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ONLINE APPENDIX for
"Inversions in US Presidential Elections: 1836-2016"

by Geruso, Spears, and Talesara

A Background

A.1 The Party Systems in the 19th and 20th Centuries

Our earliest sampling frame consists of Antebellum elections from 1836 to 1852. This range
includes all years in which Democrats and Whigs were the predominant political parties in
national politics. Political scientists typically classify the range 1828 to 1854 as the Second Party
System and consider 1852 to be the last presidential election year prior to the Civil War in
which the parties were stable. The 1832 election does not easily fit with our two-major-party
procedure, nor does it fit with the rest of the Antebellum period, as the presidential candidates
earned Electoral College votes from parties other than the Whigs and Democrats (National
Republican, Nullifier, Anti-Masonic). We start in 1836, when the major parties were Whigs and
Democrats and after all states (other than South Carolina) began allowing their citizens to vote
in presidential elections.

Our second sampling frame consists of the post-Reconstruction Era, 1872-1888. Political
scientists typically classify the range 1854 to 1892 as the Third Party System. We drop the Civil
War years and elections before 1872 as these were characterized by a multiplicity of competing
parties that earned EC ballots as well as Republican landslide victories. There was also a
changing roster of states gradually rejoining the union in this postwar period. We end our
post-Reconstruction sample period at 1892 because the next election in 1896 represented a major
political realignment. The realignment is typically recognized as the end of the Third Party
System and the beginning of the Fourth Party System.

Other time periods are less useful in providing identifying variation in electoral outcomes.
For example, the period 1896 to 1932—the Fourth Party System—mostly yielded presidential
landslide victories. These create less useful variation for the purposes of understanding in-
version probabilities in close elections. We nonetheless present results for the early twentieth
century in Appendix Section E.5 and Figure A2.

A.2 Related Systems Around the World

Inversion are possible in the US because of the Electoral College’s tiered system of voting, in
which citizens cast votes for electors, who in turn elect the President. Even absent the possibility
of faithless electors, the national popular vote (NPV) and the EC outcome can diverge for a host
of reasons that we detail in Section 5, where we examine the aggregation mechanics of the EC.

A useful way to understand EC-NPV mismatch is that it can occur when electoral ballots
at the second tier can be captured by different numbers of citizen votes at the first tier. In the
US, states are heterogeneous in EC representation, which results in elector ballots cast that are
disproportionate to citizen votes. Further, that heterogeneity can be (and often is) correlated
with partisan alignment across states. In Westminster-style Parliamentary systems, voting
units that elect the Prime Minister (Parliamentary districts) are typically similar to each other
in representation because they tend to be similarly-sized. All else equal, this tends towards
fewer inversions. But some countries, including India and Norway, intentionally introduce

1



Appendix Geruso, Spears, Talesara: "Inversions"

malapportionment when electing MPs, who then serve as electors in the second tier that elects
the Prime Minister. For example, Norway’s system upweights rural counties and India weights
regional votes using the regional populations of 1971, which were very different from the
geographic distribution of population today.

Even without intentional malapportionment, inversions still occur. For example, Canada’s
1979 federal election resulted in a loss for the Liberals and for their incumbent Prime Minister
Pierre Trudeau: Despite capturing more citizen votes than the Progressive Conservatives (L:
40% v. PC: 36%), the Liberals were elected to fewer seats in parliament (L: 114 v. PC: 136) and
Trudeau was therefore defeated.42

B Further Discussion of the Related Literature

Because of the considerable importance of the EC to US politics—as well as the importance
of multi-tiered elections to democratic systems worldwide—the EC has received extended
attention in the literature. However, because no prior study has investigated the same question
we ask here, which is about the fundamental statistical nature of EC inversions, no prior paper
has used the same materials and methods. Here we detail how our approach is distinguished
from prior literature that: (i) studies empirical facts about the EC other than about inversions in
the EC (B.1) or (ii) studies properties of inversions other than their conditional and unconditional
probabilities across historical periods (B.4).

In one striking example of the richness of the EC literature, political scientists and historians
have even debated which elections should count as an inversion—a debate that is possible
because of the complexity, and therefore ambiguity, of the implementation of the EC in practice
across states, parties, and centuries (Kallina, 1985; Rakove, 2004; Estes, 2011). Gaines (2001), for
example, argues that the 1960 election should be counted as an inversion because over 175,000
popular votes in Alabama (a number in excess of Kennedy’s national popular vote margin of
victory) were for Democratic electors who were opposed to Kennedy.

A more recent literature considers potential advantages and disadvantages of a national
popular vote compact (DeWitt and Schwartz, 2016; Koza, 2016; de Mouzon et al., 2019). Because
these studies often either take a normative or legal focus or do not use empirical data, and
because they consider aspects of presidential elections other than the probability of inversion
(such as the probability or difficulty of a recount, or incentives for strategic voting), we do not
consider them further here.

B.1 Empirical facts about the EC, but not about inversions

One of the oldest empirical literatures about the EC documents empirical facts about the
distribution of electoral votes across states. In particular, much of this literature describes
the allocation of average electoral influence (in the sense of EC ballots per popular vote or
EC ballots per person) across states or across population groups. For example, Blair (1979)
computes that, by such metrics, whites have more average voting power than blacks. Warf
(2009) maps differences in average voting power across states.

Another category of descriptive analysis computes facts about average “voting power” in a
way that is distinct from the mere probability of being pivotal, which is the focus of the next

42Miller (2012) further discusses inversions in Westminster-modeled parliamentary systems, including in the
United Kingdom, New Zealand, and Canada.
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section. Banzhaf III (1968), for example, makes computations that compare the size of each state
with its number of electoral votes, in order to compute a state-specific index of voting power. A
follow-up literature has considered properties of Banzhaf’s index and proposed alternatives
(Owen, 1975; Dubey and Shapley, 1979).

B.2 Pivotal voters and the EC

A long literature in political science and economics considers the relative costs and benefits of
voting, in particular focusing on the probability of being pivotal in deciding the election (Riker
and Ordeshook, 1968; Gelman, Katz and Tuerlinckx, 2002). Several papers have applied these
ideas to the Electoral College context, including Gelman, King and Boscardin (1998); Gelman,
Silver and Edlin (2012); Miller (2013). Our paper is not concerned with the probability that a
voter, or a voter in a particular state, or a voter in an election of particular closeness, will be
pivotal.

B.3 Inversion analyses using “uniform partisan swing” method

An important feature of our analysis is the modeling of election uncertainty. This distinguishes
our work from the many studies in political science that characterize presidential elections
deterministically, such as via “uniform partisan swing analysis,” and therefore cannot assess the
probability of an inversion (e.g., Garand and Parent, 1991; Grofman, Koetzle and Brunell, 1997).

Uniform partisan swing analysis—originating in Butler (1951) and Gudgin and Taylor
(1979)—has become a standard tool for understanding the relationship between electorate votes
and election outcomes, such as congressional seats. The method takes an observed election
outcome and, in the classic application, “swings” all legislative districts by the same common
vote share. By varying the vote share in a deterministic way in small increments, the method
can trace when seats flip and so can trace the relationship between swings in the common,
across-district component of votes and the aggregated election outcomes. Primarily applied
to estimating seats-votes curves in legislative elections such as for the US Congress (e.g., in
Gelman and King, 1990), the method has been ported to analyzing EC. In particular, several
studies map the relationship between electorate votes and EC ballots (Garand and Parent, 1991;
Miller, 2012). The important differentiator of our study is the incorporation of uncertainty. In
uniform swing analysis, there is no probability distribution over the aggregate vote share. In
addition, there is no uncertainty in the way that contests across states (or legislative districts)
resolve differently. They are assumed to comove perfectly. Therefore, these studies—which do
not estimate probability distributions—do not address the goals of our paper, which are the
computation of a set of important conditional and unconditional probabilities.

B.4 Inversions: Theoretical computations and election-specific predictions

Our paper uses data from many elections in the 19th through 21st centuries to estimate the
unconditional and conditional probability of an inversion, abstracting away from the features
of any particular pair of parties or candidates. The wide set of methods that we employ has
not previously been applied to this question, and no prior set of estimates of these probabilities
exists in the literature.

One of the richest existing literatures about the EC, from the game theory and formal
political science literatures, theoretically computes the probability of inversions in mathematical
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models that abstract away from any data about the actual EC (Kikuchi, 2017; de Mouzon et al.,
2018). Many of these papers, like ours, are focused on the stochastic properties of electoral
systems. But unlike ours they are not grounded in voting data—for example, how partisan
alignment and voting patterns in New York differ from those in Texas.

Another set of papers considers the probability of an inversion in one or more particular
elections. Here, we have been able to build upon the methods of prior studies focused on
single-election predictions or postdictions. For example, our M1 model is structurally analogous
to the model that Katz, Gelman and King (2004) apply to specific years,43 and our M2 model is
similar to the model that Silver (2016) used to predict the distribution of potential outcomes
prior to the 2016 presidential election. Some papers in this election-specific literature consider
counterfactual policies, as in our Figure 3, but without a probabilistic approach. Cervas and
Grofman (2019), for example, apply a set of counterfactuals to determine whether they would
have yielded an inversion in several actual historical inversions, assuming that vote totals were
the same as what historically occurred.

Among the literature that considers the statistical properties of presidential elections in
particular time periods, two of the papers closest to ours in methodology are Merrill (1978) and
Ball and Leuthold (1991), which are in dialogue with one another. Neither paper computes
or discusses the probability of a close election, which plays a central role in our analysis.
The interpretation of these papers is somewhat limited by the details and specificity of their
modeling choices. Their sample selection differs from ours and from one another: Merrill, in the
mathematics literature, pools elections from 1900 to 1976 (which ignores the mid-20th-century
partisan realignment, and therefore ignores the fact that a vote for a Democrat in the time of
Wilson had different economic, geographic, and racial correlates than a vote for a Democrat
in the time of Carter); Ball and Leuthold (1991) (like Katz, Gelman and King, 2004) compute
statistics for each of a series of years from 1920 to 1984, but also pool problematically across
distinct periods of partisan realignment (e.g., their 1984 estimates pool data from 1944 to 1984).
Methodologically, each paper makes analytic computations, assuming a single parametric form
which specifies that each state shares the same distribution: a symmetric normal distribution in
the case of Merrill (1978) and a parameterized beta distribution in the case of Ball and Leuthold.
Neither paper explores robustness to these assumptions—Ball and Leuthold suggest that a
non-parametric approach, such as we use in M3 and M4, would be “difficult to conceptualize.”
Despite these limitations, these papers are important for their early anticipation that state-
indexed models could be used to describe statistical properties of presidential elections.

Finally, Bakthavachalam and Fuentes (2017) in a short note report results on inversion
probabilities for a period overlapping with our Modern period. Similar to our results, they
conclude that inversion probabilities are high in close elections. In contrast with our results,
they conclude that there is no partisan asymmetry. The note does not provide enough technical
detail to compare and contrast methods or findings in depth.

43Thomas et al. (2013) use essentially the same model as Katz, Gelman and King (2004) to estimate partisan
bias in the EC in 14 specific elections but do not estimate the probability of inversions. Partisan bias is indeed
important to quantify but is distinct from the probability of an inversion: for example, a two-tiered system that
added high-variance, mean-zero noise to election outcomes would generate zero ex ante partisan bias but would
yield a high probability of inversion.
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C Data and Estimation

C.1 Data

C.1.1 Data Sources

For data on state populations, we use IPUMS extracts from decennial Censuses (Manson
et al., 2020). For intercensal election years, we follow the standard practice of exponentially
interpolating state populations.

The key inputs to our analysis are the historical election returns by state for each presidential
election year. For each presidential election, we assemble data on vote tallies for each candidate
in each state, as well as data on EC elector ballots cast for each candidate by the EC delegation
from each state. Data on state-level election returns and on EC ballots cast come from the Leip
(2018) compilation of state returns.

We use state × year data on education and race in some models for the Modern period;
these are from published summary tables of the American Community Survey. Race data by
state from the 19th century come from published Census reports.

C.1.2 Third Parties

For most simulations, we retain information on only the two major parties—Democrats and
Whigs from 1836 to 1852 and Democrats and Republicans for the later periods we examine. This
normalization, which is standard in the literature (see, e.g., Gelman and King, 1994) does not
substantively impact our analysis of inversion probabilities, as third-party candidates won no
EC ballots over our study periods.44,45 When we scale popular vote outcomes by turnout, we
include third-party voters in our measure of total state-level turnout.

Of course, a third-party candidate could be pivotal in determining which major party
candidate wins a state × year. The building blocks of our estimation and Monte Carlo exercise
are actual state × year election outcomes. We primarily take these outcomes as basic data
and make no assumptions on how a state return might have differed if not for a third-party
candidate. Thus, most of our statistics describe a typical election outcome over our sample
period, rather than elections in which we counterfactually remove or change the influence
of third parties. However, in Figure A6 we assess sensitivity to two extreme and opposite
assumptions on the impact of third parties. First we reestimate our baseline model reassigning
all third-party votes in each state × year to the Democratic candidate. Then we reestimate
our baseline model reassigning all third-party votes in each state × year to the Republican
candidate.

C.2 Data Cleaning and Restrictions

Here we catalogue our handling of various special cases and anomalies that arise in the election
data:

44In particular, one could relabel the horizontal axes in our figures below to center on the state × year specific
threshold, with ticks on the axis indicating distance from that state-election-specific threshold. In the Florida 2000
example, Bush and Gore won 48.847% and 48.838% of votes respectively, with 2.315% going to other candidates. The
state × year specific threshold for a Republican victory in this case would be 0.488425 (= (1− 0.02315)/2).

45The last third-party candidate to win a single pledged Electoral College vote was Wallace in 1968, which predates
our primary modern sampling frame. The Antebellum and post-Reconstruction elections produced no third-party
EC ballots, other than via faithless electors.
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• We ignore the few historical instances of faithless electors, who cast EC ballots for a
candidate other than the candidate to whom they were pledged. In the cases of faithless
electors, we award Electoral College ballots as they would have been awarded based on
state popular vote results.

• We exclude third parties from our analysis. No third-party candidate won EC ballots in
any of the election years we use for our main sampling periods (except through faithless
electors). See also Section C.1.2.

• In each election year, we drop states where EC ballots were allocated by state legislatures
rather than by the state popular vote. This includes South Carolina in 1836 to 1852 and
Colorado in 1876.

• In 1836, the Whig party ran multiple candidates across the country. All states that held a
citizen vote for President (as opposed to awarding EC ballots via the state legislature) had
one Whig candidate on their ballot, and no states had more than one. We treat all Whig
candidates as one candidate in the 1836 election.

• We start the post-Reconstruction era in 1872 because not all of the Confederate states had
rejoined the Union by 1868.

• In 1872, Horace Greeley, the Democratic candidate, died after the general election but
before electors had formally cast votes. Officially, no EC ballots were allowed for Greeley.
We use popular vote data from the general election and award EC ballots as if Greeley
had not died.

• In 1872, the electors of Arkansas and Louisiana were not certified by Congress. We use
the popular vote outcomes in these states in 1872 to award their EC ballots to Ulysses S.
Grant.

• We end the post-Reconstruction era in 1888 because there was a major third party in 1892
(Populists). Additionally, not all states had both major party candidates on their ballots.

• In the Modern period, Maine (since 1972) and Nebraska (since 1992) have split their EC
ballots between the state popular vote winner and congressional district popular vote
winners. In practice, both states have only split their EC ballots once each. We ignore this
rule and allocate Maine and Nebraska’s electoral votes by a winner-takes-all rule.

• For Alabama in 1964, Leip assigns Democrats 0 votes. Leip chooses zero presumably
because the Democratic electors were unpledged, rather than tied to the national candidate.
For the purposes of our estimation and simulations, we assign the Democratic votes cast
in Alabama to the national Democratic candidate, Johnson.

C.3 Sampling Frames

Figure 1 of the main text indicates the periods in US history that we study. Political scientists
have identified several stable Party Systems, characterized by competition between a fixed pair
of parties with stable political properties.46 We take these groupings as a starting point for our

46See Appendix A.1 for further discussion of how our sampling frames align with conventional treatments of the
historical US party systems in political science.
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sample definitions. We further restrict attention to spans of years that include electoral victories
for both parties because consecutive landslide victories of a single party do not generate useful
variation for our purposes of studying inversion probabilities in close elections. Given these
criteria, we study the Second, Third, and Sixth Party Systems, corresponding to the Antebellum,
post-Reconstruction, and Modern periods, as indicated in the figure.

Our earliest study period consists of elections between 1836 and 1852. This range includes
all years in which Democrats and Whigs were the predominant political parties in national
politics and spans through the last presidential election year prior to the Civil War in which the
parties were stable. In the post-Reconstruction Era, we study years 1872-1888. Like today, the
parties during this period were Republicans and Democrats, though the political alignment
of states was rather different. Democrats dominated in the Southeastern US; Republicans
dominated in the North, West and Mid-West.47

Finally, we treat 1988 to 2016 as our baseline modern period, although model M12 (included
in Figures 3 and A1) demonstrates that our estimates of the probability of an inversion condi-
tional on a close election are robust to extending the modern sampling frame further back to the
1960s.

We do not additionally focus on elections between 1900 and 1960 because over this period
there was little usable variation for our purposes. With the exception of Woodrow Wilson’s
terms, Republicans won landslide victories from 1900 to 1928. This was followed by consecutive
Democratic landslide victories (four of them by Franklin Roosevelt) beginning in 1932, and
then Republican landslide victories again in the 1950s. Sampling or estimating from periods
of consecutive landslide victories of one party generates landslide counterfactuals, leading to
degenerate distributions with little to no probability density around the 50% national popular
vote share, which is our threshold of interest. Nonetheless, in Appendix E.5, we show results
for the 1916–1956 timeframe for completeness.

D Additional Details on Methods

D.1 Parametric Analysis

Table A1 reports the maximum likelihood estimates of the parameters in Equation 1 of the main
text. Estimates in the table are grouped by period. Within each period, the first model (M1)
corresponds to the baseline estimate, following the Gelman and King (1994) “unified method of
evaluating electoral systems.” It includes a national shock and independent state shocks, with
state shocks drawn from a common distribution. The parameters of particular interest are the
variances of the national and state shocks, σ2

γ and σ2
φ. Either 31, 38, or 51 expected state vote

share parameters, αs, are also estimated, depending on the data period.48

Other columns compute estimates for alternative samples or model restrictions. Column
2 (M2) estimates additional state covariance terms on the basis of geographic region, race,
and education. States within a region receive a common, independent shock. The race term

47Although the Third Party System includes the 1892 election, we exclude it from our analysis as the two major
parties were not on the ballot in every state.

48Depending on the data period, some states were not present for all election years within the sample frame or did
not use a statewide citizen vote to determine EC votes. Either 25, 37, or 51 expected state vote share parameters,
αs, are estimated by joint maximum likelihood. For other states, including Colorado in the post-Reconstruction
frame (which was not a state in 1872 and which did not hold a popular vote in 1876), αs parameters are estimated
separately as means and do not contribute to estimating variance parameters.
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multiplies the fraction of each state that is nonwhite by a random, common coefficient drawn
from a mean-zero t distribution. The education term multiples the fraction of each state’s adult
population that is college-educated by a random, common coefficient drawn from a mean-zero
t distribution. Data on these demographics come from published, state-level summary statistics
of the American Community Survey. The M2 model closely follows the Silver (2016) approach
to modeling uncertainty in election forecasting.49 The next column (M5) estimates the model
assuming no national shocks, counter to the stylized facts from the elections literature about
the importance of a common, national component to the uncertainty. Columns 7 through 9
add race and education covariance terms singly and together. M10 drops from the sampling
frame the two historical instances of inversions in 2000 and 2016. The last model in the modern
period (M12) extends the sample to 1964, which walks the data period backward to the partisan
realignment of the North and South in the early 1960s (Kuziemko and Washington, 2018).
Additional columns repeat these estimates for the Antebellum and post-Reconstruction eras.
Model R10 drops the inversion instances (1876 and 1888) from the post-Reconstruction period;
there were no inversions in the Antebellum period. The requisite data for estimating the
demographic covariance terms (models M7, M8, M9) exist only for the Modern period.

In order to convert state vote shares, Vst, into a national popular vote tally, it is necessary to
scale Vst by voter turnout. Although the national level of turnout is irrelevant to our statistics of
interest, the relative turnout across states could meaningfully impact simulated election results.
Additionally, EC representation changed within each sample period. For example, Florida had
21 EC ballots in 1988 and 29 in 2016. Unless otherwise noted, we use the actual turnout and EC
apportionment from the last election of each sample period. For example, we use 2016 turnout
for the modern period. In practice, choices around which numbers to use for turnout and EC
apportionment have little bearing on our results. In Figure A7, we rerun the M1 model eight
times, in each case assigning different turnout and EC apportionment. Lines in the overlay plot
correspond to setting turnout and EC representation to 1988, 1992, 1996, 2000, 2004, 2008, 2012,
and 2016. Across these specifications, the probability of an inversion conditional on a margin of
victory within one percentage point varies only slightly—from 41% to 42%.

D.2 Bootstrap Monte Carlo: Turnout and the Varying State Roster

One practical consideration that arises when sampling and combining state election outcomes
from different years is that the raw vote counts of later years tend to be larger, reflecting
population growth. This creates a problem when summing citizen votes across states to yield
a national popular vote. We address this by scaling the each party’s vote tally in a state by
that state’s turnout in some common reference year before summing across states. Unless
otherwise noted, we use turnout from the last election of each sample period. For example, we
use 2016 turnout for the modern period. In practice, using alternative reference years for the
turnout weights make almost no difference to the simulation results. See Figure A7. A related
consideration is that EC apportionment can vary across election years. As with turnout, we
assign EC apportionment according to the last election year of the relevant sample period.

49FiveThirtyEight’s probability distributions over elections account for three potential types of error and uncer-
tainty, relative to the best mean predicted vote share in each state: a common national error, a set of demographic
and regional errors, and independent state-specific errors. For demographic and regional errors: “The following
characteristics are considered in the simulations: religion (Catholic, mainline Protestant, evangelical, Mormon,
other, none); race (white, black, Hispanic, Asian, other); region (Northeast, South, Midwest, West); party (Democrat,
Republican, independent); and education (college graduate or not).” (Silver, 2016)
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Finally, in our earliest historical period, the Union itself was changing: There were 25 states
in 1836 but 31 states by 1852. Therefore, when performing bootstrap Monte Carlo simulations in
this period, the sampling procedure generates some draws of state × years for which the state
did not exist. These null draws do not contribute to the simulated NPV or to the simulated EC
outcome in these simulated elections.

D.3 Bootstrap Monte Carlo: Generating Correlation Between State Outcomes

A downside of the independent sampling in our baseline bootstrap is that the lack of a common
election-year component to the variation leads to under-dispersion relative to the actual span
of election outcomes. To better capture the fact that national sentiment (or the characteristics
of a particular pair of candidates) tends to moves states together in a given election year, we
generate a variant in which we sample state outcomes with probability weights that attach extra
probability mass to being drawn from the same election year. In particular, for each simulation
we first draw a focal year, y∗, uniformly, independently, with replacement. Let M denote the
excess probability that the outcome from the y∗ election is sampled for each state in a given
simulated national election, t. Increasing M increases the within-year, across-state correlation in
voting patterns without imposing parametric assumptions on the distribution of the shocks.

This addition to the bootstrap procedure brings the dispersion closer to the actual dispersion
of observed elections. For model M4 in Figure A1, we set the excess probability of drawing
from the same focal year at 50%. In Figure 3, we vary M in 0.05 steps from 0.15 to 0.50. In our
baseline sample, which contains 8 elections from 1988 to 2016, an equal-probability draw would
put 0.125 weight on each year.

D.4 Bootstrap Monte Carlo: Wild Pooled Error Sampling

Models M6, R6, A6 create a larger pool of empirical error terms for bootstrap drawing, consisting
of all state deviations from their period means over all elections in the period. Each state is
first assigned its empirical sample-period mean two-party vote share. Then for each state, there
is an independent wild bootstrap draw from this common pool, so that the φst term is drawn
identically across states. The “wild” here is in the sense of Cameron, Gelbach and Miller (2008).
It refers to multiplying each draw by a random 1 or -1, effectively doubling the sampling frame
and imposing symmetry on the empirical distribution.

D.5 Bootstrap Monte Carlo: Swing State and Safe State Correlations

In Section 4.3, we discuss how we include models in Figure 3 that vary the implied correlation
structure of the bootstrap procedure, tuning the excess probability that state draws come from
the same election in 5% steps from 15% up to 50%. We do this overall, as well as for swing states
separately and “safe” states separately. We define swing states following recent convention:
Colorado, Florida, Iowa, Michigan, Minnesota, Nevada, New Hampshire, North Carolina, Ohio,
Pennsylvania, Virginia, and Wisconsin.50 If, for example, the 1992 outcome is drawn with excess
probability mass for Colorado, then the 1992 outcomes are also drawn with the same excess
mass for the other 11 swing states. In this approach, simulated elections are meant to come

50Politico published a swing state list leading up to the 2016 election that included: Colorado, Florida, Iowa,
Michigan, Nevada, New Hampshire, North Carolina, Ohio, Pennsylvania, Virginia and Wisconsin. FiveThirtyEight
adds Minnesota to this list to generate a list of “traditional swing states.”
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closer to the true equilibrium processes by which campaigns are making joint decisions on
allocating investments across swing states as they anticipate factors like voter responsiveness
to advertising and candidate visits. The primary source of variation in this set of simulations
is the margin by which reliably red or reliably blue states are won (according to state-specific
historical variability).

Conversely, when we sample “safe” states from the same election with excess probability,
we primarily vary the state victor and the margin by which swing states and other potentially
contestable states are won. Safe states, in the context of this analysis include the top quartile of
states (12) in terms of the average Democrat or Republic margin of the victory over the sample
period.

E Supplementary Results and Robustness

E.1 Extended results for 25 models

Figure A1 reports key summary statistics from several parametric and bootstrap models, each
with different assumptions and constraints on the data-generating process. The first row in
the figure corresponds to M1 (Panels A and B from Figure 2). Subsequent rows correspond
to alternative models. The middle graphical panel displays the main findings: inversion
probabilities conditional on a close race occurring.

The x1 and x2 models and their variants (x7 through x10) track the main approaches to
modeling election uncertainty from the political science literature and election forecasting
professionals, though such models have generally not been applied backwards to the periods
of US history we study. The NPV distributions implied from these models’ estimates are
wider than in the ad hoc bootstraps of x3. This is because the assumed structure in x1 and
x2 allows for a common, national component to deviations from state-level expectations. The
vote share distribution is more diffuse in the x2 models (which align with Silver, 2016) than in
x1 (which align with the Gelman and King, 1994 “unified method”) because x2 incorporates
additional correlated shocks linked across states within the same region and across states with
similar demographics. The x2 set also draws from a fatter-tailed distribution, as described in
Section 3.2. The independent sampling inherent in the bootstrap models (x3) tends to generate
NPV distributions that are under-dispersed relative to historical data. This is true also for
the parametric models (x5) that include no national common component to the shock. Other
models are described elsewhere in the text in detail. Despite these significant differences in the
predicted NPV distributions, Figure A1 shows that the conditional probability of an inversion
in a close election is stable.

E.2 Asymmetry in Inversion Probabilities

Table A8 reports, conditional on an inversion occurring, which party was likely to have won
the EC (and to have lost the popular vote). Table A7 reports the probability that an inversion
accounts for the expected wins of each party. All models agree that, for the Modern period,
inversion favored Republicans. Across all 12 Modern-period models, the probability that an
inversion was won by a Republican ranges from 62% to 93%. For the post-Reconstruction period,
Democrats were favored in inversions according to the standard, parametric models—though
models based on bootstrap draws disagree. In the Antebellum period, there is no consensus
across models as to whether Whigs or Democrats were favored.
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In Section 4.4, we describe how the asymmetry that favored Democrats during the post-
Reconstruction era arose in large part from the suppression of black votes in the US South, where
Democrats were dominant. Here we present the analysis supporting that claim. At the core
of our claim is the observation that blacks were numerous in the South and counted towards
apportionment but were kept from voting in commensurate numbers. This is a consequence of
the widely documented suppression of black rights, including voting rights, in the South at the
turn of the twentieth century (e.g., Epperly et al., 2019 and Lichtman and Kazin, 2010).

The left panels of Figure A11 plot citizen votes per EC ballot against the Republican share
of the two-party vote total for the post-Reconstruction period. The positive slope indicates that
states likely to vote for Democrats (to the left within each plot) tended to have lower turnout-
to-EC elector ratios. Voters in such states could control an EC ballot with fewer citizen votes.
For comparison, we create analogous plots for the Modern period in the right panels of Figure
A11. In the Modern period, Republicans were advantaged in the sense of EC ballots per citizen
votes, so the slope is negative, opposite to the post-Reconstruction period. But the sources of
imbalance were different over time. In the Modern period, part of the Republican advantage
was tied to over-representation of small-population states due to the two senator-linked electors.
To show this, in panels C and D we subtract two EC ballots from each state?s apportionment and
recompute the plots. This adjustment negates any relationship in the Modern period between
the partisan alignment of states and EC representation (Panel D). But the same is not true for the
post-Reconstruction period where subtracting two Electors from each state does not neutralize
the relationship (Panel C).

Figure A12 completes the picture: Whether examining all states or restricting attention to
former Confederate states with large black populations, voter turnout per population and voter
turnout per EC ballot were both strongly negatively correlated with the black share of the state
population. Therefore, states with the largest black populations could control an EC ballot with
fewer white votes. Winning low-turnout states, all else equal, helps a party win EC inversions
because electoral votes are won with few popular votes.

In the Antebellum period, the disproportionate electoral ballots per citizen voter allocated
to the South did not confer a partisan advantage to any party because Whigs and Democrats
split the South.

These results illustrate that heterogeneity in turnout across states is an important source of
potential inversions. In the post-Reconstruction, this heterogeneity was the result of deliberate
policy. But even random variation in turnout—such as due to weather or to differences in the
intercensal rate of population growth–could cause inversions, especially in the close elections
that we study. This turnout-to-representation ratio is important across the world as well.
Notably, India has what has been called a “crisis of representation,”51 because the apportionment
of Parliamentary seats today is based on population counts in the 1971 Census. As population
growth has trended differentially in the north and south of India over the last 50 years, the votes
(or registered voters or even residents) that can elect a member of Parliament have diverged
dramatically across regions of India, leading to skewed representation that favors populations
in low-growth states. (In the US context, India’s situation would be as if Texas had not gained
in representation in the EC or US Congress over the last several decades despite its explosive
population growth over that period).

51See Carnegie Endowment for International Peace: “India’s Emerging Crisis of Representation”
https://carnegieendowment.org/2019/03/14/india-s-emerging-crisis-of-representation-pub-78588
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E.3 Robustness to Gridded Parameter Values

With only a few elections per party system, it is impossible to be confident that estimates of
the true parameter values underlying the data-generating process are precise. To examine the
extent to which our main results could be sensitive to errors in these estimates, we calculate
our outcomes of interest under a set of exogenously specified variances and correlations. In
these simulations, we take only the state historical means of vote shares as data. Uncertainty
around these means is assumed to follow γt ∼ N(0, σγ) and φst ∼ N(0, σφ) as in our baseline
models (M1, R1, A1). But here we cycle over a grid of values for σ2

γ and σ2
φ, rather than relying

on estimates.
Figure A4 presents results from this procedure. The procedure generates many unique,

assumed parameter combinations in each period. In addition to iterating over national and state
variances, each combination is used while including or omitting a shared shock by geographic
region.

In Figure A5, we present supplementary detail for a subset of the assumed parameter
combinations in Figure A4. These simulations include state and national shocks. The variance
of the national shock increases along the horizontal axis in each panel. The variance of the state
shocks are traced in several contour lines in each panel, as indicated. In the panels on the left,
we report the probability of close elections within a 2 percentage point margin. In the panels
on the right, we report inversion probabilities, conditional on close elections within the same
margins.

The slopes of contours in Panels A, C and E indicate that the probability of a close elec-
tion outcome is sensitive in each period to the gridded parameter values. In particular, it is
sensitive to the variance of the common, national shock. However, in all cases the inversion
probabilities (Panels B, D, and F) remain high. In the Modern period, the probability of an
inversion—conditional on a margin less than 2 percent—remains high regardless of the parame-
ters exogenously set. The graph thus traces the same lower envelope on inversion probabilities
for the Modern period as Figure A1.

We can summarize Figures A1, 3, A4, and A5 as indicating that our finding of high inversion
probabilities in close elections is robust to: (i) parametric approaches that vary the assumptions
on the data-generating process across those adopted by the political science literature and
election forecasting practitioners, (ii) non-parametric bootstrap approaches that include both
independent and highly correlated sampling of state outcomes, (iii) approaches that omit from
estimation or bootstrap sampling the actual historical instances of electoral inversions, and (iv)
searching over a wide grid of potential parameters, including parameters that are likely to be
outside of the true parameter space.

E.4 Alternative Parameterizations State Demographic Characteristics

In Section 4.3, we note that models with shocks linked by election year, region, racial compo-
sition, and educational characteristics produce similar inversion probabilities to models that
assume that state shocks are completely independent, and it is therefore unlikely that smaller
tweaks will affect our main findings. Here we demonstrate this.

For the model plotted in Figure A10, we allow for race-linked shocks to multiply an X
vector that includes region indicators, % non-hispanic white, % non-hispanic black, % hispanic,
% college degree, and % high school completion in the state. This contrasts with M2, where X
includes only % non-white and % college degree. In the figure we overlay a plot of this more
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flexible model with M2. The two are statistically indistinguishable in terms of the conditional
probability of an inversion they imply (right panel).

E.5 Results for the Fourth and Fifth Party Systems (1916-1956)

Our main analysis samples do not include elections in the first half of the twentieth century,
which was characterized by landslide victories for both Democrats and Republicans. For
completeness, we estimate inversion probabilities for this time period here. We divide the
timeframe according to a standard typology of party systems. We analyze separately elections
in the Fourth Party System (1896–1932) and the Fifth Party System (1936–1956). For the Fifth
Party System, we do not include 1960, because doing so would add the complication that it
would be the only election in this span during which Alaska or Hawaii were states. We also
omit 1948, when Strom Thurmond received 39 electoral votes for the States’ Rights Democratic
Party. For the Fourth Party System, we begin in 1916 in order to generate a stable set of states
over the sample period, and we drop 1912 and 1924 because a third party won EC ballots in
each of these election years.

Figure A2 presents results for the x1 and x2 class of models over the Fourth and Fifth
Party System periods. These models apply the same structural assumptions and estimation
procedures used for M1 and M2 in the Modern period (see Figure A1). The characteristic
Win(NPV) curves are similar to other periods. Further, the ex ante probabilities of an inversion
in a close election are high in these models. An important difference between these results and
results from the Antebellum, post-Reconstruction, and Modern periods is that the probability of
a close election was much lower, making the unconditional probability of an inversion lower.
It is notable that the conditional inversion probabilities in Figure A2—the primary results of
interest—are very similar to the corresponding statistics for our main sample periods, even
though the other statistical properties of these times are so different.

F Counterfactuals that Account For Endogenous Behavior

In Section 5, we reference a modification to our statistical model that incorporates endogenous
responses to counterfactual EC aggregation rules. Here we describe the procedure in detail. The
counterfactual rule sets we consider are the same as in Figure 4—minus two ballots, awarding
ballots proportionally, or both changes simultaneously.

Our approach begins with identifying how the set of potentially pivotal states (i.e., “swing”
or “battleground” states) would change under the counterfactuals. Denote the probability that
state s is pivotal in an election with Q̂s, which we sometime refer to as “swingy-ness” below.
Whereas a state like CA has essentially no chance of being pivotal under the status quo and
present political alignment towards Democratic candidates, a counterfactual in which its 55
elector ballots are distributed in proportion to the state vote tally brings CA into play and opens
the possibility that an EC ballot from CA could be decisive in the election. Call the status-quo
swingy-ness of a state Q̂0

s , and call the corresponding quantity under the counterfactual Q̂CF
s .

After estimating Q̂CF
s for each state, we allow for the behavior of campaigns and voters to

influence the data-generating process—in a stylized manner precisely described below.
The approach is grounded in the idea that changes to campaign investment, voter attentive-

ness, and other political inputs influencing the election are likely to track the changes in the set
of potentially pivotal states. Beyond the consistency of this approach with the folk wisdom that
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only swing states matter in a presidential contest in terms of investments like campaign spending,
our focus on the changing electoral map aligns with the expert consensus. In economics for
example, the model in Strömberg (2008) shows that in equilibrium, campaign resources will
be spent (symmetrically by both parties) exactly in proportion to the probability that a state is
pivotal in swinging the election (Q̂s). Likewise, statisticians and political scientists have long
been focused on the empirical, state-specific probability that a vote cast is decisive in swinging
the election (e.g., Gelman, Katz and Tuerlinckx, 2002 and Gelman, Silver and Edlin, 2012). The
consensus view is that these probabilities are focal for campaigns assessing where to invest in
turning out or persuading voters.

Despite wide consensus around Q̂s as an object of interest, the literature is mixed on exactly
how a change in Q̂s could alter a race. Would an exogenous shock that increased Q̂s tighten the
race in the state? Or cause turnout to climb in the state? Or reduce election-day uncertainty
around the expectation, as parties lock in their voters and convert the undecided ahead of
election day? The literature offers no singular guidance.

We therefore model three plausible but substantively different types of endogenous re-
sponses as states gain or lose battleground status. Our intent is to span the range of plausible
endogenous responses with stylized mechanisms, without taking a position on the correct
behavioral model, which is unknown to social science. We assume, in turn, either that (i) the
margins will tighten in new battleground states, (ii) variances of potential voting outcomes
will shrink in new battleground states, or (iii) turnout will increase in new battleground states.
Each of these reduced-form adjustments makes no assumption about the exact mechanisms
underlying the net effects. For example, Enos and Fowler (2018) show that an aggregate effect
of large-scale campaigning in 2012 was to increase voter turnout by several percentage points
relative to the counterfactual in the most highly targeted states. Our turnout counterfactual
nests that phenomenon. But our reduced-form turnout adjustment would also nest the case in
which turnout effects were instead arising from the (correct) perception among voters in newly
minted battleground states that they have an increased potential to impact the election outcome.
We model the turnout change (for example), not the ultimate cause of it.

F.1 Methods

Separately, for each counterfactual rule set, we perform the following steps:

1. Determine Qs (Swingy-ness) Under Counterfactual Rules. We begin by using the main
simulation results to calculate a probability that each state would be pivotal under the
counterfactual EC rules. For each state, separately for each of the original 100,000 simu-
lation runs in Model M1, we re-assign 0.5% of statewide votes from the state winner to
the state loser. We calculate the fraction of simulated elections in which this reassignment
of votes would flip the EC outcome under the counterfactual EC aggregation rules being
considered. Even without changing the simulated voting outcomes, different EC rules will
produce different probabilities of each state being pivotal. For example, in the status quo,
a high Q̂0

s would require both that the simulated state outcome has the losing candidate
within 0.5% and that the national EC margin of victory is no larger than two times the
state’s EC ballots. But for other rule sets, including proportional allocation of a state’s EC
ballots, this is not the case. Call the normalized probability that a state is pivotal under

current rules Q0
s

(
=

Q̂0
s

∑51
j=1 Q̂0

j

)
and the analogous normalized probability that a state is
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pivotal under counterfactual rules QCF
s . For each state and each counterfactual CF, we

compute the ratio ΛCF
s ≡ QCF

s /Q0
s , which is greater than one if a state gains battleground

importance and less than one if it loses relative importance.

2. Adjust Data-Generating Process. We next introduce an endogenous response, altering
the state mean, variance, or turnout as a function of ΛCF

s calculated in step 1. In three
separate counterfactuals, we:

(a) Shrink the expected partisan alignment in proportion to ΛCF
s . This shifts expectations

toward 50/50 in states that become more swingy and away from 50/50 in states
that become safer, where the trailing party loses incentive to compete. In these
simulations, we adjust the log-odds ratio of a Republican victory at the state level by
setting a new state mean: αCF

s = α0
s · (ΛCF

s )−1, where α0 is the original estimate of the
log-odds of Republican victory in the state. The shifted αCF

s becomes the new constant
in the log-odds-transformed vote share process: Vs = αs + εs from Equation 1. Note
that (ΛCF

s )−1 is less than one when a state’s battleground importance increases under
counterfactual rules. For example, as California goes from being a safe state under the
status quo to having some of its elector ballots in play under the proportional rules,

the adjustment to α0
s will move the expectation of the log-odds ratio

(
ln
( Pr.(R)

Pr.(D)

))
closer to zero. In other words, it moves California closer to a 50/50 vote share.52

In this way, the race endogenously tightens in newly generated battlegrounds and
loosens in newly generated safe states, where (ΛCF

s )−1 is greater than one.
(b) Shrink the variance term in the state’s data-generating process in proportion to ΛCF

s .
This reduces uncertainty in the new battleground states and increases it in states
that become safer. In these simulations, we set σCF

s = σ0
s ·ΛCF

s . Recall that σ2
s is the

variance of the state uncertainty term.
(c) Inflate voter turnout in proportion to changes in Q̂CF

s . This increases turnout in
the new battleground states and reduces it in states that become safer. In these
simulations, we multiply the turnout that would otherwise occur in a state by(

1 + 0.1× Q̂CF
s −Q̂0

s
maxr(Q̂CF

r −Q̂0
r)

)
, where the denominator is the maximal difference across

states for a specified counterfactual set of rules, so that turnout increases by 10%
for the state with the greatest increase in swingy-ness and increases or decreases by
other amounts for other states, depending on their relative change in swingy-ness.

In each case above, we bottom-code Qs at the 33rd centile across the states prior to
calculating ΛCF

s . This is to avoid large ratios due to tiny probabilities in the denominator.
Intuitively, there is little practical difference in exactly how safe Kansas and Massachusetts
are in the Modern period, but noise in small values of Qs among extremely safe states
could explode the ratio ΛCF

s .

3. Rerun the Simulations Using the Adjusted DGP. Starting from the adjusted parameters
to the data-generating process, we generate 100,000 new simulation draws. From these
counterfactual-specific simulations, we calculate inversion rates under each counterfac-
tual rule set. This generates probabilistic voting outcomes that incorporate endogenous
responses to the changing electoral map.

52In the logit equation Vs = αs · (ΛCF
s )−1 + εs, and the Republican vote share is eVs /(1 + eVs ).
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As a check on our process, we first calculate the Q0
s probabilities (swingy-ness) assuming the

status quo EC rules, rather than a counterfactual. The validation check produces a familiar
list. In descending order of Q0

s , the pivotal states over the 1988–2016 period are FL, PA, OH,
MI, and VA. We then calculate analogous probabilities under each of the counterfactual rule
sets, QCF

s . We show these plotted against Q0
s in Figure A14. Panel A shows that removing two

elector ballots from each state changes little in the list of swing and safe states. For example,
PA gains in relative importance compared to OH, but the effect is small. In contrast, under the
proportional ballot counterfactual in Panel B, the relative importance of PA, OH, MI, and VA
fall, while CA, TX, and NY rise to join FL among the most important battleground states.53

Note that under the counterfactuals that include proportional allocation (Panels B and C), states’
probabilities of swinging the election are less differentiated. Everywhere becomes more in-play,
so the distribution of QCF

s (across the vertical axis) is tighter.
An important caveat here is that the exercise is most likely to be informative for counter-

factuals that are closest to the kinds of marginal changes to states’ battleground importance
that exist in the estimation sample. For example, removing the two electors tied to each state’s
Senators is a counterfactual similar in both kind and magnitude to the effects of decennial reap-
portionment. Consider the 1990 re-apportionment, which our Modern period spans. Following
re-apportionment, New York lost three EC ballots; Pennsylvania, Ohio, Illinois, and Michigan
each lost two ballots; New Jersey, Massachusetts, Louisiana, Kentucky, Iowa, Montana, Kansas
each lost one ballot; while California, Texas, and Florida each gained several EC ballots.54 In
contrast, proportional ballot allocation in place of a winner-takes-all rule at the state level is a
counterfactual that is far out of sample.

Further, we view these counterfactuals primarily as directionally informative. The ap-
propriate size of the adjustment—e.g., by just how much does turnout increase?—involves
parameters for which there exist no credible estimates to our knowledge. Therefore, while the
exercise potentially forms bounds by revealing whether accounting for endogeneity increases
or decreases the estimated probabilities of inversion in a counterfactual, we do not claim it to be
informative of the precise magnitudes of effects.

F.2 Results

With those caveats, we present results in Figure A15 and Table A9. Panel A repeats results from
Figure 4 for reference. In Panel A, there is no adjustment to the data-generating process for
possible endogenous responses. The simulations behind Panel B assume that the race tightens
in states that increase in battleground importance and loosens in states that become safer. To
put the magnitude of the changes this procedure generates in context, when considering the
counterfactual of proportional ballot allocation, states in the top quintile of movement towards
Republicans move an average of 6.7 percentage points in expectation. States in the top quintile
of movement towards Democrats move an average of 7.0 percentage points. Interestingly,
comparing Panel B to Panel A indicates that the effect of accounting for the endogenous

53A “battleground” state is conceptually different when EC ballots are awarded proportionally rather than as
winner-takes-all. Under proportional allocation, CA, TX, and NY gain in relative importance because swaying half a
percent of votes in these states (e.g., by campaigns appealing to state-specific concerns) corresponds to more voters.

54Likewise, inflating the size of the House of Representative to reduce the rounding errors inherent in allocating a
small number of US House Districts (today 435 with voting members) across states is similar in kind (though not
magnitude, depending on the particular inflation factor) to changes that have occurred in US history: The size of the
US House has grown through various Apportionment Acts of Congress.
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responses of voters and campaigns in this way is to amplify the resulting partisan imbalances
under the counterfactuals and to increase the probability of inversions under the counterfactuals.

The remaining panels in Figure A15 report the analogous results for the assumptions that
gaining battleground status reduces variance (Panel C) or increases turnout (Panel D). Again,
the simulated effects of the electoral map shifting are large. In the simulations behind Panel
D, the national composition of turnout across states shifts towards the most politically salient
states.

The impacts of endogenizing turnout and variance are less stark than the impacts of
endogenizing tightness. But it remains the case, as we show in Table A9, that each of these
endogenous-response counterfactuals either has almost no impact on the probability of an
inversion in a close race or increases it relative to the baseline assumption of no endogenous
response. On this basis, we conclude that the baseline decompositions in Figure 4, which
hold the statistical model fixed when calculating the impact of the policy changes, are likely to
represent a lower bound on inversion probabilities under the counterfactuals.
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Figure A1: Inversion Probabilities Across Models, Methodologies, and Time Periods

Modern: 1988-2016

post-Reconstruct.: 1872-88

Antebellum: 1836-1852

Vote Distribution < 1 p.p. < 2 p.p.
Model  Type Summary National PopularProbability of Inversion Margin Margin

Prob. Prob.

M1
M2
M3
M4
M5
M6
M7
M8
M9

M10
M11
M12

R1
R2
R3
R4
R5
R6

R10

A1
A2
A3
A4
A5
A6

P
P

NP
NP
P

NP
P
P
P
P

NP
P

P
P

NP
NP
P

NP
P

P
P

NP
NP
P

NP

GK 1994-like; natl shocks and indep. homosk. state shocks
Silver 2016-like; adds race, ed., region shocks to M1; fatter tails
Bootstrap; indep. draws from state-specific (heterosk.) history

M3, with increased prob. (50%) of sampling from same election
M1 without common natl shocks

Bootstrap; wild sampling of pooled (homosk.) state shocks
M1 adding race shocks
M1 adding educ shocks

M1 adding race & educ shocks
M1 dropping inversions (2000, 2016)
M3 dropping inversions (2000, 2016)

GK 1994-like; natl shocks and indep. homosk. state shocks
Silver 2016-like; adds region shocks to R1; fatter tails

Bootstrap; indep. draws from state-specific (heterosk.) history
R3, with increased prob. (50%) of sampling from same election

R1 without common natl shocks
Bootstrap; wild sampling of pooled (homosk.) state shocks

R1 dropping inversions (1876, 1888)

GK 1994-like; natl shocks and indep. homosk. state shocks
Silver 2016-like; adds region shocks to A1; fatter tails

Bootstrap; indep. draws from state-specific (heterosk.) history
A3, with increased prob. (50%) of sampling from same election

A1 without common natl shocks
Bootstrap; wild sampling of pooled (homosk.) state shocks

[Extended M1: 1964-2016]

0.13
0.11
0.22
0.17
0.23
0.23
0.12
0.13
0.12
0.12
0.20
0.07

0.11
0.10
0.20
0.41
0.22
0.21
0.08

0.13
0.12
0.31
0.17
0.32
0.33

0.26
0.21
0.45
0.33
0.47
0.47
0.23
0.26
0.25
0.24
0.39
0.14

0.21
0.19
0.48
0.66
0.42
0.43
0.17

0.27
0.24
0.56
0.37
0.58
0.61

0 0.2 0.4 0.6 0.8 1  0.4 0.5 0.6

any one election (unconditional)
close election, within 2 points

close election, within 1 point
at least one in voting lifetime

Hollow markers indicate that actual inversion years are omitted from estimation data.

Note: Figure reports summary statistics from 25 election models. Repeated numerals in model names indicate that the same specification is used
across time periods—as in M1, R1, A1. The popular vote distribution presents 5th, 25th, 50th, 75th, and 95th centiles of the simulated elections.
P/NP denotes parametric/non-parametric. Parametric models are estimated by maximum likelihood; non-parametric (i.e., “bootstrap”) models
resample past election outcomes for each state to generate a national outcome. P(mar. <1pp) and P(mar. <2pp) report the probability that the
popular vote margin is within 1 and 2 percentage points, respectively. “At least one in voting lifetime” indicates the probability of experiencing
an inversion for a voter who votes in 15 presidential elections over a 60-year voting lifetime and faces the unconditional distribution of voting
outcomes described by the model.
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Figure A2: Results for the Fourth and Fifth Party Systems: 1916–1956

(A) Fourth Party System
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(B) Fifth Party System
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(C) Summary and Comparison

Vote Distribution < 1 p.p. < 2 p.p.
Model  Type Summary National PopularProbability of Inversion Margin Margin

Prob. Prob.

5th-1
5th-2
4th-1
4th-2

M1
M2
R1
R2
A1
A2

P
P
P
P

P
P
P
P
P
P

GK 1994-like for 5th party system (1936-1956)
Silver 2016-like for 5th party system (1936-1956)
GK 1994-like for 4th party system (1916-1932)

Silver 2016-like for 4th party system (1916-1932)

GK 1994-like; natl shocks and indep. homosk. state shocks
Silver 2016-like; adds race, ed., region shocks to M1; fatter tails

GK 1994-like; natl shocks and indep. homosk. state shocks
Silver 2016-like; adds region shocks to R1; fatter tails

GK 1994-like; natl shocks and indep. homosk. state shocks
Silver 2016-like; adds region shocks to A1; fatter tails

0.04
0.04
0.04
0.03

0.13
0.11
0.11
0.10
0.13
0.12

0.08
0.07
0.07
0.07

0.26
0.21
0.21
0.19
0.27
0.24

0 0.2 0.4 0.6 0.8 1  0.4 0.5 0.6

any one election (unconditional)
close election, within 2 points

close election, within 1 point
at least one in voting lifetime

There are no hollow markers because there were no inversions in 1896-1956.

Note: Figure shows inversion probabilities and probability distributions over national popular vote outcomes implied by the parametric
estimates of the baseline x1 and x2 family of models estimated for sample periods in the first half of the twentieth century—the sand-colored
regions of the party system history described in Figure 1. Each model simulation consists of 100,000 simulated election draws. The Republican
share of the national popular vote runs along the horizontal axis in the top panels. See Figure 2 and Figure A1 for additional notes on Figure
elements. See Appendix E.5 for a full description of the exercise.
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Figure A3: Alternative Partisan Alignment Scenarios

(A) Prob. of Inv., Cond’l on Election Within 1 pp
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(B) Prob. of Republican EC Win
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(C) Prob. of Republican EC Win, Cond’l on Inversion
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Note: Figure shows the impacts on key statistics of simulating a range of potential changes to the partisan
alignment of states. Each point in each panel corresponds to a partisan shift relative to the M1 model
estimates for the indicated set of states. Moving left to right across the horizontal axis steps through 10 such
counterfactuals, where the partisan alignment of the indicated states is shifted in 2 percentage point increments
from a 10 point margin shift toward Republican to a 10 point margin shift toward the Democrat. Panel A
shows the impacts of these shifts on the conditional probability of an inversion in an election decided by within
one percentage point, π(.01). Panel B shows the impacts on the unconditional probability of a Republican EC
victory. Panel C shows the impacts on the probability of a Republican EC victory, conditional on an inversion
occurring. All corresponding estimates used to generate the figure are displayed in Tables A2, A4, and A3.

20



Appendix Geruso, Spears, Talesara: "Inversions"

Figure A4: Robustness: Iterating Over a Grid of Exogenously Set Parameters
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Note: Figure calculates inversion probabilities under a set of exogenously specified variances and correlations.
The error terms from the data-generating process in Equation 1 of the main text are assumed to follow
γt ∼ N(0, σγ) and φst ∼ N(0, σφ) as in the baseline models (M1, R1, A1). Specifically, these models implement
Eq (1) as a random national shock (with magnitude as indicated along the horizontal axes) plus a random state-
specific shock (at a standard deviation of 1, 5, 10, or 15 percentage points as indicated), plus (for the models
labelled with “correlation”) a random regionally correlated shock at a standard deviation of 5 percentage
points. Each panel plots the probability of an inversion conditional on a 1.55 percentage point popular vote
margin or less (which corresponds to 2 million popular votes at 2016 turnout). Note that these 288 models use
only state-specific means from past election data. The variances are exogenously specified as hyperparameters.
The second and third columns of plots expand on the decomposition described in Section 5: “Without +2
Senators” allocates each state a number of electors equal to its number of Representatives, without two electors
for Senators. “Proportional” divides the whole number of electors per state between parties.
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Figure A5: Robustness: Iterating Over a Grid of Exogenously Set Parameters (further detail)

(A) Modern: Prob.(< 2 pp margin)
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(B) Modern: Prob.( Inv. | < 2 pp margin)
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(C) Post-Reconstruction: Prob.(< 2 pp margin)
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(D) Post-Recon.: Prob.( Inv. | < 2 pp margin)
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(E) Antebellum: Prob.(< 2 pp margin)
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(F) Antebellum: Prob.( Inv. | < 2 pp margin)
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Note: Figure calculates inversion probabilities under a set of exogenously specified variances and correlations.
The error terms from the data-generating process in Equation 1 of the main text are assumed to follow
γt ∼ N(0, σγ) and φst ∼ N(0, σφ) as in the baseline models (M1, R1, A1). We cycle over a grid of values for σ2

γ

and σ2
φ, rather than relying on estimates. The variance of the national shock increases along the horizontal axis

in each panel. The variance of the state shocks are traced in several contour lines in each panel, as indicated.
In the panels on the left, we report the probability of close elections. In the panels on the right, we report
inversion probabilities, conditional on close elections within the same margins.
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Figure A6: Results Are Robust to Any Treatment of Third-Party Votes

(A) Probability of Republican EC Win at Each NPV Under Various Third-Party Treatments
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(B) NPV Distribution Under Various Third-Party Treatments
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Note: Figure demonstrates robustness of estimates to extreme treatments of third-party votes, plotting the
conditional win function for three models that treat third-party votes differently. The results here estimate
the M1 model after either assigning all third-party votes to the Democratic candidate or after assigning all
third-party votes to the Republican candidate. The original M1 model, which ignores third-party votes, is also
plotted for reference. As the vertical lines show, this counterfactual assignment makes a large difference to the
central tendency of the distribution of popular votes. However, it does not change the object of interest: the
conditional probability of winning the EC as a function of the popular vote outcome.
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Figure A7: Results Are Robust to Alternative Turnout Weights
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Note: Figure demonstrates robustness of estimates to various assumptions regarding turnout. In order to
convert state vote shares, Vst, into a national popular vote tally, it is necessary to scale Vst by voter turnout.
The figure replicates the conditional win function for the M1 model (modern period) eight times, in each case
assigning different turnout and EC apportionment when tallying the popular vote and EC ballots across states.
Lines in the overlay plot correspond to setting turnout and EC representation to 1988, 1992, 1996, 2000, 2004,
2008, 2012, and 2016. The box lists probabilities of an inversion in each model, conditional on an NPV victory
margin within one percentage point.
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Figure A8: Results Are Robust to Hybrid Models that Shift Means of Estimated Distri-
butions

(A) Conditional Win Rate Function Under Various Shifts to the Estimated Distribution
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(B) NPV Distribution Under Various Shifts to the Estimated Distribution
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Note: Figure demonstrates robustness of estimates to hybrid models that first estimate parameters for model
M1 and then mechanically shift each state mean left or right by a uniform percentage point margin. Lines in
the overlay plot correspond to setting the shift at: {−.8,−.6− .4,−.2, 0,+.2,+.4,+.6,+.8}. The distribution
of the national popular vote is displayed in panel A, and the conditional win function is shown in panel B.
The box lists probabilities of an inversion in each model, conditional on an NPV victory margin within one
percentage point.
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Figure A9: Robustness: The Conditional Probability of Inversion is Invariant to Model &
Parameter Uncertainty, Despite That Other Statistics Are Not (Same 109 Models as Figure 3)

(A) Within-Election Correlation: MI with
Other Swing States (Same 109 Models)
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(B) Within-Election Correlation: TX with
Other Large States (Same 109 Models)
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(C) Inversion Probabilities are Independent of the Cross-State Correlation Structure (Same 109 Models)
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Note: Figure shows additional statistics corresponding to the models displayed in Figure 3. See Table A5 for a
detailed listing of each model included. Radar plots in Panels A and B compare the within-year, across-state
correlations between Michigan and 11 other swing states and between Texas and 11 other large, non-swing
states. Panel C plots inversion rates against the across-state correlations in the voting outcomes for each
model. Each model generates 2,550 points in Panel C: 2 statistics per model times the 51 state lower triangular
correlation matrix (1275 correlations) for each model. Points in Panel C are jittered.
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Figure A10: Robustness to Alternative Parameterization of Race- and Education-Linked Shocks
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Note: Figure shows inversion probabilities and probability distributions over national popular vote outcomes
implied by the parametric estimates of model M2 compared to an alternate model that changes how state
characteristics are parameterized in the shock term. The alternate model allows for race-linked shocks to
multiply an X vector that includes region indicators, % non-hispanic white, % non-hispanic black, % hispanic,
% college degree, and % high school completion in the state. This contrasts with M2, where X includes only %
non-white and % college degree. Each model simulation consists of 100,000 simulated election draws. The M2
model is plotted in gray for reference behind the alternate model in blue. The histogram corresponds to the
alternate model. The Republican share of the national popular vote runs along the horizontal axis. The solid
blue line is the conditional probability of a Republican electoral win at each level of the national popular vote
share. The box lists probabilities of an inversion in each model, conditional on an NPV victory margin within
one percentage point. See Figure 2 and Appendix E.4 for additional notes.
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Figure A11: Asymmetry in the Post-Reconstruction and Modern Periods

(A) Post-Reconstruction Period
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(B) Modern Period
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(C) Post-Reconstruction Period, Minus 2 EC Ballots
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(D) Modern Period, Minus 2 EC Ballots
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Note: Figure shows the relationship between partisan alignment and EC representation of voters in the post-
Reconstruction and Modern eras. Each circle is a state, with size proportional to turnout. Voter turnout and EC
electors per state are based on averages over the indicated sample periods. The Republican share (horizontal
axes) is the state mean over the indicated period. OLS lines and 95% confidence intervals are displayed. The
vertical axes plot the number of citizen votes in a presidential election divided by the number of EC electors
apportioned to the state. In the post-Reconstruction period, Democratic alignment was correlated with EC
ballots being controlled by fewer citizen votes. See Appendix E.2 for additional detail.
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Figure A12: During the Post-Reconstruction Era, Turnout Was Depressed and EC Representa-
tion of White Voters Was Inflated Because Black Votes Were Suppressed

(A) Turnout per Population, All States
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(B) Turnout per Population, Former Confederate States
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(C) Turnout per EC Ballots, All States
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(D) Turnout per EC Ballots, Former Confederate States
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Note: Figure shows that turnout per population was strongly negatively correlated with the black share of the
state population in the post-Reconstruction period. States with larger black populations could control an EC
ballot with fewer citizen votes. Populations are calculated from the 1880 Census. Voter turnout and EC electors
per state are based on averages over the 1872–1888 period. In Panels A and B, the vertical axes plot turnout per
total population (white and black). In Panels C and D the vertical axes plot the number of citizen votes in a
presidential election divided by the number of EC electors apportioned to the state. Left panels include all
states; right panels include former Confederate states. OLS lines and 95% confidence intervals are displayed.
See Appendix E.2 for additional detail.
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Figure A13: Possible Sources of Inversion in the Electoral College

(A) Small States Disproportionately Represented
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(B) Margins of Victory Often Differ by Party in the
Largest States
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Note: Panel A plots, for the four largest and four smallest states by today’s population, the state’s apportion-
ment of EC electors divided by its population. Panel B plots the average vote margins over time by Democrat
and Republican candidates for the largest states.
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Figure A14: New Battlegrounds: Probability of Being Pivotal Under Various EC Counterfactu-
als

(A) Subtracting 2 EC Electors per State
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(B) Awarding EC Votes Proportionally
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(C) Awarding Proportionally and Subtracting 2
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Note: Figure plots the probability that a state is pivotal under status quo EC rules (Q̂0
s , horizontal axes) and

various counterfactual EC rules (Q̂CF
s , vertical axes). The counterfactuals considered are indicated in the panel

headings. To calculate Q̂CF
s , we re-assign 0.5% of statewide votes from the state winner to the state loser for

each of the original 100,000 simulation runs in Model M1. We then calculate the fraction of simulated elections
in which this reassignment of votes would flip the EC outcome. See Appendix F for additional detail.
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Figure A15: Counterfactuals that Allow for Endogenous Responses to a Changing Electoral
Map

(A) Assuming No Endogenous Response in Votes
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(B) Assuming Race Tightens in New Battlegrounds
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(C) Assuming Variance Shrinks in New Battlegrounds
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(D) Assuming Turnout Increases in New Battlegrounds
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Note: Figure shows how the counterfactuals for the M1 model in Panel A (repeated from Panel A of Figure
4) change under simulations that allow for endogenous response to the counterfactuals. We incorporate a
stylized, reduced-form representation of behavioral responses to the changing electoral map, as states move in
or out of “battleground” and “safe” status under the counterfactual EC aggregation rules. The panels show
results for different assumptions. In Panel B, we assume that margins will tighten in new battleground states.
In Panel C, we assume that variances of potential voting outcomes will shrink in new battleground states. In
Panel D, we assume that turnout will increase in new battleground states. See Appendix F for additional detail.
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Figure A16: Electoral Inversions Under Alternative Aggregation: Modern Period

Holding Coarseness Fixed at 538 Electors Relaxing Coarseness by Inflating EC ×100
(A) Model M1

0
.2

5
.5

.7
5

1
Pr

.(I
nv

er
si

on
)

.48 .49 .5 .51 .52
Republican Vote Share

status quo EC rules without +2 Senators

award ECVs proportionally without +2 &
award proportionally

(B) Model M1
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(C) Model M2
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(D) Model M2
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Note: Figure illustrates inversions under alternative EC aggregation rules that translate citizen votes into
a presidential winner. The alternative that removes the two Senator-derived EC electors assigns each state
electors equal in number to the size of the state’s US House delegation. The alternative that removes the
winner-takes-all condition awards state EC votes (ECVs) according to each candidate’s popular vote share in
the state, up to a rounding error. The left panels holds the congressional apportionment fixed at 435 House
members and 2 Senators per state. The right panel inflates the congressional delegation size by 100 times to
examine the impact of relaxing the rounding error (“coarseness”) constraint. In these, each state receives 200
electors corresponding to Senators and these 200 are removed in the “without Senators” alternatives.
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Figure A17: Electoral Inversions Under Alternative Aggregation: Post-Reconstruction Period

Holding Coarseness (# of Electors) Fixed Relaxing Coarseness by Inflating EC ×100
(A) Model R1
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Note: Figure illustrates inversions under alternative EC aggregation rules that translate citizen votes into
a presidential winner. The alternative that removes the two Senator-derived EC electors assigns each state
electors equal in number to the size of the state’s US House delegation. The alternative that removes the
winner-takes-all condition awards state EC votes (ECVs) according to each candidate’s popular vote share in
the state, up to a rounding error. The left panels holds the congressional apportionment fixed at 435 House
members and 2 Senators per state. The right panel inflates the congressional delegation size by 100 times to
examine the impact of relaxing the rounding error (“coarseness”) constraint. In these, each state receives 200
electors corresponding to Senators and these 200 are removed in the “without Senators” alternatives.
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Figure A18: Electoral Inversions Under Alternative Aggregation: Antebellum Period

Holding Coarseness (# of Electors) Fixed Relaxing Coarseness by Inflating EC ×100
(A) Model A1
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Note: Figure illustrates inversions under alternative EC aggregation rules that translate citizen votes into
a presidential winner. The alternative that removes the two Senator-derived EC electors assigns each state
electors equal in number to the size of the state’s US House delegation. The alternative that removes the
winner-takes-all condition awards state EC votes (ECVs) according to each candidate’s popular vote share in
the state, up to a rounding error. The left panels holds the congressional apportionment fixed at 435 House
members and 2 Senators per state. The right panel inflates the congressional delegation size by 100 times to
examine the impact of relaxing the rounding error (“coarseness”) constraint. In these, each state receives 200
electors corresponding to Senators and these 200 are removed in the “without Senators” alternatives.
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Table A1: ML Parameter Estimates for Variance Terms

State and 
National 
Shocks

State, 
National, 
& Other 
Shocks

State 
Shocks 

Only

State, 
National, 
& Other 
Shocks

State, 
National, 
& Other 
Shocks

State, 
National, 
& Other 
Shocks

Omitting 
Inversion
s 2000 & 

2016

Extended 
M1: 1964-

2016

State and 
National 
Shocks

State, 
National, 
& Other 
Shocks

State 
Shocks 

Only

Omitting 
Inversion
s 1876 & 

1888

State and 
National 
Shocks

State, 
National, 
& Other 
Shocks

State 
Shocks 

Only
M1 M2 M5 M7 M8 M9 M10 M12 R1 R2 R5 R10 A1 A2 A5
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

σ y 0.012 0.014 0.015 0.012 0.013 0.014 0.053 0.021 0.016 0.026 0.013 0.011
σ s 0.027 0.013 0.039 0.022 0.018 0.016 0.022 0.051 0.041 0.038 0.062 0.038 0.020 0.018 0.032
Other shocks

region 0.005 0.004 0.002
race 0.198 0.240 0.129
education 1.396 2.208 1.737

# of α s 

estimates 
(states) 51 51 51 51 51 51 51 51 37 37 37 37 25 25 25

Modern Period: 1988-2016 post-Reconstruction: 1872-1888 Antebellum: 1836-1852 

(estimation omits CO) (omits CA, FL, IA, TX, WI)

Note: Table reports maximum likelihood estimates of the parameters in Equation (1) of the main text under various model specifications, as indicated
in the column headers. Model estimates in the table are grouped by period. Either 25 (because we only use states that were present throughout the
Antebellum period for estimating variances), 37, or 51 expected state vote share parameters, αs, are also estimated by joint maximum likelihood but not
reported here. Depending on the data period, some states were not present for all election years within the sample frame or did not use a statewide
citizen vote to determine EC votes. These, including Colorado in the post-Reconstruction frame, are simply assigned their mean for αs and do not
contribute to estimating variance parameters.
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Table A2: Stability: Probability of Inversion in Races Decided by <1pp Margin (π(.01)), After
Imposing Alignment Shifts

Set of shifted states Shift to More Democratic-Leaning Shift to More Republican-Leaning
-10 -8 -6 -4 -2 Baseline 2 4 6 8 10

All swing states 0.40 0.41 0.40 0.41 0.41 0.42 0.43 0.44 0.44 0.45 0.46
All non-swing states 0.54 0.50 0.49 0.47 0.43 0.42 0.41 0.40 0.42 0.44 0.45
Other large states 0.48 0.48 0.46 0.44 0.43 0.42 0.41 0.40 0.41 0.42 0.41
States won by Trump 2016 0.40 0.41 0.39 0.41 0.42 0.42 0.43 0.42 0.43 0.43 0.44
States won by Clinton 2016 0.49 0.46 0.46 0.44 0.43 0.42 0.41 0.41 0.39 0.39 0.39
Swing states won by Trump 2016 0.41 0.40 0.40 0.41 0.41 0.42 0.43 0.43 0.44 0.44 0.44
Swing states won by Clinton 2016 0.41 0.41 0.41 0.42 0.42 0.42 0.43 0.43 0.43 0.43 0.44
Swing county fraction 0.42 0.43 0.42 0.43 0.42 0.42 0.42 0.42 0.41 0.41 0.41
Swing states (individually)

Colorado 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.43 0.42 0.42 0.43
Florida 0.41 0.41 0.42 0.42 0.42 0.42 0.42 0.43 0.43 0.43 0.43
Iowa 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.43 0.43
Michigan 0.43 0.43 0.42 0.42 0.42 0.42 0.43 0.43 0.42 0.43 0.43
Minnesota 0.43 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.43
Nevada 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.43 0.43 0.43 0.43
New Hampshire 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.43 0.43 0.43 0.43
North Carolina 0.41 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.42
Ohio 0.41 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.43 0.43 0.43
Pennsylvania 0.42 0.42 0.43 0.42 0.42 0.42 0.42 0.42 0.43 0.43 0.43
Virginia 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42
Wisconsin 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.43

Other large states (individually)
California 0.45 0.44 0.44 0.43 0.43 0.42 0.42 0.42 0.41 0.41 0.41
Texas 0.42 0.42 0.42 0.43 0.42 0.42 0.42 0.42 0.42 0.41 0.41
New York 0.44 0.44 0.43 0.43 0.43 0.42 0.42 0.42 0.42 0.41 0.41
Illinois 0.43 0.43 0.43 0.42 0.43 0.42 0.42 0.42 0.42 0.42 0.42
Georgia 0.42 0.42 0.42 0.42 0.43 0.42 0.42 0.42 0.42 0.42 0.42

Cells Report 𝝿(.01): Probability of Inversion in Elections Decided by Within 1 Point
Assumed Shift, in Vote Margin Points

Note: Rows specify the sets of states that is shifted for the exercise. Column headers indicate the size of the imposed
shift in the states’ vote share distribution. For example, row 1 shifts the state-specific sampling distribution for
all swing states left (Democratic) or right (Republican). The shift spans −10 points to +10 points in two-point
increments. Other rows repeat the exercise for all non-swing states, other large states, states won by Trump in 2016,
states won by Clinton in 2016, etc., as indicated. Swing county fraction, from (Cullen, Turner and Washington, 2018),
is the fraction of counties in a state that changed presidential party in elections from 1988 to 2008. (Alaska, which
Cullen, Turner and Washington, 2018 omit, is assigned the national median.) This fraction multiplies the indicated
shift, so that a state made up entirely of swing counties receives the full shift, and a state with no swing counties
receives no shift. Each permutation cell in the tables represents 100,000 simulation draws.
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Table A3: Stability: Probability of Republican EC Win, After Imposing Alignment Shifts

Set of shifted states Shift to More Democratic-Leaning Shift to More Republican-Leaning
-10 -8 -6 -4 -2 Baseline 2 4 6 8 10

All swing states 0.12 0.16 0.21 0.28 0.34 0.42 0.50 0.58 0.65 0.71 0.77
All non-swing states 0.17 0.22 0.27 0.32 0.37 0.42 0.47 0.53 0.58 0.63 0.69
Other large states 0.33 0.35 0.37 0.39 0.41 0.42 0.44 0.45 0.47 0.50 0.52
States won by Trump 2016 0.10 0.15 0.20 0.26 0.34 0.42 0.51 0.60 0.68 0.76 0.83
States won by Clinton 2016 0.25 0.28 0.31 0.34 0.38 0.42 0.47 0.51 0.56 0.61 0.66
Swing states won by Trump 2016 0.18 0.22 0.26 0.31 0.36 0.42 0.48 0.54 0.59 0.64 0.68
Swing states won by Clinton 2016 0.33 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.51
Swing county fraction 0.15 0.19 0.24 0.30 0.36 0.42 0.49 0.56 0.62 0.68 0.74
Swing states (individually)

Colorado 0.40 0.40 0.41 0.41 0.42 0.42 0.43 0.43 0.43 0.44 0.44
Florida 0.34 0.35 0.37 0.39 0.40 0.42 0.43 0.45 0.46 0.46 0.47
Iowa 0.41 0.41 0.41 0.41 0.42 0.42 0.42 0.43 0.43 0.43 0.44
Michigan 0.40 0.40 0.40 0.41 0.41 0.42 0.43 0.44 0.45 0.46 0.46
Minnesota 0.41 0.41 0.41 0.41 0.42 0.42 0.42 0.43 0.43 0.44 0.45
Nevada 0.41 0.41 0.41 0.41 0.42 0.42 0.42 0.43 0.43 0.43 0.43
New Hampshire 0.41 0.41 0.41 0.42 0.42 0.42 0.42 0.42 0.43 0.43 0.43
North Carolina 0.38 0.39 0.40 0.41 0.41 0.42 0.43 0.43 0.43 0.43 0.43
Ohio 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.45 0.46
Pennsylvania 0.39 0.39 0.40 0.40 0.41 0.42 0.43 0.44 0.45 0.47 0.48
Virginia 0.39 0.39 0.40 0.41 0.41 0.42 0.43 0.43 0.43 0.44 0.44
Wisconsin 0.40 0.41 0.41 0.41 0.42 0.42 0.43 0.43 0.44 0.44 0.45

Other large states (individually)
California 0.41 0.41 0.42 0.42 0.42 0.42 0.43 0.43 0.44 0.46 0.47
Texas 0.37 0.39 0.40 0.41 0.42 0.42 0.42 0.42 0.43 0.43 0.43
New York 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.43
Illinois 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.43 0.44 0.45
Georgia 0.38 0.39 0.40 0.41 0.42 0.42 0.42 0.43 0.43 0.43 0.43

Assumed Shift, in Vote Margin Points

Cells Report Unconditional Probability of Republican EC Victory

Note: Rows specify the sets of states that is shifted for the exercise. Column headers indicate the size of the imposed
shift in the states’ vote share distribution. For example, row 1 shifts the state-specific sampling distribution for
all swing states left (Democratic) or right (Republican). The shift spans −10 points to +10 points in two-point
increments. Other rows repeat the exercise for all non-swing states, other large states, states won by Trump in 2016,
states won by Clinton in 2016, etc., as indicated. Swing county fraction, from (Cullen, Turner and Washington, 2018),
is the fraction of counties in a state that changed presidential party in elections from 1988 to 2008. (Alaska, which
Cullen, Turner and Washington, 2018 omit, is assigned the national median.) This fraction multiplies the indicated
shift, so that a state made up entirely of swing counties receives the full shift, and a state with no swing counties
receives no shift. Each permutation cell in the tables represents 100,000 simulation draws.
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Table A4: Stability: Probability of Republican EC Win Conditional on Inversion Occurring,
After Imposing Alignment Shifts

Set of shifted states Shift to More Democratic-Leaning Shift to More Republican-Leaning
-10 -8 -6 -4 -2 Baseline 2 4 6 8 10

All swing states 0.25 0.32 0.41 0.53 0.66 0.77 0.85 0.91 0.93 0.95 0.97
All non-swing states 0.99 0.98 0.96 0.93 0.87 0.77 0.61 0.43 0.27 0.16 0.10
Other large states 0.96 0.95 0.93 0.89 0.84 0.77 0.67 0.57 0.47 0.38 0.33
States won by Trump 2016 0.76 0.76 0.75 0.74 0.75 0.77 0.79 0.80 0.82 0.84 0.84
States won by Clinton 2016 0.95 0.92 0.89 0.85 0.81 0.77 0.72 0.67 0.61 0.57 0.53
Swing states won by Trump 2016 0.39 0.45 0.52 0.61 0.69 0.77 0.83 0.88 0.91 0.92 0.93
Swing states won by Clinton 2016 0.63 0.65 0.68 0.71 0.73 0.77 0.79 0.81 0.83 0.83 0.84
Swing county fraction 0.80 0.79 0.78 0.78 0.77 0.77 0.77 0.76 0.75 0.75 0.74
Swing states (individually)

Colorado 0.74 0.74 0.75 0.75 0.76 0.77 0.77 0.78 0.78 0.78 0.78
Florida 0.63 0.66 0.69 0.72 0.74 0.77 0.78 0.78 0.78 0.78 0.76
Iowa 0.76 0.76 0.76 0.76 0.76 0.77 0.77 0.78 0.78 0.79 0.79
Michigan 0.77 0.76 0.76 0.76 0.76 0.77 0.78 0.79 0.80 0.81 0.82
Minnesota 0.78 0.77 0.77 0.76 0.76 0.77 0.77 0.78 0.79 0.79 0.80
Nevada 0.74 0.74 0.74 0.75 0.76 0.77 0.77 0.78 0.78 0.78 0.79
New Hampshire 0.75 0.75 0.75 0.76 0.76 0.77 0.77 0.77 0.78 0.78 0.78
North Carolina 0.72 0.74 0.75 0.76 0.76 0.77 0.76 0.76 0.75 0.74 0.72
Ohio 0.70 0.71 0.72 0.73 0.75 0.77 0.78 0.79 0.79 0.79 0.79
Pennsylvania 0.76 0.75 0.74 0.75 0.75 0.77 0.78 0.80 0.81 0.83 0.84
Virginia 0.72 0.73 0.74 0.75 0.76 0.77 0.77 0.77 0.77 0.76 0.76
Wisconsin 0.76 0.76 0.76 0.76 0.76 0.77 0.77 0.78 0.79 0.80 0.80

Other large states (individually)
California 0.91 0.89 0.86 0.83 0.80 0.77 0.74 0.71 0.69 0.69 0.70
Texas 0.76 0.79 0.79 0.79 0.78 0.77 0.74 0.72 0.69 0.65 0.62
New York 0.87 0.85 0.83 0.81 0.79 0.77 0.74 0.72 0.70 0.68 0.66
Illinois 0.83 0.82 0.80 0.79 0.78 0.77 0.76 0.76 0.76 0.76 0.77
Georgia 0.72 0.74 0.75 0.76 0.76 0.77 0.76 0.76 0.75 0.74 0.73

Assumed Shift, in Vote Margin Points

Cells Report Probability of Republican EC Victory, Conditional on Inversion Occurring

Note: Rows specify the sets of states that is shifted for the exercise. Column headers indicate the size of the imposed
shift in the states’ vote share distribution. For example, row 1 shifts the state-specific sampling distribution for
all swing states left (Democratic) or right (Republican). The shift spans −10 points to +10 points in two-point
increments. Other rows repeat the exercise for all non-swing states, other large states, states won by Trump in 2016,
states won by Clinton in 2016, etc., as indicated. Swing county fraction, from (Cullen, Turner and Washington, 2018),
is the fraction of counties in a state that changed presidential party in elections from 1988 to 2008. (Alaska, which
Cullen, Turner and Washington, 2018 omit, is assigned the national median.) This fraction multiplies the indicated
shift, so that a state made up entirely of swing counties receives the full shift, and a state with no swing counties
receives no shift. Each permutation cell in the tables represents 100,000 simulation draws.
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Table A5: Model List for Figure 3

Model 
Index

Parametric/ 
Bootstrap?

Empirical/ 
Hyperparam./ 

Hybrid Description
1 Parametric Empirical M1 (see paper)
2 Parametric Empirical M2 (see paper)
3 Bootstrap Empirical M3 (see paper)
4 Bootstrap Empirical M4 (see paper)
5 Parametric Empirical M5 (see paper)
6 Bootstrap Empirical M6 (see paper)
7 Parametric Empirical M7 (see paper)
8 Parametric Empirical M8 (see paper)
9 Parametric Empirical M9 (see paper)

10 Parametric Empirical M10 (see paper)
11 Bootstrap Empirical M11 (see paper)
12 Parametric Empirical M12 (see paper)
13 Parametric Empirical M1-like; sets state turnout and EC allocations according to 1988
14 Parametric Empirical M1-like; sets state turnout and EC allocations according to 1992
15 Parametric Empirical M1-like; sets state turnout and EC allocations according to 1996
16 Parametric Empirical M1-like; sets state turnout and EC allocations according to 2000
17 Parametric Empirical M1-like; sets state turnout and EC allocations according to 2004
18 Parametric Empirical M1-like; sets state turnout and EC allocations according to 2008
19 Parametric Empirical M1-like; sets state turnout and EC allocations according to 2012
20 Parametric Empirical M1-like; assigns all third party votes to Republicans before estimation
21 Parametric Empirical M1-like; assigns all third party votes to Democrats before estimation
22 Bootstrap Empirical M3-like; for all states, place additional weight (15%) on bootstrap draws from same year
23 Bootstrap Empirical M3-like; for all states, place additional weight (20%) on bootstrap draws from same year
24 Bootstrap Empirical M3-like; for all states, place additional weight (25%) on bootstrap draws from same year
25 Bootstrap Empirical M3-like; for all states, place additional weight (30%) on bootstrap draws from same year
26 Bootstrap Empirical M3-like; for all states, place additional weight (35%) on bootstrap draws from same year
27 Bootstrap Empirical M3-like; for all states, place additional weight (40%) on bootstrap draws from same year
28 Bootstrap Empirical M3-like; for all states, place additional weight (45%) on bootstrap draws from same year
29 Bootstrap Empirical M3-like; for all states, place additional weight (50%) on bootstrap draws from same year
30 Bootstrap Empirical M3-like; for swing  states only, place additional weight (15%) on bootstrap draws from same year
31 Bootstrap Empirical M3-like; for swing  states only, place additional weight (20%) on bootstrap draws from same year
32 Bootstrap Empirical M3-like; for swing  states only, place additional weight (25%) on bootstrap draws from same year
33 Bootstrap Empirical M3-like; for swing  states only, place additional weight (30%) on bootstrap draws from same year
34 Bootstrap Empirical M3-like; for swing  states only, place additional weight (35%) on bootstrap draws from same year
35 Bootstrap Empirical M3-like; for swing  states only, place additional weight (40%) on bootstrap draws from same year
36 Bootstrap Empirical M3-like; for swing  states only, place additional weight (45%) on bootstrap draws from same year
37 Bootstrap Empirical M3-like; for swing  states only, place additional weight (50%) on bootstrap draws from same year
38 Bootstrap Empirical M3-like; for safe  states only, place additional weight (15%) on bootstrap draws from same year
39 Bootstrap Empirical M3-like; for safe  states only, place additional weight (20%) on bootstrap draws from same year
40 Bootstrap Empirical M3-like; for safe  states only, place additional weight (25%) on bootstrap draws from same year
41 Bootstrap Empirical M3-like; for safe  states only, place additional weight (30%) on bootstrap draws from same year
42 Bootstrap Empirical M3-like; for safe  states only, place additional weight (35%) on bootstrap draws from same year
43 Bootstrap Empirical M3-like; for safe  states only, place additional weight (40%) on bootstrap draws from same year
44 Bootstrap Empirical M3-like; for safe  states only, place additional weight (45%) on bootstrap draws from same year
45 Bootstrap Empirical M3-like; for safe  states only, place additional weight (50%) on bootstrap draws from same year
46 Parametric Empirical M1-like, but using t  distribution with 7 d.o.f. instead of normal distribution for shocks
47 Parametric Empirical M1-like, but with state-specific coefficients multiplying the national component of the shock
48 Parametric Hybrid Shifts all state means in M1 left by 0.2 NPV percentage points post estimation
49 Parametric Hybrid Shifts all state means in M1 left by 0.4 NPV percentage points post estimation
50 Parametric Hybrid Shifts all state means in M1 left by 0.6 NPV percentage points post estimation

Note: Table continues on next page.
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Table A6: Model List for Figure 3 (Cont.)

51 Parametric Hybrid Shifts all state means in M1 left by 0.8 NPV percentage points post estimation
52 Parametric Hybrid Shifts all state means in M1 right by 0.2 NPV percentage points post estimation
53 Parametric Hybrid Shifts all state means in M1 right by 0.4 NPV percentage points post estimation
54 Parametric Hybrid Shifts all state means in M1 right by 0.6 NPV percentage points post estimation
55 Parametric Hybrid Shifts all state means in M1 right by 0.8 NPV percentage points post estimation
56 Parametric Hybrid Shifts all state means in M3 left by 0.2 NPV percentage points post estimation
57 Parametric Hybrid Shifts all state means in M3 left by 0.4 NPV percentage points post estimation
58 Parametric Hybrid Shifts all state means in M3 left by 0.6 NPV percentage points post estimation
59 Parametric Hybrid Shifts all state means in M3 left by 0.8 NPV percentage points post estimation
60 Parametric Hybrid Shifts all state means in M3 right by 0.2 NPV percentage points post estimation
61 Parametric Hybrid Shifts all state means in M3 right by 0.4 NPV percentage points post estimation
62 Parametric Hybrid Shifts all state means in M3 right by 0.6 NPV percentage points post estimation
63 Parametric Hybrid Shifts all state means in M3 right by 0.8 NPV percentage points post estimation
64 Parametric Hyperpar. Common national shock SD set to 0.5 pp; state shock SD set to 3.0 pp; no region shock
65 Parametric Hyperpar. Common national shock SD set to 1.0 pp; state shock SD set to 3.0 pp; no region shock
66 Parametric Hyperpar. Common national shock SD set to 1.5 pp; state shock SD set to 3.0 pp; no region shock
67 Parametric Hyperpar. Common national shock SD set to 2.0 pp; state shock SD set to 3.0 pp; no region shock
68 Parametric Hyperpar. Common national shock SD set to 2.5 pp; state shock SD set to 3.0 pp; no region shock
69 Parametric Hyperpar. Common national shock SD set to 3.0 pp; state shock SD set to 3.0 pp; no region shock
70 Parametric Hyperpar. Common national shock SD set to 3.5 pp; state shock SD set to 3.0 pp; no region shock
71 Parametric Hyperpar. Common national shock SD set to 4.0 pp; state shock SD set to 3.0 pp; no region shock
72 Parametric Hyperpar. Common national shock SD set to 4.5 pp; state shock SD set to 3.0 pp; no region shock
73 Parametric Hyperpar. Common national shock SD set to 0.5 pp; state shock SD set to 4.0 pp; no region shock
74 Parametric Hyperpar. Common national shock SD set to 1.0 pp; state shock SD set to 4.0 pp; no region shock
75 Parametric Hyperpar. Common national shock SD set to 1.5 pp; state shock SD set to 4.0 pp; no region shock
76 Parametric Hyperpar. Common national shock SD set to 2.0 pp; state shock SD set to 4.0 pp; no region shock
77 Parametric Hyperpar. Common national shock SD set to 2.5 pp; state shock SD set to 4.0 pp; no region shock
78 Parametric Hyperpar. Common national shock SD set to 3.0 pp; state shock SD set to 4.0 pp; no region shock
79 Parametric Hyperpar. Common national shock SD set to 3.5 pp; state shock SD set to 4.0 pp; no region shock
80 Parametric Hyperpar. Common national shock SD set to 4.0 pp; state shock SD set to 4.0 pp; no region shock
81 Parametric Hyperpar. Common national shock SD set to 4.5 pp; state shock SD set to 4.0 pp; no region shock
82 Parametric Hyperpar. National  SD = 2.1 pp; state SD = 3.0 pp; region shock set to match M1 in overall NPV dispersion
83 Parametric Hyperpar. National  SD = 2.1 pp; state SD = 4.0 pp; region shock set to match M1 in overall NPV dispersion
84 Parametric Hyperpar. National  SD = 2.1 pp; state SD = 5.0 pp; region shock set to match M1 in overall NPV dispersion
85 Parametric Hyperpar. National  SD = 2.2 pp; state SD = 3.0 pp; region shock set to match M1 in overall NPV dispersion
86 Parametric Hyperpar. National  SD = 2.2 pp; state SD = 4.0 pp; region shock set to match M1 in overall NPV dispersion
87 Parametric Hyperpar. National  SD = 2.2 pp; state SD = 5.0 pp; region shock set to match M1 in overall NPV dispersion
88 Parametric Hyperpar. National  SD = 2.3 pp; state SD = 3.0 pp; region shock set to match M1 in overall NPV dispersion
89 Parametric Hyperpar. National  SD = 2.3 pp; state SD = 4.0 pp; region shock set to match M1 in overall NPV dispersion
90 Parametric Hyperpar. National  SD = 2.3 pp; state SD = 5.0 pp; region shock set to match M1 in overall NPV dispersion
91 Parametric Hyperpar. National  SD = 2.4 pp; state SD = 3.0 pp; region shock set to match M1 in overall NPV dispersion
92 Parametric Hyperpar. National  SD = 2.4 pp; state SD = 4.0 pp; region shock set to match M1 in overall NPV dispersion
93 Parametric Hyperpar. National  SD = 2.4 pp; state SD = 5.0 pp; region shock set to match M1 in overall NPV dispersion
94 Parametric Hyperpar. National  SD = 2.6 pp; state SD = 3.0 pp; region shock set to match M1 in overall NPV dispersion
95 Parametric Hyperpar. National  SD = 2.6 pp; state SD = 4.0 pp; region shock set to match M1 in overall NPV dispersion
96 Parametric Hyperpar. National  SD = 2.6 pp; state SD = 5.0 pp; region shock set to match M1 in overall NPV dispersion
97 Parametric Hyperpar. National  SD = 2.8 pp; state SD = 3.0 pp; region shock set to match M1 in overall NPV dispersion
98 Parametric Hyperpar. National  SD = 2.8 pp; state SD = 4.0 pp; region shock set to match M1 in overall NPV dispersion
99 Parametric Hyperpar. National  SD = 2.8 pp; state SD = 5.0 pp; region shock set to match M1 in overall NPV dispersion

100 Parametric Hyperpar. National  SD = 2.1 pp; state SD = 4.0 pp; region shock set to match M1 NPV dispersion; all draws t
101 Parametric Hyperpar. National  SD = 2.2 pp; state SD = 4.0 pp; region shock set to match M1 NPV dispersion; all draws t
102 Parametric Hyperpar. National  SD = 2.3 pp; state SD = 4.0 pp; region shock set to match M1 NPV dispersion; all draws t
103 Parametric Hyperpar. National  SD = 2.4 pp; state SD = 4.0 pp; region shock set to match M1 NPV dispersion; all draws t
104 Parametric Hyperpar. National  SD = 2.5 pp; state SD = 4.0 pp; region shock set to match M1 NPV dispersion; all draws t
105 Parametric Hyperpar. National  SD = 2.6 pp; state SD = 4.0 pp; region shock set to match M1 NPV dispersion; all draws t
106 Parametric Hyperpar. National  SD = 2.7 pp; state SD = 4.0 pp; region shock set to match M1 NPV dispersion; all draws t
107 Parametric Hyperpar. National  SD = 2.8 pp; state SD = 4.0 pp; region shock set to match M1 NPV dispersion; all draws t
108 Parametric Hyperpar. National  SD = 2.9 pp; state SD = 4.0 pp; region shock set to match M1 NPV dispersion; all draws t
109 Parametric Hyperpar. National  SD = 3.0 pp; state SD = 4.0 pp; region shock set to match M1 NPV dispersion; all draws t

Note: Table lists details for each of the variants on the models included in Figure 3.
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Table A7: Asymmetry: Probability that an Observed EC Win Was Caused by an Inversion

Model <0.5pp <1pp <2pp <3pp <4pp Model <0.5pp <1pp <2pp <3pp <4pp

M1 0.47 0.45 0.41 0.36 0.32 0.22 M1 0.43 0.37 0.25 0.18 0.13 0.05
M2 0.47 0.44 0.40 0.36 0.32 0.18 M2 0.44 0.37 0.26 0.18 0.13 0.04
M3 0.54 0.59 0.66 0.70 0.71 0.72 M3 0.32 0.21 0.08 0.05 0.03 0.03
M4 0.52 0.52 0.52 0.53 0.52 0.45 M4 0.43 0.36 0.23 0.15 0.09 0.05
M5 0.52 0.56 0.62 0.65 0.67 0.68 M5 0.38 0.28 0.15 0.09 0.07 0.06
M6 0.55 0.57 0.63 0.66 0.68 0.68 M6 0.38 0.27 0.14 0.09 0.07 0.05
M7 0.49 0.45 0.40 0.36 0.32 0.19 M7 0.42 0.35 0.25 0.17 0.13 0.04
M8 0.46 0.45 0.40 0.36 0.32 0.23 M8 0.43 0.35 0.24 0.17 0.12 0.05
M9 0.48 0.46 0.41 0.36 0.32 0.21 M9 0.43 0.35 0.24 0.17 0.12 0.04

M10 0.45 0.43 0.37 0.32 0.28 0.18 M10 0.43 0.36 0.26 0.18 0.14 0.05
M11 0.51 0.53 0.54 0.54 0.54 0.53 M11 0.39 0.30 0.17 0.10 0.07 0.05
M12 0.47 0.42 0.35 0.28 0.23 0.06 M12 0.45 0.40 0.31 0.24 0.19 0.05

R1 0.44 0.38 0.27 0.19 0.14 0.04 R1 0.47 0.45 0.41 0.37 0.33 0.20
R2 0.45 0.39 0.30 0.22 0.17 0.05 R2 0.49 0.46 0.42 0.38 0.35 0.20
R3 0.33 0.19 0.08 0.05 0.04 0.04 R3 0.60 0.67 0.77 0.82 0.83 0.83
R4 0.42 0.35 0.25 0.22 0.21 0.16 R4 0.54 0.56 0.59 0.60 0.61 0.61
R5 0.40 0.31 0.18 0.11 0.08 0.05 R5 0.51 0.52 0.54 0.55 0.56 0.56
R6 0.39 0.31 0.18 0.12 0.10 0.07 R6 0.53 0.55 0.59 0.60 0.61 0.60

R10 0.42 0.34 0.22 0.15 0.10 0.02 R10 0.47 0.46 0.43 0.40 0.37 0.23

A1 0.45 0.39 0.30 0.24 0.19 0.10 A1 0.45 0.39 0.30 0.23 0.18 0.09
A2 0.44 0.40 0.33 0.26 0.22 0.10 A2 0.45 0.40 0.31 0.25 0.20 0.09
A3 0.48 0.46 0.42 0.41 0.38 0.25 A3 0.39 0.29 0.18 0.15 0.17 0.20
A4 0.45 0.41 0.32 0.23 0.18 0.11 A4 0.39 0.30 0.19 0.15 0.15 0.16
A5 0.46 0.42 0.35 0.31 0.28 0.26 A5 0.44 0.39 0.30 0.25 0.22 0.19
A6 0.46 0.42 0.35 0.30 0.28 0.26 A6 0.44 0.39 0.31 0.26 0.23 0.21

Probability that Inversion Occurrs, Conditional on 
a Democrat Win

Conditional on Margin of Victory Any 
Margin
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Probability that Inversion Occurrs, Conditional on 
a Republican/Whig Win
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Note: Table reports statistics describing the probability of inversions, conditional on the Electoral College win going to the indicated party.
Columns additionally condition on various two-party popular vote share margins. Model estimates in the table are grouped by period:
(M)odern, (R)econstruction, (A)ntebellum.
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Table A8: Asymmetry: Who Wins from an Inversion?

Model <0.5pp <1pp <2pp <3pp <4pp

M1 0.68 0.70 0.73 0.75 0.76 0.77
M2 0.68 0.71 0.74 0.76 0.78 0.79
M3 0.79 0.84 0.90 0.92 0.92 0.93
M4 0.69 0.72 0.78 0.82 0.84 0.85
M5 0.66 0.72 0.80 0.84 0.85 0.85
M6 0.68 0.73 0.81 0.84 0.85 0.86
M7 0.71 0.72 0.75 0.77 0.78 0.79
M8 0.67 0.71 0.74 0.76 0.78 0.79
M9 0.72 0.73 0.76 0.78 0.79 0.80

M10 0.62 0.63 0.66 0.68 0.68 0.69
M11 0.67 0.72 0.78 0.81 0.82 0.82
M12 0.61 0.60 0.61 0.61 0.62 0.62

R1 0.30 0.28 0.25 0.22 0.21 0.20
R2 0.31 0.30 0.27 0.25 0.24 0.23
R3 0.67 0.56 0.41 0.35 0.33 0.33
R4 0.69 0.66 0.59 0.57 0.56 0.56
R5 0.24 0.20 0.15 0.13 0.11 0.11
R6 0.34 0.29 0.23 0.20 0.19 0.19

R10 0.24 0.21 0.18 0.15 0.14 0.13

A1 0.51 0.51 0.51 0.51 0.51 0.51
A2 0.50 0.51 0.51 0.51 0.51 0.50
A3 0.48 0.51 0.54 0.51 0.44 0.37
A4 0.41 0.43 0.43 0.40 0.35 0.28
A5 0.51 0.51 0.52 0.52 0.51 0.51
A6 0.49 0.49 0.49 0.48 0.48 0.48

Conditional on Margin of Victory

Probability of Republican/Whig Win, Conditional on Inversion 
Occurring
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Note: Table reports statistics describing the probability that inversions were won by the index party (Republi-
can/Whig). Columns condition on various two-party popular vote share margins. Statistics for Democrats are
one minus the indicated value in the table. Model estimates in the table are grouped by period: (M)odern,
(R)econstruction, (A)ntebellum.
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Table A9: Inversion Probabilities in Counterfactuals that Allow for Endogenous Response

If Margin < 1 p.p. If Margin < 2 p.p. Unconditional
(1) (2) (3)

status quo 0.424 0.350 0.123
without +2 Senators 0.416 0.337 0.114
award ECVs proportionally 0.297 0.177 0.047
without +2 & award ECVs proportionally 0.292 0.170 0.045

status quo 0.424 0.350 0.123
without +2 Senators 0.411 0.340 0.127
award ECVs proportionally 0.375 0.250 0.070
without +2 & award ECVs proportionally 0.355 0.239 0.068

status quo 0.424 0.350 0.123
without +2 Senators 0.410 0.327 0.109
award ECVs proportionally 0.321 0.208 0.051
without +2 & award ECVs proportionally 0.306 0.182 0.045

status quo 0.424 0.350 0.123
without +2 Senators 0.417 0.340 0.115
award ECVs proportionally 0.331 0.206 0.054
without +2 & award ECVs proportionally 0.305 0.181 0.047

Probabiltiy of Inversion

Panel D: Adjust Turnout in New Safe/Battleground States

Panel A: Baseline Decomposition from Main Paper

Panel B: Adjust Tightness of Race in New Safe/Battleground States

Panel C: Adjust Variance in New Safe/Battleground States

Note: Table reports summary statistics for the counterfactuals considered in Figure A15. See Figure A15 and
Appendix F for additional detail.
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