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A Stationary distribution

The stationary measure is the fixed point of the mapping f → Tf , where Tf gives the
probability for the next period state given that the current state is drawn according to
the probability measure f . The mass of firms in the set [0, q′]× [0, α′]× [0, `′] next period
is given by∫ α′

0

∫ `′

0

∫ q̂′

0

Tf(q̂, α, `)dq̂dαd` = (1− δ)[(1− µ)Ms(q̂
′, α′, `′) +Me(q̂

′, α′, `′)].

The first term Ms is the mass of non-displaced firms.

Ms(q̂
′, α′, `′) =

∫ α′

0

∫
α

∫
q̂/(1+gq)≤q̂′

∫
L′(q̂,α,`)≤`′

ζα(α′)(1−XI(q̂, α, `))f(q̂, α, `)dq̂d`dαdα′

+

∫ α′

0

∫
α

∫
(1+λI)q̂/(1+gq)

∫
L′(q̂,α,`)≤`′

ζα(α′)XI(q̂, α, `)f(q̂, α, `)dq̂d`dαdα′.

The second term Me is the mass of entering firms, which includes firms entering on
inactive products and firms entering on existing products:

Me(q̂
′, α′, `′) = µ(1−N)

∫ α′

0

∫
α

∫
(1+λE)q̂/(1+gq)≤q̂′

h(q̂)ζ̄(α′)dq̂dα′

+µ

∫ α′

0

∫
α

∫
(1+λE)q̂/(1+gq)≤q̂′

∫
ζα(α′)f(q̂, α, `)dq̂d`dαdα′,

where ζα(α′) is the distribution of the next period transitory shock conditional on the
current period’s value and ζ̄(α′) is the invariant distribution of the transitory shock.

The expression of the stationary distribution is simpler when the model is rewritten
in deviation to the frictionless values (see section II.B) and when the transitory shock
α is i.i.d. as assumed in section III. In that case, the stationary distribution can then
be rewritten as a function of the deviation of labor from its frictionless value ˜̀ instead
of `, and the next period transitory shock draw becomes independent of next-period
productivity and labor states.
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With these two modifications, Ms becomes

Ms(q̂
′, α′, ˜̀′) = Υ(α′)

[∫
α

∫
q̂/(1+gq)≤q̂′

∫
L′(α,`)≤˜̀′

(1−XI(α, ˜̀))f(q̂, α, ˜̀)dq̂dαd˜̀

+

∫
α

∫
(1+λI)q̂/(1+gq)

∫
L′(α,˜̀)≤˜̀′

XI(α, ˜̀)f(q̂, α, ˜̀)dq̂dαd˜̀

]
.

The mass of entrants Me can be rewritten as

Me(q̂
′, α′, ˜̀′) = Υ(α′)

[
µ(1−N)

∫
α

∫
(1+λE)q̂/(1+gq)≤q̂′

h(q̂)dq̂

+µ

∫
α

∫
(1+λE)q̂/(1+gq)≤q̂′

∫ ∫
f(q̂, α, ˜̀)dq̂d˜̀dα

]
,

where Υ is the cumulative distribution of the transitory shock.

B Analytical characterizations

This section characterizes the model without the firing tax and boils it down to a system
of nonlinear equations. The derivations also serve as proofs for the Propositions.

B.1 Model solution

Note first that for a given µ, the number of actively produced product, N , is calculated
by (10). Recall that µ is an endogenous variable and is determined by the entrants’
innovation:

µ = mx∗E.

As we have seen, x∗E is given by

x∗E =

(
φ

θE(γ − 1)

) 1
γ

,

and thus µ (and also N) is a function of m. In particular, note that N is an increasing
function of m.

Because there are no firing taxes, the previous period employment, `, is no longer a
state variable. The measure of individual states can be written as f(q̂, α), and because
q̂ and α are independent, we can write f(q̂, α) = f̄(q̂)ζ(α). In particular, note that∫
q̂f̄(q̂)dq̂ = N , because q̂ is the value of qt normalized by its average. We also assume

ζ(α) is such that
∫
αζ(α)dα = 1.

Without firing costs, labor can be adjusted freely. Thus, the intermediate-good firm’s
decision for `′ is static:

max
`′

π̂ ≡ ([αq̂]ψ`′
−ψ
Ŷ ψ − ŵ)`′. (1)
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From the first-order condition,

`′ =

(
1− ψ
ŵ

) 1
ψ

αq̂Ŷ (2)

holds. Because y = `′, we can plug this into the definition of Ŷ :

Ŷ =

(∫ ∫
[αq̂]ψy1−ψf̄(q̂)ζ(α)dq̂dα

) 1
1−ψ

.

This yields

Ŷ = Ŷ

(
1− ψ
ŵ

) 1
ψ

N
1

1−ψ

and therefore
ŵ = (1− ψ)N

ψ
1−ψ . (3)

Recall that N is a function of the endogenous variable m. Thus, ŵ is also a function of
m.

Combining the equations (2) and (3), we get

`′ = αq̂Ŷ N−
1

1−ψ . (4)

Integrating this across all active firms yields

L = N−
ψ

1−ψ Ŷ .

One way of looking at this equation is that Ŷ can be pinned down once we know L and
N (and thus L and m). Plugging (3) and (4) into (1) yields

π̂ = ψαq̂
Ŷ

N
.

Now, let us characterize the innovation decision of an intermediate-good firm. Recall
that the value functions are

Ẑ(q̂, α) = (1− δ)V̂ s(q̂, α),

where

V̂ s(q̂, α) = max
xI

ψαq̂
Ŷ

N
− θI q̂xIγ + β(1− µ)Ŝ(xI , q̂/(1 + gq)) (5)

and

Ŝ(xI , q̂/(1+gq)) = (1−xI)
∫
Ẑ(q̂/(1+gq), α

′)ζ(α′)dα′+xI

∫
Ẑ((1+λI)q̂/(1+gq), α

′)ζ(α′)dα′.

We start from making a guess that Ẑ(q̂, α) takes the form

Ẑ(q̂, α) = Aαq̂ + Bq̂,
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where A and B are constants. With this guess, the first-order condition in (5) for xI is

γθI q̂xI
γ−1 =

β(1− µ)λI(A+ B)q̂

1 + gq
.

Thus,

xI =

(
β(1− µ)λI(A+ B)

(1 + gq)γθI

) 1
γ−1

, (6)

and xI is constant across q̂ and α. Substituting for xI , the value function can be written
as

Ẑ(q̂, α) = (1− δ)

(
ψαq̂

Ŷ

N
− θI q̂xIγ + β(1− µ)

1 + xIλI
1 + gq

(A+ B)q̂

)
.

Thus, the guess is verified with

A = (1− δ)ψ Ŷ
N

and B solves

B = (1−δ)
(
−θIxIγ + β(1− µ)

1 + xIλI
1 + gq

(A+ B)

)
= (1−δ)β(1−µ)

(
1 +

γ − 1

γ
λIxI

)
A+ B
1 + gq

,

where xI is given by (6). Therefore, we found that xI (and the coefficients of the function
Ẑ(q̂, α)) is a function of the endogenous aggregate variables µ, gq, Ŷ , and N . We have

already seen we can pin down µ and N if we know m, and Ŷ can be pinned down if we
know m and L.

We now turn to the growth rate of productivity gq. As we have seen above, the
transitory shock α does not affect the innovation decision and can therefore be ignored
when calculating the transition function of qt. Consider the measure of productivity
(without the normalization) qt for active products, z(qt). A fraction (1− µ)xI(1− δ) of
active lines are products that have been innovated upon by incumbents and the fraction
(1−µ−(1−µ)xI)(1−δ) is owned by the incumbents but the innovation was unsuccessful.
The fraction µ(1 − δ) of active products is innovated upon by entrants. The fraction
µ(1−δ) of inactive products is innovated upon by entrants. The productivity distribution
of inactive product lines is h(qt/q̄t) rather than f̄(qt/q̄t)/N . Thus, gq can be calculated
from

1 + gq = (1− δ)
[
(1 + λIxI)(1− µ) + (1 + λE)µ+ (1 + λE)µ

1−N
N

q̄h

q̄f

]
,

where q̄h and q̄f are averages of qt with respect to the distributions h and f̄ . Thus,
q̄h/q̄f =

∫
qth(qt/q̄t)dqt/

∫
qt[f̄(qt/q̄t)/N ]dqt =

∫
q̂h(q̂)dq̂/

∫
q̂[f̄(q̂)/N ]dq̂. The first term

is the productivity increase of the surviving incumbents, the second term is the entry into
active products, and the last is the entry into inactive products. Using the expression
for N in (10) and the fact that q̄f = 1,

gq = (1− δ)[(1 + λIxI)(1− µ) + (1 + λE)µ] + δ(1 + λE)q̄h − 1.
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Thus, gq can be written as a function of µ and xI , and therefore m and L.
Hence, we can determine all endogenous variables in the economy once we pin down

m and L. The values of m and L can be pinned down by two additional conditions:
the labor-market equilibrium condition and the free-entry condition. To see this, let us
first be explicit about each variable’s (and each coefficient’s) dependence on m and L:
ŵ(m), N(m), Ŷ (m,L), xI(m,L), gq(m,L), A(m,L), and B(m,L). Also note that the

total R&D, R̂, can be written as

R̂ =

∫
θI q̂xI(m,L)γ f̄(q̂)dq̂ +m(φ+ θExE

γ) = θIN(m)xI(m,L)γ +m(φ+ θExE
γ) (7)

and therefore we can write R̂(m,L).
The labor-market equilibrium condition is

ŵ(m)

Ŷ (m,L)− R̂(m,L)
= ξ

and the free-entry condition is
γθExE

γ−1

β
= ˆ̄VE, (8)

where

ˆ̄VE =

∫ [∫
Ẑ((1 + λE)q̂/(1 + gq), α)(f̄(q̂) + (1−N)h(q̂))dq̂

]
ζ(α)dα

=

∫
A(m,L) + B(m,L)

1 + gq(m,L)
(1 + λE)q̂(f̄(q̂) + (1−N)h(q̂))dq̂

=
A(m,L) + B(m,L)

1 + gq(m,L)
(1 + λE)[N(m) + (1−N(m))q̄h].

B.2 Productivity distribution

The invariant distribution f̄(q̂) can be easily computed. The next-period mass at relative
quality q̂ is the sum of four components: (i) the incumbents’ innovation, (1 − δ)(1 −
µ)xI f̄((1+gq)q̂/(1+λI))dq̂; (ii) the entrants’ innovation, (1−δ)µf̄((1+gq)q̂/(1+λE))dq̂;
(iii) the downgrade from products that were not innovated upon, ((1− δ)(1− µ− (1−
µ)xI)f̄((1 + gq)q̂)dq̂; and (iv) the entry from inactive products, (1− δ)µ(1−N)h(q̂/(1 +
λE))dq. The sum of these four components must be equal to f̄(q̂)dq̂ along the stationary
growth path.

We can characterize the right tail of the distribution analytically, when the dis-
tribution h(q̂) is bounded. Let the density function of the stationary distribution be
s(q̂) ≡ f̄(q̂)/N . Because h(q̂) is bounded, there is no direct inflow from the inactive
product lines at the right tail.

Consider the point q̂ and the interval ∆ around that point. The outflow from that
interval is s(q̂)∆ because all the firms will either move up, move down, or exit.

The inflow comes from two sources. The first source is the mass of firms that inno-
vated. Innovation is either done by incumbents or entrants. Let γi ≡ (1+λI)/(1+gq) > 1
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be the (adjusted) improvement of q̂ after innovation by an incumbent. The probability
of innovation by an incumbent is (1 − δ)(1 − µ)xI and the corresponding mass of this
inflow is (1 − δ)(1 − µ)xIs(q̂/γi)∆/γi. Similarly, letting γe ≡ (1 + λE)/(1 + gq) > 1
be the improvement of q̂ after innovation by an entrant, the mass of the inflow due
to the entrants’ innovation is (1 − δ)µs(q̂/γe)∆/γe. The second source of inflow is the
surviving firms that did not innovate. With probability (1 − δ)(1 − µ)(1 − xI), incum-
bents firms are not successful at innovating. Let γn ≡ 1/(1 + gq) < 1 be the (adjusted)
quality ratio when there is no innovation. The corresponding mass of this inflow is
(1− δ)(1− µ)(1− xI)s(q̂/γn)∆/γn.

In the stationary distribution, the inflows are equal to the outflows, and therefore

s(q̂)∆ = (1− δ)
[
(1− µ)xIs

(
q̂

γi

)
∆

γi
+ µs

(
q̂

γe

)
∆

γe
+ (1− µ− (1− µ)xI)s

(
q̂

γn

)
∆

γn

]
,

or

s(q̂) = (1− δ)
[
(1− µ)xIs

(
q̂

γi

)
1

γi
+ µs

(
q̂

γe

)
1

γe
+ (1− µ− (1− µ)xI)s

(
q̂

γn

)
1

γn

]
,

Guess that the right-tail of the density function is Pareto and has the form s(x) =
Fx−(κ+1). The parameter κ > 0 is the shape parameter, and the expected value of x
exists only if κ > 1. Plugging this guess into the expression above yields

F q̂−(κ+1) =

(1− δ)

[
(1− µ)xIF

(
q̂

γi

)−(κ+1)
1

γi
+ µF

(
q̂

γe

)−(κ+1)
1

γe

+(1− µ− (1− µ)xI)F

(
q̂

γn

)−(κ+1)
1

γn

]
,

or
1 = (1− δ) [(1− µ)xIγ

κ
i + µγκe + (1− µ− (1− µ)xI)γ

κ
n] .

The parameter κ is the solution of this equation.

B.3 Growth rate

The growth rate of aggregate productivity is given by

gq = (1− δ)[(1 + λIxI)(1− µ) + (1 + λE)µ] + δ(1 + λE)q̄h − 1,

where q̄h is the average relative productivity of inactive product lines. This can be shown
by a simple accounting relation. Let the measure of qt (without normalization) for active
products be f̄(qt/q̄t). Innovation by incumbents occurs on a fraction (1 − µ)xI(1 − δ)
of active product lines; no innovation occurs on a fraction (1 − µ − (1 − µ)xI)(1 − δ)
of active lines. Entrants innovate on a fraction µ(1− δ) of active products. Among the
inactive products, the fraction µ(1− δ) becomes active from the innovation by entrants,
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but it is an upgrade from the distribution h(qt/q̄t) rather than f̄(qt/q̄t)/N . Thus, gq can
be calculated from

1 + gq = (1− δ)
[
(1 + λIxI)(1− µ) + (1 + λE)µ+ (1 + λE)µ

1−N
N

q̄h

q̄f

]
.

Here, q̄h and q̄f are averages of qt with respect to the distributions h and f . Thus, q̄h/q̄f =∫
qth(qt/q̄t)dqt/

∫
qt[f̄(qt/q̄t)/N ]dqt =

∫
q̂h(q̂)dq̂/

∫
q̂[f̄(q̂)/N ]dq̂. Combining this with

the expression for N in (10) and the fact that q̄f = 1 yields the above result.

B.4 Details of section II.B

Under the notations of section II.B, the period profit (9) can be rewritten as

Π̂(q̂, α, `, `′, xI) =[ α

Ω(ŵ, Ŷ )

]ψ
˜̀′−ψŶ ψ − ŵ

 q̂Ω(ŵ, Ŷ )˜̀′ − θI q̂xIγ − τŵmax〈0, q̂Ω(ŵ, Ŷ )˜̀− q̂Ω(ŵ, Ŷ )˜̀′〉.

Thus, this is linear in q̂, and can be rewritten as q̂Π̃(α, ˜̀, ˜̀′, xI), where

Π̃(α, ˜̀, ˜̀′, xI) ≡

[ α

Ω(ŵ, Ŷ )

]ψ
˜̀′−ψŶ ψ − ŵ

Ω(ŵ, Ŷ )˜̀′−θIxIγ−τΩ(ŵ, Ŷ )ŵmax〈0, ˜̀− ˜̀′〉.

Because the period return function is linear in q̂, it is straightforward to show that
all value functions are linear in q̂. Defining Z̃(α, ˜̀) from Ẑ(q̂, α, `) = q̂Z̃(α, ˜̀), (7) can
be rewritten as

Z̃(α, ˜̀) = (1− δ)Ṽ s(α, ˜̀) + δṼ o(˜̀),

where Ṽ o(˜̀) is from V̂ o(`) = q̂Ṽ o(˜̀) and thus

Ṽ o(˜̀) = −τŵΩ(ŵ, Ŷ )˜̀

and Ṽ s(α, ˜̀) is from V̂ s(q̂, α, `) = q̂Ṽ s(α, ˜̀) with

Ṽ s(α, ˜̀) = max
˜̀′≥0,xI

{
Π̃(α, ˜̀, ˜̀′, xI) + β

(
(1− µ)

S̃(xI , ˜̀′)

1 + gq
− µτŵΩ(ŵ, Ŷ )˜̀′

)}
.

Here, the expression S̃(xI , ˜̀′)/(1+gq) comes from Ŝ(xI , q̂/(1+gq), `
′) = q̂S̃(xI , ˜̀′)/(1+gq).

The linearity of the value functions implies

S̃(xI , ˜̀′)

1 + gq
= (1− xI)Eα′

[
Z̃
(
α′, (1 + gq)˜̀′

)] 1

1 + gq
+ xIEα′

[
Z̃

(
α′,

(1 + gq)˜̀′

1 + λI

)]
1 + λI
1 + gq

also holds. Here we used that

Ẑ(q̂′, α′, `′) = q̂′Z̃

(
α′,

`′

`∗(q̂′; ŵ′, Ŷ ′)

)
= q̂′Z̃

(
α′,

`∗(q̂; ŵ, Ŷ )

`∗(q̂′; ŵ′, Ŷ ′)

`′

`∗(q̂; ŵ, Ŷ )

)
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with ŵ′ = ŵ, Ŷ ′ = Ŷ , and that `∗(q̂; ŵ, Ŷ )/`∗(q̂′; ŵ′, Ŷ ′) = q̂/q̂′ yields

Ẑ(q̂′, α′, `′) = q̂′Z̃

(
α′,

q̂

q̂′
˜̀′
)

for q̂′ = q̂/(1 + gq) and q̂′ = (1 + λI)q̂/(1 + gq).

C Measuring the welfare loss of the growth decline

To evaluate the size of the growth effect of the firing tax and to better compare our results
with the literature, we conduct a back-of-the-envelope calculation of the consumption-
equivalent welfare change in the entrant-driven case of the main text. We compare the
balanced-growth welfare of consumers in the economies with and without the firing tax.1

The consumer’s utility under balanced growth is

∞∑
t=0

βt[log(Ĉ(1 + g)t)− ξL],

which can be separated into two components:

∞∑
t=0

βt[log(Ĉ(1 + g)t)− ξL] =
∞∑
t=0

βt[log(Ĉ(1 + g)t)]−
∞∑
t=0

βtξL.

The first component is the effect of consumption, and the second component is the effect
of labor. In our outcome with the entrant-driven case, g, Ĉ, and L all decline with the
firing tax. Note the decline in L leads to a welfare gain. We focus here on the welfare
losses of the firing tax, and therefore abstract from the effects of the firing tax on labor.2

The consumption component of welfare can itself be separated in two parts

∞∑
t=0

βt[log(Ĉ(1 + g)t)] =
∞∑
t=0

βt log(Ĉ) +
∞∑
t=0

βt log((1 + g)t)

We call the first term the level effect and the second term the growth effect on consumer
welfare.

Let the consumption level and the growth rate be Ĉ0 and g0 in the economy without
the firing tax, and Ĉ1 and g1 in the economy with the firing tax. We compute the welfare
loss from the level effect and the growth effect of the firing tax as the permanent drop in
consumption that would make the representative consumer in the economy without the
firing tax indifferent between the two economies.

For the level effect, the permanent drop in consumption ϕL is such that

∞∑
t=0

βt log((1− ϕL)Ĉ0) =
∞∑
t=0

βt log(Ĉ1).

1This is not a complete analysis of consumer welfare, because the comparison below does not take
the transition dynamics into account. Our analysis here is meant to be illustrative.

2This approach (ignoring the change in disutility of labor and focusing on consumption) is similar to
the approach that Lucas (1987) used in his welfare-cost calculation for the business cycles.
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Thus,

ϕL = 1− exp(log(Ĉ1)− log(Ĉ0)) = 1− Ĉ1

Ĉ0

.

For the growth effect, the permanent drop in consumption ϕG is computed as

∞∑
t=0

βt log((1− ϕG)(1 + g0)
t) =

∞∑
t=0

βt log((1 + g1)
t).

This equation can be solved to obtain

ϕG = 1−
(

1 + g1
1 + g0

) β
1−β

.

In our experiment with entrant-driven case (τ = 0.3), we find that ϕL = 1− ŵ1/ŵ0 =

0.9% and ϕG = 1 −
(
1.0139
1.0148

) 0.947
1−0.947 = 1.6%. The growth effect is larger than the level

effect.

D Details of computation

The computation solution consists of first guessing the values of the relevant aggregate
variables, solving for the value function and the stationary distribution of firms, and
then updating the guess. The procedure is as follows.

1. Construct a grid for productivity q̂ and labor ˜̀. We use a log grid for q̂ with 100
points between 0 and 109. For ˜̀, we use a linear grid with 30 points between 0 and
4.

2. Compute the innovation from entrants and the value from entry consistent with
the free entry condition

x∗E =

(
φ

θE(γ − 1)

) 1
γ

,

ˆ̄VE =
γθE
β
xE

γ−1.

3. Guess Ŷ , ŵ, m, and g. Given m, we can calculate the value of µ by µ = XE = mx∗E.

4. Solve for the value function by iterating on the value function and using linear
interpolation between grid points.

5. Using the optimal decision rules, solve for the stationary distribution f(q̂, α, ˜̀) by
iterating over the density.

6. Then check if the equilibrium conditions are verified. The four conditions are the
following
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(a) Aggregate output

Ŷ =

(∫ ∫
αψ[Ω(ŵ, Ŷ )L′(α, ˜̀)]

1−ψ
∫
q̂f(q̂, α, ˜̀)dq̂dαd˜̀

) 1
1−ψ

(b) Resource constraint
Ŷ = Ĉ + R̂,

with Ĉ = ŵ/ξ and R̂ = θI

∫ ∫
XI(α, ˜̀)γ

∫
q̂f(q̂, α, ˜̀)dq̂dαd˜̀+m(φ+ θExE

γ)

(c) Consistency condition for productivity

1

N

∫ ∫ ∫
q̂f(q̂, α, ˜̀)dαd`dq = 1

(d) Free-entry condition

ˆ̄VE =
γθE
β
xE

γ−1

where3

ˆ̄VE =

∫
Z̃(α, 0)ζ(α)dα

[
N + (1−N)

∫
h(q̂)dq̂

]
(1 + λE)/(1 + gq).

We use condition (a) to update the value for ŵ. When ŵ is too high, aggregate
output implied by the firms decision is too low. We use condition (b) to update the
value for Ŷ . If Ŷ is too high, the resource constraint is not satisfied. We update
gq using condition (c). Intuitively, when gq is too small, the stationary density
f(q̂, α, ˜̀) implies the values of q̂ that are too large. To update the value of m, we
use condition (d). Because a large value of m implies a large value of µ, which
a larger value of m implies a lower value of Z̃. Thus, the value of m affects the

computed value of ˆ̄VE, through Z̃.

7. Go back to Step 3, until convergence.

E Details of the extensions and robustness checks of

section IV

E.1 Extension 1: Persistent exogenous shocks

This section complements section IV.A by giving more details on the calibration of the
extension with persistent transitory shocks.

3Computed from

ˆ̄VE =

∫ [∫
Ẑ((1 + λE)q̂/(1 + gq), α, 0)(f̄(q̂) + (1−N)h(q̂))dq̂

]
ζ(α)dα

=

∫ [∫
q̂Z̃(α, 0)(1 + λE)/(1 + gq)(f̄(q̂) + (1−N)h(q̂))dq̂

]
ζ(α)dα.
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E.1.1 Calibration

We use the variance and autocovariance of establishment-level employment growth to
identify the size of the shock ε and the persistence parameter ρ. To give the intuition
behind this strategy, let us assume that instead of following a discrete-valued Markov
process, the exogenous productivity α follows an AR(1) process (in logs), that is, lnαt =
ϕ lnαt−1+ut, where ut is i.i.d. with mean zero and variance σ2

u. This assumption simplifies
the expression of the variance and covariance of log employment changes. In the absence

of firing costs, the employment of the firm is given by ` =
(
1−ψ
ŵ

) 1
ψ αq̂Ŷ , the variance of

log employment changes is then V (ln `t − ln `t−1) = V (lnαt − lnαt−1 + ln q̂t − ln q̂t−1).
Abstracting from the correlation between xIt−1 and αt−1, we can write the variance of
log employment changes as a function of the variance of the changes in the endogenous
productivity q̂t and that of changes in the exogenous productivity αt. Using the AR(1)
assumption, we get

V (ln `t − ln `t−1) =
2(1− ϕ)

1− ϕ2
σ2
u + V (ln q̂t − ln q̂t−1).

The covariance of log employment changes can be written as a function of the variance
of α and the persistence parameter:

Cov(ln `t − ln `t−1, ln `t−1 − ln `t−2) = −(1− ϕ)2

1− ϕ2
σ2
u.

Given the variance of endogenous productivity V (ln q̂t−ln q̂t−1), we can infer the variance
of the innovation σ2

u and the persistence parameter ϕ from these two statistics. Similarly,
when α follows a Markov chain, the variance and the covariance of log employment
changes can be used to infer the size of the shock ε and the persistence parameter ρ.
The full calibration is reported in Table 1 and the comparison with the models targets
are given in Table 2.

E.1.2 Data

We estimate the variance and covariance of annual log employment changes using US
census microdata from the Longitudinal Business Database (LBD). The LBD is an ex-
haustive establishment-level dataset that covers nearly all the non-farm private economy.
The dataset provides longitudinally linked data on employment and payroll data for 21
million establishments over 1976-2000. The dataset is constructed using information from
the business register, economic censuses, and surveys.4 We used the Synthetic LBD (U.S.
Census Bureau, 2011), which is accessible through the virtual RDC. The results were
then validated with the Census Bureau. We compute the variance and covariance of
annual log employment change over the period 1976-2000 after excluding the three-digit
SIC sectors 100 and 800-999. The estimated variance is 0.24 and the covariance is −0.05.

E.2 Extension 2: Small entrants and heterogeneous growth

This section provides the details on the analysis of Section IV.A.

4For a detailed description of the dataset, see https://www.census.gov/ces/dataproducts/datasets/lbd.html.
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Table 1: Calibration of the two extensions

Parameter Extension 1 Extension 2

Discount rate β 0.947 0.947
Disutility of labor ξ 1.475 1.480
Demand elasticity ψ 0.2 0.2
Innovation step: entrants λE 1.50 1.50
Innovation step: incumbents λI 0.25 0.25
Innovation cost curvature γ 2.0 2.0
Innovation cost: entrants θE 7.995 6.807
Innovation cost: incumbents θI 1.333 1.134
Entry cost φ 0.1642 0.0420
Exogenous exit rate δ 0.001 0.015
Transitory shock: size ε 0.564 0.258
Transitory shock: persistence ρ 0.718 -
Avg productivity from inactive lines h mean 0.976 0.050
Firing tax τ 0.000 0.000
Weight function parameter χ1 - 35.0
Weight function parameter χ2 - 26.5
θI function parameter χ3 - 0.4
θI function parameter χ4 - 0.8

Table 2: Comparison between model outcome and the targets for the two extensions

Data Model
Extension 1 Extension 2

Growth rate of output g (%) 1.48 1.48 1.48
Employment L 0.613 0.613 0.613
Tail index κ 1.06 1.06 -
Job-creation rate (%) 17.0 - 17.5
Job-creation rate from entry (%) 6.4 6.4 6.7
Entry rate (%) 12.6 - 6.6
Variance of employment growth 0.24 0.24 -
Auto-cov. of employment growth −0.05 −0.05 -

Note: The growth rate and employment targets are computed using BEA and
BLS data; for the tail index, we use Axtell (2001) estimate; the job-flows data are
computed from the Census Bureau BDS dataset, and the variance and autoco-
variance of employment growth are measured from LBD micro data. No statistics
are reported when the statistics are not used as a target in the calibration.
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E.2.1 Model setup

The (normalized) value of a firm at the beginning of period is

Ẑ(q̂, α, `) = (1− δ)V̂ s(q̂, α, `) + δV̂ o(`),

where
V̂ o(`) = −τŵ`

is the value of exit. The value of survival is

V̂ s(q̂, α, `) = max
`′≥0,xI

{
Π̂(q̂, α, `, `′, xI) + β

(
(1− u(q̂))Ŝ

(
xI ,

q̂

1 + gq
, `′
)
− u(q̂)τŵ`′

)}
,

where

Ŝ

(
xI ,

q̂

1 + gq
, `′
)

= (1− xI)Eα′
[
Ẑ

(
q̂

1 + gq
, α′, `′

)]
+ xIEα′

[
Ẑ

(
(1 + λI)q̂

1 + gq
, α′, `′

)]
.

The period profit is

Π̂(q, α, `, `′, xI) = ([αq̂]ψ`′
−ψ
Ŷ ψ − ŵ)`′ − θI(q̂)q̂xIγ − τŵmax〈0, `− `′〉.

For the entrants, the free entry condition is

max
xE

{
−θExEγ − φ+ βxE

ˆ̄VE

}
= 0,

where xE satisfies the optimality condition

β ˆ̄VE = γθExE
γ−1.

The expected benefit of entry, ˆ̄VE, is now calculated from

ˆ̄VE =

∫ [∫
Ẑ

(
(1 + λE)q̂

1 + gq
, α, 0

)
(Np(q̂) + (1−N)h(q̂))dq̂

]
ζ(α)dα.

E.2.2 Transformed model and computation

Define the frictionless level of employment without temporary shock as

`∗(q̂; ŵ, Ŷ ) ≡ arg max
`′

([αq̂]ψ`′
−ψ
Ŷ ψ − ŵ)`′

with α = 1; that is,

`∗(q̂; ŵ, Ŷ ) =

(
1− ψ
ŵ

) 1
ψ

q̂Ŷ .

Also define Ω(ŵ, Ŷ ) by

Ω(ŵ, Ŷ ) ≡ `∗(q̂; ŵ, Ŷ )

q̂
.

13



In addition, define the deviation of employment from the frictionless level by

˜̀≡ `

`∗(q̂; ŵ, Ŷ )
.

Similarly, let

˜̀′ ≡ `′

`∗(q̂; ŵ, Ŷ )
.

Then, the period profit can be rewritten as

Π̂(q̂, α, `, `′, xI) =[ α

Ω(ŵ, Ŷ )

]ψ
˜̀′−ψŶ ψ − ŵ

 q̂Ω(ŵ, Ŷ )˜̀′ − θI(q̂)q̂xIγ − τŵmax〈0, q̂Ω(ŵ, Ŷ )˜̀− q̂Ω(ŵ, Ŷ )˜̀′〉.

Thus this is linear in q̂, and can be rewritten as q̂Π̃(α, ˜̀, ˜̀′, xI), where

Π̃(α, ˜̀, ˜̀′, xI) ≡

[ α

Ω(ŵ, Ŷ )

]ψ
˜̀′−ψŶ ψ − ŵ

Ω(ŵ, Ŷ )˜̀′−θI(q̂)xIγ−τΩ(ŵ, Ŷ )ŵmax〈0, ˜̀−˜̀′〉.

Although the value function is not linear in q̂, we still utilize the transformation on
` by defining the new value functions (abusing the˜notation on the value functions) as

Z̃(q̂, α, ˜̀) = (1− δ)Ṽ s(q̂, α, ˜̀) + δṼ o(q̂, ˜̀),

where
Ṽ o(q̂, ˜̀) = −τŵq̂Ω(ŵ, Ŷ )˜̀.

Ṽ s(q̂, α, ˜̀) = max
˜̀′≥0,xI

{
q̂Π̃(α, ˜̀, ˜̀′, xI) + β

(
(1− u(q̂))S̃

(
xI ,

q̂

1 + gq
, ˜̀′
)
− u(q̂)τŵq̂Ω(ŵ, Ŷ )˜̀′

)}
,

where

S̃

(
xI ,

q̂

1 + gq
, ˜̀′
)

= (1−xI)Eα′
[
Z̃

(
q̂

1 + gq
, α′, (1 + gq)˜̀′

)]
+xIEα′

[
Z̃

(
(1 + λI)q̂

1 + gq
, α′,

(1 + gq)˜̀′

1 + λI

)]
,

where the transformation of ˜̀′ is similar to the baseline model.
For a given ˜̀′, xI can be solved from the first-order condition

γθI(q̂)q̂xI
γ−1 = ΓI ,

where

ΓI ≡ β(1−u(q̂))

{
Eα′

[
Z̃

(
(1 + λI)q̂

1 + gq
, α′,

(1 + gq)˜̀′

1 + λI

)]
− Eα′

[
Z̃

(
q̂

1 + gq
, α′, (1 + gq)˜̀′

)]}
.
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The expected benefit of entry, ˆ̄VE, is calculated with the same formula as above

ˆ̄VE =

∫ [∫
Z̃

(
(1 + λE)q̂

1 + gq
, α, 0

)
(Np(q̂) + (1−N)h(q̂))dq̂

]
ζ(α)dα,

because ˜̀= 0 is equivalent to ` = 0.
The computational steps are similar to the baseline model. The only difference is

that we need to guess f̄(q̂) before performing the optimization. We update the guess
at the same time as we update the aggregate variables. (It can also be done within the
aggregate variables loop.) The following are the steps:

1. First, several variables can be computed from parameters. First, calculate x∗E from

x∗E =

(
φ

θE(γ − 1)

) 1
γ

.

2. Then ˆ̄VE can be computed from

ˆ̄VE =
γθE
β
xE

γ−1.

3. Start the iteration. Guess Ŷ , ŵ, m, and g. Guess f̄(q̂).

Given m, we can calculate the value of µ by µ = XE = mx∗E. From f̄(q̂) and µ,
we can obtain u(q̂) and p(q̂). (The value of N can still be calculated by the same
formula as in the baseline model.)

Now we are ready to solve the Bellman equation for the incumbents. We have two
choice variables, ˜̀′ and xI . The first-order condition for xI is

γθI(q̂)q̂xI
γ−1 = ΓI ,

and thus xI can be computed from

xI =

(
ΓI

γθI(q̂)q̂

)1/(γ−1)

,

where

ΓI ≡ β(1−u(q̂))

{
Eα′

[
Z̃

(
(1 + λI)q̂

1 + gq
, α′,

(1 + gq)˜̀′

1 + λI

)]
− Eα′

[
Z̃

(
q̂

1 + gq
, α′, (1 + gq)˜̀′

)]}
.

We can see that xI is uniquely determined once we know ˜̀′. Let the decision rule
for ˜̀′ be L′(q̂, α, ˜̀). Then xI = XI(q̂, α, ˜̀).

4. Once all decision rules are computed, we can find f(q̂, α, ˜̀) by iterating over the
density.
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5. Now, we check if the first guesses are consistent with the solution from the opti-
mization. First, f̄(q̂) can be calculated from f(q̂, α, ˜̀).

The value ŵ is checked from

Ŷ =

(∫ ∫ ∫
[αq̂]ψ[`∗(q̂; ŵ, Ŷ )L′(q̂, α, ˜̀)]

1−ψ
f(q̂, α, ˜̀)dq̂dαd˜̀

) 1
1−ψ

.

The value of Ŷ is checked from

ŵ

Ŷ − R̂
= ξ,

where

R̂ =

∫ ∫ ∫
θI q̂XI(q̂, α, ˜̀)γf(q̂, α, ˜̀)dq̂dαd˜̀+m(φ+ θEx

γ
E).

To check the value of gq, the condition 1
N

∫ ∫ ∫
q̂f(q̂, α, ˜̀)dαd`dq = 1 is used.

Intuitively, when gq is too small, the stationary density f(q̂, α, ˜̀) implies the values
of q̂ that are too large.

To set m, we look at the free-entry condition. Because a large value of m implies a
large value of µ, a larger value of m implies a lower Z̃. Thus, the value of m affects

the computed value of ˆ̄VE, through Z̃. Recall that

ˆ̄VE =
γθE
β
xE

γ−1

has to be satisfied, and this has to be equal to

ˆ̄VE =

∫ [∫
Z̃

(
(1 + λE)q̂

1 + gq
, α, 0

)
(Np(q̂) + (1−N)h(q̂))dq̂

]
ζ(α)dα.

6. Go back to Step 3, until convergence.

E.2.3 Calibration

The overall calibration follows similar steps as the entrant-driven case in section III. The
values of β, ψ, λI , γ, and δ are the same as in section III. For ξ, we target L = 0.61
as in Section III. The values φ and ε are set so that the model generates the overall
job-creation rate and the job-creation rate by entrants close to the data. We assume
λE = 1.50. As in section III, the level parameter of incumbent innovation cost, now
represented by θ̄I in equation (14), is set so that the overall growth rate of output, g, is
1.48%. We set θE so that θE/θ̄I = λE/λI .

The new parameters of this extended model are χ1 and χ2 in equation (13) and χ3

and χ4 in equation (14). The value of χ1 is set as a large number so that the size of
entrants becomes closer to the data. Given the job-creation rate from entrants, the size
of entrants is reflected in the entry rate. A large value of χ1 makes the size of entrants
small and thus increases the entry rate for a given job-creation rate by entrants. The
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Table 3: Size distribution; comparison between the US data and the model outcome

Data Baseline Extension

0-4 0.495 0.917 0.491
5-9 0.223 0.017 0.253
10-19 0.138 0.020 0.135
20-49 0.089 0.025 0.087
50-99 0.030 0.009 0.017
100-249 0.017 0.006 0.011
250-499 0.004 0.002 0.003
500-999 0.002 0.001 0.001
1000+ 0.001 0.001 0.001

Note: The establishment size distribution is
computed from the US Census BDS dataset
(average over 1976-2012).

value of χ3 relates to the speed of growth by a small firm and thus is reflected in the size
distribution of firms for small firms. The other two parameters, χ2 and χ4, also have
effects on the size distribution of firms. Thus, these parameters are picked so that the
size distribution of firms is close to the data. The parameter values are summarized in
Table 1.

Table 3 compares the size distribution of firms in the data, the baseline model, and
the extended model. The extended model is very close to the data.

Table 2 describes the outcomes of the models for τ = 0 in the baseline model and
the extension. The discrepancy in the entry rate between the model and the data is
substantially smaller in the extended model. Although it is not perfect, it seems to be
the closest we can achieve given the functional forms. What is important here is that
the results, and their intuitions, remain the same with these modifications that make the
model outcome closer to the data.

E.3 Robustness checks to the innovation size

E.3.1 Smaller innovation steps

In the two calibrations in section III, the size of the incumbents’ innovation step λI is
set at 0.25, following estimates by Bena, Garlappi and Grüning (2015). In this section,
we adopt an alternative strategy and use data on the establishment-level employment
dynamics to calibrate this parameter. We set λI to match the relative proportion of
establishments creating jobs and destroying jobs. We measure the relative proportion of
establishments creating and destroying jobs from the BLS annual Business Employment
Dynamics Data and find a ratio of 1.05.5 The incumbents’ innovation step is closely re-
lated to this statistic. For a given growth rate gq, a smaller λI implies a higher innovation
probability xI and hence a larger proportion of establishments creating jobs. In fact, the

5We compute the average share of expanding establishments over the average share of contracting
establishments over the available period (March 1994-March 2015). The data are publicly available at
https://www.bls.gov/bdm/bdmann.htm.
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Table 4: Age distribution; comparison between the US data and the model outcome

Data Baseline Extension

0 0.095 0.028 0.066
1 0.076 0.027 0.059
2 0.067 0.026 0.054
3 0.060 0.025 0.050
4 0.055 0.025 0.046
5 0.050 0.024 0.043
6-10 0.187 0.110 0.177
11-15 0.123 0.096 0.129
16-20 0.090 0.083 0.095
21-25 0.066 0.072 0.071
26+ 0.130 0.484 0.211

Note: The age distribution is computed from
the US Census BDS dataset (average over
2003-2012). - age not available for all age
classes before 2003. may not sum to one due
to rounding.

Table 5: Exit rate by age; comparison between the US data and the model outcome

Data Baseline Extension

1 0.227 0.028 0.109
2 0.160 0.028 0.086
3 0.138 0.028 0.076
4 0.123 0.028 0.071
5 0.115 0.028 0.068
6-10 0.093 0.028 0.064
11-15 0.073 0.028 0.060
16-20 0.063 0.028 0.058
21-25 0.057 0.028 0.057
26+ 0.048 0.028 0.057

Note: The exit rate by age is computed from
the US Census BDS dataset (average over
2003-2012).- age not available for all age classes
before 2003. May not sum to one due to round-
ing.
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Table 6: Exit rate by size; comparison between the US data and the model outcome

Data Baseline Extension

0-4 0.182 0.028 0.092
5-9 0.047 0.028 0.041
10-19 0.034 0.028 0.041
20-49 0.028 0.028 0.041
50-99 0.023 0.028 0.041
100-249 0.018 0.028 0.041
250-499 0.011 0.028 0.041
500-999 0.009 0.028 0.041
1000+ 0.007 0.028 0.041

Note: The exit rate by size is computed from
the US Census BDS dataset (average over
1976-2012).

same growth rate can be reached either with a high λI and low xI , or with a low λI and
high xI . To match the ratio of the relative proportion of establishments creating jobs, we
set λI at 0.0832, which is lower than in the baseline model. For entrants, we first assume
λE = 6λI , as in the entrant-driven growth calibration. The rest of the parameters are
set following the same strategy as in section III. We then check the sensitivity of the
results to assuming instead (1 +λE)/(1 +λI) = 2, which also holds in the entrant-driven
calibration in section III. In both cases, λE is lower than in section III, though the
difference is smaller when we assume (1 + λE)/(1 + λI) = 2. The parameters and the
targeted statistics are in Tables 7 and 8.

We report the results of this alternative calibration strategy in Table 9. We first
consider the case in which λE/λI is set at the same value as the entrant-driven baseline.
As expected, with the lower innovation step λI , the incumbents’ probability of innovating
is higher than in the baseline model. On average, 48% of incumbents innovate in a given
year compared with 8.4% in the baseline entrant-driven calibration. A large part of the
results are qualitatively robust to this alternative calibration strategy: The firing tax
leads to a decline in average productivity, to an increase in the innovation of incumbents,
and to a reduction in the innovation of entrants. Quantitatively, the effects of the
firing tax on the growth rate, however, differ from the entrant-driven baseline. We
find the growth rate of aggregate productivity is virtually unaffected by the firing tax.
This smaller negative effect of the firing tax on the growth rate comes from the smaller
contribution of entrants to the growth rate. Although λE/λI is the same as in section
III, the contribution of entrants to the growth rate is lower. The decline in the entry
rate therefore has a smaller impact on aggregate productivity growth. When we assume
(1 + λE)/(1 + λI) = 2, however, the contribution of entrants to the growth rate is closer
to the baseline model, and we find the growth effect is also closer to the baseline model.
The growth rate of output is reduced to 1.41%, versus 1.39% in the baseline model,
indicating that the relevant statistics for the contribution of entrants to growth and for
the overall effect of firing costs on growth is (1 + λE)/(1 + λI) rather than λE/λI .
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Table 7: Calibration: Alternative innovation sizes

Parameter Small λI Small λI λI = 0
same λE/λI same (1 + λE)/(1 + λI)

Discount rate β 0.947 0.947 0.947
Disutility of labor ξ 1.482 1.476 1.496
Demand elasticity ψ 0.2 0.2 0.2
Innovation step: entrants λE 0.50 1.17 1.50
Innovation step: incumbents λI 0.08 0.08 0.00
Innovation cost curvature γ 2.0 2.0 2.0
Innovation cost: entrants θE 0.417 0.239 5.750
Innovation cost: incumbents θI 0.070 0.119 0.958
Entry cost φ 0.8502 1.7034 0.1644
Exogenous exit rate δ 0.00056 0.00084 0.00127
Transitory shock: size ε 0.260 0.271 0.223
Avg productivity from inactive lines h mean 0.976 0.976 0.976
Firing tax τ 0.0 0.0 0.0

E.3.2 When only entrants innovate

To evaluate the importance of including the incumbents’ innovation in the model, we
consider the case in which only entrants innovate. We set λI = 0 and re-calibrate the
parameters θE, ξ, ε, and δ to match the growth rate of output per worker, the employ-
ment rate, the job-creation rate, and the tail index of the firm size distribution. The
other parameters (including φ) are kept identical to the calibration in section III. The
parameters and the targeted statistics are in Tables 7 and 8. Because entrants are the
only innovators, we can no longer match the job-creation rate by entrants, because θE
needs to be set at a value that is consistent with the growth rate. The results, reported
in Table 9, show that ignoring the incumbents’ innovation would lead to overestimating
the decline in the growth rate. When only entrants innovate, the positive impact on the
incumbents’ innovation is absent and the firing tax therefore leads to a larger decline in
innovation and aggregate productivity growth. The effect is quantitatively substantial.
We find that the growth rate in the economy with firing costs is 1.33%, versus 1.39% in
our entrant-driven growth baseline.

E.4 The effect of labor taxes and innovation subsidies

Our model can easily be extended to analyze the effects of taxes and subsidies. Here,
we consider a labor tax of the rate η ∈ [0, 1] and R&D subsidies at the rate s ∈ [0, 1] to
both incumbents and entrants.

The budget constraint for the consumer changes to

At+1 + Ct = (1 + rt)At + (1− η)wtLt + Tt.

This changes the first-order condition for the consumer to

wt
Ct

=
ξ

1− η
. (9)
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Table 8: Comparison between model outcome and the targets for the alternative cali-
brations

Data Small λI Small λI λI = 0
same λE/λI same (1 + λE)/(1 + λI)

Growth rate of output g (%) 1.48 1.48 1.48 1.48
Employment L 0.613 0.613 0.613 0.613
Tail index κ 1.06 1.06 1.06 1.06
Job-creation rate (%) 17.0 17.0 17.0 17.0
Job-creation rate from entry (%) 6.4 6.4 6.4 -
Positive employment growth 1.05 1.04 - -

Note: The growth rate and employment targets are computed using BEA and BLS data; for the tail
index, we use Axtell (2001) estimate; the job-flows data are computed from the Census Bureau BDS
dataset and the variance and autocovariance of employment growth are measured from LBD micro
data. “Positive employment growth” refers to the ratio of expanding private sector establishments over
contracting establishments computed from the BLS BED dataset. No statistics are reported when the
statistics are not used as a target in the calibration.

Table 9: Robustness: Smaller innovation steps

Small λI Small λI λI = 0
same λE/λI same (1 + λE)/(1 + λI)

τ = 0.0 τ = 0.3 τ = 0.0 τ = 0.3 τ = 0.0 τ = 0.3

Growth rate of output g (%) 1.48 1.49 1.48 1.41 1.48 1.33
Innovation probability: incumbents x̄I 0.483 0.528 0.303 0.333 0.000 0.000
Innovation probability: entrants xE 1.000 1.000 1.000 1.000 0.169 0.169
Creative-destruction rate µ (%) 4.50 3.83 3.09 2.64 4.00 3.57
Employment L 100 98.8 100 98.8 100 98.2

Normalized output Ŷ 100 98.0 100 98.1 100 97.7

Normalized average productivity Ŷ /L 100 99.4 100 99.3 100 99.5
Number of active products N 0.988 0.986 0.974 0.969 0.969 0.966
Job-creation rate (%) 17.0 5.0 17.0 4.6 17.0 6.8
Job-creation rate from entry (%) 6.4 4.4 6.4 4.2 9.6 6.6
Job-destruction rate (%) 17.0 5.0 17.0 4.6 17.0 6.8
Job-destruction rate from exit (%) 4.9 3.9 3.2 2.7 4.1 3.7
R&D ratio R/Y (%) 12.0 11.3 11.6 10.7 12.8 11.7

Note: L, Ŷ , and Ŷ /L are set at 100 in the τ = 0.0 case.
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The other equilibrium conditions are unchanged. Because ξ is endogenously targeted
in the calibration, the baseline model is identical even when the value of η is nonzero.
When the value of ξ is ξ0 when η = 0, the equilibrium is identical when ξ is set at
ξ0(1− η) in the economy with η > 0. Moreover, the experiment starting from η = η0 to
η = η1 is equivalent to the experiment starting from η = 0 to η = 1− (1− η1)/(1− η0).
For example, an experiment of changing η = 0.3 to η = 0.5 is the same as starting from
η = 0 to η = 1− (1− 0.5)/(1− 0.3) = 0.286. Changing η = 0.3 to η = 0.35 is the same
as starting from η = 0 to η = 1− (1− 0.35)/(1− 0.3) = 0.071.

To facilitate the comparison to the literature, we also consider a more general form
of preferences. Following Rogerson and Wallenius (2009), we specify the period utility
as

log(Ct)− ξ
L1+ν
t

1 + ν
,

where ν ≥ 0. Our baseline model is the special case of ν = 0.6 For this utility function,
only change that is necessary for the equilibrium conditions is the optimality condition
for the labor-leisure choice. Instead of (2), the first-order condition is

wt
Ct

=
ξLνt

1− η
. (10)

The analytical characterization of the model (Appendix B) is almost identical, except
that the labor-market equilibrium condition must be modified to

ŵ(m)

Ŷ (m,L)− R̂(m,L)
=

ξLν

1− η
.

The computation of the model (Appendix D) is also similar, except that step 6 (b) uses
the consumption value of Ĉ = L−νŵ/ξ.

First, we compare, in the entrant-driven growth economy, the effects of the firing
tax with that of a 5% labor tax (η = 0.05). The baseline model is η = 0. We report
the results for different values of the Frisch elasticity parameter ν in Table 10. In our
baseline model (ν = 0), we find the labor tax reduces the growth rate to 1.38%, whereas
the firing tax reduces the growth rate to 1.39%. This finding shows the effect of the firing
tax in the entrant-driven case in section III is of the same magnitude as a 5% labor tax.

Next, we make a comparison to the previous study by Rogerson and Wallenius (2009).
To be consistent with their study (they consider the 30% case as the US and the 50% case
as the continental Europe), we start from η = 0.30 and recalibrate. Then we compare
the outcome with the case of η = 0.50.

6Ohanian, Raffo and Rogerson (2008) consider a similar utility function of the form (omitting the
subsistence consumption and government consumption)

α log(Ct) + (1− α)
(L̄− Lt)1−γ − 1

1− γ
,

where α ∈ (0, 1), γ ≥ 0, and L̄ > 0, in our notation. Note that our baseline model corresponds to the
case with γ = 0. Their overall conclusion is that a neoclassical model with this form of utility (with
subsistence consumption) with changes in taxes explain the post-war change in hours across OECD
countries. They note that the results are robust to the values of γ ∈ [0, 2].
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Table 10: Labor tax (5%) and the labor-supply elasticity

η = 0.0 η = 0.05
ν = 0.0 ν = 0.5 ν = 2 ν = 10

Growth rate of output g (%) 1.48 1.38 1.42 1.45 1.47
Innovation probability: incumbents x̄I 0.084 0.084 0.084 0.084 0.084
Innovation probability: entrants xE 0.143 0.143 0.143 0.143 0.143
Creative-destruction rate µ (%) 2.65 2.37 2.47 2.56 2.63
Employment L 100 94.5 96.4 98.3 99.5

Normalized output Ŷ 100 94.4 96.4 98.2 99.5

Normalized average productivity Ŷ /L 100 99.9 99.9 100 100.0
Number of active products N 0.964 0.959 0.961 0.962 0.963
Job-creation rate (%) 17.0 16.6 16.7 16.9 17.0
Job-creation rate from entry (%) 6.4 5.8 6.0 6.2 6.4
Job-destruction rate (%) 17.0 16.6 16.7 16.9 17.0
Job-destruction rate from exit (%) 2.8 2.5 2.6 2.7 2.7
R&D ratio R/Y 11.5 11.1 11.2 11.4 11.5

Note: L, Ŷ , and Ŷ /L are set at 100 in the η = 0.0 case.

Table 11: Effect of a large increase in the labor tax (0.30 to 0.50)

η = 0.30 η = 0.50
ν = 0 ν = 0.5 ν = 2 ν = 10

Growth rate of output g (%) 1.48 0.95 1.11 1.29 1.43
Innovation probability: incumbents x̄I 0.084 0.085 0.085 0.084 0.084
Innovation probability: entrants xE 0.143 0.143 0.143 0.143 0.143
Creative-destruction rate µ (%) 2.65 1.09 1.56 2.09 2.50
Employment L 100 68.8 78.7 89.1 97.0

Normalized output Ŷ 100 68.0 78.2 88.9 96.9

Normalized average productivity Ŷ /L 100 98.7 99.4 99.7 99.9
Number of active products N 0.964 0.916 0.940 0.954 0.961
Job-creation rate (%) 17.0 14.5 15.3 16.1 16.8
Job-creation rate from entry (%) 6.4 2.8 3.9 5.1 6.1
Job-destruction rate (%) 17.0 14.5 15.3 16.1 16.8
Job-destruction rate from exit (%) 2.8 1.2 1.7 2.2 2.6
R&D ratio R/Y 11.5 8.2 9.44 10.6 11.3

Note: L, Ŷ , and Ŷ /L are set at 100 in the η = 0.30 case.
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Table 12: Firing tax and the labor supply elasticity

τ = 0.0 τ = 0.3
ν = 0.0 ν = 0.5 ν = 2 ν = 10

Growth rate of output g (%) 1.48 1.39 1.40 1.40 1.41
Innovation probability: incumbents x̄I 0.084 0.091 0.091 0.091 0.091
Innovation probability: entrants xE 0.143 0.143 0.143 0.143 0.143
Creative-destruction rate µ (%) 2.65 2.30 2.31 2.33 2.34
Employment L 100 98.8 99.2 99.6 99.9

Normalized output Ŷ 100 98.1 98.5 98.9 99.2

Normalized average productivity Ŷ /L 100 99.3 99.3 99.3 99.3
Number of active products N 0.964 0.958 0.959 0.959 0.959
Job-creation rate (%) 17.0 4.7 4.8 4.8 4.8
Job-creation rate from entry (%) 6.4 4.3 4.3 4.3 4.4
Job-destruction rate (%) 17.0 4.7 4.8 4.8 4.8
Job-destruction rate from exit (%) 2.8 2.4 2.4 2.4 2.4
R&D ratio R/Y 11.5 10.6 10.6 10.6 10.6

Note: L, Ŷ , and Ŷ /L are set at 100 in the τ = 0.0 case.

We report the results in Table 11. We find the employment rate is reduced by 31%
for our ν = 0 calibration. We find that when we set ν to the same value as Rogerson and
Wallenius (2009) (ν = 0.50), labor declines by 21.3%, which is similar to Rogerson and
Wallenius’s 22% decline. This similarity is not trivial, because Rogerson and Wallenius
(2009) consider a substantially richer labor-supply model (with life-cycle heterogeneity,
extensive and intensive margin of labor supply).

We find the large increase in the labor tax reduces the growth rate from 1.48% to
0.95% for ν = 0, and to 1.11% for ν = 0.5. As we discussed in the main text, for the
firing tax, the decline in the growth rate is a result of two opposite effects for incumbents
and entrants. In the case of the labor tax, entry is reduced because the labor tax reduces
profitability, similarly to the firing-tax case. The incumbents’ innovation is higher here,
too, but note the mechanism is not the same as in the case of the firing tax. The tax-
escaping effect that we highlight in the case of the firing tax is absent in the case of the
labor tax because innovating would not affect the tax rate. The incumbent innovation
increases because entrants’ innovation decreases (what we call the “creative-destruction
effect” in the main text).

For completeness, we repeat the effects of the firing tax for different values of ν. The
results are reported in Table 12. We find the effect of the firing tax when ν = 0.5 is
virtually identical to the ν = 0.0 case. When ν is higher, a high firing tax leads to a
smaller decline in the growth rate than when ν is lower, because the entry rate decreases
less. The overall growth effects, however, are similar across different values of ν.

Now we consider the R&D subsidy. The R&D subsidy changes the cost for innovation
for incumbents and entrants. In particular, the innovation cost for the incumbents is

rIjt = (1− s)θIQt
qjt
q̄t
xIjt

γ
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and the innovation cost for the entrant is

rEjt = (1− s)θEQtxEjt
γ.

In the analytical characterization (Appendix B), this modification does not alter the
calculation of R̂ in (7), because the resource cost does not change with subsidies. The
equilibrium conditions change in the incumbent’s innovation choice and the entrants’
choices. The value functions for incumbents are now

Ẑ(q̂, α) = (1− δ)V̂ s(q̂, α),

where

V̂ s(q̂, α) = max
xI

ψαq̂
Ŷ

N
− (1− s)θI q̂xIγ + β(1− µ)Ŝ(xI , q̂/(1 + gq))

and

Ŝ(xI , q̂/(1+gq)) = (1−xI)
∫
Ẑ(q̂/(1+gq), α

′)ζ(α′)dα′+xI

∫
Ẑ((1+λI)q̂/(1+gq), α

′)ζ(α′)dα′.

Similar to the baseline model, the value function is linear:

Ẑ(q̂, α) = Aαq̂ + Bq̂,

The optimal xI is

xI =

(
β(1− µ)λI(A+ B)

(1 + gq)γ(1− s)θI

) 1
γ−1

and the constants are

A = (1− δ)ψ Ŷ
N
,

and B solves

B = (1− δ)β(1− µ)

(
1 +

γ − 1

γ
λIxI

)
A+ B
1 + gq

.

The change from the baseline model is therefore the expression for xI only. For entrants,
the optimal innovation rate for the potential entrant is now

x∗E =

(
φ

(1− s)θE(γ − 1)

) 1
γ

,

and the free-entry condition (8) must be changed to

γ(1− s)θExEγ−1

β
= ˆ̄VE.

The computation of the model (Appendix D) would change in a few places. First, in
step 2, the entrants’ innovation equations are

x∗E =

(
φ

(1− s)θE(γ − 1)

) 1
γ
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Table 13: Innovation subsidies

Baseline, τ = 0.0 τ = 0.3
s = 0.0 s = 0.073

Growth rate of output g (%) 1.48 1.48
Innovation probability: incumbents x̄I 0.084 0.094
Innovation probability: entrants xE 0.143 0.149
Creative-destruction rate µ (%) 2.65 2.50
Employment L 100 99.7

Normalized output Ŷ 100 99.0

Normalized average productivity Ŷ /L 100 99.3
Number of active products N 0.964 0.961
Job-creation rate (%) 17.0 5.1
Job-creation rate from entry (%) 6.4 4.6
Job-destruction rate (%) 17.0 5.1
Job-destruction rate from exit (%) 2.8 2.6
R&D ratio R/Y 11.5 11.4

Note: L, Ŷ , and Ŷ /L are set at 100 in the τ = 0.0 and s = 0.0 case.

and
ˆ̄VE =

(1− s)γθE
β

xE
γ−1.

Second, in step 4, because now the flow profit is

Π̃(α, ˜̀, ˜̀′, xI) ≡

[ α

Ω(ŵ, Ŷ )

]ψ
˜̀′−ψŶ ψ − ŵ

Ω(ŵ, Ŷ )˜̀′−(1−s)θIxIγ−τΩ(ŵ, Ŷ )ŵmax〈0, ˜̀−˜̀′〉,

with Ω(ŵ, Ŷ ) ≡ `∗(q̂; ŵ, Ŷ )/q̂, the first-order condition for xI is

γ(1− s)θIxγ−1I = ΓI

and thus xI can be computed from

xI =

(
ΓI

γ(1− s)θI

)1/(γ−1)

,

where ΓI ≡ β(1−µ)Eα′
[
Z̃(α′, (1 + gq)˜̀′/(1 + λI))(1 + λI)− Z̃(α′, (1 + gq)˜̀′)

]
/(1 + gq).

Third, in step 6(b), the free-entry condition is once again

ˆ̄VE =
γ(1− s)θE

β
xE

γ−1.

The results are in Table 13. We find we would need a subsidy equal to 7.3% to offset
the effect of the firing tax on the growth rate.
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E.5 Expanding-variety model

Our baseline model is a quality-ladder model. There are alternative formulations of
innovation in the literature, and seeing how different formulations of innovation can
affect the outcome of the model is of interest. Here, we consider the expanding-variety
model of Romer (1990). While we find some overlap in the notation with the main text,
we intend this section to be self-contained.

As in the standard expanding-variety model, we assume innovation is conducted
only by the entrants. For simplicity, we assume no exogenous exit of firms occurs.
Furthermore, we assume no exogenous productivity shocks occur, which implies the
model has a limited ability to match observed job flows. In the model, incumbents
do not contribute to job creation, and job destruction is uniform across incumbents;
and therefore, job flows will be lower than in the data. By contrast, with innovation
conducted by the incumbents, the quality-ladder model naturally generates both job
creation and job destruction by incumbents even without exogenous shocks. Although
we could easily add exogenous shocks to the model to better fit the job-flows data, we
choose here to consider the simplest version of the model to study the main mechanism
through which firing taxes affect growth.

The production structure is similar to our baseline model. The final goods, which
are used both for consumption and R&D, are produced using only intermediate goods,
and the differentiated intermediate goods are produced by monopolists using labor. Let
the final goods produced at time t be Yt. The quantity of intermediate good j used at
time t is denoted yjt. The final-goods production function is

Yt =

(∫ Nt

0

yjt
1−ψdj

) 1
1−ψ

, (11)

where 1/ψ is the elasticity of substitution across goods, and Nt is the number of goods
produced at time t. The final-goods market is perfectly competitive. After the cost
minimization by the final-goods producers, the inverse demand function for intermediate
good j is

pjt = y−ψjt Y
ψ
t ,

where pjt is the price of good j at time t.

Each entrant needs to pay η−1N
ψ

1−ψ−1
t units of final goods to come up with a new

variety and enter. The free-entry condition for innovation equates the value of innovation,
Vt, to the cost. Thus,

Vt = η−1N
ψ

1−ψ−1
t . (12)

The growth in the number of variety depends on aggregate spending by entrants on
developing new varieties Rt:

Nt+1 −Nt = ηN
1− ψ

1−ψ
t Rt. (13)

On the consumer side, the preferences are assumed to be the same as in the baseline
model:

U =
∞∑
t=0

βt[log(Ct)− ξLt],
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where Ct is the final goods consumption and Lt is labor supply.
Let us focus on the balanced-growth path. Let the growth rate of Nt be g, that is

(Nt+1 − Nt)/Nt = g. Along the balanced-growth path, Yt, Ct, Rt, and wt grow at the
rate gY , where

1 + gY = (1 + g)
ψ

1−ψ . (14)

From the Euler equation of the consumer, the firm discounts future profits at rate
β(Ct/Ct+1) = β/(1 + gY ). Thus, the Bellman equation for the intermediate good pro-
ducer is

Vt(`t−1) = max
`t

`1−ψt Y ψ
t − wt`t − τwt max〈0, `t−1 − `t〉+

β

1 + gY
Vt+1(`t).

As in the quality-ladder model, we can make the Bellman equation stationary. Here,

we normalize by dividing Yt, Ct, Rt, and wt by N
ψ

1−ψ
t and dividing `t by N−1t . The value

function Vt(`t−1) is divided by N
ψ

1−ψ−1
t :

V̂t(ˆ̀
t−1) = max

ˆ̀
t

ˆ̀1−ψ
t Ŷ ψ

t − ŵt ˆ̀t − τŵt max〈0, (1 + g)ˆ̀
t−1 − ˆ̀

t〉+
β

1 + g
V̂t+1(ˆ̀

t).

Note that we used `t−1/N
−1
t = (1 + g)`t−1/N

−1
t−1 = (1 + g)ˆ̀

t−1 and Vt+1(ˆ̀
t)/N

ψ
1−ψ−1
t =

(1 + g)
ψ

1−ψ−1Vt+1(ˆ̀
t)/N

ψ
1−ψ−1
t+1 = (1 + gY )(1 + g)−1V̂t+1(ˆ̀

t). This can be written without
the time subscript as

V̂ (ˆ̀) = max
ˆ̀′

ˆ̀′1−ψŶ ψ − ŵ ˆ̀′ − τŵmax〈0, (1 + g)ˆ̀− ˆ̀′〉+
β

1 + g
V̂ (ˆ̀′). (15)

Note that because all the entrants are identical, and the employment decision only de-
pends on past employment ˆ̀ , the employment process is deterministic and identical
across firms: Firms of the same age have the same employment level.

E.5.1 No-firing-tax case

With no firing tax, the intermediate good firm’s problem becomes static. The maximiza-
tion problem yields the optimal `t as

`∗t =

(
1− ψ
wt

) 1
ψ

Yt =

(
1− ψ
ŵ

) 1
ψ

Ŷ N−1t .

In the context of the normalized Bellman, equation (15), ˆ̀′ is thus ((1− ψ)/ŵ)
1
ψ Ŷ , and

therefore the value function satisfies (ˆ̀ is now no longer a state variable)

V̂ = ψ(1− ψ)
1
ψ
−1ŵ1− 1

ψ Ŷ +
β

1 + g
V̂ .

Thus,

V̂ =
ψ

1− β/(1 + g)
(1− ψ)

1
ψ
−1ŵ1− 1

ψ Ŷ .
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Note that a constant value of ˆ̀′ implies `t = `t−1/(1 + g). Thus, `t−1 − `t = g`t and the
firm fires a proportion g of its employees every period.

From the free-entry condition,

η−1 =
ψ

1− β/(1 + g)
(1− ψ)

1
ψ
−1ŵ1− 1

ψ Ŷ (16)

holds, because V̂ here corresponds to Vt/N
ψ

1−ψ−1
t in (12).

In the case with no tax, the employment `t is the same across different goods. From
the production function,

Yt = N
1

1−ψ
t `t, (17)

and thus

Ŷ =

(
1− ψ
ŵ

) 1
ψ

Ŷ ,

which implies
ŵ = 1− ψ.

Therefore, the free-entry condition (16) can be rewritten as

Ŷ =
1− β/(1 + g)

ψη
.

Note this equation represents a positive relationship between Ŷ and g because the
profit for each intermediate-good producer contracts over time due to increase in Nt.
WhenNt is large, many intermediate-good firms compete for limited production resources
(labor in the current model), which implies the wage increases as Nt becomes larger.
When Nt grows faster, the future profit shrinks faster due to the wage increase. One
can interpret this as a form of the creative-destruction effect, because the creation of
new varieties forces existing firms to contract. Thus, when g is large, a large Ŷ (which
supports a larger flow profit) is necessary in order to satisfy the free-entry condition.

Because firms are symmetric, the aggregate labor can be written as

Lt = `tNt.

Because ˆ̀ = `t/N
−1
t = `tNt, this equation implies Lt = ˆ̀. From (17) together with

Ŷ = Yt/N
ψ

1−ψ
t , we then have

Ŷ = ˆ̀= Lt.

The growth rate is determined by the R&D input in (13). To determine the R&D
input, we use the condition R̂ = Ŷ − Ĉ and the consumer’s static first-order condition

Ĉ =
ŵ

ξ
,

yielding

R̂ =
1− β/(1 + g)

ψη
− 1− ψ

ξ
.

Thus, because g = ηR̂ from (13),

g =
1− β/(1 + g)

ψ
− η(1− ψ)

ξ
. (18)
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E.5.2 Computation of the model with firing taxes

At each point in time, the normalized number of firms at age s, fs, is

fs ≡
gNt−s−1

Nt

=
g

(1 + g)1+s
. (19)

The computation proceeds as follows.

1. Guess g and ŵ. Because g = ηR̂ = η(Ŷ − Ĉ) and Ĉ = ŵ/ξ,

Ŷ =
g

η
+
ŵ

ξ
.

2. Solve the Bellman equation (15). Let the policy function be ˆ̀′ = L(ˆ̀). Then we
can calculate the normalized employment for firms of age s, ˆ̀

s, as

ˆ̀
0 = L(0)

and
ˆ̀
s = L(ˆ̀

s−1)

for s = 1, 2, .....

3. Check whether the guess is correct by looking at the two equilibrium conditions.
First, from the production function, normalized output has to be

Ŷ =

(
∞∑
s=0

ˆ̀1−ψ
s fs

) 1
1−ψ

,

where fs is calculated by (19). The free-entry condition is

V̂ (0) = η−1

because V̂ (0) corresponds to Vt/N
ψ

1−ψ−1
t in the notation of (12). Adjust g and ŵ

until these two conditions are satisfied.

E.5.3 Calibration

Similar to the baseline model, we calibrate the frictionless economy to match the U.S
growth rate and employment rate. The efficiency of innovation η is set so that gY =
0.0148. The disutility labor ξ is set so that Lt = 0.613. We use the same values of β and
ψ as for the baseline model: β = 0.947 and ψ = 0.2.

From
1 + g = (1 + gY )

1−ψ
ψ

from 14, we can obtain g = 0.0605. Then because

Lt = Ŷ =
1− β/(1 + g)

ψη
,

with the target Lt = 0.613, we can obtain η = 0.873. We can solve (18) for ξ and obtain
ξ = 1.471.
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E.5.4 Results

We consider two experiments: τ = 0.3 and τ = 1.0. Table 14 summarizes the results. As
in our model in the main text, firing taxes have both level effects and growth effects. The
growth rate falls, and the quantitative impact is larger than in the main text, largely
because innovation occurs here only through entry, which is negatively affected by τ .
The incentive to enter is lower because the total benefit of entry is reduced by the tax.
In the model in the main text, incumbents’ innovation increases and counteracts this
effect, whereas here we assume incumbents do not innovate on their own variety.

Table 14: Results: expanding-variety model

τ = 0.0 τ = 0.3 τ = 1.0

Growth rate of output gY (%) 1.48 1.31 1.05
Employment L 100 99.0 98.7

Normalized output Ŷ 100 98.9 98.1

Normalized average productivity Ŷ /L 100 99.9 99.4

Note: L, Ŷ , and Ŷ /L are set at 100 in the τ = 0.0 case.

The level effect on employment and normalized output are also negative. As for the
baseline model, this outcome is not trivial. Entrants are smaller than in the frictionless
case, but after entering, firms do not fire workers for some time, and eventually they
will become larger than in the frictionless case (recall that in the frictionless case, the
firm size becomes smaller over time). After a certain point, the firms start firing workers
at a constant rate (at the rate g, as in the frictionless case). Depending on the size
of entrants, the size at which firms start firing workers, and the change in the overall
growth rate, the aggregate labor demand can be higher or lower. Labor supply can also
change because of the wealth effect.

The average productivity Ŷ /L falls because of misallocation, as in the main text. The
production function (11) implies the maximum production given L is achieved when ˆ̀

is constant across firms. Firing taxes generate dispersion in ˆ̀ (and thus the marginal
product of labor) across firms and thus reduces aggregate productivity.

Overall, the expanding-variety model produces similar results to the quality-ladder
model in our baseline model. The largest difference is that here we assume the incum-
bents do not innovate. As a consequence, the effects that are intrinsic to incumbents,
such as the tax-escaping effect, are not present in the current model.

F Empirical analysis

As explained in section III.B, the overall effect on growth is the result of two opposing
effects. Firing costs may increase the incumbents’ innovation while discouraging the
innovation by entrants. The overall effect could be positive or negative depending on
which of these two effects dominate. To gain further insight into this question, we conduct
in this section an empirical analysis of the effect of firing costs on innovation. Several
studies have shown the effects of firing costs on job reallocation (Micco and Pagés, 2007;
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Haltiwanger, Scarpetta and Schweiger, 2014; Davis and Haltiwanger, 2014), but only a
few studies have investigated the consequences of firing costs for aggregate productivity.
Using differences across the US states in the adoption of more stringent labor laws,
Autor, Kerr and Kugler (2007) find evidence suggesting firing costs reduce total factor
productivity. More closely related to our objective, Bassanini, Nunziata and Venn (2009)
investigate the effects of firing costs on total factor productivity growth. They find that
more stringent dismissal regulations tend to reduce total factor productivity growth in
industries in which dismissal regulations are more likely to be binding.

In this section, we complement the existing studies by focusing on innovation spend-
ing. We analyze two different empirical models. First, we exploit the variation in em-
ployment protection regulations across countries and over time to evaluate how industry-
level R&D spending is correlated with these regulations. Second, we exploit the variation
across industries as well and conduct an analysis similar to Bassanini, Nunziata and Venn
(2009).

F.1 Data

R&D spending (R&D): We compute R&D as R&D business expenditures, divided by the
gross output of the industry. We use data on R&D business expenditures by industry
and by country from the OECD ANBERD database (Analytical Business Enterprise
Research and Development). The data are available at the two-digit ISIC Rev.3 level
and are classified in industries according to the main activity of the enterprise carrying
out the R&D. We remove the financial-intermediation sector from the dataset. The
ANBERD dataset includes statistical estimates, which leads to fewer missing values and
more extensive time series than the raw data. The ANBERD dataset covers 32 OECD
countries and six non-member countries between 1987 and 2011, with gaps and breaks
in some of the series. The gross output data, obtained from the OECD STAN database,
are also available at the two-digit ISIC Rev.3 level.

Employment protection indicator (EPL): We use two indicators of the strictness of em-
ployment protection constructed by the OECD. The indicator EPL1 measures the strict-
ness of dismissal regulation for individual dismissal, and the indicator EPL2 includes
measures of the strictness of the regulation on collective dismissal as well.7 The indi-
cators are constructed from the reading of statutory laws, collective bargaining agree-
ments, and case law combined with advice from officials from OECD member countries
and country experts. The indicators are compiled from scores between 0 and 6 on
the notification procedure, the severance pay, and the difficulty of dismissal. The in-
dicator EPL1 is available between 1985 and 2013, and EPL2 is available between 1998
and 2013. The dataset covers 34 OECD countries and 38 non-OECD countries (for
most non-OECD countries, the series is not available before 2008). The Employment-
protection indicators are publicly available at http://stats.oecd.org/, and a compre-
hensive description of the method used to construct the indicator can be found at
http://www.oecd.org/els/emp/oecdindicatorsofemploymentprotection.htm.

7The OECD codes for EPL1 and EPL2 are EPRC V1 and EPRC V2.
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Layoff rate (layoff): To measure the sensitivity of each industry to firing costs, we use
the layoff rate by industry in the US. Dismissal regulation in the US is less strict than
in the rest of the countries considered. The US layoff rate can therefore be used as
a proxy for the propensity of each industry to lay off workers. Following Bassanini,
Nunziata and Venn (2009), we estimate the US layoff rate by industry using data from
the 2004 “Displaced workers, Employee, Tenure and Occupational Mobility” supple-
ment of the Current Population Survey (CPS). We measure the layoff rate as the to-
tal number of displaced workers in the three years preceding the survey (2001, 2002
and 2003) divided by total employment in the industry in January 2004. A displaced
worker is a worker who has lost his job for one of the following reasons: “plant clos-
ing,” “insufficient work,” “position abolished,” “seasonal job ended,” or “self-operated
business failed.” We use the Uniform Extract of CPS made available by the Center
for Economic and Policy Research (http://ceprdata.org/cps-uniform-data-extracts/cps-
displaced-worker-survey/cps-dws-data/). The data are organized according to the 2002
census industry classification. To be consistent with the R&D data, we convert the layoff
data into the two-digit ISIC Rev. 3 classification. The correspondence between the two
classifications is reported in Table 15. Though the exact procedure used to estimate the
US layoff rate differs from Bassanini, Nunziata and Venn (2009), the two measures are
strongly correlated (correlation coefficient of 0.71).

The merged dataset contains data on 27 OECD countries and 19 industries between
1987 and 2009, with breaks and gaps in the series. The 27 countries are: Austria, Bel-
gium, Canada, Czech Republic, Estonia, Finland, Germany, Greece, Hungary, Iceland,
Ireland, Israel, Italy, Japan, Korea, Luxembourg, Mexico, Netherlands, New Zealand,
Norway, Poland, Portugal, Slovak Republic, Slovenia, Spain, Switzerland, and the US.
We excluded the primary sectors, the financial-intermediation industry, as well as public
and personal services (education, health, etc). The 19 industries used are listed in Table
15.

F.2 Empirical specifications

First, we utilize the variation in employment-protection regulations across countries and
over time to evaluate how R&D spending is correlated with these regulations. We esti-
mate the following equation at the industry level:

log(R&Djct) = β0 + β1EPLct + γj + εjct, (20)

where γj is the industry fixed effect. R&Djct is the R&D spending of industry j in country
c and year t, computed as the share of the industry’s output, and EPLct is the indicator
of employment protection. A high value of EPLct indicates dismissal regulation is strict
and it is thus more costly to fire workers. The parameter of interest is β1, which indicates
how R&D spending is related to the strictness of employment-protection regulation.

Second, we follow the approach used by Bassanini, Nunziata and Venn (2009). We
test whether industries that have a higher propensity to lay off workers have relatively
lower R&D spending in countries where firing costs are high. Cross-industry variation
is used to identify the effect of the regulation, with the underlying assumption that
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Table 15: CPS-OECD industry classification correspondence

code CPS label code OECD label
4 Construction F Construction
5 Nonmetallic mineral product manufacturing 26 Non-metallic mineral products
6 Primary metals and fabricated metal products 27-28 Basic metals and fabricated metal
7 Machinery manufacturing 29 Machinery n.e.c.
8 Computer and electronic product manufacturing 30-33 Electrical and optical equipment
9 Electrical equipment, appliance manufacturing 30-33 Electrical and optical equipment
10 Transportation equipment manufacturing 34-35 Transport equipment
11 Wood products 20 Wood and wood products
12 Furniture and fixtures manufacturing 36-37 Manufacturing, n.e.c.; recycling
13 Miscellaneous and not specified manufacturing 36-37 Manufacturing, n.e.c.; recycling
14 Food manufacturing 15-16 Food and beverages
15 Beverage and tobacco products 15-16 Food and beverages
16 Textile, apparel, and leather manufacturing 17-19 Textiles, wearing app. and leather
17 Paper and printing 21-22 Paper, printing and publ
18 Petroleum and coal products manufacturing 23 Coke, refined petroleum, nuclear fuel
19 Chemical manufacturing 24 Chemicals and chemical products
20 Plastics and rubber products 25 Rubber and plastics
21 Wholesale trade 50-52 Trade
22 Retail trade 50-52 Trade
23 Transportation and warehousing 60-64 Transport, storage and communications
24 Utilities E Electricity, gas and water supply
25 Publishing industries (except internet) 60-64 Transport, storage and communications
26 Motion picture and sound recording industries 60-64 Transport, storage and communications
27 Broadcasting (except internet) 60-64 Transport, storage and communications
28 Internet publishing and broadcasting 60-64 Transport, storage and communications
29 Telecommunications 60-64 Transport, storage and communications
30 Internet service providers and data processing services 60-64 Transport, storage and communications
31 Other information services 60-64 Transport, storage and communications
34 Real estate 70-74 Real estate and business services
35 Rental and leasing services 70-74 Real estate and business services
36 Professional and technical services 70-74 Real estate and business services
37 Management of companies and enterprises 70-74 Real estate and business services
38 Administrative and support services 70-74 Real estate and business services
45 Accommodation H Hotels and Restaurants
46 Food services and drinking places H Hotels and Restaurants

Notes: The CPS classification is the 2002 Census Industry Classification and the OECD classification
is ISIC Rev.3.
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Table 16: Regression results: log(R&D ratio)

Individual dismissal Individual and collective dismissal
EPL1 EPL2

[1] [2] [3] [1] [2] [3]

EPLct −0.461∗∗∗ −0.441∗∗∗ −0.461∗∗∗ −0.656∗∗∗ −0.754∗∗∗ −0.656∗∗∗

(0.0148) (0.0197) (0.0148) (0.0255) (0.0304) (0.0255)

N 5755 3055 5755 3770 2233 3770
R2 0.552 0.531 0.552 0.577 0.577 0.577

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The columns refer to different samples: [1] non-balanced panel [2] balanced panel [3]
year=2005. The balanced panel contains data on 18 countries and 19 industries from 1995 to
2005. All regressions include industry fixed effects. Robust standard errors in parentheses. *
p < 0.05; ** p < 0.01; *** p < 0.001.

industries with a higher layoff propensity are more sensitive to firing costs. This strategy
greatly reduces the concerns about omitted variable bias because it allows us to control
for both country and industry fixed effects. Hence, our results cannot be driven by other
cross-country differences in regulations or policies as long as they do not affect industries
with different layoff propensities differently. We estimate the following equation:

log(R&Djct) = β0 + β1 EPLct × log(layoffj) + γj + λct + εjct, (21)

where λct is the country-time fixed effect. The indicator of the industry’s propensity
to lay off workers layoffj corresponds to the industry’s layoff rate in the absence of any
dismissal regulation. The parameter of interest here is that of the interaction between
the level of employment protection and the industry’s propensity to lay off workers β1.
When β1 < 0, countries with stricter dismissal regulation have relatively lower R&D
spending in industries with a higher propensity to lay off workers. Conversely, β1 > 0
would indicate countries with stricter dismissal regulation have relatively higher R&D
spending in industries with a higher propensity to lay off workers.

F.3 Empirical Results

The results of the OLS estimation of equation (20) are displayed in Table 16 for the two
measures of employment protection, EPL1 and EPL2. The first column reports the results
for the full sample. Because the data have missing observations for some industries and
some countries, we also run the regression on the balanced panel (column [2]) and for a
given year (column [3]) to ensure the missing observations do not bias the results. All six
regressions indicate R&D spending is negatively correlated with employment-protection
regulation.

The OLS estimation results of equation (21) are in Table 17. The interaction terms
in all specifications have insignificant coefficients. Employment-protection legislation
does not have a systematically larger effect in industries with a higher layoff rate. From

35



Table 17: Regression results: log(R&D ratio), with log(layoff rate) as a proxy

Individual dismissal Individual and collective dismissal
EPL1 EPL2

[1] [2] [3] [1] [2] [3]

EPLct × ln(layoffj) 0.0303 0.132 0.249 0.139 0.158 0.388

(0.0578) (0.0861) (0.251) (0.102) (0.123) (0.334)

N 5755 3055 343 3770 2233 343
R2 0.772 0.775 0.776 0.781 0.775 0.777

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Notes: The layoff rate is measured from the CPS displacement data. The columns refer to
different samples: [1] non-balanced panel [2] balanced panel [3] year=2005. The balanced
panel contains data on 18 countries and 19 industries from 1995 to 2005. The non-balanced
and balanced panel regressions include industry and country-time fixed effects. The 2005
regression incudes industry and country fixed effects. Robust standard errors in parentheses.
* p < 0.05; ** p < 0.01; *** p < 0.001.

Table 18: Regression results: log(R&D ratio), with log(job destruction rate) as a proxy

Individual dismissal Individual and collective dismissal
EPL1 EPL2

[1] [2] [3] [1] [2] [3]

EPLct × ln jdratej −0.0589 −0.00950 0.424 0.0469 −0.246∗ 0.356

(0.0507) (0.0628) (0.242) (0.0797) (0.101) (0.329)

N 5392 2844 320 3516 2080 320
R2 0.766 0.767 0.735 0.756 0.760 0.732

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Notes: The job destruction rate is measured using data made available by John Halti-
wanger. The columns refer to different samples: [1] non-balanced panel [2] balanced panel [3]
year=2005. The balanced panel contains data on 18 countries and 15 industries from 1995
to 2005. The non-balanced and balanced panel regressions include industry and country-time
fixed effects. The 2005 regression incudes industry and country fixed effects. Robust standard
errors in parentheses. * p < 0.05; ** p < 0.01; *** p < 0.001.
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the viewpoint of our theoretical model, the positive and negative effects of employment
protection on R&D may offset each other to produce mixed results.

As a robustness check, we use the job-destruction rate instead of the layoff rate as a
proxy for the industries’ sensitivity to firing costs (both computed on US data). The data,
made available online by John Haltiwanger (Bartelsman, Haltiwanger and Scarpetta,
2009), span the periods 1989-1991 and 1994-1996. The industry classification is derived
from the STAN classification, but at a higher aggregation level than the R&D data. We
re-aggregate the R&D data at the level at which the job-destruction rate is available.
The merged dataset has 17 industries (vs. 19 with our original dataset). The results,
reported in Table 18, show the coefficient of the interaction term is insignificant for most
regressions, similar to what we obtained when using the layoff rate. The one significant
coefficient is negative, consistently with the result of the entrant-driven calibration.

All in all, the empirical results only suggest a negative effect of firing costs on inno-
vation spending. We find that countries with stricter dismissal regulations tend to invest
less in R&D, but this effect does not hold once we control for country fixed effects and
use the cross-industry variation to identify the effect of the dismissal regulation.
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