Online Appendix

Micro-level Misallocation and Selection

Mu-Jeung Yang

To save on notation, I supress the sectoral index s in all following calculations.

1 Derivation of Aggregate Productivity

Profit maximization and Optimal size

Profits are given by

$$
\begin{align*}
& \max _{\{K(\omega), L(\omega)\}} \Pi(\omega)=\left[1-\tau_{Y}(\omega)\right] \cdot p y(\omega)-w L(\omega)-\left[1+\tau_{K}(\omega)\right] \cdot R \cdot K(\omega) \tag{1}\\
& \text { subject to: } y(\omega)=A(\omega) \cdot\left[K(\omega)^{\alpha} L(\omega)^{1-\alpha}\right]^{\gamma}
\end{align*}
$$

Taking first order conditions and solving for optimal size gives

$$
\begin{align*}
\frac{w L(\omega)}{1-\alpha} & =\left[\gamma p\left(1-\tau_{Y}(\omega)\right) A(\omega)\right]^{\frac{1}{1-\gamma}}\left[\left(\frac{\left(1+\tau_{K}(\omega)\right) R}{\alpha}\right)^{\alpha}\left(\frac{w}{1-\alpha}\right)^{1-\alpha}\right]^{-\frac{\gamma}{1-\gamma}} \\
\frac{\left(1+\tau_{K}(\omega)\right) R K(\omega)}{\alpha} & =\left[\gamma p\left(1-\tau_{Y}(\omega)\right) A(\omega)\right]^{\frac{1}{1-\gamma}}\left[\left(\frac{\left(1+\tau_{K}(\omega)\right) R}{\alpha}\right)^{\alpha}\left(\frac{w}{1-\alpha}\right)^{1-\alpha}\right]^{-\frac{\gamma}{1-\gamma}} \tag{2}\\
p y(\omega) & =\left(\frac{1}{\gamma}(p A(\omega))^{\frac{1}{1-\gamma}}\right)\left[\left(\frac{\left(1+\tau_{K}(\omega)\right) R}{\alpha}\right)^{\alpha}\left(\frac{w}{1-\alpha}\right)^{1-\alpha}\right]^{-\frac{\gamma}{1-\gamma}}
\end{align*}
$$

Aggregation I: factor payments

Labor market clearing can be written as

$$
\begin{equation*}
\left(1-s_{e}\right) w L=\int_{\Pi(\omega) \geq w} w L(\omega) d \omega \tag{3}
\end{equation*}
$$

where L is a given labor supply. Equation can also be rewritten as

$$
\begin{equation*}
p Y=\frac{1}{\gamma(1-\alpha)} \frac{1}{1-\bar{\tau}_{Y}} w\left(1-s_{e}\right) L \tag{4}
\end{equation*}
$$

with the average output distortion is defined by

$$
\begin{equation*}
\left(1-\bar{\tau}_{Y}\right)=\int_{\Pi(\omega) \geq w}\left(1-\tau_{Y}(\omega)\right)\left(\frac{p y(\omega)}{p Y}\right) d \omega \tag{5}
\end{equation*}
$$

and aggregate output in (4) is given by

$$
\begin{equation*}
Y=\int_{\Pi(\omega) \geq w} y(\omega) d \omega \tag{6}
\end{equation*}
$$

Using (2) in (1) one obtains

$$
\begin{equation*}
\frac{w}{1-\alpha}=\left(1-s_{e}\right)^{-\frac{1-\gamma}{1-\alpha \gamma}}(\gamma p)^{\frac{1}{1-\alpha \gamma}}\left(\frac{R}{\alpha}\right)^{-\frac{\alpha \gamma}{1-\alpha \gamma}} \Sigma_{L}^{\frac{1-\gamma}{1-\alpha \gamma}} \tag{7}
\end{equation*}
$$

with

$$
\begin{equation*}
\Sigma_{L}=E\left[\left.A(\omega)^{\frac{1}{1-\gamma}}\left(\frac{1}{1-\tau_{Y}(\omega)}\right)^{-\frac{1}{1-\gamma}}\left(1+\tau_{K}(\omega)\right)^{-\alpha \frac{\gamma}{1-\gamma}} \right\rvert\, \Pi(\omega) \geq w\right] s_{e} \tag{8}
\end{equation*}
$$

Similarily, capital market clear is given by

$$
\begin{equation*}
R K=\int_{\Pi(\omega) \geq w} R K(\omega) d \omega \tag{9}
\end{equation*}
$$

which can be rewritten as

$$
\begin{equation*}
p Y=\frac{1}{\gamma \alpha}\left(\frac{1+\bar{\tau}_{K}}{1-\bar{\tau}_{Y}}\right) R K \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1-\bar{\tau}_{Y}}{1+\bar{\tau}_{K}}=\int_{\Pi(\omega) \geq w}\left(\frac{1-\tau_{Y}(\omega)}{1+\tau_{K}(\omega)}\right)\left(\frac{p y(\omega)}{p Y}\right) d \omega \tag{11}
\end{equation*}
$$

Combining (2) in (9) implies

$$
\begin{equation*}
\frac{R}{\alpha}=(\gamma p)^{\frac{1}{1-\gamma+\alpha \gamma}}\left(\frac{w}{1-\alpha}\right)^{-\frac{(1-\alpha) \gamma}{1-\gamma-\alpha \gamma}}\left(\frac{L}{K}\right)^{\frac{1-\gamma}{1-\alpha+\alpha \gamma}} \Sigma_{K}^{\frac{1-\gamma}{1-\alpha+\alpha \gamma}} \tag{12}
\end{equation*}
$$

with

$$
\begin{equation*}
\Sigma_{K}=E\left[\left.A(\omega)^{\frac{1}{1-\gamma}}\left(\frac{1}{1-\tau_{Y}(\omega)}\right)^{-\frac{1}{1-\gamma}}\left(1+\tau_{K}(\omega)\right)^{-\frac{1-\gamma+\alpha \gamma}{1-\gamma}} \right\rvert\, \Pi(\omega) \geq w\right] s_{e} \tag{13}
\end{equation*}
$$

To obtain aggregate production, note that $p Y=(p Y)^{\alpha}(p Y)^{1-\alpha}$ and use (4) and (18) to obatain

$$
\begin{align*}
\frac{Y}{L}= & \left(E\left[\Sigma_{K} \mid \Pi(\omega) \geq w\right]^{\alpha} E\left[\Sigma_{L} \mid \Pi(\omega) \geq w\right]^{1-\alpha}\right)^{1-\gamma}\left(\frac{\left(1+\bar{\tau}_{K}\right)^{\alpha}}{1-\bar{\tau}_{Y}}\right) \tag{14}\\
& \times\left(\frac{K}{L}\right)^{\alpha \gamma} s_{e}^{1-\gamma}\left(1-s_{e}\right)^{\gamma(1-\alpha)}
\end{align*}
$$

Aggregation II: output

Combine equation (6) and (2) gives

$$
\begin{equation*}
Y=\left[\frac{1}{\gamma p}\left(\frac{R}{\alpha}\right)^{\alpha}\left(\frac{w}{1-\alpha}\right)^{1-\alpha}\right]^{-\frac{\gamma}{1-\gamma}} E\left[\Sigma_{Y} \mid \Pi(\omega) \geq w\right] s_{e} L \tag{15}
\end{equation*}
$$

with

$$
\begin{equation*}
E\left[\Sigma_{Y} \mid \Pi(\omega) \geq w\right]=E\left[\left.A(\omega)^{\frac{1}{1-\gamma}}\left[\frac{\left(1+\tau_{K}(\omega)\right)^{\alpha}}{1-\tau_{Y}(\omega)}\right]^{-\frac{\gamma}{1-\gamma}} \right\rvert\, \Pi(\omega) \geq w\right] \tag{16}
\end{equation*}
$$

Using (7) and (12) in (15) to get

$$
\begin{equation*}
\frac{Y}{L}=\frac{E\left[\Sigma_{Y} \mid \Pi(\omega) \geq w\right]}{\left(E\left[\Sigma_{K} \mid \Pi(\omega) \geq w\right]^{\alpha} E\left[\Sigma_{L} \mid \Pi(\omega) \geq w\right]^{1-\alpha}\right)^{\gamma}}\left(\frac{K}{L}\right)^{\alpha \gamma} s_{e}^{1-\gamma}\left(1-s_{e}\right)^{\gamma(1-\alpha)} \tag{17}
\end{equation*}
$$

Matching coefficients of (14) and (17) gives

$$
\begin{equation*}
\left(\frac{\left(1+\bar{\tau}_{K}\right)^{\alpha}}{1-\bar{\tau}_{Y}}\right)=\frac{\Sigma_{Y}}{\Sigma_{K}^{\alpha} \Sigma_{L}^{1-\alpha}} \tag{18}
\end{equation*}
$$

Then, using (18) in (17) gives

$$
\begin{equation*}
\frac{Y}{L}=E\left[\left.A(\omega)^{\frac{1}{1-\gamma}}\left[\frac{1-\bar{\tau}_{Y}}{1-\tau_{Y}(\omega)}\right]^{-\frac{1}{1-\gamma}}\left[\frac{1+\tau_{K}(\omega)}{1+\bar{\tau}_{K}}\right]^{-\alpha \frac{\gamma}{1-\gamma}} \right\rvert\, \Pi(\omega) \geq w\right]^{1-\gamma}\left(\frac{K}{L}\right)^{\alpha \gamma} s_{e}^{1-\gamma}\left(1-s_{e}\right)^{\gamma(1-\alpha)} \tag{19}
\end{equation*}
$$

2 Derivation of MPEC estimator

This section builds on the previous section to derive the MPEC estimator used in the paper. As before, I supress sector subscripts s to simplify notation.

MLE Objective

From (2) it follows that

$$
\begin{align*}
D_{1}(\omega) & =p y(\omega) \\
& =\left(\frac{1}{\gamma}(p A(\omega))^{\frac{1}{1-\gamma}}\right)\left[\left(\frac{\left(1+\tau_{K}(\omega)\right) R}{\alpha}\right)^{\alpha}\left(\frac{w}{1-\alpha}\right)^{1-\alpha}\right]^{-\frac{\gamma}{1-\gamma}} \tag{20}
\end{align*}
$$

Combining the expressions for factor demands in (2) it also follows that

$$
\begin{align*}
D_{2}(\omega) & =\left[\left(\frac{R K(\omega)}{\alpha}\right)^{\alpha}\left(\frac{w L(\omega)}{1-\alpha}\right)^{1-\alpha}\right] \\
& =(p \gamma)^{\frac{1}{1-\gamma}}\left[\left(\frac{R}{\alpha}\right)^{\alpha}\left(\frac{w}{1-\alpha}\right)^{1-\alpha}\right]^{-\frac{\gamma}{1-\gamma}} A(\omega)^{\frac{1}{1-\gamma}}\left(\frac{1}{1-\tau_{Y}(\omega)}\right)^{-\frac{1}{1-\gamma}}\left(1+\tau_{K}(\omega)\right)^{-\frac{\alpha}{1-\gamma}} \tag{21}
\end{align*}
$$

as well as

$$
\begin{align*}
D_{3}(\omega) & =\ln \left(\frac{w L(\omega) /(1-\alpha)}{R K(\omega) / \alpha}\right) \tag{22}\\
& =\left(1+\tau_{K}(\omega)\right)
\end{align*}
$$

Equation (20), (21), (22) can be rewritten to yield

$$
\left(\begin{array}{c}
\ln D_{1}(\omega) \tag{23}\\
\ln D_{2}(\omega) \\
\ln D_{3}(\omega)
\end{array}\right) \propto\left[\begin{array}{ccc}
-\frac{\gamma}{1-\gamma} & -\alpha \frac{\gamma}{1-\gamma} & \frac{1}{1-\gamma} \\
-\frac{1}{1-\gamma} & -\alpha \frac{1}{1-\gamma} & \frac{1}{1-\gamma} \\
0 & 1 & 0
\end{array}\right]\left(\begin{array}{c}
\ln \left(\frac{1}{1-\tau_{Y}(\omega)}\right) \\
\ln \left(1+\tau_{K}(\omega)\right) \\
\ln A(\omega)
\end{array}\right)
$$

which I assume is distributed according to a tri-variate normal distribution with parameters $\mu_{i}=E\left[\ln D_{i}(\omega)\right], \sigma_{i i}=\operatorname{Var}\left[\ln D_{i}(\omega)\right]$ for $i=1,2,3$ and $\sigma_{i j}=\operatorname{Cov}\left(\ln D_{i}(\omega), \ln D_{j}(\omega)\right)$ for $i, j=1,2,3$ and $i \neq j$. As equation (23), shows, these parameters in turn are functions
of the underlying heterogeneity parameters $\mu_{A}=E[\ln A(\omega)], \mu_{\tau_{Y}}=E\left[\ln \left(\frac{1}{1-\tau_{Y}(\omega)}\right)\right], \mu_{\tau_{K}}=$ $E\left[\ln \left(1+\tau_{K}(\omega)\right], \sigma_{A}=\operatorname{Var}[\ln A(\omega)], \sigma_{\tau_{Y}}=\operatorname{Var}\left[\ln \left(\frac{1}{1-\tau_{Y}(\omega)}\right)\right], \sigma_{\tau_{K}}=\operatorname{Var}\left[\ln \left(1+\tau_{K}(\omega)\right], \rho_{A \tau_{Y}}=\right.\right.$ $\operatorname{Corr}\left(\ln A(\omega), \ln \left(\frac{1}{1-\tau_{Y}(\omega)}\right)\right), \rho_{A \tau_{K}}=\operatorname{Corr}\left(\ln A(\omega), \ln \left(1+\tau_{K}(\omega)\right)\right)$
$\rho_{\tau_{Y K}}=\operatorname{Corr}\left(\ln \left(\frac{1}{1-\tau_{Y}(\omega)}\right), \ln \left(1+\tau_{K}(\omega)\right)\right.$
Selection is given by

$$
\begin{equation*}
\Pi_{s}(\omega) \geq w_{s} \tag{24}
\end{equation*}
$$

which after plugging in (2) and taking the log, gives

$$
\begin{equation*}
\left(\frac{1+\gamma}{1-\gamma}\right) \ln \left(\frac{1}{1-\tau_{Y}(\omega)}\right)+\alpha\left(\frac{\gamma}{1-\gamma}\right) \ln \left(1+\tau_{K}(\omega)-\left(\frac{1}{1-\gamma}\right) \ln A(\omega) \leq \ln \kappa_{Z}\right. \tag{25}
\end{equation*}
$$

where the \log truncation threshold $\ln \kappa_{Z}$ is given by

$$
\begin{equation*}
\ln \kappa_{Z}=\ln \left(\frac{1-\gamma}{w}\right)+\left(\frac{1}{1-\gamma}\right)[\ln p+\gamma \ln \gamma]-\frac{\gamma}{1-\gamma} \ln \left[\left(\frac{R}{\alpha}\right)^{\alpha}\left(\frac{w}{1-\alpha}\right)^{1-\alpha}\right] \tag{26}
\end{equation*}
$$

The MLE objective with parameters $\theta=\left[\mu_{A} ; \mu_{\tau_{Y}} ; \mu_{\tau_{K}} ; \sigma_{A} ; \sigma_{\tau_{Y}} ; \sigma_{\tau_{K}} ; \rho_{A \tau_{Y}} ; \rho_{A \tau_{K}} ; \rho_{\tau_{Y K}}\right]$ under truncation for a single observation can then be written as

$$
\left.\begin{array}{l}
\ln \left\{\frac{\phi\left(\ln D_{1}(\omega), \ln D_{2}(\omega), \ln D_{3}(\omega) \mid \theta, w, R\right)}{1-\Phi\left(\kappa_{Z}\right)}\right\}= \\
\left\{\frac{3}{2} \ln (2 \pi)+\frac{1}{2} \ln (|\bar{\sigma}|)-\ln \Phi\left(\frac{\ln \kappa_{Z}-\mu_{Z}}{\sigma_{Z}}\right)-\frac{1}{2}\left(\begin{array}{l}
\ln D_{1}(\omega)-\mu_{1} \\
\ln D_{2}(\omega)-\mu_{2} \\
\ln D_{3}(\omega)-\mu_{3}
\end{array}\right)^{\prime} \bar{\sigma}^{-1}\left(\begin{array}{l}
\ln D_{1}(\omega)-\mu_{1} \\
\ln D_{2}(\omega)-\mu_{2} \\
\ln D_{3}(\omega)-\mu_{3}
\end{array}\right)\right. \tag{27}
\end{array}\right\}
$$

with

$$
\begin{align*}
\mu_{Z} & =g \cdot \mu_{\tau_{Y}}+h \cdot \mu_{\tau_{K}}+k \cdot \mu_{A} \\
\sigma_{Z}^{2} & =g^{2} \sigma_{\tau_{Y}}^{2}+h^{2} \sigma_{\tau_{K}}^{2}+k^{2} \sigma_{A}^{2}+2\left(g \cdot h \cdot \sigma_{\tau_{Y}, \tau_{K}}+h \cdot k \cdot \sigma_{\tau_{K}, A}+g \cdot k \cdot \sigma_{\tau_{Y}, A}\right) \tag{28}\\
g & =\frac{1+\gamma}{1-\gamma}, h=\frac{\alpha \gamma}{1-\gamma}, k=\frac{1}{1-\gamma}
\end{align*}
$$

Furthermore, $\bar{\sigma}$ is the variance-covariance matrix of $\ln D_{1}(\omega), \ln D_{2}(\omega), \ln D_{3}(\omega)$ and the term
$|\bar{\sigma}|$ the determinant of that variance-covariance matrix. $\Phi()$ denotes the cdf of a standard normal distribution.

Equilibrium Constraints

Equilibrium constraints are given by the terms (8) and (13). To evaluate the truncated power means in these expressions, I use the following Lemmas.

Lemma 1 (Lien and Balakrishnan, 2006)

Let X and Z be two jointly log-normally distributed random variables. Define the multiplicative constraint by the set

$$
1_{\{a, b, K\}}=\left\{\begin{array}{l}
1 \text { if } X^{a} \cdot Z^{b} \leq K \tag{29}\\
0 \text { if else }
\end{array}\right.
$$

Then it follows that

$$
\begin{array}{r}
E\left[X^{m} Z^{n} \cdot 1_{\{a, b, K\}}\right]=\exp \left\{m \mu_{X}+n \mu_{Z}+\frac{1}{2}\left(m^{2} \sigma_{m}^{2}+n^{2} \sigma_{n}^{2}+2 m n \sigma_{X, Z}\right)\right\} \\
\times \Phi\left(\frac{\log K-\left(a \mu_{X}+b \mu_{Z}\right)-\left[a m \sigma_{X}^{2}+(b m+a n) \sigma_{X, Z}+b n \sigma_{Z}^{2}\right]}{\sqrt{a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Z}^{2}+2 a b \sigma_{X, Z}}}\right) \tag{30}
\end{array}
$$

where $\Phi($.$) is the cdf of a standard normal.$

To apply the Lien and Balakrishnan result to the trivariate lognormal truncated moments in (8) and (13), I use the following result, based in the fact that sums of normal random variables are themselves normally distributed.

Lemma 2

Let X_{1}, X_{2}, X_{3} be three jointly log-normally distributed random variables. Define the multiplicative constraint by the set

$$
1_{\{\alpha, \beta, \gamma, K\}}=\left\{\begin{array}{l}
1 \text { if } X_{1}^{\beta_{1}} X_{2}^{\beta_{2}} X_{3}^{\beta_{3}} \leq K \tag{31}\\
0 \text { if else }
\end{array}\right.
$$

Then it follows that

$$
\begin{align*}
& E\left[X_{1}^{m} X_{2}^{n} X_{3}^{l} \cdot 1_{\left\{\beta_{1}, \beta_{2}, \beta_{3}, K\right\}}\right]=E\left[X \cdot Z^{c} \cdot 1_{\{0,0,1, K\}}\right] \\
& =\exp \left\{\mu_{X}+c \mu_{Z}+\frac{1}{2}\left(\sigma_{X}^{2}+c^{2} \sigma_{Z}^{2}+c \sigma_{X, Z}\right)\right\} \cdot \Phi\left(\frac{\log K-\mu_{Z}-\left[\sigma_{X, Z}+c \sigma_{Z}^{2}\right]}{\sigma_{Z}}\right) \tag{32}
\end{align*}
$$

where $\Phi($.$) is the cdf of a standard normal and \mathrm{X}$ and Z are defined by

$$
\begin{array}{r}
\log X=a \log X_{1}+b \log X_{2} \tag{33}\\
\log Z=\beta_{1} \log X_{1}+\beta_{2} \log X_{2}+\beta_{3} \log X_{3}
\end{array}
$$

and the coefficients a, b, c are given by

$$
\begin{equation*}
a=m-\beta_{1} \frac{l}{\beta_{3}}, b=n-\beta_{2} \frac{l}{\beta_{3}}, c=\frac{l}{\beta_{3}} \tag{34}
\end{equation*}
$$

Proof: apply mapping (33) and (34) to reduce the trivariate problem to the bivariate problem of Lemma 1.

