Online Appendix: Tipping and the Effects of Segregation

Anders Bohlmark (Stockholm University)

Alexander Willén (Norwegian School of Economics)

APPENDIX FOR ONLINE PUBLICATION ONLY

Appendix A – The Structural Break Method

This method is similar to that of identifying breaks in time series data, and consists of estimating the following regression

$$Dn_{s,m,t} = \alpha_m + d_m \mathbf{1}[i_{s,m,t-10} > i_{m,t-10}^*] + \varepsilon_{s,m,t}, \qquad \text{for } 0 \le i_{s,m,t-10} \le l$$

where $Dn_{s,m,t} = \frac{N_{s,m,t}-N_{s,m,t-10}}{P_{s,m,t-10}}$ and represents the change in the native population in neighborhood *s* in metropolitan area *m* between *t*-10 and *t*, and $d_m \mathbf{1}[i_{s,m,t-10} > i_{m,t-10}^*]$ is an indicator variable that takes the value of one if the immigrant share in the neighborhood exceeds the tipping point of the metropolitan area.

To obtain estimates of the tipping points in the metropolitan areas, $i_{m,t-10}^*$, we restrict the tipping points to be in the interval [0, 50%] and choose the values that maximizes R^2 of the above equation, separately for each metropolitan area. According to Card et al. (2008), this method works well for identifying tipping points in large cities, but performs less well in small cities due to a tendency to identify tipping points that reflects clear outliers. Given the average size of the metropolitan areas in Sweden it is therefore inappropriate to rely on this strategy for the purpose of identifying the tipping points.

Dougl A. Tournet common communication 901F							0107	
Fanel A: Largest source countries 2015	100 11	706 101	996 169	961 949	000 2 10	105 117	100 201	160.046
ר דיי-ד	44,041 7	106,101	400,400 100	291,042 201	210,050 0,010	190,441 40.970	120,801	101,040
iraq	00	or	100	1 20 1	9,818 7,974	49,312	101,121	151,888
Syna Si :	0	0	1001	1,000	5,8/4	4,162	20,198	98,210
Poland	7,832	6,347	10,851	19,967	35,631	40,123	70,253	85,517
Iran	110	115	411	3,348	40,048	51,101	62,120	69,067
Yugoslavia	171	1,532	33,779	37,982	43,346	71,972	70,819	67, 190
Somalia	0	0	16	100	1,441	13,082	37,846	60,623
Bosnia and Herzegovina	0	0	0	0	0	51,526	56,183	57,705
Germany	21,652	37,580	41,793	38,974	37,558	38,155	48,158	49.586
Turkey	87	202	3,768	14,357	25,528	31,894	42,527	46,373
Panel B: Largest source countries 1950								
Finland	44 821	101 307	235453	251.342	217636	$195\ 447$	169.521	156 045
Norway	31 312	37.253	44.681	42.863	52.744	42,464	43 430	42,047
Fistonia	25.062	*	18.513	15.331	11.971	10.253	10.010	10.303
Denmark	22,801	35.112	39.152	43.501	43.931	38,190	45.584	41.870
Germany	21,652	37,580	41,793	38.974	37,558	38,155	48,158	49.586
United States	10.713	10,874	12,646	11,980	13,001	14.413	17.179	19.515
Poland	7.832	6.347	10.851	19.967	35,631	40.123	70.253	85.517
Latvia	4,423	*	3.244	2.664	2,025	2,305	4.686	7.026
Czechoslovakia	3.548	3.562	7.392	7,529	8.432	7.304	5.970	5,293
Austria	2,665	5,809	7,927	6,995	6,530	6,021	5,829	5,772
Panel C: Source countries by continents								
The nordic countries ETI95 (eveluding the nordic countries)	99,080 75 631	174,043 75 138"	320,913 137 951	341,253 148450	319,082 164 061	279,631 172 500	263,227	245,633 321,026
Europe (excluding EU25 and the nordic countries)	1.766	4.048	43.104	57.292	81.885	189.766	215.975''	238.565
Africa	355	596	4,149	10,025	27,343	55,138	114,853	178,624
North America	11,334	11,665	15,629	14,484	19,087	24,312	31,263	35,780
South America	412	679	2,300	17,206	$44,\!230$	50,853	63, 725	68,571
Asia	905	1,476	5,949	30,351	124,447	220,677	410,083	565,050
Oceania	93 127	211 169	558 199	962	1,866	2,981	4,529	5,245
CHRIDWI	ICT	707	00 1	a	õ	102	010	т,140
Panel D: Non-Western foreign-born		I				!		
Non-Western	48,904	30,070	130,804	201,373	380,945	623,042	991,482	1,285,961
Panel E: Total immigration		000					000 100 1	
Lotal Foreign-born Domont Domian hom	197,810	229,879	531,585 67	020,953 7 E	790,445 0.9	1.003,798 11.9	1,384,929 14-7	1,0.0,264
Total Population	7.041.829	7.495.129	8.076.903	8.317.235	3.590.630	8,882,792	9.415.570	9.851.017
	n-n(n(-	a(aa-(.	00060.060	55-6 · - 565	o pocío pocío		D - D(D (D	

	birth
`	ō
-	country
	λq
-	born
•	oreign-l
F	FOT
7	
	4
6	Table

Table A-2: Neighborhood crossovers

Year of tipping	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Neighborhoods	156	16	9	8	9	5	6	4	4	1

Notes: The tables shows the number of neighborhoods in which the share of non-Western immigrants increased from being below the candidate tipping point in 1990 to being above the treshold for each year between 1991 and 1999. The table further shows the number of neighborhoods that had immigrant shares above the identified tipping point in 1990. The sample used is the 1/3 sample not used for identifying the location of the tipping points.

Table A-3: Donut-style regression discontinuity models for
changes in native population around candidate tipping
points

		Change in nat	ive population		
	0.10	0.3	0.5	1.00	2.00
	Donut Hole	Donut Hole	Donut Hole	Donut Hole	Donut Hole
	(i)	(ii)	(iii)	(iv)	(v)
Beyond TP	-0.095**	-0.093**	-0.096**	-0.104**	-0.109**
	(0.039)	(0.042)	(0.042)	(0.046)	(0.049)
Observations	517	514	511	501	488

Notes: The unit of observation is a neighborhood as identified by the SAMS code. Results are obtained from estimating equation (2). Across the columns, neighborhoods with base year immigrant shares +/-0.05 (i), 0.15 (ii), 0.25 (iii), 0.50 (iv) and 1.00 (v) of the identified tipping point are excluded from the estimation. Years of treatment has been instrumented by whether the neighborhood was above or below the tipping point in the base year. All specifications include a quartic polynomial in the difference between the neighborhood's minority share and the estimated tipping point. Standard errors are clustered on one percent bins of the running variable. The sample used for estimation is the 1/3 sample not used for identifying the tipping points. Demographic controls are years of schooling, income and gender, all measured in the base year. The regressions are weighted by the size of the neighborhoods. All specifications include metropolitan area fixed effects. *** indicates significance at the 1% level, ** indicates significance at the 5% level and * indicates significance at the 10% level.

 Table A-4: Regression discontinuity models for population changes around candidate tipping points, Western immigrants

	Native Growth	Western Immigrant Growth	Non-Western Immigrant Growth
Beyond TP	-0.027	-0.002	-0.003
Deyond 11	(0.060)	(0.007)	(0.027)
Observations	520	520	520

Notes: The unit of observation is a neighborhood as identified by the SAMS code. The results are obtained from estimating new tipping points based on fraction Western immigrants using equation (1), and then using these new candidate thresholds to estimate equation (2). All specifications include a quartic polynomial in the difference between the neighborhood's minority share and the estimated tipping point. Standard errors are clustered on one percent bins of the running variable. The sample used for estimation is the 1/3 sample not used for identifying the location of the tipping points. Demographic controls are years of schooling, income and gender, all measured in the base year. The regressions are weighted by the size of the neighborhoods. All specifications include metropolitan area fixed effects. *** indicates significance at the 1% level, ** indicates significance at the 5% level and * indicates significance at the 10% level.

 Table A-5: Sensitivity analysis on the change in native population growth around the candidate tipping point

	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)	(ix)
Beyond TP	-0.088**	-0.092**	-0.109***	-0.091**	-0.091^{**}	-0.089*	-0.091^{**}	-0.091^{**}	-0.082***
Beyond IF	(0.029)	(0.040)	(0.039)	(0.041)	(0.039)	(0.048)	(0.042)	(0.039)	(0.036)
Polynomial	Linear	Quadratic	Cubic	Quartic	Quartic	Quintic	Quartic	Quartic	Quartic
Baseline Controls	х	х	х		х	х	х	х	х
Fully Interacted							х		
Additional Controls								х	
Control for Population Density									х
Observations	520	520	520	520	520	520	520	520	520
R-squared	0.287	0.287	0.302	0.233	0.305	0.305	0.305	0.334	0.313

Notes: The unit of observation is a neighborhood as identified by the SAMS code. The results are obtained from estimating equation (2). Dependent variable is change in native population between 1990 and 2000. Standard errors are clustered on one percent bins of the running variable. The sample used for estimation is the 1/3 sample not used for identifying the location of the tipping points. Baseline controls are years of schooling, income and gender, all measured in the base year. Additional controls are years since migration, number of children in household and social welfare recipient status. The regressions are weighted by the size of the neighborhoods. All specifications include metropolitan area fixed effects. *** indicates significance at the 1% level, ** indicates significance at the 5% level and * indicates significance at the 10% level.

Table A-6: Regression discontinuity models for changes
in residential population composition
around candidate tipping points, local linear
regression

	Native Growth	Immigrant Growth	Population Growth
Beyond TP	-0.112**	0.005	-0.107*
	(0.050)	(0.021)	(0.057)
R-squared	0.190	0.301	0.080
Observations	433	433	433

Notes: The unit of observation is a neighborhood as identified by the SAMS code. The bandwidth has been chosen using the cross-validation method proposed by Ludwig and Miller (2005). h = 11.58483. The sample used for estimation is the 1/3 sample not used for identifying the location of the tipping points. Demographic controls are years of schooling, income and gender, all measured in the base year. The regressions are weighted by the size of the neighborhoods. All specifications include metropolitan area fixed effects. *** indicates significance at the 1% level, ** indicates significance at the 5% level and * indicates significance at the 10% level.

Panel A: Young Cohort $0.053***$ $0.031***$ $0.071***$ 0.040^{***} 0.040^{***} 0.049^{***} Control to Treatment 0.003 (0.001) (0.000) (0.000) (0.000) (0.000) Treatment to Control $0.263***$ $0.308***$ $0.264***$ $0.258***$ $0.279***$ Treatment to Control (0.020) (0.010) (0.021) (0.022) (0.023) Observations $62,525$ $29,687$ $32,838$ $15,649$ $15,559$ $32,030$ Danel B: Middle Cohort $0.020)$ (0.017) (0.021) (0.022) (0.017) (0.020) Treatment to Control to Treatment $0.010***$ 0.0120 (0.017) (0.025) (0.017) (0.020) Treatment to Control $0.010***$ 0.0120 (0.015) (0.025) (0.017) (0.020) Treatment to Control $0.010***$ 0.0120 (0.015) (0.025) (0.017) (0.020) Diservations $56,637$ $26,826$ $29,811$ $14,148$ $14,149$ $29,079$ Panel C: Old Cohort 0.0160 (0.012) (0.012) (0.010) (0.010) (0.010) Diservations $56,637$ $26,826$ $29,811$ $14,148$ $14,149$ $29,079$ Treatment to Control $0.028**$ $0.0210***$ $0.0210***$ $0.0110***$ $0.0200***$ Treatment to Control $0.029***$ $0.023***$ $0.0110****$ $0.0212****$ $0.021*****$ Treatment to Control $0.028****$		Baseline	Educatio High	educational Level High Low	Incom High	Income Level igh Low	Ger Men	Gender Women	Excluding Outliers
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Panel A: Young Cohort Control to Treatment	-0.053***	-0.034***	-0.071***	-0.040***	-0.070***	-0.049***	-0.052***	-0.048***
$62,525$ $29,687$ $32,838$ $15,649$ $15,559$ ort -0.010^{***} -0.073^{***} -0.120^{***} -0.088^{***} -0.114^{***} 0.0200 (0.017) (0.024) (0.025) (0.017) 0.264^{***} 0.301^{***} 0.240^{***} 0.263^{*} 0.218^{***} 0.0144 (0.016) (0.015) (0.026) (0.016) (0.016) $56,637$ $26,826$ $29,811$ $14,148$ $14,149$ -0.059^{***} 0.042^{***} 0.043^{***} 0.0760^{***} 0.071^{***} 0.009° (0.016) (0.012) $(0.012)^{***}$ 0.0743^{***} 0.071^{***} (0.028) (0.034) (0.021) (0.012) $(0.012)^{***}$ $(0.031)^{***}$	Treatment to Control	(0.008) 0.283^{***} (0.020)	(0.006) 0.308^{***} (0.030)	(0.010) 0.264^{***} (0.019)	(0.009) 0.332^{***} (0.021)	(0.007) 0.258^{***} (0.022)	(0.003) 0.279^{***} (0.023)	(0.003) 0.248^{***} (0.011)	(0.010) 0.276*** (0.021)
ort -0.010^{***} -0.073^{***} -0.120^{***} -0.088^{***} -0.114^{***} (0.020) (0.017) (0.024) (0.025) (0.017) 0.264^{****} 0.301^{****} 0.321^{****} 0.218^{****} 0.017^{*} 0.264^{****} 0.301^{****} 0.240^{****} 0.363^{****} 0.218^{****} 0.014 (0.016) (0.015) (0.026) (0.016) $56,637$ $26,826$ $29,811$ $14,148$ $14,149$ -0.059^{****} -0.042^{****} -0.043^{****} -0.071^{****} 0.0099 (0.006) (0.012) (0.012) (0.010) 0.304^{****} 0.332^{****} 0.0260^{****} 0.274^{***} 0.274^{***}	Observations	62,525	29,687	32,838	15,649	15,559	32,030	$30,\!495$	60,930
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Panel B: Middle Cohort Control to Treatment	-0.010***	-0.073^{***}	-0.120 ***	-0.088***	-0.114***	-0.096***	-0.115***	-0.085***
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Treatment to Control	(0.020) 0.264^{***} (0.014)	(0.01ℓ) 0.301^{***} (0.016)	(0.024) 0.240^{***} (0.015)	(0.026) 0.363^{***} (0.026)	(0.016) 0.218^{***} (0.016)	(0.020) 0.259^{***} (0.015)	(0.001) 0.258^{***} (0.009)	(0.024) 0.259^{***} (0.014)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Observations	56,637	26,826	29,811	14, 148	14, 149	29,079	27,558	55, 256
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Panel C: Old Cohort Control to Treatment	-0.059***	-0.042***	-0.070***	-0.043***	-0.071***	-0.062***	-0.054***	-0.051***
	Treatment to Control	(0.009) 0.304^{***} (0.028)	(0.0393^{***}) (0.034)	$(0.012) \\ 0.260^{***} \\ (0.021)$	$\binom{0.012}{0.392^{***}}$ (0.032)	$\begin{pmatrix} 0.010 \\ 0.274^{***} \\ (0.031) \end{pmatrix}$	$\binom{0.009}{0.313^{***}}$ (0.031)	(0.029)	(0.030) (0.030) (0.030)
Observations 92,798 36,437 56,361 23,195 23,183 47,314	Observations	92,798	$36,\!437$	56, 361	23,195	23,183	47, 314	$45,\!484$	91,221

Table A-7: Selective migration

Table A-8: The reduced-form effect of
neighborhood composition on
cognitive and non-cognitive
military test scores

	Cognative	Non-cognative
Panel A: Immigrants		
i. 1973-1983		
Beyond TP	0.008	-0.070
	(0.198)	(0.196)
i. 1973-1980		
Beyond TP	-0.070	-0.169
	(0.242)	(0.212)
Panel B: Natives		
i. 1973-1983		
Beyond TP	-0.048	0.128
	(0.066)	(0.083)
<i>i.</i> 1973-1980		
Beyond TP	-0.017	0.183*
	(0.061)	(0.097)

Notes: The unit of observation is an individual that was started school 1973-1983 (Row 1) or 1973-1980 (Row 2) and resided in one of the 520 neighborhoods included in our analysis in the base year. The results are obtained from estimating equation (3). All specifications include a quartic polynomial in the difference between the neighborhood's minority share and the estimated tipping point. Standard errors are clustered on one percent bins of the running variable. Demographic controls are gender, mother's education, father's education, parental income and indicators for whether this information was not available for the individual. All models include birth year and metropolitan area fixed effects. Immigrants refer to individuals born in, or that have at least one parent born in, a non-Western country. *** indicates significance at the 1% level, ** indicates significance at the 5% level and * indicates significance at the 10% level.

		All	Na	atives	Imm	igrants
Year	$\operatorname{Control}$	Treatment	$\operatorname{Control}$	$\operatorname{Treatment}$	$\operatorname{Control}$	Treatment
1991	0.85	0.82	0.85	0.79	0.85	0.87
1992	0.79	0.73	0.79	0.70	0.77	0.78
1993	0.74	0.64	0.74	0.62	0.70	0.70
1994	0.68	0.58	0.68	0.55	0.64	0.64
1995	0.64	0.53	0.64	0.50	0.61	0.59
1996	0.59	0.49	0.59	0.46	0.56	0.54
1997	0.56	0.45	0.56	0.42	0.54	0.51
1998	0.52	0.41	0.52	0.39	0.50	0.47
1999	0.49	0.39	0.49	0.36	0.48	0.45
2000	0.48	0.37	0.47	0.35	0.47	0.43

Table A-9: Fraction of individuals that maintain treatment status over time

Notes: The unit of observation is an individual that resided in one of the 520 neighborhoods included in our analysis in the base year. The Treatment columns depict the fraction of individuals that resided in a neighborhood with an immigrant share above the candidate threshold in the base year and remained in a neighborhood with an immigrant share above the threshold in year t. The Control columns depict the fraction of individuals that resided in a neighborhood with an immigrant share below the candidate threshold in the base year and remained in a neighborhood with an immigrant share below the candidate threshold in the base year and remained in a neighborhood with an immigrant share below the candidate threshold in year t.

Table A-10: Neighborhood population
density

	All	Stockholm	Gothenburg	Malmo
Mean	4074.34	2437.36	5595.21	5326.58
S.D.	4535.89	2992.11	5390.15	4414.88

Notes: Authors' own calculations based on information on land size from Jan Amcoff and data from IFAU. See Amcoff (2012) for detailed information on how the density measure was constructed.

Table A-11: Tipping behavior of neighboring neighborhoods

		Standard	No Tipped	All Neighbors	Number of Tipped
	Mean	Deviation	Neighbors	Tipped	Neighborhoods
All	0.62	0.35	0.12	0.25	459
Stockholm	0.43	0.29	0.17	0.08	166
Gothenburg	0.75	0.34	0.09	0.53	208
Malmo	0.65	0.31	0.09	0.24	85

Notes: Authors' own calculations using Statistic Sweden's SAMS Atlas. In a first step, neighborhoods with immigrant shares above the threshold in the base year are identified. In a second step, the SAMS Atlas is used to obtain the names of the neighborhoods surrounding the tipped neighborhoods. Finally,data from IFAU is used to identify the fraction of these neighborhoods that have tipped.

	Self-Employment Income	Employment Income	Government-Fundec Benefits	
Panel A: Immigrants	Theome	meome	Denentis	
i. Intensive Margin				
Beyond TP	-0.220	0.026	0.015	
	(0.171)	(0.045)	(0.068)	
Observations	1803	16007	6704	
ii. Extensive Margin				
Beyond TP	0.009	0.018	-0.007	
v	(0.006)	(0.020)	(0.014)	
Observations	23253	23253	23253	
Panel B: Natives				
i. Intensive Margin				
Beyond TP	-0.136	0.007	-0.020	
•	(0.127)	(0.023)	(0.054)	
Observations	6315	81268	25528	
i. Extensive Margin				
Beyond TP	0.006	-0.003	-0.017**	
·	(0.009)	(0.011)	(0.008)	
Observations	93953	93953	93953	

Table A-12: The reduced form effect of neighborhood
composition on short-term labor market
outcomes

Notes: The unit of observation is an individual born between 1948 and 1958 that resided in one of the 520 neighborhoods included in our analysis that were not used to estimate the location of the tipping point . The results are obtained from estimating equation (3). All specifications include a quartic polynomial in the difference between the neighborhood's minority share and the estimated tipping point. Standard errors are clustered on one percent bins of the running variable. Demographic controls are gender, years of schooling, income and indicators for whether this information was not available for the individual. All models include birth year and metropolitan area fixed effects. All dependent variables are measured in 2000. All controls are measured in 1990. Immigrants refer to individuals born in, or that have at least one parent born in, a non-Western country. *** indicates significance at the 1% level, ** indicates significance at the 5% level and * indicates significance at the 10% level.

 Table A-13: Descriptive statistics of neighborhoods included/excluded from analysis

	Included	Excluded
Fraction Natives	0.81(0.14)	0.82(0.21)
Fraction Females	0.49(0.03)	0.43 (0.17)
Age	$39.33\ (2.97)$	41.02(6.19)
Years Since Migration	17.26(3.92)	17.90(8.12)
Fraction With University Education	$0.10\ (0.08)$	0.08(0.12)
Employment Income (000s SEK)	165.52(46.81)	138.78(70.34)
Fraction on Social Welfare	$0.07 \ (0.09)$	$0.07 \ (0.16)$
Native Growth Rate	$0.09\ (0.30)$	2.48(17.12)
Immigrant Growth Rate	$0.07 \ (0.12)$	0.91(7.02)
Total Growth Rate	$0.15\ (0.33)$	$3.39\ (23.80)$

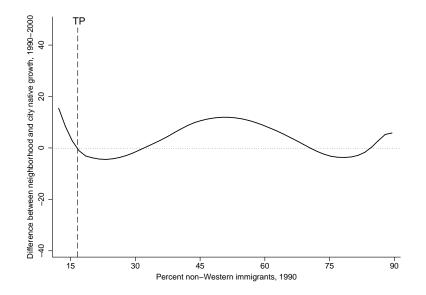
Notes: Authors' own calculations using population-wide registry data from IFAU. Values represent unweighted means, and standard deviations are provided in brackets. Salary refers to income from primary occupation, and includes zeros.

	Economic Activity	Sociodemographi		
	Index	Index		
Neighborhood Analysis				
All	-0.073	-0.339***		
	(0.056)	(0.101)		
Individual-level Analysis				
All	-0.101	-0.260***		
	(0.117)	(0.088)		
Natives	-0.074	-0.239 * * *		
	(0.121)	(0.082)		
Immigrants	-0.107	-0.273**		
	(0.119)	(0.112)		
Stayers	-0.209	-0.303***		
	(0.150)	(0.109)		
Leavers	0.031	-0.157 **		
	(0.086)	(0.083^*)		

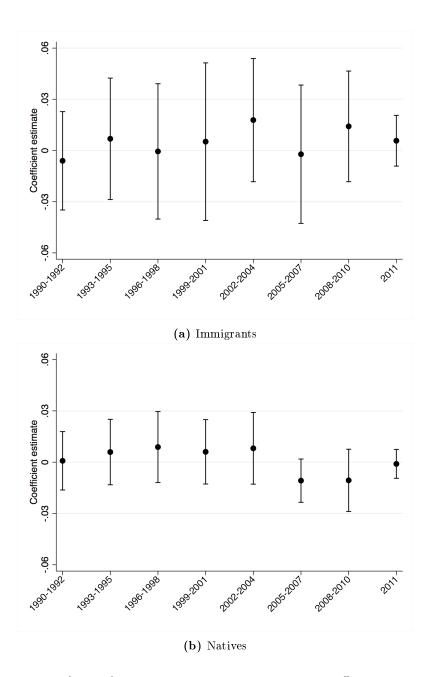
Table A-14: The effect of tipping on neighborhood environment

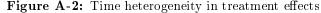
Notes: The unit of observation is an individual that resided in one of the 520 neighborhoods not used to estimate the location of the tipping points. The neighborhood analysis results are obtained from estimating equation (2), while the individual level analysis results are obtained from estimating equation (3). All specifications include a quartic polynomial in the difference between the neighborhood's minority share and the estimated tipping point. Standard errors are clustered on one percent bins of the running variable. Demographic controls are gender, mother's education, father's education, parental income and binaries for whether this information was not available for the individual, all measured in the base year. For the Old Cohort, parental education and income have been replaced with own education and income. All models include birth year and metropolitan area fixed effects. Immigrants refer to individuals born in, or that have at least one parent born in, a non-Western country. The Economic Activity Index is based on three labor market variables (average employment income, average education, and fraction employed) while the Sociodemographic Index is based on four sociodemographic variables (gender balance, age profile, fraction immigrants and fraction on social security benefits). For each of these indices, we use unity-based normalization to bring the values of each of the individual variables into the range [0,1], take their sum, and then standardize the index to have a mean of zero and a standard deviation of one.*** indicates significance at the 1% level, ** indicates significance at the 5% level and * indicates significance at the 10% level.

	9th grade GPA	9th grade Swedish	High School GDP	Years of schooling	Empl. Sample	Empl. Income
	GIA	Sweuisn	GDI	schooling	Sample	Income
Panel A: Young Cohort Population Density	0.880	1.410	0.319	0.021	0.013	0.231
	(1.677)	(1.959)	(1.574)	(0.097)	(0.019)	(0.230)
Excl. Neighborhoods with						
100% Tipped Neighbors	0.749	1.148	0.251	0.034	0.017	0.275
	(1.438)	(1.829)	(1.527)	(0.094)	(0.019)	(0.232)
Excluding Outliers	-2.194	1.111	0.056	-0.015	0.002	0.059
5	(1.612)	(1.823)	(1.661)	(0.098)	(0.023)	(0.285)
Panel B: Middle Cohort						
Population Density	-0.353	-0.458	-0.396	0.153	0.003	0.080
	(1.220)	(2.039)	(1.950)	(0.149)	(0.020)	(0.251)
Excl. Neighborhoods with						
100% Tipped Neighbors	-0.181	-0.530	-0.553	0.154	0.005	0.105
	(1.108)	(2.077)	(1.818)	(0.162)	(0.019)	(0.237)
Excluding Outliers	-1.247	0.041	-0.288	0.199	0.000	0.045
C	(1.300)	(2.109)	(2.117)	(0.161)	(0.019)	(0.241)
Panel C: Old Cohort						
Population Density					0.011	0.111
					(0.026)	(0.331)
Excl. Neighborhoods with						
100% Tipped Neighbors					0.020	0.232
0					(0.028)	(0.353)
Excluding Outliers					0.009	0.125
					(0.029)	(0.376)


Table A-15: The reduced form effect of neighborhood composition on immigrants, sensitivity table

Notes: The unit of observation is an individual that resided in one of the 520 neighborhoods included in our analysis in the base year. The results are obtained from estimating equation (3). All specifications include a quartic polynomial in the difference between the neighborhood's minority share and the estimated tipping point. Standard errors are clustered on one percent bins of the running variable. Demographic controls are gender, mother's education, father's education, parental income and binaries for whether this information was not available for the individual, all measured in the base year. For the Old Cohort, parental education and income have been replaced with own education and income. All models include birth year and metropolitan area fixed effects. Immigrants refer to individuals born in, or that have at least one parent born in, a non-Western country. *** indicates significance at the 1% level.


	9th grade GPA	9th grade Swedish	High school GDP	Years of schooling	Empl. Sample	Empl. Income
Panel A: Young Cohort	UIA	Sweutsn	GDI	schooling	Sample	meome
Population Density	-2.087**	-1.530**	-1.233**	-0.078	-0.005	-0.081
ropulation Density	(0.938)	(0.748)	(0.536)	(0.050)	(0.008)	(0.100)
Excl. Neighborhoods with						
100% Tipped Neighbors	-2.086*	-1.696*	-1.127*	-0.063	0.001	0.013
100% Tipped Neighbors	(1.134)	(0.942)	(0.586)	(0.054)	(0.001)	(0.013)
	(1.134)	(0.942)	(0.580)	(0.034)	(0.007)	(0.090)
Excluding Outliers	-1.905	-1.694*	-1.181*	0.037	0.001	-0.004
5	(1.145)	(0.992)	(0.692)	(0.058)	(0.008)	(0.105)
Panel B: Middle Cohort						
Population Density	-1.402*	-1.912**	-0.034	-0.039	0.001	-0.005
r opanación Donoicy	(0.724)	(0.828)	(0.756)	(0.056)	(0.007)	(0.088)
Excl. Neighborhoods with						
100% Tipped Neighbors	-1.209	-2.001**	-0.046	-0.020	0.002	0.015
100% Tipped Neighbors	(0.732)	(0.867)	(0.771)	(0.059)	(0.002)	(0.013)
	(0.152)	(0.807)	(0.771)	(0.059)	(0.007)	(0.092)
Excluding Outliers	-0.947	-1.677*	0.390	0.009	-0.001	0.008
	(0.681)	(0.901)	(0.893)	(0.060)	(0.007)	(0.101)
Panel C: Old Cohort						
Population Density					-0.010	-0.151
F					(0.012)	(0.163)
					()	()
Excl. Neighborhoods with 100% Tipped Neighbors					-0.002	-0.044
100% Tipped Neighbors						
					(0.012)	(0.168)
Excluding Outliers					-0.010	-0.120
5					(0.012)	(0.168)


Table A-16: The reduced form effect of neighborhood composition on natives, sensitivity table

Notes: The unit of observation is an individual that resided in one of the 520 neighborhoods not used for identifying the location of the tipping points. The results are obtained from estimating equation (3). All specifications include a quartic polynomial in the difference between the neighborhood's minority share and the estimated tipping point. Standard errors are clustered on one percent bins of the running variable. Demographic controls are gender, mother's education, father's education, parental income and binaries for whether this information was not available for the individual, all measured in the base year. For the Old Cohort, parental education and income have been replaced with own education and income. All models include birth year and metropolitan area fixed effects. All models include birth year and municipality fixed effects. Natives refer to individuals not born in, and that do not have a parent born in, a non-Western country. *** indicates significance at the 1% level, ** indicates significance at the 5% level and * indicates significance at the 10% level.

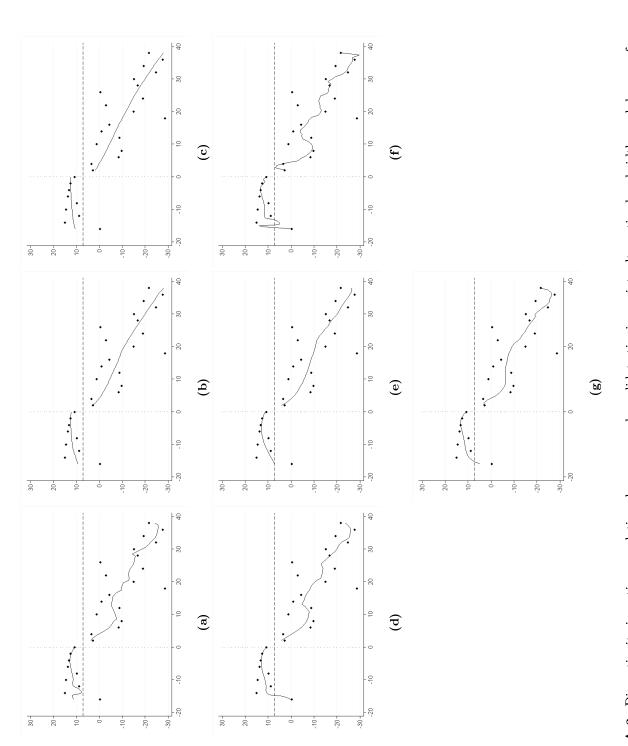


Figure A-1: Illustration of the search method for identifying the tipping point Notes: The figure demonstrates how the location of the tipping point is derived from equation (1) for a hypothetical city. The solid line depicts the growth function of neighborhood native population modelled as a fourth-order polynominal. The horizontal line shows where the dependent variable of equation (1) is equal to zero. The proposed tipping point is located at the intersection of this line and the growth function, denoted by the dashed vertical line. As illustrated in the Figure, and discussed in the text, there can be more than one root, and in such cases we follow Card et al. (2008) and pick the root associated with the most negative slope.

Notes: The unit of observation is an individual born between 1948 and 1958 (Old Cohort) that resided in one of the 520 neighborhoods included in our analysis in the base year not used to identify the location of the tipping points. The figure depicts the point estimates obtained from estimating equation (4) seperateley on three year averages of employment income, stratified by nativity status. All specifications include a quartic polynomial in the difference between the neighborhood's minority share and the estimated tipping point. Standard errors are clustered on one percent bins of the running variable. Demographic controls are gender, educational attainment, income and binaries for whether this information was not available for the individual, all measured in the base year. All models include birth year and municipality fixed effects. Natives refer to individuals not born in, and do not have a parent born in, a non-Western country. The bars depict the 95% confidence intervals associated with each point estimate.

Notes: Dots show mean chance in neighborhood native population growth between 1990 and 2000, grouping neighborhoods into 2% bins by the deviation in immigrant share from the estimated tipping point in the base year. The vertical lines depict the estimated tipping points (normalized to zero). The solid lines represent regressions fitted separately on either side of the tipping point weighted by the size of the neighborhoods and the fraction of the decade that the neighborhood spent above the tipping point, using an Epanechnikov kernel. Only the 1/3 of the sample not used for identifying the location of the tipping points is used for these visual depictions.