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This appendix is organized as follows. Section A presents equilibrium conditions and the

steady state of the model in terms of stationary variables. Section B derives the second-order

approximation to the welfare of households around the steady state. Section C shows the

result of financial crisis scenario simulations under the welfare-maximizing monetary policy

rule and other selected rules. Section D compares the specification of financial frictions

between our paper and Queraltó (2013) and derives its implications for the amplification

mechanism of financial shocks.

A Equilibrium Conditions and the Steady State

A.1 Equilibrium conditions

This section begins by presenting equilibrium conditions of the model in terms of stationary

variables.

For 34 stationary endogenous variables yt = Yt/A
∗
t−1, gdpt = GDPt/A

∗
t−1, ct = Ct/A

∗
t−1,

it = It/A
∗
t−1, kt = Kt/A

∗
t−1, wt = Wt/A

∗
t−1, lt = Lt/A

∗
t−1, dt = Dt/A

∗
t−1, bt = Bt/A

∗
t−1,

id,t = Id,t/A
∗
t−1, st = St/A

θa−1
t−1 , ia,t = Ia,tAt−1/A

∗
t−1, vt = VtAt−1/A

∗
t−1, jt = JtAt−1/A

∗
t−1,

at = At/Zt, γt = At/At−1, γ
∗
t = A∗t/A

∗
t−1, γ

tfp
t = TFPt/TFPt−1, λt, πt, ζp,t, υp1,t, υp2,t, υw1,t,

υw2,t, ut, nt, rt, µt, r
τ
t , ϕt, ϕ

′
t, δk,t, and δ′k,t, the system of equilibrium conditions consists of

the following 34 equations.

ϕt = dt + κd (dt − d)2, (A1)

ϕ′t = 1 + 2κd (dt − d), (A2)

γ∗t = γ
θa−1
1−α
t , (A3)

γtfpt =
ζp,t−1
ζp,t

(
γ∗t−1

)1−α xt
xt−1

, (A4)

δk,t = δk + δ1 (ut − 1) +
δ2
2

(ut − 1)2, (A5)

δ′k,t = δ1 + δ2 (ut − 1), (A6)
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rτt = 1 + (1− τ)(rt − 1), (A7)

lt = wtnt + it + vt[γt − (1− δa)], (A8)

lt = ξt

(
kt + vtγt −

bt
rt

)
, (A9)

0 = θxstϕ
′
txtn

1−α
t

(
utkt−1
γ∗t−1

)α
+
bt
rτt
− wtnt − it − vt[γt − (1− δa)]− ϕt −

bt−1
γ∗t−1πt

, (A10)

1− α
α

=
wtnt

δ′k,tutkt−1/γ
∗
t−1

, (A11)

st =
1/ϕ′t + µt

xt

(
wt

1− α

)1−α(δ′k,t
α

)α
, (A12)

1 = Et

 βct
γ∗t ct+1

αst+1xt+1u
α
t+1

(
nt+1

kt/γ∗t

)1−α
+ (1− δk,t+1)

(
1/ϕ′t+1 + µt+1

)
1/ϕ′t + µt(1− ξt)

, (A13)

1 = Et

[
βct
γ∗t ct+1

rτt
πt+1

ϕ′t
ϕ′t+1

]
+ µtξtϕ

′
t

rτt
rt
, (A14)

vt = Et

 βct
γtct+1

(θx − 1)st+1xt+1n
1−α
t+1

(
ut+1kt
γ∗t

)α
+ (1− δa)vt+1

(
1/ϕ′t+1 + µt+1

)
1/ϕ′t + µt(1− ξt)

 , (A15)

yt =
1

ζp,t
xtn

1−α
t

(
utkt−1
γ∗t−1

)α
, (A16)

1 = (1− ξp)
(
θy
υp1,t
υp2,t

)1−ηy
+ ξp

(
π

πt

)1−ηy
, (A17)

υp1,t = θxstϕ
′
t

yt
ct

+ βξpEt

[(
π

πt+1

)−ηy
υp1,t+1

]
, (A18)

υp2,t =
yt
ct

+ βξpEt

[(
π

πt+1

)1−ηy
υp2,t+1

]
, (A19)

ζp,t = (1− ξp)
(
θy
υp1,t
υp2,t

)−ηy
+ ξp

(
π

πt

)−ηy
ζp,t−1, (A20)

kt = (1− δk,t)
kt−1
γ∗t−1

+ it, (A21)

λt = λ0 i
ω
a,t, (A22)

γt = (1− δa)
[
1 + λt

(
1

at−1
− 1

)]
, (A23)

jt = − ia,t + (1− δa)
{
λtvt + (1− λt)Et

[
βct
γtct+1

jt+1

]}
, (A24)

ia,t = ω (1− δa)λt
(
vt − Et

[
βct
γtct+1

jt+1

])
, (A25)
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1

at
= (1− δa)

1

γtat−1
+ χz

iρd,t
γtat−1

, (A26)

1 = χz (1− δa)
1

at−1i
1−ρ
d,t

Et

[
βct
γtct+1

jt+1

]
, (A27)

1 = Et

[
βct
γ∗t ct+1

rt
πt+1

]
, (A28)

1 = (1− ξw)

(
θnχn

υw1,t
υw2,t

) 1−ηn
1+ηn/ν

+ ξw

(
π

πt

wt−1
wt

γ∗

γ∗t−1

)1−ηn
, (A29)

υw1,t = n
1+ 1

ν
t + βξw Et

[(
π

πt+1

wt
wt+1

γ∗

γ∗t

)−ηn(1+ 1
ν )
υw1,t+1

]
, (A30)

υw2,t =
wtnt
ct

+ βξw Et

[(
π

πt+1

wt
wt+1

γ∗

γ∗t

)1−ηn
υw2,t+1

]
, (A31)

log
rt
r

= φr log
rt−1
r

+ (1− φr)
(
φπ log

πt
π

+ φdy log
gdpt
gdpt−1

γ∗t−1
γ∗

)
+ εr,t, (A32)

gdpt = ct + it + id,t + ηg,tgdpt, (A33)

yt = gdpt + κd (dt − d)2 + ia,t

(
1

at−1
− 1

)
. (A34)

A.2 Steady state

Next, turning to the steady state, the strategy for computing it is to set target values for

labor n, the rate of technological change γ∗, and the technology adoption rate λ so as to pin

down the values of parameters χn, χz, and λ0.

In the steady state with the capital utilization rate of u = 1, (A5) and (A6) imply

δk = δk, δ′k = δ1.

Equilibrium conditions (A2)–(A4) and (A28) also imply

ϕ′ = 1, γ = (γ∗)
1−α
θa−1 , γtfp = (γ∗)1−α , r =

γ∗π

β
,

and then (A7) and (A14) lead to

rτ = 1 + (1− τ) (r − 1) , µ =
1

ξ

( r
rτ
− 1
)
.

Combining (A17)–(A20) generates

s =
1

θxθy
, ζp = 1.

Labor is normalized to unity, i.e., n = 1. Equilibrium conditions (A11)–(A13), (A16), and
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(A21) then yield

k = γ∗
(

1

αs

{
γ∗[1 + µ(1− ξ)]

β
− (1− δk)(1 + µ)

})− 1
1−α

, δ′k =
sα

1 + µ

(
γ∗

k

)1−α
,

w =
s(1− α)

1 + µ

(
k

γ∗

)α
, y =

(
k

γ∗

)α
, i =

(
1− 1− δk

γ∗

)
k.

Equilibrium condition (A15) leads to

v =
βs(θx − 1)

γ[1 + µ(1− ξ)]− β(1− δa)(1 + µ)

(
k

γ∗

)α
,

and then (A8)–(A10) yield

l = w + i+ v[γ − (1− δa)], b = r

(
k + vγ − l

ξ

)
,

d = θxs

(
k

γ∗

)α
+

(
1

rτ
− 1

γ∗π

)
b− w − i− v[γ − (1− δa)].

Besides, (A1) generates

ϕ = d.

Solving (A24) and (A25) for j and ia leads to

j =
γλv(1− δa)(1− ω)

γ − β(1− δa)[1− λ(1− ω)]
, ia =

ωλv(1− δa)[γ − β(1− δa)]
γ − β(1− δa)[1− λ(1− ω)]

.

Equilibrium conditions (A22) and (A23) yield

λ0 =
λ

iωa
, a =

[
1 +

1

λ

(
γ

1− δa
− 1

)]−1
.

Solving (A26) and (A27) for id and χz leads to

id =
β(1− δa)[γ − (1− δa)]

γa
j, χz =

γ − (1− δa)
iρd

.

Equilibrium conditions (A33) and (A34) yield

gdp = y − ia
(

1

a
− 1

)
, c = gdp(1− ηg)− i− id.

Combining (A29)–(A31) generates

υw1 =
1

1− βξw
, υw2 =

1

1− βξw
w

c
, χn =

w

θnc
,
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while (A18) and (A19) lead to

υp1 =
θxs

1− βξp
y

c
, υp2 =

1

1− βξp
y

c
.

B Second-order approximation to the welfare of house-

holds

This section derives a second-order approximation around the steady state to the uncondi-

tional expectation of the average utility function over households (56) of the paper. Com-

bining this welfare function and the demand curve for each type of specialized labor (45) of

the paper yields

SW = (1− β)E

[
∞∑
t=0

βt
(

logCt −
χn

1 + 1/ν
n
1+1/ν
t ζw,t

)]
,

where ζw,t denotes wage dispersion given by

ζw,t =

∫ 1

0

(
Wf,t

Wt

)−ηn(1+ 1
ν )
df.

Under the staggered wage setting, ζw,t can be expressed recursively as

ζw,t = (1− ξw)

(
θnχn

υw1,t
υw2,t

)− ηn(1+1/ν)
1+ηn/ν

+ ξw

(
π

πt

wt−1
wt

γ∗

γ∗t−1

)−ηn(1+1/ν)

ζw,t−1, (B1)

and its steady-state value is ζw = 1. Using ct = Ct/A
∗
t−1, the welfare measure SW can be

rewritten as

SW = (1− β)E

[
∞∑
t=0

βt
(

log ct + logA∗t−1 −
χn

1 + 1/ν
n
1+1/ν
t ζw,t

)]
. (B2)

Note that this measure is non-stationary because the definition of γ∗t leads to the process

logA∗t = logA∗t−1 + log γ∗t . Thus, letting {Ā∗t}∞t=−1 be a deterministic trend defined as Ā∗−1 =

A∗−1, Ā
∗
t = γ∗Ā∗t−1, we subtract its average discounted sum (1− β)

∑∞
t=0 β

t log Ā∗t−1 from

both sides of (B2). The resulting welfare measure SW ∗ is given by

SW ∗ = SW − (1− β)
∞∑
t=0

βt log Ā∗t−1

= (1− β)E

[
∞∑
t=0

βt
(

log ct + log
A∗t−1
Ā∗t−1

− χn
1 + 1/ν

n
1+1/ν
t ζw,t

)]
. (B3)

We now approximate the stationary welfare measure SW ∗ around the steady state up to
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the second order. The term related to detrended consumption ct in (B3) is approximated

around the steady state as

(1− β)E

[
∞∑
t=0

βt log ct

]
≈ log c+

εc
c
− V ar (ct)

2c2
, (B4)

where εc = E[ct]−c denotes the bias in detrended consumption ct and is of the second order.

Using the relations logA∗t = logA∗t−1 +log γ∗t and log Ā∗t = log Ā∗t−1 +log γ∗, the term related

to A∗t−1/Ā
∗
t−1 in (B3) is approximated as

(1− β)E

[
∞∑
t=0

βt log
A∗t−1
Ā∗t−1

]
= (1− β)

∞∑
t=0

βtE

[
log

(
t−1∏
h=0

γ∗h
γ∗

)]

= (1− β)
∞∑
t=0

βtE

[
t−1∑
h=0

log
γ∗h
γ∗

]
= E

[
log

γ∗t
γ∗

]
(1− β)

∞∑
t=0

βtt

=
β

1− β
E

[
log

γ∗t
γ∗

]
≈ β

1− β

(
εγ∗

γ∗
− V ar (γ∗t )

2 (γ∗)2

)
, (B5)

where εγ∗ = E[γ∗t ]− γ∗ denotes the bias in the rate of technological change γ∗t and is of the

second order. The term related to labor nt in (B3) is approximated as

(1− β)E

[
∞∑
t=0

βtn
1+1/ν
t ζw,t

]
≈ 1 +

(
1 +

1

ν

)
εn + εζw +

1 + 1/ν

ν

V ar (nt)

2
, (B6)

where n = ζw = 1 is used to derive this approximation and where εn = E[nt] − n and

εζw = E[ζw,t]− ζw denote the biases in labor nt and wage dispersion ζw,t and they are of the

second order.

From (B4)–(B6), the second-order approximation to SW ∗ around the steady state is given

by equation (57) of the paper, where terms independent of monetary policy are omitted.

C Financial Crisis Scenario Simulations

This section shows the result of financial crisis scenario simulations under the welfare-

maximizing monetary policy rule and other selected rules analyzed in Section III.C of the

paper. The section considers the following financial crisis scenario. The economy stays in the

steady state in period t = 0. During periods t = 1, 2, 3, 4, it is hit by the adverse financial

shocks that are identified for the U.S. during the Great Recession period 2008Q4–2009Q3 in

the estimation conducted in Section II.A of the paper.

Figure A1 plots the developments of intratemporal loans, total investment (i.e., the sum

of capital investment, technology adoption investment, and R&D investment), TFP, GDP,

the inflation rate, and the nominal interest rate in the financial crisis scenario simulations

under the benchmark monetary policy rule (the solid line), the welfare-maximizing rule (the
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Figure A1: Financial crisis scenario simulations
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dashed line), the strict inflation targeting rule (the dotted line), and the nominal GDP

growth targeting rule (the dot-dashed line). Note that the coefficients values of the strict

inflation targeting rule and the nominal GDP growth targeting rule are set equal to the

welfare-maximizing ones in the case of all three shocks reported in Table 2 of the paper. In

this figure, three findings are detected.

First, in response to the estimated financial shocks, intratemporal loans drop sharply

under the benchmark rule, whereas the decline in the loans is subdued under the welfare-

maximizing rule. As a consequence, slowdowns in growth of total investment and TFP are

much less pronounced under the welfare-maximizing rule. Moreover, GDP approaches the

pre-shock steady-state growth path under the welfare-maximizing rule, while it does not un-

der the benchmark rule, implying that the welfare gain from the welfare-maximizing rule rel-

ative to the benchmark rule is huge, as shown in Section III.C of the paper. The inflation rate

then drops sharply under the benchmark rule, whereas it rises under the welfare-maximizing

rule. This rise happens because the decline in intratemporal loans of intermediate-good firms

is smaller than that in the value of their collateral (i.e., net assets held by the firms), which

tightens the borrowing constraint (7) of the paper and increases the associated Lagrange

multiplier µt (i.e., real marginal cost of funds), thereby raising wholesalers’ real marginal

cost and hence inflation. The welfare-maximizing rule thus aims to stabilize output even at

the cost of stability of inflation in the short run.

Second, under the strict inflation targeting rule, its strong policy response to inflation

stabilizes inflation much more than under the welfare-maximizing rule, which has a weak

response to inflation. Yet the strict inflation targeting rule cannot directly mitigate a slow-
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down in TFP growth induced by the estimated severe financial shocks, because it includes

no response to output. Consequently, GDP and total investment recover to the pre-shock

steady-state growth path much more slowly than under the welfare-maximizing rule, implying

that the welfare loss from the strict inflation targeting rule relative to the welfare-maximizing

rule is sizable, as stressed in Section III.C of the paper.

Third, under the nominal GDP growth targeting rule, the achieved levels of GDP and

total investment are almost the same as those under the welfare-maximizing rule, implying

that the welfare gain from the welfare-maximizing rule relative to the nominal GDP growth

targeting rule is small, as indicated in Section III.C of the paper. The inflation rate then

rises for the same reason as that under the welfare-maximizing rule mentioned above. Yet

the nominal interest rate drops sharply, causing relatively high interest-rate volatility, as

noticed in Section III.C of the paper. This is mainly because the nominal GDP growth

targeting rule has a stronger response to inflation and lower policy rate smoothing than the

welfare-maximizing rule.

Before proceeding, it is worth noting that the simulations presented here take no account

of the zero lower bound on the nominal interest rate. If the rate in period 0 were around 2

percent annually as in 2008Q3, instead of the steady-state rate of above 5 percent annually,

the adverse financial shocks added in the simulations would lead the nominal rate to hit the

zero lower bound under the benchmark rule and the nominal GDP growth targeting rule,

according to panel F of Figure A1. The binding lower bound would cause a more severe

recession than those displayed in the figure.1 The welfare-maximizing rule, however, could

help avoid the zero lower bound. This is because that rule yields a much milder drop in

the nominal interest rate through a higher degree of policy rate smoothing and a stronger

response to output, which increase inflation. Thus, in the presence of the zero lower bound,

the lower interest-rate volatility is an important advantage of the welfare-maximizing rule

over the nominal GDP growth targeting rule. Because the welfare-maximizing rule could

attain higher welfare than the strict inflation targeting rule, we argue that the welfare-

maximizing rule would still achieve higher welfare than other rules considered, even when

taking into account the zero lower bound.

D Comparison of Financial Friction Specifications

This section compares the specification of financial frictions between our paper and Queraltó

(2013) in terms of the amplification mechanism of financial shocks. Specifically, instead of

those of Jermann and Quadrini (2012), the financial friction and shock of the sort proposed

by Gertler and Kiyotaki (2011) are embedded in our model along the lines of Queraltó. The

resulting model is called the “Q-type” model. This model is presented in Section D.1. The

notations used in our model are also employed in the Q-type model, unless otherwise noted.

1Moran and Queraltó (2017) show that the zero lower bound on the nominal interest rate during the
period 2009–15 led the levels of TFP and GDP in the U.S. to be permanently lower by 1.75% and 2.5%,
respectively, under a standard Taylor-type rule, using a DSGE model with endogenous TFP growth and
nominal rigidities (but no financial friction).
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Section D.2 compares impulse responses to financial shocks between the Q-type model and

ours to derive implications for the amplification mechanism of financial shocks.

D.1 The Q-type model

The Q-type model, along the lines of Queraltó (2013), replaces the financial friction and shock

of Jermann and Quadrini (2012) with those of the sort proposed by Gertler and Kiyotaki

(2011) in our model. One point to be emphasized here is that intermediate-good firms—the

production sector—face the financial friction in our model, while technology adopters do so

in Queraltó.

Final-Good and Intermediate-Good Firms.—The problem of final-good firms is the same

as in our model, while that of intermediate-good firms differs because they no longer face

financial frictions, as opposed to our model.

As in our model, capital Kt and adopted ideas At are accumulated according to equations

(4) and (5) of the paper (without the intermediate-good firm index h),

Kt = (1− δk,t)Kt−1 + It, (D1)

At = (1− δa)At−1 +4a,t. (D2)

Because of no financial friction, combining the first-order conditions for capital Kt, labor

nt, and the utilization rate ut leads to

1 = Et

[
mt,t+1

(
αSt+1

uαt+1n
1−α
t+1

K1−α
t

+ 1− δk,t+1

)]
, (D3)

1− α
α

=
Wtnt

δ′k,tutKt−1
, (D4)

St =

(
Wt

1− α

)1−α(δ′k,t
α

)α
, (D5)

and the value of adopted technologies (ideas) Vt is given by

Vt = Et

[
mt,t+1

{
(θx − 1)St+1

n1−α
t+1 (ut+1Kt)

α

At
+ (1− δa)Vt+1

}]
, (D6)

which is basically consistent with equations (B.14) and (B.15) of Queraltó (2013). Equations

(D3)–(D6) are the financial frictionless version of equations (10), (12), (13), and (23) of the

paper (without the TFP shock, i.e., xt = 1).

Retailers and Wholesalers.—The problems of retailers and wholesalers are the same as

in our model. Then, the marginal cost MCt and aggregate output Yt are given by

MCt = PtθxStA
1−θa
t , (D7)
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Yt =
(A∗t−1)

1−α

ζp,t
n1−α
t (utKt−1)

α, (D8)

where

A∗t = A
θa−1
1−α
t . (D9)

Then, TFP is given by

TFPt =
(A∗t−1)

1−α

ζp,t
. (D10)

Equation (D7) is the financial frictionless version of equation (21) of the paper, while (D8)–

(D10) are the same as equations (24), (26), and (27) of the paper (without the TFP shock,

i.e., xt = 1).

The staggered price setting à la Calvo (1983) and Yun (1996) leads to equations (28)–(32)

of the paper,

P̃h,t
Pt

= θy
vp1,t
vp2,t

, (D11)

vp1,t =
MCt
Pt

Yt
Ct

+ βξpEt

[(
π

πt+1

)−ηy
vp1,t+1

]
, (D12)

vp2,t =
Yt
Ct

+ βξpEt

[(
π

πt+1

)1−ηy
vp2,t+1

]
, (D13)

1 = (1− ξp)

(
P̃h,t
Pt

)1−ηy
+ ξp

(
π

πt

)1−ηy
, (D14)

ζp,t = (1− ξp)

(
P̃h,t
Pt

)−ηy
+ ξp

(
π

πt

)−ηy
ζp,t−1. (D15)

Banks and Technology Adopters.—Following Queraltó (2013), banks are introduced in the

problem of technology adopters. In our model, technology adopters face no financial friction,

so that each adopter purchases a developed but not yet adopted technology at the price Jt
and invest Ia,t to adopt the technology at the adoption rate λ(Ia,t). Yet in the model of

Queraltó, technology adopters—who are called entrepreneurs there—borrow Jt to purchase

a developed but not yet adopted technology from banks by issuing securities that offer to

pay the full value of the technology in the contingency that it is adopted. Another important

difference is that the model of Queraltó abstracts from technology adoption investment so

that the adoption rate is constant at λ, which is assumed in the Q-type model—the role of

exogenous/endogenous technology adoption will be discussed later.

In period t, banks in the aggregate purchase claims Xt on adoption firms at the price Jt.

The balance sheet of banks is given by

JtXt = φtNWt, (D16)
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where φt is the leverage ratio and NWt is the aggregate net worth of banks. The financial

friction à la Gertler and Kiyotaki (2011), in which banks can divert a fraction θt of bank

assets, determines the leverage ratio as

φt =
νt

θt − µt
, (D17)

where

νt = Et

[
mt,t+1ωt+1

rt
πt+1

]
, (D18)

µt = Et

[
mt,t+1ωt+1

(
rz,t+1 −

rt
πt

)]
, (D19)

ωt = 1− σ + σ(νt + φtµt), (D20)

rz,t = (1− δa)
λVt + (1− λ)Jt

Jt−1
, (D21)

log
θt
θ

= ρθ log
θt−1
θ

+ εθ,t. (D22)

As in Queraltó (2013), εθ,t ∼ i.i.d. N(0, σ2
θ) represents a financial shock in the Q-type model.

A small difference from the model of Queraltó is that the real interest rate is state-contingent

in the Q-type model because banks borrow and lend in nominal terms. The bank net worth

NWt evolves according to

NWt = σ

[(
rz,t −

rt−1
πt

)
Jt−1Xt−1 +

rt−1
πt

NWt−1

]
+ (1− σ)ψJt−1Xt−1. (D23)

The number of securities purchased by banks Xt has to be equal to the number of technology

adopters in period t,

Xt = Zt−1 − At−1. (D24)

Moreover, the number of newly adopted technologies 4a,t is given by

4a,t = (1− δa)λ(Zt−1 − At−1), (D25)

which is the same as equation (34) of the paper (with the constant adoption rate λ).

Technology Innovators.—The problem of technology innovators is the same as in our

model. The technology frontier Zt follows equation (38) of the paper,

Zt = (1− δa)Zt−1 + ΦtId,t, (D26)

where

Φt = χz
Zt−1

(A∗t−1)
ρI1−ρd,t

, (D27)

which is the same as equation (39) of the paper. The zero profit condition for technology

11



innovators leads to equation (40) of the paper,

1 = Φt(1− δa)Et[mt,t+1Jt+1] , (D28)

which implies that the number of newly developed technologies ZN,t (≡ ΦtId,t) is given by

ZN,t = χz
Zt−1

(A∗t−1)
ρ
Iρd,t =

[
χz

Zt−1
(A∗t−1)

ρ

] 1
1−ρ

{(1− δa)Et [mt,t+1Jt+1]}
ρ

1−ρ .

This equation suggests that the specifications of technology innovation in our model and

Queraltó (2013) are quite similar. In particular, the number of newly developed technologies

ZN,t is increasing in the value of developed but not yet adopted technologies, which is given

by Et[mt,t+1Jt+1] in the Q-type model due to a one period lag innovation, while it is given

by Jt in the model of Queraltó.

Households and Employment Agencies.—The problems of households and employment

agencies are the same as in our model. The consumption Euler equation is the same as

equation (44) of the paper,

1 = Et

[
β
Ct
Ct+1

rt
πt+1

]
. (D29)

The staggered wage setting à la Erceg, Henderson, and Levin (2000) leads to equations

(47)–(50) of the paper,(
PtW̃f,t

PtWt

)1+ ηn
ν

= θnχn
vw1,1
vw2,t

, (D30)

vw1,t = n
1+ 1

ν
t + βξwEt

[(
π

πt+1

γ∗Wt

Wt+1

)−ηn(1+ 1
ν )
vw1,t+1

]
, (D31)

vw2,t =
Wtnt
Ct

+ βξwEt

[(
π

πt+1

γ∗Wt

Wt+1

)1−ηn
vw2,t+1

]
, (D32)

1 = (1− ξw)

(
PtW̃f,t

PtWt

)1−ηn
+ ξw

(
π

πt

γ∗Wt−1

Wt

)1−ηn
. (D33)

A Central Bank.—The central bank follows the same Taylor (1993)-type rule as equation

(51) of the paper,

log rt = φr log rt−1 + (1− φr)
[
log r + φπ(log πt − log π) + φdgdp

(
log

GDPt
GDPt−1

− log γ∗
)]

.

(D34)

In the Q-type model, GDP is defined as

GDPt = Ct + It + Id,t +Gt, (D35)
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where

Gt = ηgGDPt. (D36)

Because of an exogenous technology adoption as in Queraltó (2013), the right hand side of

equation (D35) does not contain technology adoption investment, which is present in our

model. In addition, it does not include costs associated with dividend payments, which is

also present in our model due to the financial friction of Jermann and Quadrini (2012). Thus,

in the Q-type model, the output of retail goods Yt is equal to GDP,

Yt = GDPt. (D37)

Equilibrium Conditions.—The equilibrium conditions consist of equations (D1)–(D21)

and (D23)–(D37), along with the financial shock process (D22). Rewrite these equilibrium

conditions in terms of stationary variables and rearranging the resulting equations leads to

not only the same equations as (A3)–(A6), (A11), (A16), (A17), (A19)–(A21), and (A26)–

(A33) without the TFP, government spending, and monetary policy shocks (i.e., xt = 1,

ηg,t = ηg, and εr,t = 0) but also the following 14 equations, where there are 32 stationary

endogenous variables yt = Yt/A
∗
t−1, gdpt = GDPt/A

∗
t−1, ct = Ct/A

∗
t−1, it = It/A

∗
t−1, kt =

Kt/A
∗
t−1, wt = Wt/A

∗
t−1, id,t = Id,t/A

∗
t−1, st = St/A

θa−1
t−1 , vt = VtAt−1/A

∗
t−1, jt = JtAt−1/A

∗
t−1,

at = At/Zt, γt = At/At−1, γ
∗
t = A∗t/A

∗
t−1, γ

tfp
t = TFPt/TFPt−1, πt, ζp,t, υp1,t, υp2,t, υw1,t,

υw2,t, ut, nt, rt, µt, δk,t, δ
′
k,t, xt, nwt, φt, νt, ωt, and rz,t.

γt = (1− δa)
[
1 + λ

(
1

at−1
− 1

)]
, (D38)

yt = gdpt, (D39)

st =

(
wt

1− α

)1−α(δ′k,t
α

)α
, (D40)

1 = Et

[
βct
γ∗t ct+1

{
αst+1u

α
t+1

(
nt+1

kt/γ∗t

)1−α
+ 1− δk,t+1

}]
, (D41)

vt = Et

[
βct
γtct+1

{
(θx − 1)st+1n

1−α
t+1

(
ut+1kt
γ∗t

)α
+ (1− δa)vt+1

}]
, (D42)

υp1,t = θxst
yt
ct

+ βξpEt

[(
π

πt+1

)−ηy
υp1,t+1

]
, (D43)

jtxt = φtnwt, (D44)

φt =
vt

θt − µt
, (D45)

νt = Et

[
βct
γ∗t ct+1

ωt+1
rt
πt+1

]
, (D46)

µt = Et

[
βct
γ∗t ct+1

ωt

(
rz,t+1 −

rt
πt+1

)]
, (D47)
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ωt = 1− σ + σ(νt + φtµt), (D48)

rz,t = (1− δa)
λvt + (1− λ)jt

jt−1

γ∗t−1
γt−1

, (D49)

nwt = σ

[(
rz,t −

rt−1
πt

)
jt−1
γ∗t−1

xt−1 +
rt−1
πt

nwt−1
γ∗t−1

]
+ (1− σ)ψ

jt−1
γ∗t−1

xt−1, (D50)

xt =
1

at−1
− 1. (D51)

Note that equations (D38)–(D43) differ from their counterparts in our model (i.e., (A12),

(A13), (A15), (A18), (A23), and (A34)) because of exogenous technology adoption (i.e.,

no technology adoption investment) and the absence of the financial friction of Jermann

and Quadrini (2012) in the Q-type model. Equations (D44)–(D51) pertain to the financial

friction à la Gertler and Kiyotaki (2011) used in Queraltó (2013).

Steady State.—The steady state of the Q-type model is computed by setting target values

for labor n and the rate of technological change γ∗. In addition, following Queraltó (2013),

we set target values for the leverage ratio φ and spread rz − r/π. Hitting these target values

in the steady state allows the Q-type model to pin down the values of parameters χn, χz, ψ,

and θ.

In the steady state with the capital utilization rate of u = 1, (A5) and (A6) imply

δk = δk, δ′k = δ1.

Equilibrium conditions (A3), (A4), and (A28) also imply

γ = (γ∗)
1−α
θa−1 , γtfp = (γ∗)1−α , r =

γ∗

β
π.

Combining (A17), (A19), (A20), and (D43) generates

s =
1

θxθy
, ζp = 1.

Labor is normalized to unity, i.e., n = 1. Equilibrium condition (D41) then implies

k = γ∗
[

1

αs

(
γ∗

β
− 1 + δk

)]− 1
1−α

,

and moreover, (A16) and (A21) lead to

y =

(
k

γ∗

)α
, i =

(
1− 1− δk

γ∗

)
k.
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Solving (A11) and (D40) for w and δ′k yields

w = s(1− α)

(
k

γ∗

)α
, δ′k = sα

(
k

γ

)α−1
.

Equilibrium conditions (D38) and (D42) imply

a =

[
1 +

1

λ

(
γ

1− δa
− 1

)]−1
, v =

βs(θx − 1)

γ − β(1− δa)

(
k

γ∗

)α
.

The target value for spread = rz − r/π yields

rz =
r

π
+ spread.

Equilibrium conditions (D44), (D49), and (D51) lead to

j = λv

[
rz

1− δa
γ

γ∗
− (1− λ)

]−1
, x =

1

a
− 1, nw =

jx

φ
.

Solving (A26) and (A27) for id and χz yields

id =
β(1− δa)[γ − (1− δa)]

γa
j, χz =

γ − (1− δa)
iρd

,

and then (A33) and (D39) leads to

gdp = y, c = gdp(1− ηg)− i− id.

Combining (A29)–(A31) generates

υw1 =
1

1− βξw
, υw2 =

1

1− βξw
w

c
, χn =

w

θnc
,

while (A19) and (D43) lead to

υp1 =
θxs

1− βξp
y

c
, υp2 =

1

1− βξp
y

c
.

Equilibrium condition (D50) implies

ψ =
nw[γ∗ − σ(r/π)]− σjx(rz − r/π)

jx(1− σ)
.

Solving (D46)–(D48) for ω, ν, and µ yields

ω =
1− σ

1− σ(β/γ∗)[r/π + φ(rz − r/π)]
, ν =

β

γ∗
ω
r

π
, µ =

β

γ∗
ω
(
rz −

r

π

)
,
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and then (D45) implies

θ =
ν + φµ

φ
.

D.2 Comparison between the Q-type model and ours

Parameterization of the Quarterly Q-type Model.—For the common parameters, the same

values as in our model are used. Regarding the parameters pertaining to the financial friction

à la Gertler and Kiyotaki (2011), we follow Queraltó (2013) to choose σ = 0.98 and to set φ

and θ so as to hit target values for the steady-state leverage ratio φ of 4 and the steady-state

interest rate spread (rz − r/π) of 1 percent annually. For the persistence of the financial

shock, we choose ρθ = 0.9522—which is the same value for the persistence ρξ of the financial

shock in our model—to make impulse responses to the financial shock comparable to those

in our model. As for the standard deviation of the financial shock, we set σθ = 0.285 so

that the permanent decline in TFP induced by the financial shock coincides with that in our

model, where the standard deviation of the financial shock is σξ = 0.02.

Co-movement and Adjustment Speed.—Figure A2 plots impulse responses to an adverse

financial shock with the size of a one standard deviation in the Q-type model and ours. By

construction, the magnitude of permanent declines in TFP induced by the financial shocks

coincides between the two models. The figure reveals two findings.

Figure A2: Impulse responses to an adverse financial shock in the Q-type model and ours
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First, the Q-type model fails to generate the co-movement between GDP, capital in-

vestment, and hours worked. In response to the adverse financial shock, capital investment
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increases sharply, while GDP and hours worked are more or less flat in the initial 10 quarters.

This contrasts sharply with that in our model, where the three variables co-move.

Why does capital investment increase in the Q-type model but decrease in our model in

response to the adverse financial shocks? In our model, which embeds the financial friction of

Jermann and Quadrini (2012) into the production sector (i.e., intermediate-good firms), the

financial shock εξ,t affects the firms’ borrowing capacity for the expenses of capital investment

and hiring. Therefore, a decline in ξt directly reduces capital investment and hiring (i.e.,

hours worked), as shown in panels C and D of Figure A2. Moreover, the decline of real

economic activity in the production sector lowers the value of adopted technologies Vt, which

in turn decreases technology adoption investment Ia,t and the value of developed but not yet

adopted technologies Jt, thus leading to a decline in R&D investment Id,t. This suggests that,

in our model, the financial shock impacts the demand side of the economy—the production

sector—and ultimately affects the supply side—the sectors of R&D and technology adoption.

However, in the Q-type model, which embeds the financial frictions à la Gertler and Kiy-

otaki (2011) in the technology adoption sector, the adverse financial shock εθ,t—an increase

in θt—affects that sector without directly affecting the production sector. Such a shock low-

ers the leverage ratio φt in equation (D17) and decreases the value of developed but not yet

adopted technologies Jt through the bank balance sheet (D16). This in turn decreases R&D

investment Id,t through equation (D28). Meanwhile, in the production sector, capital invest-

ment becomes relatively attractive than R&D investment and as a consequence, it increases,

as displayed in panel C of Figure A2.

The second finding detected in Figure A2 is that TFP in the Q-type model responds

much slower than in our model, as can be seen in panel A of the figure. While it takes 20

quarters to reach the bottom in our model, it takes 60 quarters to do so in the Q-type model.

This difference reflects the fact that the technology adoption rate is exogenous in the Q-type

model: the average duration of technology adoption is fixed at 27 (≈ 1/(0.15/4)) quarters.

Yet we argue that if technology adoption were endogenized as in our model, the Q-type model

augmented with endogenous adoption would feature a weaker amplification mechanism of

the financial shock—a weaker response of TFP to the financial shock—than that without

it. In the Q-type model, in response to the adverse financial shock, the value of developed

but not yet adopted technologies Jt declines, while the value of adopted technologies Vt rises

partly due to an increase in capital. As a consequence, Vt − Jt increases. With endogenous

technology adoption as in our model, the increase in Vt−Jt would induce a rise in technology

adoption investment, which mitigates the negative impact of the financial shock on TFP.

Therefore, as long as the financial friction is introduced in the technology adoption sector,

endogenous technology adoption would weaken the effect of financial shocks.

Role of Nominal Rigidities—In the Q-type model, nominal rigidities do not play a role

as an amplifier of the financial shock. As shown in Figure A3, the impulse responses to

the adverse financial shock are quite similar between the models with and without nominal

rigidities. This result stems from the fact that in the model the financial shock has no direct

effect on the production sector but affects the R&D sector through a change in Jt, which
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Figure A3: Role of nominal rigidities in the Q-type model
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implies that the financial shock is similar to a shock to TFP. It is well known that nominal

rigidities do not play a significant role in amplifying TFP shocks.

Unlike in the Q-type model, nominal rigidities greatly amplify the effect of the financial

shock in our model. The financial shock has a direct impact on the production sector, which

is amplified in the presence of nominal rigidities. The decline of real economic activity in the

production sector causes the value of adopted ideas Vt to lower, which decreases Vt−Jt. At the

same time the decline dampens technology adoption investment and slows down TFP, while a

decline in the value of developed but not yet adopted ideas Jt decreases R&D investment and

hence potential ideas to be adopted. As shown in Figure A4, the impulse responses of TFP,

GDP, capital investment, and hours worked are amplified and more persistent in our model

than in that without nominal rigidities. This result supports our argument that, in our model,

the financial shock affects the supply side—the R&D sector and TFP—through its effect on

the demand side—the production sector, which makes decisions on capital investment and

hiring. This is why nominal rigidities greatly amplify the impact of the financial shock in

our model.

The arguments above have shown that financial shocks in the Q-type model have much

less persistent effects on GDP than those in our model. Besides, in contrast with our model,

nominal rigidities do not amplify the effect of financial shocks in the Q-type model. We argue

that these results stem from the fact that the Q-type model features the financial friction in

the technology adoption sector, as opposed to the production sector in our model.
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Figure A4: Role of nominal rigidities in our model

0 10 20 30 40 50 60

-0.3

-0.2

-0.1

0

%
d
ev

.
fr
o
m

S
S

Panel A. TFP

w/ nominal rigidities
w/o nominal rigidities

0 10 20 30 40 50 60

-1

-0.8

-0.6

-0.4

-0.2

0

%
d
ev

.
fr
o
m

S
S

Panel B. GDP

0 10 20 30 40 50 60
-4

-3

-2

-1

0

%
d
ev

.
fr
o
m

S
S

Panel C. Capital investment

0 10 20 30 40 50 60

-2

-1.5

-1

-0.5

0

%
d
ev

.
fr
o
m

S
S

Panel D. Hours worked

References

[1] Calvo, Guillermo A. 1983. “Staggered Prices in a Utility-Maximizing Framework.” Jour-
nal of Monetary Economics 12(3): 383–98.

[2] Erceg, Christopher J., Dale W. Henderson, and Andrew T. Levin. 2000. “Optimal Mone-
tary Policy with Staggered Wage and Price Contracts.” Journal of Monetary Economics
46(2): 281–313.

[3] Gertler, Mark, and Nobuhiro Kiyotaki. 2011. “Financial Intermediation and Credit
Policy in Business Cycle Analysis.” In Handbook of Monetary Economics, Vol. 3A, edited
by Benjamin M. Friedman and Michael Woodford, 547–99. Amsterdam: North-Holland.

[4] Jermann, Urban, and Vincenzo Quadrini. 2012. “Macroeconomic Effects of Financial
Shocks.” American Economic Review 102(1): 238–71.
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