Online Appendix

Not For Publication

Table A1: Descriptive Statistics, Full Sample

	Mean	Std.Dev	Min	Max
	(1)	(2)	(3)	(4)
I. Student Characteristics				
$11^{\text {th }}$ Grade				
Female	0.563	0.496	0	1
Total Absences (in Hours)	50.851	27.425	1	450
Prop. of Students in Classics	0.366	0.482	0	1
Prop. of Students in Science	0.280	0.449	0	1
Prop. of Students in Exact Science	0.344	0.475	0	1
GPA $11^{\text {th }}$ Grade	72.335	14.159	0	100
$12^{\text {th }}$ Grade				
Total Absences (in Hours)	73.443	30.752	1	208
Prop. of Students in Classics	0.369	0.483	0	1
Prop. of Students in Science	0.159	0.366	0	1
Prop. of Students in Exact Science	0.463	0.499	0	1
GPA $12{ }^{\text {th }}$ Grade	76.976	12.526	44	100

II. School Characteristics

Private School	0.037	0.190	0	1
Experimental School	0.044	0.207	0	1
Public School	0.919	0.275	0	1
Urban	0.896	0.306	0	1
Postcode Income (in 2009 Euro)	22455.029	7945.331	11784.5	66521.38

II. University Enrollment Characteristics				
National Exams Average Score	64.987	20.178	10.35	99.3
Retake the National Exams	0.113	0.317	0	1
Number of University Departments in Preference List	25.014	22.071	1	257
Rank in Preference List of the Actual University Attended	8.399	10.616	1	242
Enrollment in University or Vocational Schooling	0.817	0.386	0	1
Exact Science Department	0.153	0.360	0	1
Science Apartment	0.042	0.201	0	1
Humanities Department	0.193	0.395	0	1
Social Science Department	0.220	0.414	0	1
Vocational Schooling	0.209	0.407	0	1

Note: All statistics reported include students who graduate from high school between 2003 and 2011. Total absences are measured in hours per year. GPA11 and GPA12 include the average over the school exam scores in the first and second term, in $11^{\text {th }}$ and $12^{\text {th }}$ grade. The full sample of schools is used. There are three types of schools in the sample: public, private, and experimental schools. Experimental are public schools and school admission is based on a lottery for the sample years. A school is located in an urban area if the area has more than 20,000 inhabitants. Postcode income is expressed in 2009 Euro.

Table A2: Random Assignment: Balancing Test of Student Characteristics and Teacher Characteristics by Student Gender

	Girls			Boys		
	(1)	(2)	(3)	(4)	(5)	(6)
	Student Prior Performance	Student Age	$\begin{aligned} & \text { Class } \\ & \text { Size } \end{aligned}$	Student Prior Performance	Student Age	$\begin{aligned} & \text { Class } \\ & \text { Size } \end{aligned}$
Female Teacher ($=1$ if Female)	$\begin{gathered} 0.058 \\ (0.039) \\ \hline \end{gathered}$	$\begin{gathered} 0.017 \\ (0.012) \\ \hline \end{gathered}$	$\begin{gathered} -0.258^{*} \\ (0.143) \\ \hline \end{gathered}$	$\begin{gathered} 0.029 \\ (0.042) \\ \hline \end{gathered}$	$\begin{aligned} & -0.014 \\ & (0.013) \\ & \hline \end{aligned}$	$\begin{array}{r} -0.128 \\ (0.193) \\ \hline \end{array}$
Obs.	10,351	10,351	10,351	7,612	7,612	7,612
Teacher Previous Year Quality	$\begin{gathered} 0.100 \\ (0.147) \\ \hline \end{gathered}$	$\begin{aligned} & -0.054 \\ & (0.050) \\ & \hline \end{aligned}$	$\begin{gathered} 0.726 \\ (0.615) \\ \hline \end{gathered}$	$\begin{gathered} 0.228 \\ (0.177) \\ \hline \end{gathered}$	$\begin{aligned} & -0.020 \\ & (0.042) \\ & \hline \end{aligned}$	$\begin{array}{r} 1.146 \\ (0.954) \\ \hline \end{array}$
Obs.	10,349	10,349	10,349	7,612	7,612	7,612
Teacher Experience	$\begin{gathered} 0.006 \\ (0.004) \end{gathered}$	$\begin{aligned} & -0.002^{*} \\ & (0.001) \end{aligned}$	$\begin{gathered} 0.008 \\ (0.014) \end{gathered}$	$\begin{aligned} & -0.000 \\ & (0.003) \end{aligned}$	$\begin{gathered} 0.000 \\ (0.001) \end{gathered}$	$\begin{aligned} & -0.020 \\ & (0.022) \end{aligned}$
Obs.	10,351	10,351	10,351	7,612	7,612	7,612
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Grade FE	Yes	Yes	Yes	Yes	Yes	Yes
Class FE	Yes	Yes	Yes	Yes	Yes	Yes

Notes: The table presents the estimated effects from separate regressions of each of the student pre-assignment characteristics and prior test scores on teacher gender ($1=$ female), teacher previous year quality, and teacher experience. Each estimate in this table is generated from a different regression. Student test scores are standardized and have a zero mean and a standard deviation of one. All regressions condition on subject fixed effects, year fixed effects, grade fixed effects, and class fixed effects. Robust standard errors clustered at the class level are reported in parentheses.

Table A3: Random Assignment: Balancing Test of Teacher Characteristics and Student Characteristics by Student Gender

	Girls BoysFemale Teacher		Girls Boys Previous TVA		Girls BoysTeacher Experience	
	(1)	(2)	(3)	(4)	(5)	(6)
Lagged Test Score	$\begin{gathered} 0.006 \\ (0.004) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.004) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.001) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.001) \end{gathered}$	$\begin{gathered} 0.062 \\ (0.040) \end{gathered}$	$\begin{aligned} & \hline-0.007 \\ & (0.043) \end{aligned}$
Class Size	$\begin{aligned} & -0.010^{*} \\ & (0.006) \end{aligned}$	$\begin{aligned} & -0.004 \\ & (0.007) \end{aligned}$	$\begin{gathered} 0.001 \\ (0.001) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.002) \end{gathered}$	$\begin{gathered} 0.037 \\ (0.071) \end{gathered}$	$\begin{aligned} & -0.094 \\ & (0.102) \end{aligned}$
Age	$\begin{gathered} 0.006 \\ (0.004) \end{gathered}$	$\begin{aligned} & -0.003 \\ & (0.002) \end{aligned}$	$\begin{aligned} & -0.001 \\ & (0.001) \end{aligned}$	$\begin{gathered} 0.000 \\ (0.000) \end{gathered}$	$\begin{gathered} -0.082^{*} \\ (0.049) \end{gathered}$	$\begin{aligned} & -0.006 \\ & (0.030) \end{aligned}$
Observations	10,351	7,612	10,349	7,612	10,351	7,612
Grade FE	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Class FE	Yes	Yes	Yes	Yes	Yes	Yes
Mean of Y Variable	0.35	0.32	-0.00	-0.00	9.92	10.00
F-statistics	3.43	1.12	1.03	1.05	1.21	0.30
P -value of the F-model	0.02	0.34	0.38	0.37	0.31	0.83

Notes: All estimates in each column are generated from the same regression. The table reports OLS estimates from separate regressions of each of the remaining teacher characteristics on all student preassignment characteristics and class size, separately by student gender. Estimated effects for female students are shown in column (1) and for male students in column (2). A student's pre-assignment characteristics are prior test scores, and age. The remaining teacher characteristics are the following: a teacher's gender ($1=$ female), a teacher previous year quality (measured by previous year's value added), and experience (measured by how many times a teacher teaches in the whole sample period 2003-2011). All regressions include class fixed effects, year fixed effects and grade fixed effects. Robust standard errors clustered at the class level are reported in parentheses.

Table A4: Effect of $12^{\text {th }}$ Grade Teacher Bias on National Exam Score in $11^{\text {th }}$ Grade

	Boys				Girls			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: All Subjects								
	0.189	-0.032	-0.016	-0.072	-0.022	-0.111	0.171	0.262
	(0.260)	(0.234)	(0.248)	(0.358)	(0.223)	(0.196)	(0.210)	(0.325)
Sample Size	15,932	15,932	15,932	15,908	18,712	18,712	18,712	18,670

Panel B: Core Subjects

Sample Size

0.368	0.190	-0.024	-0.095
(0.260)	(0.234)	(0.248)	(0.358)
5,438	5,438	5,438	5,434

0.160	0.052	-0.262	0.274
(0.223)	(0.196)	(0.210)	(0.325)
6,763	6,763	6,763	6,756

Panel C: Classics Subjects

Sample Size

0.100	-0.040	-0.035	-1.011	-0.346	-0.436	-0.219	0.174
(0.445)	(0.401)	(0.374)	(1.042)	(0.277)	(0.249)	(0.256)	(0.467)
2,517	2,517	2,517	2,389	8,760	8,760	8,760	8,745

Panel D: Science Subjects

Panel E: Exact Science Subjects

	$\begin{aligned} & 0.061 \\ & (0.279) \end{aligned}$	$\begin{gathered} -0.082 \\ (0.263) \end{gathered}$	$\begin{aligned} & 0.028 \\ & (0.288) \end{aligned}$	$\begin{gathered} -0.314 \\ (0.403) \end{gathered}$	$\begin{aligned} & 0.201 \\ & (0.295) \end{aligned}$	$\begin{aligned} & 0.016 \\ & (0.264) \end{aligned}$	$\begin{aligned} & 0.492 \\ & (0.269) \end{aligned}$	$\begin{aligned} & 0.892 \\ & (0.605) \end{aligned}$
Sample Size	9,606	9,606	9,606	9,548	5,374	5,374	5,374	5,246
Subject FE	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Year FE	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
School FE		\checkmark				\checkmark		
Class FE			\checkmark				\checkmark	
School-by-Subject-by-Year FE				\checkmark				\checkmark

Notes: The datasets for the core subjects and each of the track subjects include stacked observations for each subject/exam. The estimation is based on the sample of 21 schools. Each row presents estimates from a separate regression using an empirical Bayes estimation strategy. The standard errors are reported in parentheses and are corrected using a two-step bootstrapping method. This process of two-step bootstrap sampling and estimation is repeated 1,000 times. All specifications include the teacher's gender as control. A student's $11^{\text {th }}$ grade subject-specific national exam performance is used as an outcome. The variable of interest is the teacher gender bias in $12^{\text {th }}$ grade. The first panel includes all subjects. The second panel includes all core subjects. Panel C includes all classics track subjects. Panel D includes all science track subjects. Panel E includes all exact science track subjects. Standard errors are also clustered by class.

Table A5: Effect of $12^{\text {th }}$ Grade Teacher Bias on School Exam Score in $11^{\text {th }}$ Grade

	Boys				Girls			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: All Subjects								
	0.368	0.166	0.015	-0.130	0.112	0.067	0.025	-0.014
	(0.169)	(0.131)	(0.134)	(0.236)	(0.122)	(0.111)	(0.125)	(0.185)
Sample Size	16,126	16,126	16,126	16,102	18,955	18,955	18,955	18,913
Panel B: Core Subjects								
	0.172	0.042	-0.184	-0.158	-0.016	-0.021	-0.280	-0.028
	(0.208)	(0.182)	(0.179)	(0.242)	(0.164)	(0.153)	(0.175)	(0.188)
Sample Size	5,438	5,438	5,438	5,434	6,763	6,763	6,763	6,756
Panel C: Classics Subjects								
	0.137	0.001	-0.091	-0.757	-0.081	-0.078	-0.029	0.062
	(0.273)	(0.229)	(0.217)	(0.737)	(0.168)	(0.158)	(0.174)	(0.284)
Sample Size	2,559	2,559	2,559	2,431	8,882	8,882	8,882	8,867
Panel D: Science Subjects								
	0.513	0.382	0.042	0.360	0.133	0.094	-0.087	-0.354
	(0.226)	(0.219)	(0.254)	(0.527)	(0.169)	(0.162)	(0.193)	(0.445)
Sample Size	3,680	3,680	3,680	3,595	4,453	4,453	4,453	4,351
Panel E: Exact Science Subjects								
	0.279	0.123	0.048	-0.397	0.192	0.039	0.058	-0.263
	(0.187)	(0.148)	(0.150)	(0.276)	(0.165)	(0.131)	(0.135)	(0.338)
Sample Size	9,685	9,685	9,685	9,627	5,412	5,412	5,412	5,284
Subject FE	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Year FE	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
School FE		\checkmark				\checkmark		
Class FE			\checkmark				\checkmark	
School-by-Subject-by-Year FE				\checkmark				\checkmark

Notes: The datasets for the core subjects and each of the track subjects include stacked observations for each subject/exam. The estimation is based on the sample of 21 schools. Each row presents estimates from a separate regression using an empirical Bayes estimation strategy. The standard errors are reported in parentheses and are corrected using a two-step bootstrapping method. This process of two-step bootstrap sampling and estimation is repeated 1,000 times. All specifications include the teacher's gender as control. A student's $11^{\text {th }}$ grade second-semester school exam performance is used as an outcome. The variable of interest is the teacher gender bias in $12^{t h}$ grade. The first panel includes all subjects. The second panel includes all core subjects. Panel C includes all classics track subjects. Panel D includes all science track subjects. Panel E includes all exact science track subjects. Standard errors are also clustered by class.

Table A6: Effect of $11^{\text {th }}$ Grade Teacher Bias on National Test Scores in $12^{\text {th }}$ Grade for STEM and non-STEM subjects

Dependent Variable: Test score in $12^{\text {th }}$ grade national exams

	Boys				Girls			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: STEM Subjects								
	0.162	0.120	0.178	0.113	0.045	-0.017	-0.085	-0.011
	(0.044)	(0.041)	(0.044)	(0.062)	(0.038)	(0.037)	(0.042)	(0.052)
Sample Size	9,000	9,000	9,000	8,992	9,425	9,425	9,425	9,410
Panel B: Non-STEM Subjects								
	0.033	0.135	0.197	0.117	-0.159	-0.025	-0.030	-0.203
	(0.060)	(0.055)	(0.066)	(0.068)	(0.046)	(0.044)	(0.048)	(0.062)
Sample Size	3,274	3,274	3,274	3,248	5,588	5,588	5,588	5,586
Subject FE	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Year FE	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
School FE		\checkmark				\checkmark		
Class FE			\checkmark				\checkmark	
School-by-Subject-by-Year FE				\checkmark				\checkmark

Notes: As non-STEM subjects we have grouped together all non-STEM subjects in the core (modern Greek and history) and all subjects in the classics track. As STEM subjects we have grouped together all STEM subjects in the core (Physics, Algebra and Geometry) and all subjects in the science and exact science tracks. The estimation is based on the sample of 21 schools. Each row presents estimates from a separate regression using an empirical Bayes estimation strategy. The standard errors are also corrected using a two-step bootstrapping method that we describe in the text. This process of two-step bootstrap sampling and estimation is repeated 1,000 times. All specifications include the students' $11^{\text {th }}$ second-semester school exam performance and the teacher's gender as controls. All scores are standardized z-scores. STEM subjects include algebra, geometry, physics from the core, and all science and exact science track subjects. Non-STEM subjects include history, and modern Greek from the core, and all classics track subjects. Standard errors are clustered by class.

Table A7: Descriptive Statistics for the Teacher Bias by Teacher Gender, Sample of 21 Schools

	Male Teachers		Female Teachers		Diff.	s.e.
	Mean	Std.Dev	Mean	Std.Dev		
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: $11^{\text {th }}$ Grade						
I. Core Subjects						
Algebra	-0.155	0.228	-0.073	0.307	-0.081	0.045
Geometry	-0.212	0.215	-0.076	0.308	-0.136	0.046
History	-0.185	0.354	-0.080	0.380	-0.105	0.061
Modern Greek	-0.150	0.402	-0.060	0.303	-0.090	0.065
Physics	-0.149	0.223	-0.163	0.315	0.014	0.044
II. Classics Track						
Ancient Greek	-0.216	0.440	-0.305	0.428	0.089	0.134
Latin	-0.137	0.365	-0.183	0.419	0.046	0.119
Philosophy	-0.170	0.389	-0.153	0.411	-0.018	0.124
III. Science Track						
Chemistry	-0.154	0.203	-0.079	0.306	-0.075	0.100
Mathematics	-0.148	0.175	-0.006	0.291	-0.143	0.084
Physics	-0.035	0.242	-0.039	0.302	0.004	0.094
IV. Exact Science Track						
Mathematics	-0.149	0.236	-0.045	0.286	-0.104	0.091
Physics	-0.154	0.404	-0.144	0.239	-0.010	0.102
Technology and Computers	-0.318	0.191	-0.250	0.385	-0.068	0.118
Panel B: $12^{\text {th }}$ Grade						
I. Core Subjects						
Biology	-0.035	0.526	-0.211	0.487	0.175	0.070
History	-0.238	0.366	-0.203	0.367	-0.035	0.064
Mathematics	-0.159	0.281	-0.153	0.363	-0.007	0.047
Modern Greek	-0.153	0.351	-0.132	0.292	-0.022	0.040
Physics	-0.156	0.235	-0.187	0.356	0.031	0.055
II. Classics Track						
Ancient Greek	-0.154	0.455	-0.186	0.394	0.031	0.088
History	-0.192	0.360	-0.244	0.381	0.053	0.080
Latin	-0.192	0.453	-0.196	0.397	0.004	0.097
Literature	-0.181	0.408	-0.251	0.382	0.070	0.087
III. Science Track						
Biology	0.068	0.296	-0.287	0.409	0.355	0.155
Chemistry	-0.254	0.582	-0.181	0.347	-0.073	0.163
Mathematics	-0.222	0.218	-0.261	0.421	0.039	0.139
Physics	-0.274	0.239	-0.309	0.262	0.035	0.094
IV. Exact Science Track						
Business Administration	-0.167	0.459	-0.130	0.516	-0.037	0.100
Computer Science	-0.153	0.418	-0.209	0.526	0.056	0.106
Mathematics	-0.061	0.383	-0.191	0.358	0.131	0.081
Physics	-0.129	0.311	-0.191	0.308	0.062	0.070
V. Optional						
Economics	-0.122	0.329	-0.041	0.457	-0.081	0.049

This table presents the means, standard deviations and differences of teacher biases measured in all other classes by teacher gender for the sample of 21 schools. These teacher biases by teacher gender are presented for each subject in $11^{\text {th }}$ and $12^{\text {th }}$ grades. A teacher sample is used here. A negative bias means that the teacher is pro-girl. The baseline sample is $11^{\text {th }}$ grade students in 2003-2005 and $12^{\text {th }}$ grade students in 2003-2011.

Table A8: Heterogeneity in the Effect of $11^{\text {th }}$ Grade Gender Bias on Blind $12^{\text {th }}$ Grade Score by the Gender of the Teacher

Dependent Variable: Blind score in $12^{\text {th }}$ grade national exams								
	Boys				Girls			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
All Subjects								
Bias	$\begin{gathered} 0.092 \\ (0.046) \end{gathered}$	$\begin{gathered} 0.056 \\ (0.045) \end{gathered}$	$\begin{gathered} 0.054 \\ (0.045) \end{gathered}$	$\begin{gathered} 0.059 \\ (0.063) \end{gathered}$	$\begin{gathered} 0.005 \\ (0.043) \end{gathered}$	$\begin{aligned} & -0.027 \\ & (0.041) \end{aligned}$	$\begin{aligned} & -0.116 \\ & (0.041) \end{aligned}$	$\begin{gathered} 0.052 \\ (0.060) \end{gathered}$
Bias \times Female Teacher	$\begin{aligned} & -0.044 \\ & (0.065) \end{aligned}$	$\begin{gathered} 0.016 \\ (0.064) \end{gathered}$	$\begin{gathered} 0.026 \\ (0.061) \end{gathered}$	$\begin{gathered} 0.069 \\ (0.091) \end{gathered}$	$\begin{aligned} & -0.124 \\ & (0.062) \end{aligned}$	$\begin{aligned} & -0.071 \\ & (0.061) \end{aligned}$	$\begin{gathered} 0.042 \\ (0.059) \end{gathered}$	$\begin{aligned} & -0.241 \\ & (0.088) \end{aligned}$
Female Teacher	$\begin{gathered} -0.018 \\ (0.013) \end{gathered}$	$\begin{aligned} & -0.006 \\ & (0.013) \end{aligned}$	$\begin{aligned} & -0.003 \\ & (0.012) \end{aligned}$	$\begin{gathered} -0.009 \\ (0.027) \end{gathered}$	$\begin{aligned} & -0.019 \\ & (0.012) \end{aligned}$	$\begin{gathered} 0.002 \\ (0.012) \end{gathered}$	$\begin{aligned} & -0.015 \\ & (0.011) \end{aligned}$	$\begin{gathered} 0.028 \\ (0.025) \end{gathered}$
Sample Size	18,503	18,503	18,503	18,474	21,119	21,119	21,119	21,111
Core Subjects								
Bias	$\begin{gathered} 0.085 \\ (0.051) \end{gathered}$	$\begin{gathered} 0.032 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.030 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.060 \\ (0.063) \end{gathered}$	$\begin{gathered} 0.063 \\ (0.049) \end{gathered}$	$\begin{aligned} & -0.006 \\ & (0.050) \end{aligned}$	$\begin{aligned} & -0.110 \\ & (0.050) \end{aligned}$	$\begin{gathered} 0.065 \\ (0.060) \end{gathered}$
Bias \times Female Teacher	$\begin{gathered} 0.013 \\ (0.075) \end{gathered}$	$\begin{gathered} 0.104 \\ (0.077) \end{gathered}$	$\begin{gathered} 0.073 \\ (0.076) \end{gathered}$	$\begin{gathered} 0.082 \\ (0.091) \end{gathered}$	$\begin{aligned} & -0.191 \\ & (0.072) \end{aligned}$	$\begin{aligned} & -0.093 \\ & (0.074) \end{aligned}$	$\begin{gathered} 0.023 \\ (0.077) \end{gathered}$	$\begin{aligned} & -0.233 \\ & (0.088) \end{aligned}$
Female Teacher	$\begin{gathered} -0.040 \\ (0.017) \end{gathered}$	$\begin{aligned} & -0.032 \\ & (0.017) \end{aligned}$	$\begin{aligned} & -0.027 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.026 \\ & (0.014) \end{aligned}$	$\begin{aligned} & -0.007 \\ & (0.014) \end{aligned}$	$\begin{aligned} & -0.022 \\ & (0.013) \end{aligned}$	$\begin{gathered} 0.027 \\ (0.025) \end{gathered}$
Sample Size	12,407	12,407	12,407	12,407	14,979	14,979	14,979	14,977
Classics Subjects								
Bias	$\begin{aligned} & -0.205 \\ & (0.120) \end{aligned}$	$\begin{aligned} & -0.003 \\ & (0.108) \end{aligned}$	$\begin{aligned} & -0.066 \\ & (0.095) \end{aligned}$	$\begin{aligned} & -0.029 \\ & (0.149) \end{aligned}$	$\begin{aligned} & -0.265 \\ & (0.092) \end{aligned}$	$\begin{aligned} & -0.015 \\ & (0.084) \end{aligned}$	$\begin{gathered} -0.142 \\ (0.086) \end{gathered}$	$\begin{aligned} & -0.089 \\ & (0.143) \end{aligned}$
Bias \times Female Teacher	$\begin{gathered} 0.280 \\ (0.138) \end{gathered}$	$\begin{gathered} 0.123 \\ (0.125) \end{gathered}$	$\begin{gathered} 0.246 \\ (0.111) \end{gathered}$	$\begin{gathered} 0.177 \\ (0.178) \end{gathered}$	$\begin{aligned} & 0.111 \\ & (0.109) \end{aligned}$	$\begin{aligned} & -0.098 \\ & (0.100) \end{aligned}$	$\begin{gathered} 0.129 \\ (0.099) \end{gathered}$	$\begin{aligned} & -0.164 \\ & (0.168) \end{aligned}$
Female Teacher	$\begin{gathered} 0.010 \\ (0.027) \end{gathered}$	$\begin{gathered} 0.057 \\ (0.027) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.037 \\ (0.045) \end{gathered}$	$\begin{aligned} & -0.004 \\ & (0.022) \end{aligned}$	$\begin{gathered} 0.035 \\ (0.021) \end{gathered}$	$\begin{aligned} & -0.011 \\ & (0.018) \end{aligned}$	$\begin{aligned} & -0.025 \\ & (0.039) \end{aligned}$
Sample Size	3,679	3,679	3,679	3,679	7,226	7,226	7,226	7,224
Science Subjects								
Bias	$\begin{gathered} 0.123 \\ (0.052) \end{gathered}$	$\begin{gathered} 0.060 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.105 \\ (0.054) \end{gathered}$	$\begin{gathered} 0.069 \\ (0.068) \end{gathered}$	$\begin{gathered} 0.132 \\ (0.048) \end{gathered}$	$\begin{gathered} 0.047 \\ (0.049) \end{gathered}$	$\begin{aligned} & -0.094 \\ & (0.050) \end{aligned}$	$\begin{gathered} 0.117 \\ (0.067) \end{gathered}$
Bias \times Female Teacher	$\begin{gathered} 0.006 \\ (0.085) \end{gathered}$	$\begin{gathered} 0.100 \\ (0.088) \end{gathered}$	$\begin{gathered} 0.045 \\ (0.094) \end{gathered}$	$\begin{gathered} 0.047 \\ (0.118) \end{gathered}$	$\begin{aligned} & -0.160 \\ & (0.088) \end{aligned}$	$\begin{aligned} & -0.064 \\ & (0.087) \end{aligned}$	$\begin{gathered} 0.010 \\ (0.093) \end{gathered}$	$\begin{aligned} & -0.162 \\ & (0.115) \end{aligned}$
Female Teacher	$\begin{gathered} -0.040 \\ (0.019) \end{gathered}$	$\begin{aligned} & -0.033 \\ & (0.020) \end{aligned}$	$\begin{gathered} -0.007 \\ (0.020) \end{gathered}$	$\begin{aligned} & -0.030 \\ & (0.035) \end{aligned}$	$\begin{aligned} & -0.021 \\ & (0.017) \end{aligned}$	$\begin{gathered} 0.000 \\ (0.017) \end{gathered}$	$\begin{aligned} & -0.023 \\ & (0.018) \end{aligned}$	$\begin{gathered} 0.067 \\ (0.031) \end{gathered}$
Sample Size	10,994	10,994	10,994	10,992	11,794	11,794	11,794	11,792
Exact Science Subjects								
Bias	$\begin{gathered} 0.127 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.072 \\ (0.052) \end{gathered}$	$\begin{gathered} 0.084 \\ (0.055) \end{gathered}$	$\begin{gathered} 0.069 \\ (0.068) \end{gathered}$	$\begin{gathered} 0.082 \\ (0.051) \end{gathered}$	$\begin{gathered} 0.023 \\ (0.052) \end{gathered}$	$\begin{aligned} & -0.103 \\ & (0.053) \end{aligned}$	$\begin{gathered} 0.115 \\ (0.067) \end{gathered}$
Bias \times Female Teacher	$\begin{aligned} & -0.126 \\ & (0.083) \end{aligned}$	$\begin{aligned} & -0.051 \\ & (0.083) \end{aligned}$	$\begin{gathered} 0.005 \\ (0.090) \end{gathered}$	$\begin{gathered} 0.049 \\ (0.118) \end{gathered}$	$\begin{aligned} & -0.124 \\ & (0.088) \end{aligned}$	$\begin{aligned} & -0.055 \\ & (0.086) \end{aligned}$	$\begin{aligned} & 0.018 \\ & (0.090) \end{aligned}$	$\begin{aligned} & -0.161 \\ & (0.115) \end{aligned}$
Female Teacher	$\begin{aligned} & -0.052 \\ & (0.017) \end{aligned}$	$\begin{gathered} -0.037 \\ (0.018) \end{gathered}$	$\begin{aligned} & -0.023 \\ & (0.017) \end{aligned}$	$\begin{aligned} & -0.031 \\ & (0.035) \end{aligned}$	$\begin{aligned} & -0.036 \\ & (0.017) \end{aligned}$	$\begin{gathered} 0.014 \\ (0.017) \end{gathered}$	$\begin{aligned} & -0.023 \\ & (0.018) \end{aligned}$	$\begin{gathered} 0.068 \\ (0.031) \end{gathered}$
Sample Size	13,113	13,113	13,113	13,113	12,011	12,011	12,011	12,007
$\begin{aligned} & \text { Subject FE } \\ & \text { Year FE } \end{aligned}$ School FE	\checkmark	\checkmark \checkmark \checkmark	\checkmark			\checkmark \checkmark \checkmark	$\checkmark \checkmark$	
Class FE School-by-Subject-by-Year FE			\checkmark	\checkmark			\checkmark	\checkmark

Notes: Each row presents estimates from a separate regression using an empirical Bayes estimation strategy. The standard errors are corrected using a two-step bootstrapping method. The process of two-step bootstrap sampling and estimation is repeated 1,000 times. All specifications include the students' $11^{\text {th }}$ grade first-semester score as a control. All scores are standardized z-scores. The first panel "Core Subjects" includes all core subjects. The second panel "Classics Subjects" includes relevant exams from the core (history and modern Greek) and all the classics track subjects. The third panel "Science Subjects" includes relevant exams from the core (algebra, geometry and physics) and all the science track subjects. The fourth panel "Exact Science Subjects" includes relevant exams from the core (algebra, geometry and physics) and all the exact science track subjects. All specifications include the students' $11^{\text {th }}$ grade first-semester test scores as controls.

Table A9: Heterogeneity in the Effect of $11^{\text {th }}$ Grade Gender Bias on Blind $12^{\text {th }}$ Grade Score by the Gender of the Principal

Dependent Variable: Blind score in $12^{\text {th }}$ grade national exams		
	Boys	Girls
	(1)	(2)
All Subjects		
Bias	$\begin{gathered} 0.051 \\ (0.058) \end{gathered}$	$\begin{aligned} & -0.075 \\ & (0.047) \end{aligned}$
Bias \times Female Principal	$\begin{gathered} 0.048 \\ (0.076) \end{gathered}$	$\begin{gathered} 0.074 \\ (0.068) \end{gathered}$
Female Principal	$\underset{(0.026)}{0.037}$	$\begin{gathered} 0.031 \\ (0.022) \end{gathered}$
Sample Size	12,881	15,376
Core Subjects		
Bias	$\begin{gathered} 0.047 \\ (0.069) \end{gathered}$	$\begin{gathered} -0.036 \\ (0.057) \end{gathered}$
Bias \times Female Principal	$\begin{gathered} 0.121 \\ (0.091) \end{gathered}$	$\begin{gathered} 0.079 \\ (0.079) \end{gathered}$
Female Principal	$\begin{gathered} 0.013 \\ (0.026) \end{gathered}$	$\begin{aligned} & -0.001 \\ & (0.021) \end{aligned}$
Sample Size	8,805	11,074
Classics Subjects		
Bias	$\begin{aligned} & -0.007 \\ & (0.089) \end{aligned}$	$\begin{gathered} -0.173 \\ (0.063) \end{gathered}$
Bias \times Female Principal	$\begin{gathered} 0.123 \\ (0.139) \end{gathered}$	$\begin{gathered} 0.058 \\ (0.108) \end{gathered}$
Female Principal	$\begin{gathered} 0.104 \\ (0.043) \end{gathered}$	$\begin{gathered} 0.107 \\ (0.034) \end{gathered}$
Sample Size	2,689	5,297
Science Subjects		
Bias	$\begin{gathered} 0.112 \\ (0.079) \end{gathered}$	$\underset{(0.73)}{0.147}$
Bias \times Female Principal	$\begin{gathered} 0.039 \\ (0.098) \end{gathered}$	$\begin{aligned} & -0.024 \\ & (0.098) \end{aligned}$
Female Principal	$\begin{gathered} -0.012 \\ (0.027) \end{gathered}$	$\begin{aligned} & -0.067 \\ & (0.023) \end{aligned}$
Sample Size	7,633	8,561
Exact Science Subjects		
Bias	$\begin{gathered} 0.143 \\ (0.077) \end{gathered}$	$\begin{gathered} 0.086 \\ (0.068) \end{gathered}$
Bias \times Female Principal	$\begin{aligned} & -0.081 \\ & (0.098) \end{aligned}$	$\begin{aligned} & -0.007 \\ & (0.097) \end{aligned}$
Female Principal	$\underset{(0.027)}{0.004}$	$\begin{gathered} -0.039 \\ (0.024) \end{gathered}$
Sample Size	9,099	8,823
$\begin{aligned} & \text { Subject FE } \\ & \text { Year FE } \end{aligned}$	\checkmark	\checkmark
Notes: Each panel presents estimates from a separate regression using an empirical Bayes estimation strategy. Standard errors are clustered using a two-step bootstrapping method. All specifications include the students' first-semester test score in grade 11 as a control. All scores are standardized z-scores. The first panel "All Subjects" includes all subjects from the core and the tracks. The second panel "Core Subjects" includes all core subjects. The third panel "Classics Subjects" includes relevant exams from the core (history and modern Greek) and all the classics track subjects. The fourth panel "Science Subjects" includes relevant exams from the core (algebra, geometry and physics) and all the science track subjects. The firth panel "Exact Science Subjects" includes relevant exams from the core (algebra, geometry and physics) and all the exact science track subjects.		

Table A10: Effect of Teacher Gender Bias on the Quality of the Program Students Enrolled In

	Boys		Girls	
	$\begin{gathered} (1) \\ \text { Rank } \end{gathered}$	$\begin{gathered} (2) \\ \text { Stand Rank } \end{gathered}$	$\begin{gathered} (3) \\ \text { Rank } \end{gathered}$	$\begin{gathered} (4) \\ \text { Stand Rank } \end{gathered}$
Bias in All Subjects	$\begin{gathered} 1.693 \\ (0.943) \end{gathered}$	$\begin{gathered} 0.059 \\ (0.033) \end{gathered}$	$\begin{aligned} & -1.841 \\ & (0.808) \end{aligned}$	$\begin{aligned} & -0.064 \\ & (0.028) \end{aligned}$
Sample Size	8,452	8,452	10,125	10,125
Bias in Core Subjects	$\begin{gathered} 1.258 \\ (1.034) \end{gathered}$	$\begin{gathered} 0.043 \\ (0.036) \end{gathered}$	$\begin{aligned} & -3.305 \\ & (0.939) \end{aligned}$	$\begin{gathered} -0.114 \\ (0.032) \end{gathered}$
Sample Size	4,986	4,986	6,053	6,053
Bias in Classics Subjects	$\begin{gathered} 2.583 \\ (1.740) \end{gathered}$	$\begin{gathered} 0.090 \\ (0.061) \end{gathered}$	$\begin{gathered} 0.201 \\ (1.527) \end{gathered}$	$\begin{gathered} 0.007 \\ (0.053) \end{gathered}$
Sample Size	2,668	2,668	4,134	4,134
Bias in Science Subjects	$\begin{gathered} 0.478 \\ (1.320) \end{gathered}$	$\begin{gathered} 0.017 \\ (0.046) \end{gathered}$	$\begin{gathered} -2.009 \\ (1.203) \end{gathered}$	$\begin{gathered} -0.069 \\ (0.041) \end{gathered}$
Sample Size	3,637	3,637	4,342	4,342
Bias in Exact Science Subjects	$\begin{gathered} 1.246 \\ (1.536) \end{gathered}$	$\begin{gathered} 0.043 \\ (0.053) \end{gathered}$	$\begin{aligned} & -1.221 \\ & (1.211) \end{aligned}$	$\begin{gathered} -0.042 \\ (0.042) \end{gathered}$
Sample Size	4,264	4,264	4,199	4,199
Year FE		\checkmark	\checkmark	\checkmark
Subject FE	\checkmark	\checkmark	\checkmark	\checkmark
Grade FE	\checkmark	\checkmark	\checkmark	\checkmark
Class FE	\checkmark	\checkmark	\checkmark	\checkmark

Notes: Year 2003 is excluded from the analysis, as it is used to calculate the quality measures for the post-secondary program students enroll in. "Rank" represents the ranking of each post-secondary program based on the 2003 threshold score for each university department. This is calculated as the admission score of the last admitted/marginal student. "Stand Rank" is the standardized measure of "Rank" which is normalised to have a zero mean and a standard deviation of 1 . We assign this measure of program quality to the relevant post-secondary programs and drop the year 2003 from the regressions. We then look at the effects of teacher biases on student quality of enrolled postsecondary program. All specifications include the students' first semester $11^{\text {th }}$ grade performance and the teacher's gender as controls. All estimates are adjusted for the empirical Bayes technique. Standard errors are adjusted using a two-step bootstrapping technique.

Table A11: Summary Statistics for Sample Used to Estimate Value-Added Models

	Mean	Std.Dev	Min	Max
	(1)	(2)	(3)	(4)
Student Characteristics				
Born in the First Quarter of Birth Year (Yes=1)	0.238	0.426	0	1
Gender (Female=1)	0.576	0.494	0	1
Test Scores (s.d.)	-0.045	0.995	-2.937	3.608
Proportion of Students in Classics	0.391	0.488	0	1
Proportion of Students in Science	0.174	0.379	0	1
Proportion of Students in Exact Science	0.435	0.496	0	1
Lagged Test Scores (s.d)	0.025	0.963	-4.365	3.807
No.of Subject-School Combinations per Student	10.044	5.233	1	22
Missing Lagged Test Scores	0.041	0.198	0	1
Class/School/Neighborhood Characteristics				
Class Size	18.818	3.761	4	25
School Grade Enrollment Size	62.170	28.504	4	104
Neighorhood Income (in Euro)	19,718.846	3,794.528	12,265.880	26,586.330
Urban Locality (yes=1)	0.781	0.414	0	1
Teacher Characteristics				
Teacher Gender (Female=1)	0.337	0.473	0	1
No.of other Classes a Teacher Taught (Experience)	6.529	5.582	1	22

Notes: All statistics reported are for the sample used in estimating the baseline TVA model. This sample includes only students who have non-missing baseline controls. Student data are from the administrative records of 21 schools in Greece. The sample period of 2003-2005 is used to obtain the TVA estimates. All test scores are standardized. Summary statistics (number of observations, mean, s.d., min., and max.) for the baseline variables are reported in the table. Outcome test scores are measured in $11^{t h}$ and $12^{t h}$ grade and the prior test scores are measured in $10^{t h}$ and $11^{t h}$ grade. The variables are weighted by the number of students in the school-year-class-subject-year cell. Only the "Number of other Classes a Teacher Taught" is weighted by the number of teachers in the school-year-class-subject-year cell. The age is measured in years for students the day they start the $11^{\text {th }}$ or $12^{\text {th }}$ grade class. Born in the First Quarter of Birth Year is a dummy that takes the value of one if a student is born in the first quarter of the calendar year, and zero otherwise. Students who are born in the first quarter of the calendar year are eligible to enroll a year earlier in the $1^{\text {st }}$ grade. There are three tracks available: classics, science or exact science. The school grade enrollment size denotes the number of $11^{t h}$ or $12^{t h}$ graders in a given school and year. The number of subject-school combinations per student is the number of subjects that students take. Each student takes on average 10 subjects. When prior test scores are missing, we set the prior score equal to 0 and include an indicator for missing data. On average, 6 percent of lagged scores are missing. The total number of observations used here is 50,970 . In the last panel that reports teachers' characteristics, a class corresponds to a subject-class-year-grade cell.

Table A12: Comparisons of Mean Teacher Value Added for Pro-Boys, Neutral, and Pro-Girls Teachers
$\left.\begin{array}{lccc}\hline \hline & & \text { (1) } & (2) \\ \text { Neutral } & \text { Pro-Boy } & \text { (3) } \\ \text { Difference }\end{array}\right)$

Notes: We pool data on test scores for $11^{\text {th }}$ and $12^{\text {th }}$ grades for the period 2003-2005. The TVA measures are derived following the procedure described in the text. Pro-boy teachers exhibit bias larger than or equal to 0.10. Pro-girl teachers exhibit bias smaller than or equal to -0.10 . We define as neutral teachers who exhibit bias that is larger than -0.10 and smaller than or equal to 0.10 . The teacher bias measures are derived as the average bias across subjects, grades and classes a teacher exhibits in the 2006-2011 sample. Our sample includes only students who have non-missing baseline controls to estimate the TVA model. Our baseline TVA model controls for a rich set of student demographics and other variables, as well as teacher, class, and school level variables. In particular, our baseline TVA model controls for a student's gender, age, a dummy whether the student is born in the first quarter of a calendar year, his/her lagged performance in the same subject, class size, school-level-grade enrollment, a dummy that takes the value of 1 if the teacher is female and 0 otherwise, how many classes each teacher taught in the sample (our proxy for a teacher's experience), students' average performance in all other classes taught by the same teacher in the sample and neighborhood income. When the prior test score is missing, we set the prior score equal to 0 and include an indicator for missing data. In Panel A, we compare the mean TVA of teachers who are neutral (column 1) to the mean TVA of teachers who are pro-boy (column 2). The related standard deviations are reported below the means. Column 3 reports the difference of the means and the respective standard error. In Panel B, we compare the mean TVA of teachers who are neutral (column 1) to the mean TVA of teachers who are pro-girl (column 2). The related standard deviations are reported below the means. Column 3 reports the difference of the means and the standard error.

Table A13: Correlations Between Teacher Bias And Teacher Quality (TVA) for Pro-Girl and Pro-Boy Teachers (Spline Variables)

Dependent Variable: Teacher Quality (Measured by TVA)				
	(1)	(2)	(3)	(4)
Spline for Pro-Girls Teachers	$\begin{gathered} 0.040 \\ (0.028) \end{gathered}$	$\begin{gathered} 0.039 \\ (0.029) \end{gathered}$	$\begin{gathered} 0.041 \\ (0.029) \end{gathered}$	$\begin{gathered} 0.042 \\ (0.030) \end{gathered}$
Spline for Pro-Boys Teachers	$\begin{aligned} & -0.021 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.020 \\ & (0.022) \end{aligned}$	$\begin{gathered} -0.019 \\ (0.022) \end{gathered}$	$\begin{aligned} & -0.021 \\ & (0.022) \end{aligned}$
Female Teacher		$\begin{gathered} 0.011 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.011 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.011 \\ (0.011) \end{gathered}$
Class Size			$\begin{gathered} -0.002 \\ (0.002) \end{gathered}$	$\begin{gathered} -0.002 \\ (0.002) \end{gathered}$
Experience				$\begin{gathered} -0.001 \\ (0.002) \\ \hline \end{gathered}$
Obs.	418	418	418	418
Year FE	\checkmark	\checkmark	\checkmark	\checkmark
School FE	\checkmark	\checkmark	\checkmark	\checkmark
Grade FE	\checkmark	\checkmark	\checkmark	\checkmark

The "Spline for Pro-Girl Teachers" takes the actual negative teacher bias values, and the value of zero for the positive ones. The "Spline for ProBoy Teachers" takes the actual positive teacher bias values, and the value zero for the negative ones. The teacher gender bias measures the average bias a teacher exhibits in different subjects and classes in the 2006-2011 sample. We include the two splines simultaneously in the regression. The outcome variable is the teacher value-added derived using the 20032005 sample and is described in detail in the text. "Teacher experience" measures the different combination of classes and subjects a teacher has taught in $11^{\text {th }}$ and $12^{\text {th }}$ grades in the sample period 2003-2011. Standard errors are clustered by school and year and are reported in parentheses. The empirical Bayes estimates of teacher gender biases are used.

Table A14: Comparisons of Mean Teacher Value Added for Pro-Boys, Neutral, and Pro-Girls Teachers (Measured by TVA on Enrolled Program Quality)

	(1) Neutral /sd	$\begin{gathered} (2) \\ \text { Pro-Boy } \\ / \text { sd } \end{gathered}$	(3) Difference /se
		Panel A	
Teacher Value Added	$\begin{aligned} & 1.685 \\ & 9.525 \end{aligned}$	$\begin{gathered} -0.979 \\ 9.503 \end{gathered}$	2.665 1.542
N	67		155
	Neutral /sd	$\begin{gathered} \text { Pro-Girl } \\ \text { /sd } \end{gathered}$	$\begin{gathered} \hline \text { Difference } \\ / \mathrm{se} \end{gathered}$
	Panel B		
Teacher Value Added	$\begin{aligned} & 1.685 \\ & 9.525 \end{aligned}$	$\begin{gathered} -1.480 \\ 9.771 \end{gathered}$	$\begin{aligned} & 3.165 \\ & 1.467 \end{aligned}$
N	67	125	192

Notes: Year 2003 is excluded from the analysis, since it is used to define the quality of the enrolled university degree program. We pool data on test scores for $11^{\text {th }}$ and $12^{\text {th }}$ grades for the period 2004-2005. The TVA measures are derived following the procedure described in the text. Pro-boy teachers exhibit bias larger than or equal to 0.10. Pro-girl teachers exhibit bias smaller than or equal to -0.10 . We define as neutral teachers who exhibit bias that is larger than -0.10 and smaller than or equal to 0.10 . The teacher bias measures are derived as the average bias across subjects, grades and classes a teacher exhibits in the 2006-2011 sample. Our sample includes only students who have non-missing baseline controls to estimate the TVA model. Our baseline TVA model controls for a rich set of student demographics and other variables, as well as teacher, class, and school level variables. In particular, our baseline TVA model controls for a student's gender, age, a dummy whether the student is born in the first quarter of a calendar year, his/her lagged performance in the same subject, class size, school-level-grade enrollment, a dummy that takes the value of 1 if the teacher is female and 0 otherwise, how many classes each teacher taught in the sample (our proxy for a teacher's experience), students' average performance in all other classes taught by the same teacher in the sample and neighborhood income. When the prior test score is missing, we set the prior score equal to 0 and include an indicator for missing data. In Panel A, we compare the mean TVA of teachers who are neutral (column 1) to the mean TVA of teachers who are pro-boy (column 2). The related standard deviations are reported below the means. Column 3 reports the difference of the means and the respective standard error. In Panel B, we compare the mean TVA of teachers who are neutral (column 1) to the mean TVA of teachers who are pro-girl (column 2). The related standard deviations are reported below the means. Column 3 reports the difference of the means and the standard error.

Table A15: Correlations Between Teacher Gender Bias And Teacher Quality (Measured by TVA
on Enrolled Program Quality)
Dependent Variable: Teacher Quality (Measured by TVA)

	(1)	(2)	(3)	(4)
Pro-Girl Teacher Indicator	-0.586	-0.601	-0.607	-0.553
	(0.816)	(0.807)	(0.809)	(0.786)
Pro-Boy Teacher Indicator	0.171	0.170	0.212	0.260
	(0.677)	(0.680)	(0.688)	(0.688)
Female Teacher		-0.151	-0.198	-0.160
		(0.707)	(0.693)	(0.687)
Class Size			-0.174	-0.184
			(0.156)	(0.158)
Experience				-0.068
Obs.	279	279	279	279
Year FE	\checkmark	\checkmark	\checkmark	\checkmark
School FE	\checkmark	\checkmark	\checkmark	\checkmark
Grade FE	\checkmark	\checkmark	\checkmark	\checkmark

Notes: Year 2003 is excluded from the analysis, since it is used to define the quality of the enrolled university degree program. The "Pro-Girl Teacher Indicator" takes the value of one if the teacher exhibits a bias that is smaller than or equal to -0.10. The "Pro-Boy Teacher Indicator" takes the value of one if the teacher exhibits a bias that is above 0.10 . We define as neutral teachers those who have a bias that is larger than -0.10 and smaller than or equal to 0.10 . The omitted category in the regression is neutral teachers. The teacher bias is calculated in the sample period of 2006-2011. The outcome variable is the TVA derived using the 2003-2005 sample and described in the text. "Teacher experience" measures the different combination of classes and subjects a teacher has taught in $11^{t h}$ and $12^{\text {th }}$ grades in the sample period 20032011. The empirical Bayes estimates of teacher gender biases are used. Standard errors are clustered by school and year and are reported in parentheses.

Figure A1: Distribution of Teacher Gender Bias in $11^{\text {th }}$ and $12^{\text {th }}$ Grade, Sample of 21 Schools

Panel A: $11^{\text {th }}$ grade

Panel B: $12^{\text {th }}$ grade

Notes: Panels A and B show the teacher-class level distribution of bias based on all classes (including the own) in grades $11^{\text {th }}$ and $12^{\text {th }}$, respectively. We use data for the sample period 2003-2011. The teacher bias in all classes that a teacher taught is measured as the average bias that a teacher exhibited in all classes she/he ever taught in the sample period 2003-2011 in each grade.

Figure A2: Histograms of the Bias Measured in All Classes in Core and Track Subjects in $11^{\text {th }}$ Grade

Notes: This figure presents a teacher-class level distribution of bias based on all classes (including the own) for core and track subjects. In $11^{\text {th }}$ grade the core subjects taught are: modern Greek, history, physics, algebra and geometry. There are the following tracks in $11^{\text {th }}$ grade: Classics, Science and Exact Science. In the classics track the $11^{\text {th }}$ grade subjects are: ancient Greek, philosophy and Latin; in the science track: mathematics, physics, chemistry, and in the exact science track: mathematics, physics and technology and computers. The mean (s.d.) of the teacher-level measure of the gender bias based on all classes is $-0.123(0.418),-0.166(0.514),-0.029(0.502)$ and $-0.065(0.516)$ in core, classics track, science track, and exact classics track subjects, respectively.

Figure A3: Histograms of the Bias Measured in All Classes in Core and Track Subjects in $12^{\text {th }}$ Grade

Notes: This figure presents a teacher-class level distribution of bias based on all classes (including the own) for core and track subjects. In $12^{\text {th }}$ grade the core subjects taught are: modern Greek, history, physics, biology and mathematics. There are the following tracks in $12^{\text {th }}$ grade: Classics, Science and Exact Science. In the classics track the $12^{\text {th }}$ grade subjects are: ancient Greek, Latin, literature and history; in the science track: biology, mathematics, physics and chemistry, and in the exact science track: mathematics, physics, business administration and computer science. The mean (s.d.) of the teacher-level measure of the gender bias based on all classes is -0.139 (0.491), -0.197 (0.478), $-0.197(0.472)$ and $-0.171(0.430)$ in core, classics track, science track, and exact classics track subjects, respectively.

Figure A4: Evolution of Teacher Bias, All, Male and Female Teachers who Teach 8 or 9 Years in the Sample

Notes: We calculate the annual bias across subjects and classes for all teachers in the sample. We then plot the evolution of teacher bias for male and female teachers who teach 8 or 9 years in the sample. We consider years from 2003 up to and including 2011.

Figure A5: Proportion of University Students Enrolled By University Field of Studies, Sample of 21 schools

Notes: This figure presents the proportion of enrolled students in each field of university study and year. We consider four broad categories: humanities, science, social science and exact science. The remaining students enroll in vocational studies. Humanities include the departments of liberal Arts, literature, psychology, journalism, philosophy, education, Greek language, history, foreign languages, home economics and law. Social Science includes the departments of economics, statistics, business and management, accounting, political science and European studies. Exact Science includes the departments of mathematics, engineering, physics and computer science. Science includes the departments of biology, chemistry, medicine, pharmacy, veteひnary studies and dentistry.

Figure A6: Proportion of University Students Enrolled By Field of Studies and By Gender, Sample of 21 schools

Notes: The top figure presents the proportion of enrolled boys (out of enrolled students) in each field of university study and year. The bottom figure presents the proportion of enrolled girls (out of enrolled students) in each field of university study and year. We consider four broad categories: humanities, science, social science and exact science.

Figure A7: Proportion of University Students Enrolled in STEM by Subject, Sample of 21 schools

Notes: This figure presents the proportion of enrolled students in each stem field and year. We use the following five broad fields: mathematics, engineering, physics, computer science and architecture.

Figure A8: Proportion of University Students in STEM fields by Gender, Sample of 21 schools

Notes: The top figure presents the proportion of enrolled boys in each STEM field and year. The bottom figure presents the proportion of enrolled girls in each STEM field and year. Five broad fields are used: mathematics, engineering, physics, computer science and architecture.

Figure A9: Evolution of Teacher Gender Bias by School Track, Sample of 21 Schools

Notes: The $11^{\text {th }}$ grade bias in Classics is the average bias in ancient Greek, philosophy and Latin. The $11^{\text {th }}$ grade bias in Science ${ }^{2} T_{s}$ the average bias in mathematics, physics and chemistry. The $11^{\text {th }}$ grade bias in Exact Science is the average bias in mathematics, physics and computer science. The $12^{\text {th }}$ grade bias in Classics is the average bias in ancient Greek, Latin, literature and history. The $12^{\text {th }}$ grade bias in Science is the average bias in mathematics, physics, biology and chemistry. The $12^{\text {th }}$ grade bias in Exact Science is the average bias in mathematics, physics, business administration and computer science. All teacher biases that are used here are calculated based on all other classes that a teacher taught in the sample.

Figure A10: Evolution of Teacher Gender Bias by Field of Study, Sample of 21 schools

Notes: These figures show the evolution (over ${ }^{2}{ }^{2}$ ime) of the teacher bias in terms of the fields of study at the university level. These fields of study include departments in the following fields: humanities, social science, science and exact science. The $11^{\text {th }}$ grade bias (measured in all other classes) for humanities and social science departments is the average bias in modern Greek and history in $11^{\text {th }}$ grade. The $11^{\text {th }}$ grade bias (measured in all other classes) for Science and Exact Science departments is the average bias in algebra, geometry and physics in $11^{\text {th }}$ grade. The $12^{\text {th }}$ grade bias (measured in all other classes) for exact science, science, humanities and social science departments is the bias in mathematics and physics

Figure A11: Histogram of Teacher Value-Added Measure on the Quality of the Program Students Enrolled in

Notes: This figure presents the distribution of the TVA measure, which is weighted by the number of students in the school-year-grade-subject-class year cell. Teacher value-added is measured on the enrolled university degree quality. The enrolled university degree quality ranges from 0 to 100 , which the value of 100 being assigned to the program of the highest quality. Year 2003 is excluded, as it is used to calculate the quality measures for the post-secondary program students enroll in. The program quality is measured as the ranking of each post-secondary program based on the 2003 mean performance of enrolled students in each post-secondary program. To derive these value-added measures we pool the $11^{t h}$ and $12^{t h}$ grade data for the years $2004-2005$. We use $10^{t h}$ and $11^{t h}$ grade performance as a prior measure of performance. We follow closely the value-added procedure described in ?. This sample includes only students who have non-missing baseline controls to estimate the TVA model. TVA is estimated using the baseline control vector, which includes: lagged own-subject scores, student-level characteristics including age, gender, a dummy for being born in the first quarter of the birth year, dummies for whether students expressed a special interest in classics, science or exact science (indicated by the track they have chosen), class size, school-grade enrollment, income as well as school, year, and subject dummies. When prior test scores are missing, we set the prior score equal to 0 and include an indicator for missing data. Student data are from the administrative records of 21 schools in Greece. The structure of the dataset is one observation per teacher-year-grade-subject-class cell.

Figure B1: Example of a School Exam Script in a Random School in Academic Year 2005-2006

E®ETAZOMENO MAOHMA ГENIKHะ ПAIAEIA乏： MAӨHMATIKA KAI ЕTOIXEIA ЕTATI亡TIKH亡

OEMA A：

$$
\mathrm{P}(\mathrm{AUB})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})
$$

（Mováósç 10）

（Mováósç 6）

a）$(x)^{\prime}=$ \qquad ß）$(\eta \mu x)^{\prime}=$ \qquad y）$\left(x^{3}\right)^{\prime}=$ \qquad （Mováósç 9）

OEMA B：

 опияіо $\mathrm{A}(1,-4)$ ．

（Mováóec 8）
B2． $\mathrm{Na} \beta$ prite to $\lim _{x \rightarrow 3} \frac{x^{2}-9}{f(x)}$ ． （Mováóeç 8）

（Mováóȩ 9）

OEMA Г：

（Movábec 8）
（Mováoeç 8）
（Mováoec 9）

Figure B2: Example of a National Exam Script in Academic Year 2005-2006

APXH $2 H \Sigma \Sigma E \Lambda I \Delta A \Sigma$

NEO \& ПAAAIO EYETHMA - Г' HMEPHEIQN

ӨEMA B

B1. $N \alpha \beta \rho \varepsilon і т \varepsilon$ та акро́тата тпऽ бuvápтпопऽf.
Mováбะऽ 9

Mováбะ؟ 8
B3. Na ито入оүібєєє то о́рıо $\lim _{x \rightarrow-1} \frac{f^{\prime}(x)-12}{x+1}$.
Mováठェร 8
ӨEMA Г

 бгєббробıа́үра $\mu \alpha$.

Mováסes 4

A: «то прш́то паıб́i вivaı корітбı»

Mováбะऽ 6

$$
\Delta=\mathrm{A} \cap \mathrm{~B}, \quad \mathrm{E}=\mathrm{A} \cup \mathrm{~B}, \mathrm{Z}=\Gamma-\mathrm{E} .
$$

(μ ováठ́єऽ 9)

Mováరॄऽ 15

TE $\Lambda \mathrm{O} \Sigma 2 \mathrm{H} \Sigma \mathrm{A} \Pi \mathrm{O} 4 \Sigma \mathrm{E} \Lambda \mathrm{I} \Delta \mathrm{E} \Sigma$

APXH $3 H \Sigma \Sigma E \Lambda I \Delta A \Sigma$

NEO \& ПAAAIO EYETHMA - Γ^{\prime} HMEPHEIQN

$\Theta E M A \Delta$

 тірака:

Xpóvos ($\sigma \varepsilon \lambda \varepsilon \pi \tau_{1} \dot{\text {) }}$		$\begin{gathered} \overline{\text { Euxvótnta }} \\ v_{i} \end{gathered}$
[8,)		20
[,)	14	15
[,)		10
[,)		v_{4}
£YNO^O		$\mathrm{v}=\ldots \ldots \ldots$.

Mováס̌ऽ 4

 ката́ $\lambda \lambda \eta \lambda \alpha \sigma u \mu \pi \lambda \eta \rho \omega \mu \varepsilon ́ v o ~(\mu \circ v \alpha ́ \delta \varepsilon \varsigma ~ 2) . ~$

Mováбะऽ 6

 про́үрациа.

Mováठes 5

Mováסes 6

Mováбะऽ 4

TE $\triangle \mathrm{O} \Sigma 3 \mathrm{H} \Sigma$ AПO $4 \Sigma \mathrm{E} \Lambda \mathrm{I} \Delta \mathrm{E} \Sigma$

APXH 4H $\Sigma \Sigma E \Lambda I \Delta A \Sigma$

NEO \＆ПAAAIO EYITHMA－［＇HMEPHIIQN

£A乏 EYXOMA乏TE KAへH EПITYXIA

TEAOE MHNYMATOE

TE $\Lambda \mathrm{O} \Sigma 4 \mathrm{H} \Sigma$ AПO $4 \Sigma \mathrm{E} \Lambda \mathrm{I} \Delta \mathrm{E} \Sigma$

Figure B3: Map of Schools in the Sample

This figure shows the counties with schools that we use in the main analysis.

