =
(

2FΣt + σ2
f −

G2Σ2
t

γ2

)
dt+ σ2

udQt (P.116)

Then Mt coincides in law with Yt.

Proof. Note that the law of motion for Σt is the same, so trivially they coincide in law. For µ̂t, notice
that we can write P.115

dµ̂Yt = Fµ̂Yt dt+
GΣt

γ
dXt

= Fµ̂Yt dt+
GΣt

γ

(
G

γ

(
µt − µYt

)
dt+ dHt

)
(P.117)

where Ht is another Brownian motion. The second equality is true, since by the Law of Iterated
Expectations

E
[
(µt − µ̂Yt )|σ{µYs : s ≤ t}

]
= E

[
E
[
(µt − µ̂Yt )|It

]
|σ{µYs : s ≤ t}

]
= E[0|σ{µYs : s ≤ t}] = 0 (P.118)

where in the last step we used that µ̂Yt is an unbiased estimator. Given that E[(µt − µ̂Yt )|σ{µYs : s ≤
t}] = 0, using corollary 8.4.5 of Øksendal (2007) we have that Xt is a brownian motion if and only if
Ht is a brownian. Rewriting equation P.117, we have that

dµ̂Yt =

(
F − G2Σt

γ2

)
µ̂Yt dt+

GΣt

γ2
(Gµdt+ γdHt) (P.119)

Notice that if Ht = Zt, then we have the result, since Gµdt+ γdHt = dst
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