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1 Optimal pricing: recursive structure

We assume a typical environment with a continuum of monopolistic producers, each of
measure zero. We begin by illustrating the problem in the absence of capital accumulation
and of price indexation. Our �nal description of the equilibrium, however, incorporates both
features. The production function of each monopolistic producer is:

Yt(i) = Nt(i)
1�� (1)

where Nt(i) is total labor demand by individual producer i.
The optimal demand for the individual variety i reads:

Yt(i) =

�
Pt(i)

Pt

��"p
Yt (2)

where Yt is total demand for variety i.
In equilibrium, the following relationship between individual and average nominal marginal

cost, MCt+k, holds

MCt+kjt =
Wt+k

(1� �)N��
t+k

�
Nt+k
Nt+kjt

���
(3)

= MCt+k

�
Nt+k
Nt+kjt

���
= MCt+k

�
Pt+k

P t

� "p�

1��

where MCt+kjt is the nominal marginal cost at t + k of a �rm that last reset its price at time
t. Notice that the last equality follows from (2), and MCt+k is the average nominal marginal
cost. Similarly, notice that:

Yt+kjt =

�
P t
Pt+k

��"p
Yt+k (4)
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Optimal Pricing The �rst order condition with respect to P t is (abstracting from index
i):

Et
1X
k=0

�kpfQt;t+k

 
kY
s=1

�t+s

!�1
Yt+kjtP tg| {z }

LHS

=Mp(1� S)Et
1X
k=0

�kpfQt;t+k

 
kY
s=1

�t+s

!�1
Yt+kjtMCt+kjtg| {z }

RHS

(5)
where Qt;t+k = �k

Uc;t+k
Uc;t

, S = 1� 1
MpMw

is an employment subsidy �nanced via lump sum taxes,
and MCt+kjt is the nominal marginal cost at t+ k of a �rm that last reset its price at time t.

Dividing through by Pt we can write the LHS of the above equation as follows (using 3 and
4):

LHS �
�
P t
Pt

�1�"p
Et

1X
k=0

�kpQt;t+kYt+k

 
kY
s=1

�t+s

!"p�1
where �t+s = Pt+s=Pt+s�1.

Consider next the RHS of (5):

RHS � Mp(1� S)
1

Pt
Et

1X
k=0

�kp

8<:Qt;t+k
 

kY
s=1

�t+s

!�1� �Pt
Pt+k

��"p
Yt+kMCt+k

�
Pt+k
�Pt

� �"p
1��

9=;
= Mp(1� S)

1

Pt
Et

1X
k=0

�kp

8<:Qt;t+k
 

kY
s=1

�t+s

!�1� �Pt
Pt+k

��"p
Yt+kmct+kPt

 
kY
s=1

�t+s

!�
Pt+k
�Pt

� �"p
1��

9=;
= Mp(1� S)

� �Pt
Pt

�� "p
1��

Et
1X
k=0

�kp

8<:Qt;t+kYt+kmct+k
 

kY
s=1

�t+s

! "p
1��
9=;

where mct+k �MCt+kt =Pt+k is the average real marginal cost
Equating LHS and RHS and rearranging we �nally obtain:

�
P t
Pt

� 1��+"p�
1��

Et
1X
k=0

�kpQt;t+kYt+k

 
kY
s=1

�t+s

!"p�1
| {z }

Kpt

=Mp(1�S)Et
1X
k=0

�kpQt;t+kYt+kmct+k

 
kY
s=1

�t+s

! "p
1��

| {z }
Zpt

Recursive representation De�ne

Kpt � Et
1X
k=0

�kpQt;t+kYt+k

 
kY
s=1

�t+s

!"p�1

Zpt � Et
1X
k=0

�kpQt;t+kYt+kmct+k

 
kY
s=1

�t+s

! "p
1��

Express recursively as:

Kpt = Yt + �p
�
�
Uc;t+1
Uc;t

�
| {z }

Qt;t+1

�
"p�1
t+1 K

p
t+1
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Similarly:

Zpt = Ytmct + �p
�
�
Uc;t+1
Uc;t

�
�

"p
1��
t+1 Z

p
t+1:

We also have:

1 = �p�
"p�1
t + (1� �p)

�
P t
Pt

�1�"p
: (6)

Summarizing, the pricing block comprises the following set of equilibrium conditions:

Kpt = Yt + �p
�
�
Uc;t+1
Uc;t

�
�
"p�1
t+1 K

p
t+1

Zpt = Ytmct + �p
�
�
Uc;t+1
Uc;t

�
�

"p
1��
t+1 Z

p
t+1

p
1��+"p�

1��
t Kpt =Mp(1� S)Zpt

1 = �p�
"p�1
t + (1� �p)p1�"pt :

where pt � P t=Pt.

2 Optimal wage setting: recursive form

In this section we introduce nominal wage rigidity along the lines of Erceg et al. (2000). The
economy is populated by a continuum of households, each supplying a di¤erentiated labor type
j, and by a continuum of �rms. .

Deriving total demand for each labor type Each �rm i employs all di¤erentiated
labor types. Hence total labor demand by �rm i can be written:

Nt(i) =

�Z 1

0
Nt(i; j)

"w�1
"w dj

� "w
"w�1

where Nt(i; j) is demand by �rm i of labor type j.
Optimal demand for labor type j by �rm i reads:

Nt(i; j) =

�
Wt(j)

Wt

��"w
Nt(i) (7)

Integrating across �rms, we can derive the equilibrium total demand for each labor type j (using
(7) above):
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Nt(j)| {z }
total demand
for labor type j

=

Z 1

0
Nt(i; j)di| {z }

integrating
across �rms

(8)

=

Z 1

0

�
Wt(j)

Wt

��"w
Nt(i)di

=

�
Wt(j)

Wt

��"w Z 1

0
Nt(i)di

=

�
Wt(j)

Wt

��"w
Nt

Optimal wage setting problem Next, consider the optimal wage setting problem for
household j:

max Et
1X
k=0

(��w)
kU( eCt+kjt(j);Nt+kjt(j))

where Nt+kjt(j) is time t+ k labor supply by household type j who last reset her wage in time
t.

At the chosen wage W t(j); household type j is assumed to supply enough labor to satisfy
demand. The constraint reads, using (8):

Nt+kjt(j)| {z }
total supply
of labor type j

= Nt+kjt(j)| {z }
total demand for
for labor type j

=

�
W t(j)

Wt+k

��"w
Nt+kjt

Notice that Nt+k bears the index t+ k (and not t+ kjt) because it corresponds to aggregate (or
average) labor demand.

The additional household�s constraint is the budget constraint:

Pt+kCt+kjt(j) + Et
�
Qt+k;t+k+1Bt+k+1jt

	
� Bt+kjt +W t(j)Nt+kjt(j)� Tt+k

Each household j reoptimizing the wage at a given time t will choose the same optimal wage. It
is therefore convenient to abstract from index j.

Household problem The (relevant portion of the) Lagrangian of the household�s problem
is

Lw = Et
1X
k=0

(��w)
k
n
U
� eCt+kjt; Nt+kjt�� �t+kjt �Pt+kCt+kjt �W t Nt+kjt

�o
: (9)

The FOC of the problem with respect to W t is:

1X
k=0

(��w)
kEt

�
UN ;t+kjt

@Nt+kjt
@W t

+ �t+kjt

�
Nt+kjt +W t

@Nt+kjt
@W t

��
= 0
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Notice:

@Nt+kjt
@W t

= �"w
�
W t

Wt+k

��"w�1
Nt+k
Wt+k

= �"wNt+kjt
1

W t

Hence we can write:

�
1X
k=0

(��w)
kEt

�
UN ;t+kjt "wNt+kjt

1

W t

+ �t+kjtNt+kjt ("w � 1)
�
= 0

Under complete markets and separable utility we have Uc;t+k(Ct+kjt;Nt+kjt) = Uc;t+k(Ct+k).
In addition, equilibrium implies Uc;t+k = �t+kPt+k (since �t+k is the shadow value of one unit
of nominal income at t+ k).

Hence we have:

�
1X
k=0

(��w)
kEt

�
UN ;t+kjtNt+kjtMw + Uc;t+kNt+kjt

W t

Pt+k

�
= 0

whereMw � "w=("w � 1).
The above expression can be rewritten:

1X
k=0

(��w)
kEt

�
Uc;t+kNt+kjt

�
W t

Pt+k
+
UN ;t+kjt
Uc;t+k

Mw

��
= 0 (10)

Recursive representation Condition (10) reads:

Et
1X
k=0

(��w)
kNt+kjtUc;t+k

W t

Pt+k| {z }
LHS

= Et
1X
k=0

(��w)
kNt+kjtMw(�UN ;t+kjt)| {z }

RHS

Using the optimal labor demand condition

Nt+kjt =
�
W t

Wt+k

��"w
Nt+k, (11)

we can write the LHS as follows:

LHS �
�
W t

Pt

�1�"w 8<:
�
Wt
Pt

�"w
NtUc;t + ��w

�
Wt+1

Pt+1

�"w
�"w�1t+1 Nt+1Uc;t+1+

+(��w)
2
�
Wt+2

Pt+2

�"w
(�t+1�t+2)

"w�1Nt+2Uc;t+2 + :::

9=;
= w1�"wt Et

1X
k=0

(��w)
kw"wt+k

 
kY
s=1

�t+s

!"w�1
Nt+kUc;t+k;

where wt �W t=Pt.

Next consider RHS:

RHS � �
�
W t

Pt

��"w 8<:
�
Wt
Pt

�"w
NtMwUN ;tjt

+��w

�
Wt+1

Pt+1

�"w
Nt+1�

"w
t+1MwUN ;t+1jt + :::

9=;
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This can be written

RHS � w�"wt Et
1X
k=0

(��w)
kw"wt+k

 
kY
s=1

�t+s

!"w
Nt+kMw(�UN;t+kjt)

Under the assumption that UN (�) is homogenous of degree ' in N we have (using (11)):

�UN ;t+kjt =

�
W t

Wt+k

��"w'
(�UN ;t+k(Nt+k))

=

�
W t=Pt

Wt+k=Pt+k

��"w' kY
s=1

�t+s

!"w'
(�UN ;t+k(Nt+k))

Substituting:

RHS � w�"w(1+')t Et
1X
k=0

(��w)
kw

"w(1+')
t+k Nt+kMw

 
kY
s=1

�t+s

!"w(1+')
(�UN ;t+k(Nt+k))

Combining LHS and RHS we obtain:

w1+"w't Et
1X
k=0

(��w)
kw"wt+k

 
kY
s=1

�t+s

!"w�1
Nt+kUc;t+k| {z }

Kwt

= Mw Et
1X
k=0

(��w)
kw

"w(1+')
t+k Nt+k

 
kY
s=1

�t+s

!"w(1+')
(�UN ;t+k(Nt+k))| {z }

Zwt

We can rewrite recursively:

Kwt = w"wt NtUc;t + ��w�"w�1t+1 Kwt+1

Zwt = w
"w(1+')
t Nt(�UN ;t(Nt)) + ��w�"w(1+')t+1 Zwt+1

Hence the �rst order condition can be written in compact form:

w1+"w't Kwt =MwZwt

Summary of wage setting equilibrium conditions

w1�"wt = �w

�
wt�1
�t

�1�"w
+ (1� �w)w1�"wt

Kwt = w"wt NtUc;t + ��w�"w�1t+1 Kwt+1

Zwt = w
"w(1+')
t Nt(�UN ;t(Nt)) + ��w�"w(1+')t+1 Zwt+1

w1+"w't Kwt =MwZwt
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2.1 Price dispersion, wage dispersion, and equilibrium

Market clearing for each individual variety implies:

Nt(i)
1��| {z }

supply of
variety i

=

�
Pt(i)

Pt

��"
Yt| {z }

demand of
variety i

(12)

where Nt(i) denotes the total amount of labor employed by �rm i: Rearranging:

Nt(i) =

"�
Pt(i)

Pt

��"
Yt

# 1
1��

Integrating across all producers:

Z 1

0
Nt(i)di =

Z 1

0

"�
Pt(i)

Pt

��"p
Yt

# 1
1��

di (13)

= Y
1

1��
t

Z 1

0

�
Pt(i)

Pt

�� "p
1��

di = Y
1

1��
t �p;t (14)

where �p;t �
R 1
0

�
Pt(i)
Pt

�� "p
1��

di measures the dispersion of relative prices across producers. In a
more compact form:

Nt = Y
1

1��
t �p;t (15)

where Nt =
R 1
0 Nt(i)di.

Equilibrium in the market for the �nal good requires:

Yt = Ct +Gt (16)

Hence conditions (15) and (16) describe aggregate market clearing.1

Expressing �p;t in recursive form:

�p;t =

Z 1

0

�
Pt(i)

Pt

�� "p
1��

di

=

Z
1��p

�
P t
Pt

�� "p
1��

di+

�
Pt�1
Pt

�� "p
1��

Z
�p

�
Pt�1(i)

Pt�1

�� "p
1��

di

= (1� �p)
�
P t
Pt

�� "p
1��

+ �p�
"p
1��
t �p;t�1

1Equivalently, let yst (i) � AtNd
t (i)

1�� denote the supply of variety i. In equilibrium:

yst (i) =

�
Pt(i)

Pt

��"
Yt

Integrating across i:

Y s
t �

Z 1

0

yst (i)di = �p;tYt

From this notation it is clear the interpretation of Yt = Ct as an index of aggregate demand.
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Let Nt(j) denote labor supply by each di¤erentiated household. Since each household is
assumed to satisfy labor demand at the given posted wage, equilibrium in the labor market
requires:

Nt(j) = Nt(j)

Aggregating across each household j one obtains, using (8):

Nt �
Z 1

0
Nt(j)dj =

Z 1

0
Nt(j)

=

Z 1

0

�
Wt(j)

Wt

��"w
dj Nt

where Nt is an index of aggregate labor supply. By de�ning �w;t �
R 1
0

�
Wt(j)
Wt

��"w
as wage

dispersion, the above equation becomes.

Nt = �w;tNt (17)

Notice that by substituting (17) into (15) one obtains:

Nt =
Nt
�w;t

= Y
1

1��
t �p;t (18)

which shows that the relationship between aggregate employment Nt and aggregate output Yt
depends on both price and wage dispersion.

3 Capital accumulation

Suppose each monopolistic �rm i produces a homogenous good according to the production
function:

Yt(i) =
�
Nt(i)

1��K�
t (i)

��
(19)

where is a labor productivity shifter (common across �rms). Notice that parameter � � 1

measures the degree of returns to scale in production.
The cost minimizing choice of labor and capital input implies:

Wt

Pt(i)
=
MCt
Pt(i)

(1� �)
�
Kt(i)

Nt(i)

���
(20)

Zt
Pt(i)

=
MCt
Pt(i)

�

�
Nt(i)

Kt(i)

�(1��)�
(21)

where Zt is the nominal rental cost of capital.
Notice that the above conditions imply:

MCt(i) =
W
(1��)�
t Z��t

(��)��(�(1� �))�(1��)
Yt(i)

1��
� : (22)
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Constant returns to scale. We assume � = 1 Hence we have MCt(i) = MCt for all i,
i.e., the nominal marginal cost is identical across �rms. Notice also that we can write:

MCt(i) =
Wt

�(1� �)
�
Kt(i)
Nt(i)

��� = Wt

�(1� �)
Nt(i)

Yt(i)
(23)

and

MCt(i) =
Zt
��

Kt(i)

Nt(i)
(24)

In the case � = 1, since MCt(i) = MCt for all i, we also have Kt(i)=Nt(i) = Kt=Nt for all i. In
other words, under constant returns to scale, the capital labor ratio is equalized across �rms.

Market clearing Henceforth we assume � = 1. Market clearing for each individual variety
implies:

Nt(i)
1��K�

t (i) =

�
Pt(i)

Pt

��"
Yt (25)

Equilibrium in the market for the �nal good requires:

Yt = Ct + It +Gt (26)

Integrating (25) across i, and combining with (26):�
Kt
Nt

�� Z 1

0
Nt(i)di = �p;tYt

or alternatively:

K�
t N

1��
t = �p;tYt

4 Equilibrium

Let �p;t �
R 1
0

�
Pt(i)
Pt

��"p
di and �w;t �

R 1
0

�
Wt(j)
Wt

��"w
denote price and wage dispersion

respectively. Let pt � P t=Pt; wt �W t=Pt, zt � Zt=Pt and mct be the real marginal cost of pro-
duction (equal for all �rms). Let Kpt , Z

p
t , Kwt , Zwt be recursive objects in the optimal pricing and

wage setting problems. For any given exogenous processes f%t; Gtg, an equilibrium is a set of en-
dogenous variables {�t; Ct; Yt; Nt; Nt; mct; it; �t; pt; It; Kt; �Kt; ut; qt; zt; wt; �wt; �w;t; �p;t; K

p
t ; Z

p
t ,Kwt ,

Zwt } solving the following set of conditions:

1. Marginal utility of consumption:

�t = (Ct � hCt�1)��

2. Euler equation:

�t = �t(1 + it)(1 + �t)Et
�
�t+1
�t+1

�
3. Production:

�p;tYt = K
�
t N

1��
t
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4. Optimal labour demand:

wt = mct(1� �)
Yt
Nt

5. Optimal demand for capital:

zt = mct�
Yt
Kt

6. Price of capital:

qt = �tEt
�
�t+1
�t

(zt+1ut+1 � a (ut+1) + (1� �)qt+1)
�

7. Optimal investment:

qt

�
1� 
(�)� 
0( It

It�1
)
It
It�1

�
= 1� �tEt

�
qt+1

�t+1
�t

�
It+1
It

�2

0
�
It+1
It

��
8. Capital accumulation:

�Kt = (1� �) �Kt�1 + It
�
1� 


�
It
It�1

��
9. Utilization transformation

Kt = ut �Kt�1

10. Optimal utilization
zt = a

0 (ut)

11. Equilibrium in the �nal good market:

Yt = Ct + It + a (ut) �Kt�1 +Gt

12. Monetary policy rule:

1 + it = max

8<:1; (1 + it�1)�i �
"�

�

�(1 + �t)

�
�
��t�t�1�t�2�t�3

�

��p � � Yt
Yt�1)

��y#1��i9=;
(27)

13. Recursive representation for Kpt :

Kpt = Yt + �p�tEt
�
�t+1
�t

�
�p�1
t+1 �

�p(1��p)
t Kpt+1

�

14. Recursive representation for Zpt :

Zpt = Ytmct + �p�tEt
�
�t+1
�t

�
�p
t+1�

��p�p
t Zpt+1

�
15. Optimal pricing:

�pKpt =
�p

�p � 1
Zpt
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16. In�ation:

1 = �p

�
�t

�
�p
t�1

��p�1
+ (1� �p)�p1��pt

17. Price dispersion:

�p;t = (1� �p)�p��pt + �p

�
�t

�
�p
t�1

��p
�p;t�1

18. Recursive representation for Kwt :

Kwt = w�wt Nt�t + �w�tEt
�
��w�1t+1

�
wt
wt�1

�t

���w�w
Kwt+1

�
19. Recursive representation for Zwt :

Zwt = w
�w(1+')
t �NN

1+'
t + �w�tEt

�
�
�w(1+')
t+1

�
wt
wt�1

�t)
��w�w(1+')Zwt+1

�
20. Optimal wage:

�w1+�w'Kwt =
�w

�w � 1
Zwt

21. Wage level:

w1��wt = �w

�
wt�1

�
�w
t

�t

�1��w
+ (1� �w) �w1��wt

22. Wage dispersion:

�w;t = (1� �w)
�
�wt
wt

���w
+ �w

�
wt
wt�1

�t

�
�p
t�1

��w
�w;t�1

23. Optimal labour supply:
Nt = �w;tNt
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