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A. Mathematical Appendix

1. Defining Relative Homophily with Weighted Links

Relative homophily can be easily adapted to accommodate weighted links. First, define ngG using
weighted degrees, as follows: Let njk be the weight of the link from j to k (e.g. number of patients
referred). The weighted out-degree of j is d(j) =

∑
k njk. The weighted out-degree to females is

dF (j) =
∑

k 1gk=Fnjk. Now nmF is the average of dF /d over all male j, and so on for ngG. The
rest of the definition is as previously indicated in Section III.A.

2. The Importance of Link Direction in Defining Homophily

Considering a directed network as if it is undirected is undesirable when studying homophily.
Figure A1 illustrates the sensitivity of relative homophily to link direction.
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A1. Defining Relative Homophily with Weighted Links

As discussed in Section III.A, relative homophily can be easily adapted to
accommodate weighted links. This section details this definition. First, define ngG
using weighted degrees, as follows: Let njk be the weight of the link from j to k
(e.g. number of patients referred). The weighted out-degree of j is d(j) =

∑
k njk.

The weighted out-degree to females is dF (j) =
∑

k 1gk=Fnjk. Now nmF is the
average of dF /d over all male j, and so on for ngG. The rest of the definition is
as previously indicated in Section III.A.

A2. The Importance of Link Direction in Defining Homophily

Considering a directed network as if it is undirected (as in, e.g., Kossinets and
Watts 2006) is undesirable when studying homophily. Figure A1 illustrates the
sensitivity of relative homophily to link direction.

(a) Relative Ho-
mophily

(b) No Relative Ho-
mophily

(c) Common
Undirected Repre-
sentation

Figure A1. : Homophily and Link Direction

Because referrals are asymmetric, link direction is important for defining relative homophily: the network

(a) exhibits relative homophily while (b) does not, a difference concealed in their undirected counterpart

(c). More generally, this example speaks against treating asymmetric relationships as if they were

symmetric when studying homophily.

Neglecting link directions may also give rise to spurious inbreeding homophily.
Consider the directed network of referrals among 2N physicians, exactly half of
which are doctors. Denote as before by m and M the fractions of male doctors
and male specialists. Assume no gender bias: all doctors make the same average
number of total referrals and send a fraction M of their referrals to male spe-
cialists. Suppose that we ignore directions, and consider the undirected version

Figure A1. Homophily and Link Direction

Notes: Because referrals are asymmetric, link direction is important for defining relative homophily: the network (a) exhibits
relative homophily while (b) does not, a difference concealed in their undirected counterpart (c). More generally, this example
speaks against treating asymmetric relationships as if they were symmetric when studying homophily.
Source: Author’s calculations

Neglecting link directions may also give rise to spurious inbreeding homophily. Consider the
directed network of referrals among 2N physicians, exactly half of which are doctors. Denote as
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before by m and M the fractions of male doctors and male specialists. Assume no gender bias: all
doctors make the same average number of total referrals and send a fraction M of their referrals
to male specialists. Suppose that we ignore directions, and consider the undirected version of this
network. Formally, let the degree of each node in the undirected representation be the sum of
out-degree and in-degree in the directed networks. In such case, although there is no gender bias in
referrals, the undirected representation would exhibit inbreeding homophily, unless the gender mix
of doctors and specialists happens to be equal. To see this, without loss of generality normalize
the overall number of referrals (links) to one. Assuming referrals are gender-neutral, the gender
composition of referrals is simply a function of the physician population gender shares (Table A1).
In contrast to the directed version of the referral network (Case B), in the undirected version (Case
A) there is no distinction between male-to-female and female-to-male referrals, of which there are
in total m(1 −M) + (1 − m)M . Hence, in the undirected network there are only three possible
gender compositions of physicians involved in a referral: both male, both female, and mixed gender.
inbreeding homophily is zero when the fraction of ingroup referrals by men equals their population
fraction. In this example, the population fraction of male physicians is (m + M)/2. Therefore,
inbreeding homophily is zero when

mM

mM + 1
2(m(1−M) + (1−m)M)

=
m+M

2
,

which holds if and only if m = M . In all other cases, inbreeding homophily is nonzero, despite the
fact that, by construction, referrals are unbiased.

Table A1—Directed and Undirected Representations of Unbiased Referrals

Referral Gender Composition

A. Undirected Network B. Directed Network Fraction of Referrals

both male male to male mM

mixed gender { male to female m(1−M)
female to male (1−m)M

both female female to female (1−m)(1−M)

Notes: m and M are the shares of doctors and specialists who are male.

Source: Author’s calculations

3. Interpreting The Common Tendency to Refer to Male Specialists as Bias

The analysis in Section III.C maintained that the tendency common to both genders to refer more
to males reflects unobserved heterogeneity in specialist characteristics that makes male specialists
more appropriate referral targets. This section considers the other extreme interpretation, and
considers all such common tendencies to refer to men as a bias in favor of men (and against
women) that is common to both genders. Table A7 shows that under this assumption, at the
current estimated gender-specific bias β and gender shares, the gender bias in referrals contributes
20.1 percentage points to the physician gender earnings gap.

Formally, Table A7 shows estimates obtained from rederiving (10) with a common term eδ1gk=m ,

viz., including the estimated δ̂ = 0.165 in the bias. Linearly approximating the gap around β ≈
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0, δ ≈ 0 provides some intuition about the first-order effect of a common bias δ:

Gap ≈ δ + (1− (M − 1

2
)2δ)(m− 1

2
)2β +O(β2) +O(δ2).

With M = 0.5, (1) boils down to δ + κ, where κ = (m − 1
2)2β is the first-order gap as it appears

in (10). With M = 1, it boils down to δ + (1 − δ)κ. Namely, for the estimated levels of bias, the
first-order effect of a common bias is approximately an additive shift in demand toward male and
away from female specialists. Table A7 does not rely on this approximation and shows the exact
calculations, which include small nonlinear effects.

4. Proofs

Proof of Proposition 1.

PROOF:

First consider the homogeneous case: δ = 0, and note that the conditional probabilities of referrals
to a male specialist are:

(1) P (Mm) =
M

M + ω(1−M)
≥M ≥ ωM

ωM + (1−M)
= P (Mf )

where P (Gg) := P (gk = G|gj = g) denotes the probability that the chosen specialist’s gender is G
conditional on doctors’ gender being g, and ω = e−β ∈ (0, 1].

Where P (Mm) and P (Mf ) are derived by summing up probabilities of referrals to all available
specialists. E.g., for gj = m:

P (Mm) =
∑

k:gk=M

P (Yjk = 1) =

∑
k:gk=M eβ1gj=gk

∑
k e

β1gj=gk

=

∑
k:gk=M eβ∑

k:gk=M eβ +
∑

k:gk 6=M e0
=

Meβ

Meβ + 1−M .

For all M ∈ (0, 1), biased preferences result in relative homophily, P (Mm) > P (Mf ): doctors
of each gender slightly discount the other (by a factor ω).1 Conversely, with unbiased preferences
(β = 0), relative homophily is zero, as P (Mm) = M = P (Mf ).

Consider next the case: δ 6= 0, where a correlation exists between gender and decision-relevant
specialist characteristics (e.g., men may be more experienced or women may be available for fewer
hours). In this case, (1) becomes:

P (Mm) =
M

M + ωη(1−M)
≥ ωM

ωM + η(1−M)
= P (Mf ),(2)

1Clearly, if specialists are mostly men then men refer more to men than to women: P (Mm) > P (Fm), which is not to be
confused with P (Mm) > P (Mf ).
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which holds, because:

P (Mm) =

∑
k:gk=M eβ1gj=gk

+δXk

∑
k e

β1gj=gk
+δXk

=

∑
k:gk=M eβ+δXk

∑
k:gk=M eβ+δXk +

∑
k:gk 6=M eδXk

P−→ MηMe
β

MηMeβ + (1−M)ηF
=

Meβ

Meβ + η(1−M)

where ηG = E[eδXk |gk = G] for G ∈ {M,F}, and η = ηF
ηM

(so η R 1 when E[eδXk |gk = F ] R

E[eδXk |gk = M ]. The convergence is by the Law of Large Numbers, assuming characteristics are
independent across specialists.

Regardless of gender-biased preferences, if η < 1 male specialists attract a disproportionally high
fraction of referrals from both genders (Figure 2). Conversely, if η > 1, female specialists attract
more referrals, so whether P (Mm) and P (Mf ) are each greater or smaller than M depends on η.
In (2) too, P (Mm) = P (Mf ) if and only if preferences are unbiased, i.e., β = 0. So, Proposition 1
also holds for the heterogeneous case.

PROPOSITION A1 (Nonidentificiation of gender-specific gender bias): Consider the model:

(3) argmax
k∈K

Uj(k) = βf1gj=f,gk=F + βm1gj=m,gk=M + δXjk + εjk

where βf , βm are gender-specific same-gender preferences and εjk is as before independently and
GEV distributed. Then βf , βm and let the common tendency to refer to men, η′ (defined as η
before), are not separately identified.

For example, the case when η = 0.2 and βf = βm = 0.1 (namely, male specialists have a 20
percent higher baseline probability of being chosen by both genders. In addition, doctors choose
specialists of their own gender with a 10 percent higher probability) is observationally equivalent
to η = 0.15, βf = 0.05, βm = 0.15 (male specialists have a 15 percent higher baseline, and female
doctors are less likely than male doctors to choose same-gender specialists—5 percent versus 15
percent).
Proof of Proposition A1.
PROOF:

Under model (3), the probabilities of referrals to a male, conditional on the doctor gender are:

P (Mm) =
M

M + e−βmη′(1−M)
≥ e−βfM
e−βfM + η′(1−M)

= P (Mf ).

Exactly the same probabilities (4) can be obtained by the following reparameterization: β =
1
2(βf + βm) and η = eβ−βf η′ = eβm−βη′. Namely, we can only identify the average of the same-
gender bias across men and women, not the gender specific bias, as any bias that is common to
both genders is observationally equivalent to an unobserved difference between male and female
specialists.

Before considering the proof of Proposition 2, some intuition for why sorting generates homophily
can be gained by considering the case of no bias.

CLAIM 1 (Sorting-Based Homophily): Assume zero bias. With sorting, referrals exhibit homophily
when pooled across all markets:

P (Mm) > M > P (Mf )

for all β ≥ 0.
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PROOF:

The overall conditional probability is a weighted average of market-specific conditional probabil-
ities (weights are proportional to both market size and the relative share of male doctors in each
market). Using Bayes’ rule:

P (Mm) =
∑

c∈C
P (c|m)P (M |m, c) =

∑

c∈C
µc
mc

m
P (M |m, c)

≥
∑

c∈C
µc
mc

m
M c =

1

m
E[mcM c]

>
1

m
E[mc]E[M c] = M.

The first inequality is due to preferences: P (M |m, c) ≥ M c (equality being the case ω = 1), and
the second is due to segregation. By symmetry, the same proof works for females.

Note that the definition of sorting extends to the more general case where Kj is specific to each
doctor as: Cov(mj ,MKj ) > 0, where mj = 1gj=m and MKj is the fraction of males in Kj . (This

definition is indeed more general, as by covariance decomposition, Cov[mj ,M
j ] = Cov[mc,M c]

under separate markets with common Kj = Kc in each.) For this more general definition of
sorting, the proof follows immediately from Proposition 1: with unbiased preferences P (Mm) =
E[M j |gj = m] > M , by Cov[mj ,M

j ] > 0.

Now, for the proof of Proposition 2.

PROOF:

P (Mm)−M =
∑

c∈C
µc(

mc

m
P (M |m, c)− mc

m
M c +

mc

m
M c −M c)

=
∑

c∈C
µc(

mc

m
(P (M |m, c)−M c) +M c(

mc

m
− 1))

= E[
mc

m
(P (M |m, c)−M c)] + Cov[

mc

m
,M c].

Where µc denotes market size.

Note that this proof only uses Bayes’ rule to relate aggregate and market-specific referral prob-
abilities and does not rely on a specific parameterization of these probabilities: it only requires
relevant moments to exist.

Proposition A2 restates Proposition 2 using relative homophily.

PROPOSITION A2 (Relative Homophily Decomposition): The overall relative homophily decom-
poses as follows:

P (Mm)− P (Mf ) = E[
mc

m
P (M |m, c)− 1−mc

1−m P (M |f, c)] +
1

m(1−m)
Cov[mc,M c]

PROOF:

Applying the proof of Proposition 2 to females (by symmetry) and substituting P (Mf ) = 1− P (Ff )
yields :

M − P (Mf ) = E[
1−mc

1−m (M c − P (M |f, c))] + Cov[
mc

1−m,M c]
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Hence

P (Mm)− P (Mf ) =E[
mc

m
(P (M |m, c)−M c) +

1−mc

1−m (M c − P (M |f, c))]

+
1

m(1−m)
Cov[mc,M c]

Proof of Proposition 3.
PROOF:

Pick any male specialist k. The demand k faces in market c is obtained by aggregating over all
doctors in that market (as all variables are market specific, I suppress the superscript c):

DM =
∑

j∈J
pjk =

∑

j∈J

eβs(j,k)

∑
k′∈K e

βs(j,k′)

=
∑

j∈J,gj=1

eβs(j,k)

∑
k′∈K e

βs(j,k′)
+

∑

j∈J,gj=0

eβs(j,k)

∑
k′∈K e

βs(j,k′)

=
1

N
(
∑

j∈J,gj=1

1

M + ω(1−M)
+

∑

j∈J,gj=0

ω

ωM + (1−M)
)

=
n

N
(

m

M + ω(1−M)
+

ω(1−m)

ωM + (1−M)
).

Where n = |J | and N = |K|. When ω = 1 then DM = n
N , which is independent of both M and m.

Suppose ω < 1. To see that ii(a) is true, rewrite:

DM =
n

NM

(
mP (Mm) + (1−m)P (Mf )

)

=
n

NM

(
P (Mf ) +m(P (Mm)− P (Mf ))

)

and note that ∂DM/∂m > 0 since P (Mm)− P (Mf ) > 0 for every β > 0. To see that ii(b) is true
take the derivative of DM with respect to M :

∂DM

∂M
=
n(1− w)

N

( (1−m)w

(1−M(1− w))2

︸ ︷︷ ︸
Complements

− m

(M + w(1−M))2

︸ ︷︷ ︸
Substitutes

)
.

The denominators of the terms labeled “Complements” and “Substitutes” are both positive. There-
fore, for m near enough zero, Complements dominates and the derivative ∂DM/∂M is positive,
whereas for m near enough one Substitutes dominates and the derivative is negative. For interme-
diate values of m, the sign of the derivative may depend on M .

B. Additional Tables and Figure
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Figure A2. Male Fraction of Physicians in Common Medical Specialties

Notes: Percent of active physicians (with any claims) who are male in 2012, for the most common specialties by overall number
of physicians. Columns are sorted so specialties with the greatest male shares are at the top.
Source: CMS, author’s calculations
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Figure A3. The Unadjusted Gender Pay Gap, by Experience Level

Notes: Source: 20 percent sample of Medicare physician claims for 2012. Mean Annual Medicare Pay is total annual payments
(by all payers) to physicians for Medicare services, multiplied by 5 to adjust for sampling. Years are since medical school
graduation (bin labels are the range maximum, e.g. 10 stands for 6–10).
Source: CMS, author’s calculations
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Figure A4. The Distribution of Rates of Referral to Male Specialists

Notes: Empirical cumulative distribution function of Mj , the fraction of doctor j referrals that are made to male specialists.

Source: CMS, author’s calculations
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(a) Demand for male specialists over the shares of male doctors and male specialists
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(b) Demand and the share of male doctors, m
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(c) Demand and the share of male specialists, M

Figure A3. : Average Specialist Demand with Gender-Biased Preferences

Notes: Average male specialist demand as a function of the fractions of male doctors and male specialists,

with gender-biased preferences, i.e. β > 0 (calculated from the model with ω = 0.8, η = 1). The surface

in Panel (a) depicts the average demand DM, a function of the fractions of both male doctors, m, and

male specialists, M. Panel (b) shows different cross sections of DM for different levels of M . Panel (c)

shows different cross sections DM for different levels of m. Demand for male specialists is increasing in

the share of doctors who are male. Male specialists are complements when only few doctors are men and

become stronger substitutes the greater the share of doctors who are are male.

Figure A5. Average Specialist Demand with Gender-Biased Preferences

Notes: Average male specialist demand as a function of the fractions of male doctors and male specialists, with gender-biased
preferences, i.e. β > 0 (calculated from the model with ω = 0.8, η = 1). The surface in Panel (a) depicts the average demand
DM, a function of the fractions of both male doctors, m, and male specialists, M. Panel (b) shows different cross sections of DM

for different levels of M . Panel (c) shows different cross sections DM for different levels of m. Demand for male specialists is
increasing in the share of doctors who are male. Male specialists are complements when only few doctors are men and become
stronger substitutes the greater the share of doctors who are are male.
Source: Author’s calculations
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(a) (b) (c)

Figure A2. : Counterfactual Gender Earnings Gap with Different Levels of Bias

Colored contour plots of the gender earnings gap, DF −DM , for different fractions of males upstream m

and downstream M , each for a different level of bias β. Blue (right) and red (left) darker shades reflect

greater demand for male and female specialists, respectively. The zero-gap contours are dashed. For (a)

the estimated level of bias for U.S. physicians (β = β̂ = 0.10), and even for (b) much higher levels of

bias (β = 0.50), the sign and size of the gender earnings gap mostly depend on the fraction of males

upstream. In contrast, for (c) extreme bias (β = ∞), a bias that reflects lexicographic preferences, the

gap depends on the relative fractions of male doctors and male specialists.

Table A5—: Residualized Referral Rates to Male Specialists, by Gender of Doctor
and Patient

Mean Residual
(Male Specialist)

Patient Gender

Doctor Gender Female Male All Difference (M–F)

Female −0.0705 0.0205 −0.0397 0.0910
Male 0.0329 0.0949 0.0623 0.0620
All 0.0078 0.0835 0.0416 0.0757

Difference (M–F) 0.1034 0.0744 0.1021

Notes: Average Pearson residuals of logistic regression of a dummy for the specialist being male on
doctor and specialist experience and medical specialty. Each cell shows the mean residual among doctors
and patients of a given gender. For convenience, the differences between male and female averages are
shown in the margins. The sample includes 10,127,806 patient-doctor-specialist triples in 2012.

Figure A6. Counterfactual Gender Earnings Gap with Different Levels of Bias

Notes: Colored contour plots of the gender earnings gap, DF−DM , for different fractions of males upstream m and downstream
M , each for a different level of bias β. Blue (right) and red (left) darker shades reflect greater demand for male and female

specialists, respectively. The zero-gap contours are dashed. For (a) the estimated level of bias for U.S. physicians (β = β̂ = 0.10),
and even for (b) much higher levels of bias (β = 0.50), the sign and size of the gender earnings gap mostly depend on the
fraction of males upstream. In contrast, for (c) extreme bias (β = ∞), a bias that reflects lexicographic preferences, the gap
depends on the relative fractions of male doctors and male specialists.
Source: Author’s calculations

Table A2—Homophily Estimates with Weighted Links

Dependent variable:
Percent Referrals to Male Specialists, by:
Links Patients Claims Dollars

(1) (2) (3) (4)

Male Doctor 0.038 0.040 0.040 0.040
(0.001) (0.001) (0.001) (0.001)

Percent Male Patients 0.029 0.029 0.029 0.029
(0.002) (0.002) (0.002) (0.002)

Constant 0.80 0.80 0.80 0.81
(0.003) (0.003) (0.003) (0.003)

Specialty (Doctor) Yes Yes Yes Yes
Experience (Doctor) Yes Yes Yes Yes

Obs. (Doctors) 384,985 384,985 384,985 383,054
R2 0.0384 0.0394 0.0360 0.0368

Notes: Standard errors in parentheses. OLS estimates of (5) using different definitions of link weights. The first column
shows results for unweighted links. Columns 2–4 show results for different weights: number of patients, number of claims, and
dollar value of services.
Source: CMS, author’s calculations
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Obstetrics/gynecology
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Figure A7. Average Number of Referral Relationships by Medical Specialty

Notes: Degree-heterogeneity is to be expected because doctors in different specialties play different roles in routing patients:
some mostly diagnose and refer out, others mostly receive referrals and treat. The figure shows degree distribution by specialty
for 2012 referrals: Out-degree is the average number of physicians to whom a physician referred patients during the year.
In-degree is the average number of physicians from whom a physician received referrals. Physicians with neither incoming
nor outgoing referrals during the year were excluded. Point diameter is proportional to the square root of the number of
practitioners in a specialty. Common specialties are labeled. See Table A9 for the data used to generate this figure.
Source: CMS, author’s calculations
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Table A3—Estimates of Relative Homophily Using Disaggregated Data

Dependent Variable:
Male Specialist

(1) (2) (3) (4) (5)

Male Doctor 0.045∗∗∗ 0.039∗∗∗ 0.038∗∗∗ 0.035∗∗∗ 0.042∗∗∗

(0.0008) (0.0007) (0.0007) (0.0007) (0.0008)
Male Patient 0.021∗∗∗ 0.037∗∗∗

(0.0003) (0.0006)
Male Doctor x Male Patient -0.019∗∗∗

(0.0007)
Specialty (both) No Yes Yes Yes Yes
Experience (both) No No Yes Yes Yes

Obs. (Triples) 10,545,049 10,545,049 10,127,806 10,127,806 10,127,806
Clusters (Doctors) 385,104 385,104 382,924 382,924 382,924
R Sqr. 0.00242 0.0689 0.0989 0.0997 0.0998

Notes: Standard errors in parentheses. Estimates of relative homophily using one observation for each unique triple of a
doctor, a specialist and a referred patient. The sample consists of all such triples for 2012, for a sample of 20 percent of Medicare
patients. Standard errors are clustered by doctor.
Source: CMS, author’s calculations

Table A4—Residualized Referral Rates to Male Specialists, by Gender of Doctor and Patient

Mean Residual
(Male Specialist)

Patient Gender

Doctor Gender Female Male All Difference (M–F)

Female −0.0705 0.0205 −0.0397 0.0910
Male 0.0329 0.0949 0.0623 0.0620
All 0.0078 0.0835 0.0416 0.0757

Difference (M–F) 0.1034 0.0744 0.1021

Notes: Average Pearson residuals of logistic regression of a dummy for the specialist being male on doctor and specialist
experience and medical specialty. Each cell shows the mean residual among doctors and patients of a given gender. For
convenience, the differences between male and female averages are shown in the margins. The sample includes 10,127,806
patient-doctor-specialist triples in 2012.
Source: CMS, author’s calculations
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Figure A8. Conditional-Logit Estimates of Gender Bias, by Specialty

Notes: Estimates of β, the gender bias, from equation (3) with the sample in Table A5, separately for each medical specialty
of the receiving physician. Black circles denote estimates that are significantly different from zero (p < 0.05).
Source: CMS, author’s calculations
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Figure A9. The Fraction of Primary Care Claims Handled by Male Doctors

Notes: Line plots show the 10th, 25th, 50th, 75th and 90th quantiles of the fraction of primary care claims handled by male
doctors in each month, calculated across all hospital referral regiosns (HRR). The underlying data are used in the estimation
of (13)
Source: CMS, author’s calculations
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Table A5—Average Characteristics of Chosen versus Unchosen Specialists

Doctor Referred to Specialist

Doctor and Specialist: Yes No

Same Gender 0.712 0.678
Same Zip Code 0.280 0.0824
Same Hospital 0.778 0.298
Same Group 0.191 0.052
Same Med. School∗ 0.107 0.0817
Experience Difference (years) 11.25 12.16

Observations (Dyads) 5,632,166 9,635,750
2,852,950∗ 4,685,218∗

Clusters (Doctors) 375,440
242,579∗

Notes: The table describes the sample used for estimating preference bias (as discussed in Sections III.A and IV.B). It shows
average characteristics of doctor-specialist pairs. The left, ”Yes” column shows data for all specialists chosen by each doctor.
For each chosen specialist, the right, ”No” column shows data for two randomly sampled specialists not chosen for referrals
from the same market (HRR) and medical specialty as the chosen specialist. ∗ denotes the subsample with nonmissing school
data. All differences are significant (p < 0.001).
Source: CMS, author’s calculations
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Table A6—Conditional-Logit Estimates: Referral Probability, with Interaction Terms

Dependent variable:
Doctor Referred to Specialist

Doctor and Specialist: (1) (2) (3) (4)

Same Gender 0.084 0.066 0.104 0.076
(0.002) (0.004) (0.004) (0.006)

Male Specialist 0.175 0.175 0.165 0.164
(0.002) (0.002) (0.004) (0.004)

Same Hospital 3.114 3.072 2.941 2.887
(0.004) (0.005) (0.005) (0.007)

Same Hospital x Same Gender 0.0598 0.0770
(0.004) (0.006)

Same Group 1.346 1.372 1.320 1.344
(0.008) (0.009) (0.010) (0.010)

Same Group x Same Gender -0.039 -0.035
(0.007) (0.010)

Same Zip Code 1.074 1.065 1.054 1.047
(0.005) (0.007) (0.006) (0.009)

Same Zip Code x Same Gender 0.013 0.010
(0.006) (0.009)

Similar Experience 0.128 0.120 0.131 0.123
(0.001) (0.002) (0.001) (0.002)

Similar Experience x Same Gender 0.012 0.011
(0.002) (0.003)

Same Med. School 0.209 0.206
(0.004) (0.007)

Same Med. School x Same Gender 0.004
(0.008)

Specialist Experience Yes Yes Yes Yes

Obs. (Dyads) 14,555,821 14,555,821 6,712,241 6,712,241
Clusters (Doctors) 367,370 367,370 242,579 242,579
Pseudo R Square 0.361 0.361 0.347 0.347

Notes: Standard errors in parentheses. Results of conditional logit estimates of (3) for 2012, including interaction terms
(denoted by ×). See Table 5 notes for variable definitions and details.
Source: CMS, author’s calculations
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Table A7—Counterfactual Earnings Gaps, Counting as Bias the Common Tendency to Refer to Men

A. Varying m and M (β = 0.1)
Male Specialists (M)

Male Doctors (m) 0.4 0.5 0.6 0.7 0.75 0.8 0.9

0.4 14.7 14.4 14.1 13.9 13.7 13.6 13.3
0.5 16.8 16.4 16.1 15.7 15.6 15.4 15.1
0.6 18.9 18.4 18.0 17.6 17.4 17.2 16.8
0.7 20.9 20.4 19.9 19.4 19.2 19.0 18.6
0.75 21.9 21.4 20.9 20.4 20.1 19.9 19.5
0.8 23.0 22.4 21.8 21.3 21.1 20.8 20.3
0.9 25.0 24.4 23.7 23.2 22.9 22.6 22.1

B. Varying β and m (M = 0.75)
Male Doctors (m)

Gender Bias (β) 0.4 0.5 0.6 0.7 0.75 0.8 0.9

-0.05 16.7 15.7 14.8 13.9 13.5 13.0 12.1
0 15.8 15.8 15.8 15.8 15.8 15.8 15.8
0.05 14.8 15.7 16.7 17.6 18.0 18.5 19.4
0.1 13.7 15.6 17.4 19.2 20.1 21.1 22.9
0.15 12.5 15.2 18.0 20.7 22.1 23.5 26.2
0.2 11.1 14.8 18.5 22.1 24.0 25.8 29.4
0.25 9.6 14.2 18.8 23.4 25.7 28.0 32.5

C. Varying β and M (m = 0.75)
Male Specialists (M)

Gender Bias (β) 0.4 0.5 0.6 0.7 0.75 0.8 0.9

-0.05 14.2 14.0 13.8 13.6 13.5 13.4 13.2
0 16.7 16.5 16.2 15.9 15.8 15.7 15.4
0.05 19.3 18.9 18.6 18.2 18.0 17.9 17.5
0.1 21.9 21.4 20.9 20.4 20.1 19.9 19.5
0.15 24.6 23.8 23.1 22.4 22.1 21.8 21.2
0.2 27.2 26.2 25.3 24.4 24.0 23.5 22.8
0.25 29.9 28.6 27.3 26.2 25.7 25.2 24.2

Notes: A variant of Table 6 that includes the estimated tendency common to both male and female doctors to refer to male
specialists as bias. That is, in addition to same-gender bias, estimated common bias of 0.165 (from the most saturated model
in Table 5) is also included, which further shifts demand toward male and away from female specialists.
Source: Author’s calculations
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Table A8—Estimates: Link Persistence

Dependent variable:
Any Referrals Next Year

Logit OLS (with Fixed-Effects)

(1) (2) (3) (4)
Same Gender 0.044 0.014

(0.003) (0.001)
Male Doctor 0.069

(0.004)
Male Specialist 0.157 0.029 0.006

(0.003) (0.001) (0.001)
Similar Experience 0.005 0.001 0.002 0.001

(0.000) (0.000) (0.000) (0.000)
Same Hospital 0.118 0.027 0.030 0.027

(0.004) (0.001) (0.001) (0.002)
Same Zipcode 0.159 0.097 0.092 0.076

(0.003) (0.001) (0.001) (0.001)
Same School 0.088 0.013 0.015 0.014

(0.003) (0.001) (0.001) (0.002)
Constant -0.814

(0.004)
Specialty (Specialist) No No Yes Yes
Obs. (j,k) 7,255,778 7,204,471 5,734,596 1496658
Rank 8 5 58 58
R2 0.20 0.10 0.11
N. Cluster 280,750 255,507 191,647 64,579
FE1 (Doctors) 255,507 191,647 64,579
FE2 (Specialists) 237,363

Notes: Standard errors in parentheses. Estimates of the persistence of referral relationships using data from 2008–2012.
The sample consists of an observation for each doctor-specialist pair, for the first year a referral is observed in the data. The
dependent binary variable is 1 if the doctor also referred to the specialist during the subsequent year. Same gender is a dummy
for the specialist and doctor being the same gender. Male specialist/doctor is a dummy for the specialist/doctor being male.
Similar Experience is the negative absolute difference in physicians’ year of graduation. Column (1) shows estimates of the
logit model specified in equation (11). Column (2) shows linear probability model with two-way fixed effects (for doctor and for
specialist) in equation (12). Columns (3) and (4) show linear estimates with doctor fixed-effects only, estimated separately for
female (3) and male (4) doctors. Sample size is restricted by the availability of medical school data. Results excluding school
affiliation are very similar. All standard errors are clustered by doctor.
Source: CMS, author’s calculations
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Table A9—2012 Average Degree by Specialty

Specialty In-Degree Out-Degree Physicians

1 Internal medicine 5.8 26.4 86, 220
2 Family practice 1.9 21.0 74, 638
3 Anesthesiology 19.2 0.4 33, 434
4 Obstetrics/gynecology 2.7 3.2 22, 871
5 Cardiology 36.3 12.3 21, 714
6 Orthopedic surgery 17.4 13.8 19, 411
7 Diagnostic radiology 10.2 0.6 18, 768
8 General surgery 14.3 12.8 18, 011
9 Emergency medicine 4.5 5.2 16, 065
10 Ophthalmology 14.0 9.1 15, 702
11 Neurology 25.5 5.2 11, 469
12 Gastroenterology 35.2 11.7 11, 178
13 Psychiatry 4.8 2.7 10, 861
14 Dermatology 16.6 3.1 8, 624
15 Pulmonary disease 30.9 12.5 8, 272
16 Urology 33.9 13.7 8, 234
17 Otolaryngology 24.2 7.0 7, 666
18 Nephrology 32.2 13.0 7, 105
19 Hematology/oncology 23.6 13.1 7, 019
20 Physical medicine and rehabilitation 17.7 5.7 6, 224
21 General practice 2.5 14.7 4, 853
22 Endocrinology 20.4 7.2 4, 534
23 Infectious disease 24.2 5.0 4, 492
24 Neurosurgery 19.8 16.7 4, 010
25 Radiation oncology 17.3 3.4 3, 933
26 Rheumatology 20.8 7.8 3, 765
27 Plastic and reconstructive surgery 7.3 5.0 3, 759
28 Pathology 2.3 0.4 3, 627
29 Allergy/immunology 11.5 2.0 2, 768
30 Pediatric medicine 1.8 3.8 2, 695
31 Medical oncology 20.6 12.9 2, 507
32 Vascular surgery 30.7 18.1 2, 486
33 Critical care 16.5 9.5 2, 046
34 Thoracic surgery 15.2 18.1 1, 886
35 Interventional pain management 27.2 5.5 1, 655
36 Geriatric medicine 4.9 20.8 1, 597
37 Cardiac surgery 16.4 18.0 1, 526
38 Colorectal surgery 22.1 16.8 1, 161
39 Pain Management 22.3 4.3 1, 055
40 Hand surgery 19.4 10.0 1, 047

Notes: A link represents referral relationships with another physician from any specialty; specialties with less than 1,000
doctors are included but not shown due to space constraints.
Source: CMS, author’s calculations


