A Note on Temporary Supply Shocks with Aggregate Demand Inertia

Ricardo J. Caballero (MIT) Alp Simsek (Yale SOM)

August 2022

Caballero and Simsek ()

Temporary Supply Shocks

August 2022 1 / 23

The inflation debate

OPINION PAUL KRUGMAN

Wonking Out: I'm Still on Team Transitory

Summers Sees Dangerous Policy Parallels With High-Inflation Era

Summers sees 'very serious' danger of repeating mistakes

Summers says being comfortable with faster inflation is a risk

Fed's Powell says high inflation temporary, will 'wane'

By CHRISTOPHER RUGABER June 22, 2021

Powell Says Supply-Side Constraints Have Worsened, Creating More Inflation Risk

Powell Vows to Cool Prices With Hikes That Risk Economy Pain

Fed chief sets aggressive path, stops short of drastic action

Image: A match a ma

• Why did the Fed allow inflation in 2021? An EX ANTE "mistake"?

• If not a "mistake", then why did the Fed reverse course recently?

This paper: Optimal monetary policy with temporary supply shocks

Suppose supply is temporarily low but is expected to come back

Standard NK model: Supply shocks do NOT rationalize inflation or loose monetary policy

• Divine coincidence: CB can stabilize both output and inflation

Two realistic ingredients change that conclusion...

Main ingredient: Aggregate demand inertia

O Aggregate demand inertia (adjustment costs, habits...)

- Demand inertia is typically assumed in quantitative NK models
- Inertia explains the "long and variable" policy transmission lags

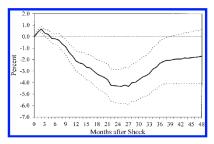


FIGURE 2. THE EFFECT OF MONETARY POLICY ON OUTPUT

Figure: Romer and Romer (2004), "A New Measure of Monetary Shocks..."

Aggregate demand inertia

Expansionary policy constraints: Expanding AD takes time

- AD inertia and a preference to adjust the interest rates gradually
- Constraints on cutting the policy rate (e.g., the zero lower bound)

These ingredients imply that preempting the expansion is valuable...

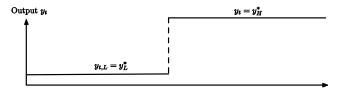
Main results:

- Optimal to run the economy HOT in the low-supply phase
 - Overheating accelerates future recovery once supply recovers
- Policy does NOT keep rates low through entire low-supply phase
 - Demand momentum keeps output high without need for low rates
- **Inertial inflation** \implies Policy gradually "undoes" some overheating
 - Inflation gradually builds up and makes overheating increasingly costly

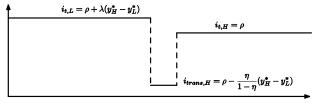
< A

Key ingredients: Demand inertia and policy constraints

- Temporary supply shocks: States $\{L, H\}$ with potential $y_L^* < y_H^*$
 - Start in L and transition to H (absorbing) with probability λ at each t
- IS curve with aggregate demand inertia (η):

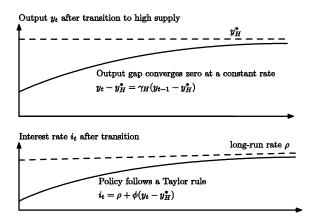

$$y_{t} = \eta y_{t-1} + (1 - \eta) \left(- (i_{t} - \rho) + E_{t} \left[y_{t+1} \right] \right)$$

• Expansionary policy constraint: Taylor rule after transition

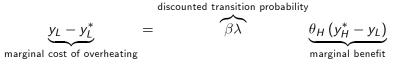

$$i_t \geq \underline{i}_t(y_t) = \rho + \phi(y_t - y_H^*)$$
 if $s_t = H$

• Appendix: Similar results with ZLB constraint $i_t \ge \underline{i}_t (y_t) = 0$

Benchmark without policy constraints: Zero gaps

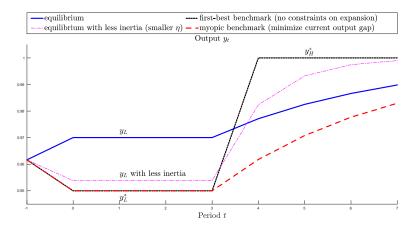

Interest rate i_t

- No expansionary constraints CB achieves zero gaps throughout
- But this requires a large rate cut after transition to high supply


Caballero and Simsek ()

Policy constraints: Gradual recovery after transition

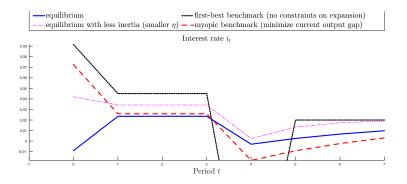
• Inertia: Raising y_{t-1} accelerates recovery and closes the gaps


• **Result:** The CB implements the output $y_L \in (y_L^*, y_H^*)$ that solves:

• A sort of "backward guidance"

Main result: CB overheats output in the supply shock

Current overheating $(y_L > y_L^*)$ vs future demand gaps $(y_L < y_H^*)$



(Result holds when CB is constrained by the **VIB** instead of Taylor rule)

Caballero and Simsek ()

August 2022 12 / 23

Result: CB doesn't keep rates low through the supply shock

• CB frontloads rate cuts and then quickly normalizes the rates

• **Momentum** (high y_{t-1}) keeps output high w/o need for low rates

$$y_t = \eta y_{t-1} + (1 - \eta) \left(- (i_t - \rho) + E_t \left[y_{t+1} \right] \right)$$

Economy with AD inertia in a temporary supply shock

CB wants output at potential - dislikes output gaps A heavy truck approaching a hill

Driver wants constant speed - dislikes high or low speeds

Result: Overheating

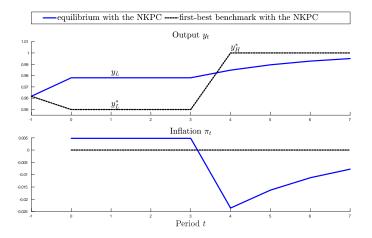
Truck temporarily exceeds its normal speed

Result: Frontloading the rate cuts and normalizing Driver takes foot off the gas once at desired speed

- IS curve depends on the real interest rate $r_t = i_t E_t [\pi_{t+1}]$
- Taylor rule in state s = H can react to output and inflation gaps

$$i_t = \rho + \phi_y \left(y_t - y_H^* \right) + \phi_\pi \pi_t \quad \text{if } s_t = H$$

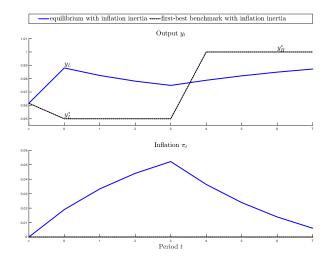
- CB minimizes expected quadratic output and inflation gaps
- Inflation is determined by a Phillips Curve. Two cases...

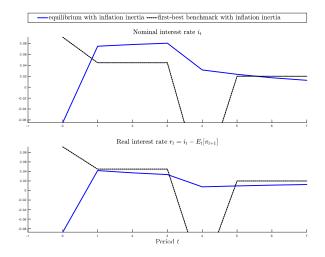

ONEW Keynesian Phillips Curve (forward looking, **no inertia**):

$$\pi_t = \kappa \left(y_t - y_{s_t}^* \right) + \beta E_t \left[\pi_{t+1} \right]$$

Inertial Phillips Curve (backward-looking expectations/indexation):

$$\pi_t = \kappa \left(y_t - y_{s_t}^* \right) + b \pi_{t-1}$$

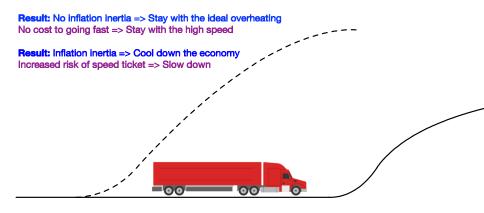

With NKPC (no inertia), our results are mostly the same


CB trades off current output and inflation gaps with future output gaps

Caba	llero	and	Simsek	(

With inertial PC, the CB gradually "undoes" overheating

The nominal rate can exceed its long-run level



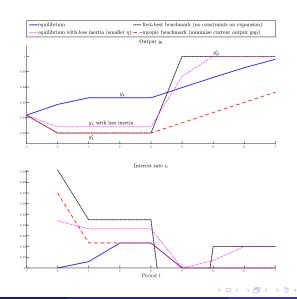
Overheating increases inflation and expected inflation E_t [π_{t+1}]
CB raises i_t to prevent the real rate from rising r_t = i_t - E_t [π_{t+1}]

Caballero and Simsek ()

Supply recovery is delayed relative to CB's expectation

Uphill segment is farther than driver expected

Under realistic ingredients, demand inertia and policy constraints:


- **()** Optimal to run the economy HOT in the low-supply phase
 - The Fed was arguably right to allow for *some* inflation in 2021
- **②** Policy does NOT keep rates low through entire low-supply phase
 - The Fed was arguably too slow to take its foot off the gas
- With inertial inflation, policy gradually "undoes" some overheating
 - The Fed is arguably right to reverse course as inflation built up

Thank you for your attention!

Main result holds in an alternative setup with ZLB

۹.

