Online Appendix for "The Aging of the Baby Boomers: Demographics and Propagation of Tax Shocks"

Domenico Ferraro and Giuseppe Fiori*

April 17, 2019

[^0]
OA. 1 Population Aging

Here we provide additional facts on the changing aging composition of the U.S. labor force, employment, and unemployment.

Figure OA.1: Trends in the Age Composition of U.S. Labor Force, 1950-2015
Notes: Panel A shows the average age of the U.S. labor force (employed plus unemployed workers of 20-64 years old). The average age of the labor force is calculated as $\bar{a}^{\mathrm{LF}} \equiv \sum_{a \in A}\left(\frac{a+\bar{a}}{2}\right) \phi_{a}^{\mathrm{LF}}$, where \underline{a} and \bar{a} are respectively lower and upper bounds of the age group $a \in A$, with $A=\{20-24,25-34,35-44,45-54,55-64\}$, and ϕ_{a}^{LF} is the age-specific labor force share (the ratio of the labor force in the age group a to total labor force). Panel B shows the labor force shares by three age groups: (i) full line with circles (left axis) shows $\phi_{20-24}^{\mathrm{LF}}+\phi_{25-34}^{\mathrm{LF}}$; (ii) dashed line with squares (left axis) shows $\phi_{35-44}^{\mathrm{LF}}+\phi_{45-54}^{\mathrm{LF}}$; and (iii) dashed-dotted line with diamonds (right axis) shows $\phi_{55-64}^{\mathrm{LF}}$.

Employed Persons

Figure OA.2: Trends in the Age Composition of U.S. Employment, 1950-2015
Notes: Panel A shows the average age of the U.S. employment pool (20-64 years old). The average age of employment is calculated as $\bar{a}^{\mathrm{E}} \equiv \sum_{a \in A}\left(\frac{\underline{a}+\bar{a}}{2}\right) \phi_{a}^{\mathrm{E}}$, where \underline{a} and \bar{a} are respectively lower and upper bounds of the age group $a \in A$, with $A=\{20-24,25-34,35-44,45-54,55-64\}$, and ϕ_{a}^{E} is the age-specific employment share (the ratio of employed in the age group a to total employment). Panel B shows employment shares by three age groups: (i) full line with circles (left axis) shows $\phi_{20-24}^{\mathrm{E}}+\phi_{25-34}^{\mathrm{E}}$; (ii) dashed line with squares (left axis) shows $\phi_{35-44}^{\mathrm{E}}+\phi_{45-54}^{\mathrm{E}}$; and (iii) dashed-dotted line with diamonds (right axis) shows $\phi_{55-64}^{\mathrm{E}}$.

Figure OA.3: Trends in the Age Composition of U.S. Unemployment, 19502015

Notes: Panel A shows the average age of the U.S. unemployment pool (20-64 years old). The average age of unemployment is calculated as $\bar{a}^{\mathrm{U}} \equiv \sum_{a \in A}\left(\frac{a+\bar{a}}{2}\right) \phi_{a}^{\mathrm{U}}$, where \underline{a} and \bar{a} are respectively lower and upper bounds of the age group $a \in A$, with $A=\{20-24,25-34,35-44,45-54,55-64\}$, and ϕ_{a}^{U} is the age-specific unemployment share (the ratio of unemployed in the age group a to total unemployment). Panel B shows unemployment shares by three age groups: (i) full line with circles (left axis) shows $\phi_{20-24}^{\mathrm{U}}+\phi_{25-34}^{\mathrm{U}}$; (ii) dashed line with squares (left axis) shows $\phi_{35-44}^{\mathrm{U}}+\phi_{45-54}^{\mathrm{U}}$; and (iii) dashed-dotted line with diamonds (right axis) shows $\phi_{55-64}^{\mathrm{U}}$.

OA. 2 Additional Results

Here we provide additional results based on SVARs.

Figure OA.4: Unemployment Rate Responses to an Aggregate Tax Cut by Age

Notes: The figure shows the response to a 1 percentage point cut in the aggregate AMTR. Full lines with circles are point estimates; dash-dotted lines are 68 percent confidence bands; dashed lines are 95 percent confidence bands. Both intervals are computed using the Delta-method suggested by Montiel-Olea et al. (2017) with a Newey and West (1987) HAC-robust residual covariance matrix.

Figure OA.5: Age Differences in Unemployment Rate Responses to AgeSpecific Tax Cuts

Notes: The figure shows age differences in responses to a 1 percentage point cut in age-specific AMTRs. Proxy SVARs is estimated with age-specific AMTRs and agespecific proxies. Full lines with circles are point estimates; dash-dotted lines are 68 percent confidence bands; dashed lines are 95 percent confidence bands. Both intervals are computed using the Delta-method suggested by Montiel-Olea et al. (2017) with a Newey and West (1987) HAC-robust residual covariance matrix.

Figure OA.6: Age Differences in Unemployment Rate Responses to an Aggregate Tax Cut

Notes: The figure shows age differences in responses to a 1 percentage point cut in the aggregate AMTR. Full lines with circles are point estimates; dash-dotted lines are 68 percent confidence bands; dashed lines are 95 percent confidence bands. Both intervals are computed using the Delta-method suggested by Montiel-Olea et al. (2017) with a Newey and West (1987) HAC-robust residual covariance matrix.

Figure OA.7: Participation Rate Responses to an Aggregate Tax Cut by Age
Notes: The figure shows the response to a 1 percentage point cut in the aggregate AMTR. Full lines with circles are point estimates; dash-dotted lines are 68 percent confidence bands; dashed lines are 95 percent confidence bands. Both intervals are computed using the Delta-method suggested by Montiel-Olea et al. (2017) with a Newey and West (1987) HAC-robust residual covariance matrix.

References

J.L. Montiel-Olea, J. Stock, and M. Watson. Inference in SVARs Identified with External Instruments. Columbia University Working Paper, 2017.
N.K. Newey and K.D. West. A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica, 55(3):703-708, May 1987.

[^0]: *Ferraro: Department of Economics, W.P. Carey School of Business, Arizona State University, PO Box 879801, Tempe, AZ 85287-9801 (email: domenico.ferraro@asu.edu); Fiori: Department of Economics, Poole College of Management, North Carolina State University, Box 8110, Raleigh, NC 27695-8110 (email: gfiori@ncsu.edu).

