When Sarah Meets Lawrence: The Effect of Coeducation on Women's College Major Choices

Avery Calkins ¹ Ariel J. Binder ² Dana Shaat ³ Brenden Timpe ⁴

¹RAND Corporation

²U.S. Census Bureau

³American Institutes for Research

⁴University of Nebraska - Lincoln

August 2022

• Despite overtaking men in college degree attainment, women remain less likely to earn degrees in lucrative fields like STEM

- Despite overtaking men in college degree attainment, women remain less likely to earn degrees in lucrative fields like STEM
- Economists have increasingly considered explanations borrowed from the psychology and sociology literature (Bertrand 2011)
 - Aversion to competition (Gneezy et al. 2003; Niederle and Vesterlund) 2007, 2008)
 - Marriage market penalties (Bursztyn et al. 2017)
 - Influence of female role models and peers (Carrell et al. 2010; Huntingdon-Klein and Rose 2018; Zolitz and Feld 2018; Bostwick and Weinberg 2021)

- Despite overtaking men in college degree attainment, women remain less likely to earn degrees in lucrative fields like STEM
- Economists have increasingly considered explanations borrowed from the psychology and sociology literature (Bertrand 2011)
 - Aversion to competition (Gneezy et al. 2003; Niederle and Vesterlund 2007, 2008)
 - Marriage market penalties (Bursztyn et al. 2017)
 - Influence of female role models and peers (Carrell et al. 2010; Huntingdon-Klein and Rose 2018; Zolitz and Feld 2018; Bostwick and Weinberg 2021)
- Our question: How do features of the *gendered collegiate environment* affect women's choice of college major?

- Despite overtaking men in college degree attainment, women remain less likely to earn degrees in lucrative fields like STEM
- Economists have increasingly considered explanations borrowed from the psychology and sociology literature (Bertrand 2011)
 - Aversion to competition (Gneezy et al. 2003; Niederle and Vesterlund 2007, 2008)
 - Marriage market penalties (Bursztyn et al. 2017)
 - Influence of female role models and peers (Carrell et al. 2010; Huntingdon-Klein and Rose 2018; Zolitz and Feld 2018; Bostwick and Weinberg 2021)
- Our question: How do features of the *gendered collegiate environment* affect women's choice of college major?
- Our setting: The decline of women's colleges in the United States

The decline of women's colleges

The decline of women's colleges

The decline of women's colleges

- Sources of data:
 - ► IPEDS/HEGIS degree completions by field, sex, institution, and year, 1965-2016

< A > <

3 N 2 1 2 N 0 0

- Sources of data:
 - ► IPEDS/HEGIS degree completions by field, sex, institution, and year, 1965-2016
 - HERI Freshman Survey: Characteristics of entering freshmen, 1966-2006

3/11

▲ 同 ▶ → 三 ▶

- Sources of data:
 - ► IPEDS/HEGIS degree completions by field, sex, institution, and year, 1965-2016
 - HERI Freshman Survey: Characteristics of entering freshmen, 1966-2006
- Main outcome of interest: Share of women earning a degree in a given field (e.g., STEM)

▲ ∃ ► ∃ =

3/11

- Sources of data:
 - ► IPEDS/HEGIS degree completions by field, sex, institution, and year, 1965-2016
 - HERI Freshman Survey: Characteristics of entering freshmen, 1966-2006
- Main outcome of interest: Share of women earning a degree in a given field (e.g., STEM)
- Empirical strategy: Diff-in-diff design using modified version of estimator proposed by Callaway and Sant'Anna (2021):

$$\hat{\alpha}_{jt} = \underbrace{(y_{jt} - y_{jb})}_{\text{Trend at}} - \underbrace{\sum_{k \in C_j} \tilde{\omega}_k \cdot (y_{kt} - y_{kb})}_{\text{Counterfactual trend}}$$

What did women choose instead of STEM?

Mechanisms

• Shift in distribution of women's majors could stem from responses along several margins

< A > <

JOC ELE

Mechanisms

- Shift in distribution of women's majors could stem from responses along several margins
- **Composition effect:** Women interested in STEM may choose different schools

JOC ELE

6/11

Mechanisms

- Shift in distribution of women's majors could stem from responses along several margins
- **Composition effect:** Women interested in STEM may choose different schools
- Environmental effect: The changing social and educational environment may affect choices *holding enrollment decisions fixed*
 - ► Gender-neutral factors: class sizes, "ability" of classmates
 - Gender-biased neoclassical factors, e.g., marriage market concerns (Bursztyn, Fujiwara, and Pallais 2017)
 - Gendered "non-cognitive" channels, e.g., reluctance to compete (Bertrand 2011)

- 4月 - 4日 - 4日 - 5日 - 900

Effects on women's rank in GPA distribution

Share of freshman women intending to major in STEM

Share of freshman women intending to major in STEM

Do freshman characteristics predict STEM degrees?

	(1)	(2)	(3)	(4)			
Panel A: Effect of freshman characteristics on women's likelihood of earning STEM degree							
Effect of intent to major in STEM	0.336*** (0.040)	0.333*** (0.040)	0.332*** (0.040)	0.317*** (0.041)			
Covariates: Career, family aspirations Parental education, occupation High school grades, coursework		х	x x	X X X			
R-squared Observations	0.191 1,235	0.199 1,235	0.205 1,235	0.215 1,235			
Panel B: Effect of coeducation on predicted share of female freshmen who will major in STEM, preferred comparison group							
Estimated composition effect	0.005 (0.008)	0.009 (0.010)	0.009 (0.010)	0.012 (0.011)			
$\begin{array}{l} \mbox{Composition effect} \ / \ \mbox{Total effect of coeducation} \\ \mbox{on STEM major choice} \end{array}$	-16%	-28%	-27%	-37%			
Composition effect upper bound	32%	32%	31%	29%			

Image: A math

EL SQA

Conclusion

- We develop a new setting to examine the impact of the gender mix of the college environment on women's choice of major
- We find that the introduction of male classmates leads to a 3pp (30%) decrease in the share of women earning a degree in STEM
- Analysis of mechanisms finds no evidence of changes in composition of female students, but is most consistent with effects of gendered peer and role model effects
- Back-of-the-envelope calculation: Exposure to male classmates can explain 36 percent of the 16.5pp gender gap in STEM.
- These results suggest that consequential decisions about women's careers can be impacted in a significant way by the gender composition of the classroom and social environment

Thank you!

AE	· /	\n	alier	
~L.		ואי	Juec	4

Appendix

・ロト < 団ト < ヨト < ヨト < ヨト < ロト

Trends in gender differences

August 2022

< 回 > < 三 > < 三

三日 のへの

Student characteristics

ъ

Changes in the gender mix of students, faculty

Effects similar in all major quantitative fields

When Sarah Meets Lawrence

Intended career: Science

