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Appendix A: Definition of T

The evolution of the distribution of wealth by type from t to t + 1 can be
described by an operator T that maps pairs of densities of wealth by type at t

to pairs of densities of wealth by type at t + 1. The definition of this operator
T is given by two linked second-order di↵erences equations characterizing the
updating of the distribution of wealth for each type. For n � 1 the di↵erence
equations are for each type j

(A1) gj,t+1(n) = �j [pu,jgj,t(n� 1) + pd,jgj,t(n+ 1) + (1� pu,j � pd,j)gj,t(n)] +

(1� �j) [pu,�jg�j,t(n� 1) + pd,�jg�j,t(n+ 1) + (1� pu,�j � pd,�j)g�j,t(n)] ,

where �j denotes the type opposite to j. For n = 0, this evolution is given by

(A2) gj,t+1(0) = �j [pd,jgj,t(1) + (1� pu,j)gj,t(0)]+

(1� �j) [pd,�jg�j,t(1) + (1� pu,�j)g�j,t(0)] .

When the size of the grid is finite, we have the following additional equation
describing the evolution at n = N

(A3) gj,t+1(N) = �j [pu,jgj,t(N � 1) + (1� pd,j)gj,t(N)] +

(1� �j) [pu,�jg�j,t(N � 1) + (1� pd,�j)g�j,t(N)] .

Appendix B: Setting parameters as �t ! 0

To compare results in our discrete time model with closely related results in
continuous time versions of the model as presented in Luttmer (2016), Gabaix
et al. (2016) and elsewhere, we use the following procedure to adjust the parame-
ters of our model as we change the length of the time period �t. This is done to
consider the limiting implications of our model as the time period gets short. We
set pd,j and pu,j

pd,j
to match annualized means µj and variances �

2
j of innovations

to the logarithm of the idiosyncratic component of assets. Specifically, we set the
grid step size � as a function of the length of a time period �t as

� = �max

p
2�t,
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where �max is the largest annualized standard deviation of innovations to the
logarithm of assets that we consider.

Under the model assumptions regarding the evolution of wealth for each type,
the expected value at t of the innovations to the logarithm of wealth for all
dynasties of type j, except those at the lowest node on the grid, is given by

(B1) Et [logWi,t+1 � logWi,t] = (pu,j � pd,j)�.

The uncentered second moment of these innovations to the logarithm of the id-
iosyncratic component of assets is given by

(B2) Et [logWi,t+1 � logWi,t]
2 = (pu,j + pd,j)�

2
.

We then choose the parameters pd,j and
pu,j
pd,j

so that the expression in equation

(B1) is equal to the target per period mean �tµj , and the expression in equation
(B2) is equal to the target per period uncentered second moment �t�

2
j +�

2
tµ

2
j .

We set the transition probabilities over types as 1 � �j = j�t for fixed target
values of j .

In the case in which dynasties do not switch type, as we shrink the time interval
to zero the tail coe�cients for wealth for each type of dynasty approaches the
standard formulas when log wealth follows a Brownian motion with a reflecting
barrier at the bottom, namely ⇣ss,j = �2µj/�

2
j for j = F,D. To see this, we

use that the tail coe�cient is ⇣ss,j = log
⇣
pu,j
pd,j

⌘
/� when the types do not switch.

Moreover, equations B1 and B2 together with � = �max
p
2�t, imply that

(B3)

log
⇣
pu,j
pd,j

⌘

�
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1
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Taking �t ! 0 implies taking � ! 0, and applying L’Hôpital’s rule to the
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above two terms separately gives us
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(B4) lim
�t!0
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=
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j

Appendix C:
Analytical Solution for the Evolution of the Density of Wealth

In our main proposition, we provide an analytical solution for the evolution of
the density of wealth in the transition to steady-state. We prove that proposition
here.

C1. One-type model

We begin by providing an analytical expression for the evolution of the distri-
bution of wealth in the context of the model with only one type, or, equivalently,
as in the model in which dynasties do not switch types. In the one type model,
the equations (A1) and (A2) can be written as

(C1) gt+1(n) = pugt(n� 1) + pdgt(n+ 1) + (1� pu � pd)gt(n)

(C2) gt+1(0) = pdgt(1) + (1� pu)gt(0).

Champernowne (1953) showed that the stationary distribution implied by these
equations is

gss(n) = (1� �ss)�
n
ss

where �ss = pu
pd
. The stationary distribution exists provided that pu < pd. The

proposition presented in this paper establishes an analytical expression for the
distribution of wealth at each time period of the transitions from one steady
state to another. Specifically, we consider initial distributions of wealth across
dynasties that are of the same form as the steady-state distribution but with a
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di↵erent parameter, �0 6= �ss. That is, we assume that the initial distribution is
of the form

g0(n) = (1� �0)�
n
0 .

To develop our analytical formula in this case, we use the following notation.
Let T be the operator mapping distributions over nodes n of our grid to new dis-
tributions defined by equations (C1) and (C2). Let ⇤0 be a vector corresponding
to the initial distribution g0(n) = (1��0)�n

0 . Let ⇤ss be the distribution to which
the economy converges, gss(n) = (1 � �ss)�n

ss. Let 1 denote a distribution that
places weight 1 on the node n = 0 and weight 0 on every node n � 1. That is, 1
corresponds to the distribution of assets for a cohort of dynasties all starting with
the minimum level of assets. With this notation, we have the following result
stated as a Corollary of our main proposition in the text.
Corollary Assume that the initial distribution at t = 0 of the idiosyncratic

component of assets across dynasties is given by ⇤0 and that the transition prob-
abilities in equations (C1) and (C2) are constant at pd and pu = �sspd so that the
stationary distribution of the idiosyncratic component of assets across dynasties
is given by ⇤ss. Then the distribution at date t implied by equations (C1) and
(C2) is given recursively by

(C3) (gt+1 � ⇤ss) = A (gt � ⇤ss) + (1�A)
�
Tt(1)� ⇤ss

�
,

so that the distribution at time t is given by

(C4) gt = A
t⇤0 + (1�A)

t�1X

k=0

A
t�1�kTk(1)

where A is a scalar given by

A ⌘
✓
pd(1� �0)(

�ss

�0
� 1) + 1

◆
,

Proof: Direct calculation gives that

T(⇤0) = A⇤0 + (1�A)1.

The operator T is linear, and T(⇤ss) = ⇤ss. Repeated application of this operator
to gt+1 = T(gt) starting from g0 = ⇤0 then gives the result (C3). Solving (C3)
forward then implies (C4).

C2. Continuous-time analogue

Aleh Tsyvinski generously provided the continuous-time result presented in this
section. This result is analogous in the sense that it gives an analytical expression
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for the density of the logarithm of wealth at all times during the course of a
transition to steady state from an initial distribution in which the logarithm of
wealth is exponentially distributed (and hence, wealth is Pareto distributed).

In particular, let Xt be a Brownian motion with drift µ = �r < 0 and di↵usion
�, with a reflecting barrier at zero. The transition density pt(x, y) of the process
Xt satisfies the following Kolmogorov backward equation

(C5)
@pt(x, y)

@t
= �r

@pt(x, y)

@x
+

�
2

2

@
2
pt(x, y)

@x2

and the Neumann boundary condition

(C6)
@pt(x, y)

@x

���
x=0

= 0.

The stationary distribution for transition densities pt is exponential with rate
2 r
�2 . To see this, note that with g(x) = 2 r

�2 e
�2 r

�2 x, x > 0, we have

@

@t

Z 1

0
2
r

�2
e
�2 r

�2 xpt(x, y)dx =

Z 1

0
2
r

�2
e
�2 r

�2 x
✓
�r

@pt(x, y)

@x
+

�
2

2

@
2
pt(x, y)

@x2

◆
dx =

Z 1

0

0

@�
@

⇣
re

�2 r
�2 x
⌘

@x
� 2

r
2

�2
e
�2 r

�2 x

1

A @pt(x, y)

@x
dx = 0.

Where the second equality follows from integrating by parts. Consider now a
transition experiment analogous to the one considered in our Corollary above. In
other words, suppose that the initial distribution of the logarithm of wealth is
given by g0(y) = �e

��y
, y > 0. The distribution at time t, which we denote by

gt(y) is then given by

gt(y) =

Z 1

0
g0(x)pt(x, y)dx

Di↵erentiating this (and using integration by parts) we obtain

@gt(y)

@t
=

Z 1

0
�e

��x@pt(x, y)

@t
dx =

Z 1

0
�e

��x

✓
�r
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@x
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�
2

2

@
2
pt(x, y)

@x2

◆
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Z 1

0

0

@�
@

⇣
��2

2 e
��x
⌘

@x
� r�e

��x

1

A @pt(x, y)

@x
dx =

✓
�
2
�
2

2
� r�

◆Z 1

0
e
��x@pt(x, y)

@x
dx
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=

✓
�
2
�
2

2
� r�

◆✓
�pt(0, y) +

Z 1

0
�e

��x
pt(x, y)dx

◆
=

✓
�
2
�
2

2
� r�

◆
(gt(y)� pt(0, y))

In other words, the distribution at time t satisfies the following non-homogeneous
ordinary di↵erential equation

@gt(y)

@t
=

✓
�
2
�
2

2
� r�

◆
(gt(y)� pt(0, y))

Using the initial condition g0(y) = �e
��y we obtain the solution

gt(y) = e

⇣
�2�2

2 �r�
⌘
t
�e

��y �
✓
�
2
�
2

2
� r�

◆Z t

0
e

⇣
�2�2

2 �r�
⌘
(t�s)

ps(0, y)ds

This is analoguous to equation C4 in that it shows that the distribution at time
t is a linear combination of the initial distribution �e

��y, and the distribution of

agents coming up from the bottom,
R t
0 e

⇣
�2�2

2 �r�
⌘
(t�s)

ps(0, y)ds.

C3. Two-type model

In this section, we prove our main Proposition in the model with switching
between the two types. We denote by ⇤i the distribution over nodes given by
⇤i(n) = (1 � �i)�n

i for any �i 2 (0, 1) and for n � 0. We use 1 to denote a
distribution that puts weight one on the node n = 0 and zero on every other
node.
In the two-type model, the operator T defined by equations (A1) and (A2)

maps a pair of distributions by type at t, [gF,t, gD,t]
0 to a pair of distributions by

type at t + 1, [gF,t+1, gD,t+1]
0. Define Tj to be the operator which maps pairs of

distributions at t, [gF,t, gD,t]
0 to the distribution for type j at t + 1. With these

definitions

[gF,t+1, gD,t+1]
0 = T [gF,t, gD,t]

0 =
⇥
TF [gF,t, gD,t]

0
,TD [gF,t, gD,t]

0⇤0

Our main proposition provides an analytical expression for the distribution of
wealth at each time period in the transition between one steady state distribu-
tion and another. Specifically, fix the parameters of the operator T given by
{pu,j , pd,j ,�j}. Let the initial distribution of assets by type be given by

gj,0 = aj,0⇤a + bj,0⇤b

with aj,0+bj,0 = 1 for arbitrary non-negative weights aj,0, bj,0 and arbitrary ⇤a,⇤b

defined by �a,�b 2 [0, 1). Then the following holds:
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Main Proposition In the transition experiment described above the distribu-
tions of wealth by type at date t are given by

(C7)


gF,t

gD,t

�
=


aF,t⇤a

aD,t⇤a

�
+


bF,t⇤b

bD,t⇤b

�
+

t�1X

k=0

Tk


cF,t�k1
cD,t�k1

�
.

where aj,0, bj,0 are given by the initial distributions at t = 0,

(C8)


aF,t+1

aD,t+1

�
=


�FAF (1� �F )AD

(1� �D)AF �DAD

� 
aF,t

aD,t

�

and

(C9)


bF,t+1

bD,t+1

�
=


�FBF (1� �F )BD

(1� �D)BF �DBD

� 
bF,t

bD,t

�

where

(C10) Aj =


1 + pu,j

1� �a

�a
� pd,j(1� �a)

�

(C11) Bj =


1 + pu,j

1� �b

�b
� pd,j(1� �b)

�

and cF,0 = cD,0 = 0 and

cF,t+1 = �F (aF,t + bF,t) + (1� �F )(aD,t + bD,t)� (aF,t+1 + bF,t+1)

cD,t+1 = �D(aD,t + bD,t) + (1� �D)(aF,t + bF,t)� (aD,t+1 + bD,t+1)

Proof: Note that the operator T is linear in acting on pairs of distributions.
Direct calculation gives that

TF


aF,t⇤a

aD,t⇤a

�
= [�FAFaF,t + (1� �F )ADaD,t]⇤a+

[�F (1�AF )aF,t + (1� �F )(1�AD)aD,t]1 =

aF,t+1⇤a + [�FaF,t + (1� �F )aD,t � aF,t+1]1

TF


bF,t⇤b

bD,t⇤b

�
= bF,t+1⇤b + [�F bF,t + (1� �F )bD,t � bF,t+1]1

TD


aF,t⇤a

aD,t⇤a

�
= aD,t+1⇤a + [�DaD,t + (1� �D)aF,t � aD,t+1]1
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TD


bF,t⇤b

bD,t⇤b

�
= bD,t+1⇤b + [�DbD,t + (1� �D)bF,t � bD,t+1]1

These results imply that when the operator T is applied to the initial distribu-
tion at t = 0, the pair of distributions that results at t = 1 is given by


gF,1

gD,1

�
=


aF,1⇤a

aD,1⇤a

�
+


bF,1⇤b

bD,1⇤b

�
+


cF,11
cD,11

�

Now consider applying the operator T to a pair of distributions at t of the form
in equation (7). We get


gF,t+1

gD,t+1

�
= T


gF,t

gD,t

�
=


aF,t+1⇤a

aD,t+1⇤a

�
+


bF,t+1⇤b

bD,t+1⇤b

�
+


cF,t+11
cD,t+11

�
+

t�1X

k=0

Tk+1


cF,t�k1
cD,t�k1

�
=


aF,t+1⇤a

aD,t+1⇤a

�
+


bF,t+1⇤b

bD,t+1⇤b

�
+

tX

k=0

Tk


cF,t+1�k1
cD,t+1�k1

�

which proves the result.

C4. Conditions that the Steady-State Distribution must satisfy

The following are necessary conditions of Steady-State that are useful in our
calibration of the model.

We take as given the parameters of the two-type model �F ,�D, pu,F , pd,F , pu,D, pd,D.
Provided that these parameters are such that equation (7) converges to a steady
state of the form 

gF

gD

�
=


aF⇤a + bF⇤b

aD⇤a + bD⇤b

�

we can characterize the steady state as follows. The steady state distribution
is given by six parameters: �a,�b 2 (0, 1) and aF , aD, bF , bD 2 [0, 1]. These six
parameters have to satisfy the following conditions. The weights aF , aD, bF , bD

have to satisfy
aF + bF = 1

aD + bD = 1

and be a stationary solution to equations (C8) and (C9) with the coe�cients Aj

and Bj given by equations (C10) and (C11). These equations imply that

(C12)
aF

aD
=

(1� �F )AD

(1� �FAF )
=

(1� �DAD)

(1� �D)AF
8



The second of these equations implies

(C13) 0 = 1� (1� �F � �D)AFAD � �DAD � �FAF

Since �AF and �AD are both quadratic in �, we can multiply the left hand side
of (C13) and obtain a fourth order polynomial in � when (1� �F � �D) 6= 0. To
have a unique stationary distribution, one must check that only two of the roots
of this polynomial lie in the interval (0, 1). By convention, �a is the largest root
of this polynomial that lies in the interval (0, 1) and �b is the smaller of the two
roots in this interval. We have that bF and bD solve the analogous equation to
(C12) with �b being the smaller root in (0, 1) of the analog to equation (C13)
defined by BF and BD in place of AF and AD.

Appendix D: The Steady State Distribution of Wealth

We previously provided necessary conditions that the steady-state distribution
must satisfy if it is of a particular form. This appendix shows that the steady
state of the two type model is of the form gj(n) = aj(1��a)�n

a + bj(1��b)�n
a for

j 2 {F,D} provided that a steady state exists. We begin by writing the equations
(A1) and (A2), that define the operator T in the form of matrix equations.

(D1)
xt+1(n+ 1) =  xt(n+ 2) + �xt(n+ 1) +⇥xt(n)

xt+1(0) =  xt(1) + ⌅xt(0)

where xt(n) =


gt,F (n)
gt,D(n)

�
and the following matrices

 =


�F pd,F (1� �F )pd,D

(1� �D)pd,F �Dpd,D

�
, � =


�F ps,F (1� �F )ps,D

(1� �D)ps,F �Dps,D

�

⇥ =


�F pu,F (1� �F )pu,D

(1� �D)pu,F �Dpu,D

�
, ⌅ =


�F (1� pu,F ) (1� �F )(1� pu,D)

(1� �D)(1� pu,F ) �D(1� pu,D)

�

Since our goal is to find the stationary distribution, we consider these equa-
tions with time-subscripts removed. In particular, we want to solve the following
second-order matrix di↵erence equation

(D2) x(n+ 1) =  x(n+ 2) + �x(n+ 1) +⇥x(n)

with the initial condition x(0) =  x(1) + ⌅x(0). To solve this equation, we

rewrite it as a first-order di↵erence equation by letting z(n) =


x(n+ 1)
x(n)

�
and

write the system as follows
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z(n+ 1) = Lz(n), for n � 1

z(0) =


 �1(I2⇥2 � ⌅)x(0)

x(0)

�

with

(D3) L =


 �1(I2⇥2 � �) � �1⇥

I2⇥2 02⇥2

�

The inverse of the matrix  is given by  �1 = 1
�D+�F�1

"
�D
pd,F

�F�1
pd,F

�D�1
pd,D

�F
pd,D

#
. The

inverse exists provided that �F + �D 6= 1 and the probability of moving down
is positive for each type. Provided that L has four distinct eigenvalues we can
diagonalize it and write

(D4) z(n) = L
n
z(0) = P⇤n

P
�1

z(0)

where P is the matrix with the eigenvectors of L as columns, and ⇤ is the
diagonal matrix of eigenvalues. Moreover, we have

(D5) P
�1

z(n) = ⇤n
P

�1
z(0)

so that to ensure that the
P1

n=0 z(n) < 1 holds we need to impose the condition
that

(D6) p̃iz(0) = 0, for every eigenvalue |�i| � 1

where p̃i is a row vector from P
�1 = [p̃1, ..., p̃4]0. Let �a,�b,�c and �d be the

eigenvalues of L. It turns out that L has two eigenvalues that are stable, i.e., less
than 1 in absolute value. Without loss of generality let �a and �b be the stable
eigenvalues. Hence, for i = c, d |�i| � 1. With p̃3z(0) = p̃4z(0) = 0 we can write
equation (D4) as

z(n) = P⇤n

2

664

p̃1

p̃2

p̃3

p̃4

3

775 z(0) = P

2

664

�
n
a p̃1z(0)

�
n
b p̃2z(0)

0
0

3

775 =

2

664

p11�
n
a p̃1z(0) + p12�

n
b p̃2z(0)

p21�
n
a p̃1z(0) + p22�

n
b p̃2z(0)

p31�
n
a p̃1z(0) + p32�

n
b p̃2z(0)

p41�
n
a p̃1z(0) + p42�

n
b p̃2z(0)

3

775

In other words, the pair of densities can be written on the form
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gF (n) = p31p̃1z(0)�
n
a + p32p̃2z(0)�

n
b

gD(n) = p41p̃1z(0)�
n
a + p42p̃2z(0)�

n
b

By defining the weights aF , bF and aD, bD to solve the following system of
equations

(1� �a)aF = p31p̃1


(1� �a)aF�a + (1� �b)bF�b

(1� �a)aF + (1� �b)bF

�
(D7)

(1� �a)aD = p41p̃1


(1� �a)aF�a + (1� �b)bF�b

(1� �a)aF + (1� �b)bF

�
(D8)

(1� �b)bF = p32p̃2


(1� �a)aF�a + (1� �b)bF�b

(1� �a)aF + (1� �b)bF

�
(D9)

(1� �b)bD = p42p̃2


(1� �a)aF�a + (1� �b)bF�b

(1� �a)aF + (1� �b)bF

�
(D10)

we have shown that the stationary distributions can be written as

gF (n) = (1� �a)aF�
n
a + (1� �b)bF�

n
b

gD(n) = (1� �a)aD�
n
a + (1� �b)bD�

n
b

which is what we wanted to show.

Appendix E: Calibration Details

This appendix details the procedure for implementing the baseline calibration of
the model as well as the calibrations considered in various transition experiments.

The time step size �t, the grid step size �, the size of of the grid N , the
maximum standard deviation accomodated by the grid �max and the fraction of
dynasties in the overall population that belong to the di↵erent types, ⌫F and
⌫D, as well as the rate at which family firms diversify, F , are common to all
calibrations. In particular, �t = 1/15000, �max = 0.70, � = �max

p
2�t, N =

50p
�t

, ⌫F = 0.05, ⌫D = 1 � ⌫F = 0.95, and F = 1/15. The relationship between

�t, �max and � ensures that the model is well behaved when �t ! 0, analogous
to when one considers the continuous time limit of a binomial option pricing
model.

With these parameters set directly, we set the remaining four parameters gov-
erning the first two moments of the innovations to log wealth for the two types
of families as described next.
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E1. Baseline calibration

The baseline calibration targets four data moments. These are (a) the steady
state tail coe�cient of top wealth which is set to a target of ⇣ =1.43, (b) the
di↵erence in expected growth rates in the level of wealth of families at the top
0.01% and the bottom of the wealth distribution which is set to a target of 5.69%,
(c) the cross-sectional dispersion of innovations to log wealth for families at the
bottom of the wealth distribution which is set to a target of 8.13%, and (d) the
cross-sectional dispersion of innovations to log wealth for families at the top 0.01%
of the wealth distribution which is set to a target of 35.79%.

The moment (a) is estimated using equation 4 and data on ratios of wealth
shares for the top 0.01% and 0.1% in 2016. This tail coe�cient corresponds to a
ratio of these top shares of 0.5. This lies in between the ratio estimated by Smith,
Zidar and Zwick (2021) and Piketty, Saez and Zucman (2018) that report ratios
of 0.47 and 0.51 in the year 2016, respectively. To illustrate the ranges of values
of that one could use for the ratios of wealth shares, which in turn imply a tail
coe�cients through equation 4, Figure E1 displays the ratio of the top 0.01% to
the top 0.1% wealth shares as well as the top 0.1% to the top 1%. The data comes
from both Piketty, Saez and Zucman (2018) and Smith, Zidar and Zwick (2021).
Note that their findings in each paper that the ratio of the wealth shares of the
top 0.01% to the 0.1% and of the top 0.1% to the top 1% are similar is consistent
with the maintained assumption that the top of the wealth distribution above the
top 1% has a Pareto density with a constant tail coe�cient.

The moment (b) is taken from Bach, Calvet and Sodini (2020) Table 1 column
1. The moments (c) and (d) are taken from Bach, Calvet and Sodini (2020) Table
8, column 1.

Equation 4 can be derived as follows. Assume that the density of log wealth is
geometric with parameter � above some node n̄ on our grid of wealth levels. That
is, let g(n) = ḡ�

n for n > n̄ for some constant ḡ. Let H(n) be the complementary
CDF corresponding to this density. Then H(n) = H̄�

n for n > n̄ for some
constant H̄. With these assumptions, we have that the tail coe�cient of wealth
at nodes n > n̄ is given by ⇣(n) = ⇣top = � log(�)/�.

Let x > y be two top wealth percentiles (for example, the top 0.1% and 0.01%).
Let n(y) > n(x) > n̄ be the cuto↵ nodes for those percentiles. That is, let n(x)
solve

x = H̄�
n(x)

and likewise for n(y). Assume that exp(�)� < 1 so that top wealth shares are
defined. Then the aggregate wealth held by the top x percentile is given by
W (x) = W̄ (exp(�)�)n(x) for some constant W̄ and ratio of the share of wealth
held by the top y to top x percentiles is given by

S(y)

S(x)
= (exp(�)�)n(y)�n(x)
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Figure E1. : Ratios of top wealth shares for the years 1966-2016.

Source: Estimates of top wealth shares are from Piketty, Saez and Zucman (2018) (PSZ) and Smith,
Zidar and Zwick (2021) (SZZ).

This implies that

logS(y)� logS(x) = (n(y)� n(x))(�+ log �) = �(n(y)� n(x))(1� ⇣)

Since
n(x) = (log(x)� log(H))/ log(�)

and likewise for n(y), we have

logS(y)� logS(x) = (log(y)� log(x))(1� 1

⇣
)

which gives equation 4.

E2. Calibration procedure

To hit these four moments, we have 4 parameters: µF , �F , µD and �D. The
subsequent steps of the calibration are the following

1) Guess values for µj and �j , j 2 {F,D}.

2) Compute the corresponding probabilities pu,j and pd,j .

3) Compute the stationary distribution implied by these probabilities
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4) Check what the implied tail coe�cient of the resulting stationary distribu-
tion and check if the di↵erence in average growth rates between the top and
the bottom as well as the target values for dispersion of wealth growth are
obtained.

5) Update guess until targets are hit.

In step 2, we must translate the annualized moments µj and �j , j 2 {F,D} in
to probabilities of moving up and down on the grid. The annualized moments of
the innovations to log wealth for each type are related to the probabilities through
the following equations for the first and second moments of growth in log wealth

µj�t = (pu,j � pd,j)�

�
2
j�t + µ

2
j�

2
t = (pu,j + pd,j)�

2

Solving these equations for the probabilities, using � = �max
p
2�t, gives

pu,j =
1

2


�
2
j
�t

�2
+ µ

2
j
�2

t

�2
+ µj

�t

�

�
=

1

4�2
max

⇥
�
2
j + µ

2
j�t + µj�

⇤

pd,j =
1

2


�
2
j
�t

�2
+ µ

2
j
�2

t

�2
� µj

�t

�

�

Therefore

(E1) pu,j =
1

4�2
max

⇥
�
2
j + µ

2
j�t + µj�

⇤

(E2) pd,j =
1

4�2
max

⇥
�
2
j + µ

2
j�t � µj�

⇤

In step 3, we must compute the stationary distribution. We do this by finding
the two stable eigenvalues of the matrix L defined in equation (D3) in Appendix
D. We know that the steady-state distribution for each type is of the form

gj(n) = aj(1� �a)�
n
a + bj(1� �b)�

n
b

so for high levels of wealth, the tail coe�cient is given by ⇣ss =
1
� log(�a), where

�a is the larger of the two eigenvalues. This is the first of our targets. To fully
specify the stationary distribution we also need to compute the weights aj and
bj . Steady state implies that
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aF

aD
=

(1� �F )AD

(1� �FAF )
(E3)

bF

bD
=

(1� �F )BD

(1� �FBF )
(E4)

where

Aj =


1 + pu,j

1� �a

�a
� pd,j(1� �a)

�
(E5)

Bj =


1 + pu,j

1� �b

�b
� pd,j(1� �b)

�
(E6)

Combining this with the fact that the steady state densities must sum to 1 also
implies that aj + bj = 1, we obtain the system of equations

aF

aD
=

(1� �F )AD

(1� �FAF )
(E7)

1� aF

1� aD
=

(1� �F )BD

(1� �FBF )
(E8)

which implies

aF =
(1� �F )AD

(1� �FAF )
(E9)

1� aF

1� aD
=

(1� �F )BD

(1� �FBF )
(E10)

which can be solved for aF and aD, which in turn imply values for bF = 1� aF

and bD = 1� aD. The overall steady-state distribution of dynasties over nodes is
therefore

(E11) ⌫F gF (n)+⌫DgD(n) = (⌫FaF +⌫DaD)(1��a)�
n
a+(⌫F bF +⌫DbD)(1��b)�

n
b

and the fraction of family firm dynasties at node n is given by

(E12) ⌫F (n) =
⌫F (aF (1� �a)�n

a + (1� aF )(1� �b)�n
b )

(⌫FaF + ⌫DaD)(1� �a)�n
a + (1� ⌫FaF � ⌫DaD)(1� �b)�n

b

which can be used to calculate node-specific moments. In particular, the average
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growth rate of wealth and the dispersion of log wealth growth at node n is given
by

ḡn = ⌫F (n)(µF + 0.5�2
F ) + (1� ⌫F (n))(µD + 0.5�2

D)

(E13)

�̄
2
n = ((µ2

F + �
2
F )⌫F (n) + (1� ⌫F (n))(µ

2
D + �

2
D)� (µF ⌫F (n) + µD(1� ⌫F (n)))

2
(E14)

These formulas are the formulas for the moments of a mixture of two normal
distributions. Recall that target (b) is ḡN �g

0
= 0.0569, target (c) is �̄0 = 0.0813

and target (d) is �̄ntop0.01%
= 0.3579. The node ntop0.01% is defined through the

relationship

G(ntop0.01%) ⌘
NX

ntop0.01%

g(n) = 0.0001

We use the MATLAB function ’fsolve’ to find values of µj and �j that hit
these targets. The resulting parameters are reported in row A of Table 1. We
can compute the excess kurtosis at node n implied by this calibration using the
following formula

(E15)

ex kurtosis(n) =
⌫F (n)

�
µ
4
F + 6µ2

F�
2
F + 3�4

F

�
+ ⌫D(n)

�
µ
4
D + 6µ2

D�
2
D + 3�4

D

�
�
⌫F (n)

�
µ
2
F + �

2
F

�
+ ⌫D(n)

�
µ
2
D + �

2
D

��2 � 3

Table E1 reports the excess kurtosis implied by the baseline calibration and
compares it to the excess kurtosis reported by Gomez (2021).

Table E1—: Excess Kurtosis of Innovations to Top Wealth

Data 6.58
Baseline 1.31

Note: The data on excess kurtosis for the Forbes 400 is from panel b) of Table 2 of Gomez (2021) for
the period 1983-2017. The percentile used for the Forbes 400 in our model is the top 0.0003 percentile.

Gomez (2021) also reports that less than 10% of the members of the 1983 cohort
of the Forbes 400 list were still members in 2017. When we compute this measure
of persistence in the membership of the Forbes 400 in the context of the steady
state of our baseline calibration we obtain that about 7% of the members of the
Forbes 400 are still members over a 34 year period.
We calibrated our model to match the di↵erences in the expected growth rate

of wealth and cross section dispersion of innovations to wealth at the top and the
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bottom of the wealth distribution. To evaluate how well our model fits the data
at intermediate levels of wealth, in Figure E2, in the left panel (E2a), we show
the expected growth in the level of wealth for dynasties at each wealth percentile,
and in the right panel (E2b), we show the corresponding cross section dispersion
of growth rates of the logarithm of wealth at each wealth percentile implied by
these changing fractions of dynasties of each type by wealth level. The red dots
in these figures correspond to the data in Tables 1 and 8 of Bach, Calvet and
Sodini (2020).
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Figure E2. : Moments of innovations to wealth across the distribution:

Note: The left panel (E2a) shows the di↵erence in the expected growth rate of the level of wealth for
dynasties at di↵erent percentiles of the steady-state distribution of wealth relative to the bottom of the
distribution. The right panel (E2b) shows the corresponding dispersion of innovations to the logarithm
of wealth. These moments of innovations to wealth di↵er across families at di↵erent percentiles of the
wealth distribution because the mix of dynasties with family firms and with diversified portfolios varies
with the level of wealth.

E3. Transition experiments

Once we have the parameters governing the growth of wealth, we can compute
the evolution over time of a given distribution of wealth. This is done by applying
the T operator repeatedly to a given initial distribution. The T operator is defined
by equation D1. For instance, to compute the tail coe�cient at node n at time
t + 1 given a vector of distributions of wealth by type at time t, xt, we apply
equations D1 to obtain xt+1. We then obtain the overal distribution of wealth as
gt+1(n) = [⌫F , ⌫D] · xt+1(n), which we use to compute the negative of the slope
of the CCDF at the given node n. There is a question about what to do about
at the last node of the grid. We impose a reflecting barrier at the top of the
grid analogous to the one at the bottom. However, the grid size is so large that
the mass at the top of the grid is very close to zero. In the numerical examples
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we compute, it does not seem to matter if one puts a reflecting barrier at the
top or not. To understand this, consider the version of the model when types
do not switch. As long as pu,j/pd,j < 1, the mass at the top of the grid is going
to be negligible if the grid size is large enough since the mass is proportional to
�
n
j,ss = (pu,j/pd,j)

n.

E4. Calibration of alternative experiments presented in Section III

We conduct a series of quantitative experiments. This appendix describes the
calibration procedures of those experiments.
The first two counterfactual experiments are presented in Section III of the

paper. Relative to the calibration procedure for the baseline, these two exper-
iments replace the target for the dispersion of wealth growth at the top with
directly setting the volatility of the F type. In particular, the first experiment
sets �F = 0.3306, while the second sets �F = 0.2204. Recall that the baseline cal-
ibration does not set �F directly, but the the implied value for this parameter in
the baseline calibration is �F = 0.4409. The values for the calibrated parameters
are presented in rows B and C of Table 1 of the paper.
In addition, when computing the persistence of membership in the Forbes 400,

these alternative calibrations feature higher persistence than in the baseline and
in the data reported by Gomez (2021). In particular, Gomez (2021) reports that
less than 10% of the Forbes 400 cohort of 1983 were still on the list 33 years later.
The corresponding number in the baseline calibration is around 7% while it is
closer to 13% and 21% in the two alternative calibrations discussed here.

E5. Additional quantitative experiments

As robustness checks, we also consider three additional quantitative experi-
ments in this appendix. In the first two additional experiments, we examine the
results of calibrations wherein the volatility of the F type is reduced in the same
manner as the two alternative calibrations presented in Section III of the paper,
while the target for the di↵erence in mean growth rates across the wealth dis-
tribution is simultaneously doubled. In other words, relative to the alternative
calibrations considered in Section III, we now also change the calibration target
b) to ḡN � ḡ0 = 0.1138. Increasing the target di↵erence in mean growth rates is
meant to gauge the extent to which larger di↵erences in mean growth rates be-
tween the types rather than the very high volatility of the F type can account for
the prevalence of new large fortunes and rapid transitions of top wealth inequality.
The following Table E2 presents the values of the calibrated parameters. Figure
E3 compares the fraction of the Forbes 400 members that where at the bottom
within the last k years and the transition of ratios of top wealth shares between
these alternative calibrations and the baseline calibration. We see that the pres-
ence of a substantially larger di↵erence in mean growth rates across the wealth
distribution is not enough to compensate for the absence of the high volatility of
the F type that is characteristic of the baseline calibration.
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Table E2—: Calibrated Parameters in the Baseline and Alternative Calibrations

Parameters gF gD �F �D ⌫F F

A (Baseline) 0.0035 �0.0847 0.4409 0.0779 0.05 0.067
D 0.0223 �0.1319 0.3306 0.0798 0.05 0.067
E 0.0352 �0.1221 0.2204 0.0805 0.05 0.067
F 0.0068 �0.0828 0.4441 0.0778 0.05 0.067

Targets ⇣ss ḡ � g �̄bottom �̄ntop0.01%
�F

A (Baseline) 1.43 0.0569 0.0813 0.3579 N/A
D 1.43 0.1138 0.0813 N/A 0.3306
E 1.43 0.1138 0.0813 N/A 0.2204
F 1.4 0.0569 0.0813 N/A 0.3579

Note: Calibrated parameters in the baseline as well as the alternative calibrations D and E where the
volatility of the F type is reduced to 75% and 50% of its baseline value, respectively, while the targeted
di↵erence in growth rates between the top and the bottom of the wealth distribution is doubled relative to
the baseline. Alternative calibration F instead features a lower target for the steady state tail coe�cient.

The final alternative calibration we consider is one in which the target steady
state wealth coe�cient is set to ⇣ss = 1.4 instead of the baseline value of ⇣ss = 1.43.
This is motivated by the following two reasons. First, there is some discrepancy
between the ratios of top wealth shares reported by Piketty, Saez and Zucman
(2018) and Smith, Zidar and Zwick (2021). Second, the mapping between ratios
of top wealth shares in equation 4 is a steady state relationship. It is entirely
possible that the parameters governing wealth growth at a specific point in time
are associated with a di↵erent steady state than what the current ratio of top
wealth shares would imply. The resulting parameter values are reported in row
F of Table E2. Figure E4 plots the transition of the tail coe�cient as well as the
evolution of the ratio of the top 0.01% to the top 0.1% wealth shares with this
alternative target together with data from Piketty, Saez and Zucman (2018) and
Smith, Zidar and Zwick (2021). We see that the lower target value for the steady
state distribution implies that the transition is somewhat faster.

Appendix F:
A Spectral Analysis of the Dynamics of the Distribution

In this paper, we provide an analytical expression for the dynamics of the
distribution of wealth over time as it converges to steady-state if the initial dis-
tribution of wealth is in a certain class of distributions. Gabaix et al. (2016) use
an alternative approach to analyze the dynamics of the distribution of wealth to
steady-state based on a spectral analysis of these dynamics in continuous time. In
this appendix, we provide direct analogs of their spectral analysis in our discrete

19



1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9
1 t

A (Baseline)
D
E
SZZ (2021)
PSZ (2018)

(a) Tail coe�cient.

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Years

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

R
at

io
 o

f t
op

 0
.1

%
 to

 0
.0

1%
 to

p 
w

ea
lth

 sh
ar

es

A (Baseline)
D
E
SZZ (2021)
PSZ (2018)

(b) Ratio of top wealth shares

Figure E3. : Transition Results from Baseline and Alternative Calibrations

Note: This figure displays comparisons along two dimensions of the baseline calibration A with the
alternative calibrations, D and E. In calibrations D and E the value of �F is set to 75% and 50% of its
baseline value, respectively, while the target di↵erence in mean growth rates across the wealth distribution
is doubled. Figure (E3a) compares the transition of the tail coe�cient, and Figure (E3b) considers the
transition of the ratio of the top 0.01% to the top 0.1% wealth shares. Along both dimensions, the
presence of a minority of dynasties with very high idiosyncratic volatility is important for obtaining
rapid transitions. The transition is computed for the years 1966-2016. Marked are also the data from
Smith, Zidar and Zwick (2021) (circles) and Piketty, Saez and Zucman (2018) (triangles). These are the
ratios of the top 0.01% to the top 0.1% wealth shares and the implied tail coe�cient using equation 4.

time - discrete state setting with the model restricted to have only one type by
analyzing the eigenvalues and eigenvectors of our operator T in the version of our
model with only one type of dynasty.

To prove their results, Gabaix et al. (2016) impose a boundedness assumption on
tail coe�cients of the distributions of wealth under consideration that is described
in their Assumption 1. Here, we consider a related bound by computing the
eigenvalues and eigenvectors of our operator T when the grid of wealth levels
is finite (so N < 1). In this case, this operator T is simply a square Markov
transition matrix of size (N + 1)⇥ (N + 1), so the calculation of eigenvalues and
eigenvectors is standard. As is the case with finite Markov transition matrices, the
largest eigenvalue is equal to one, and the speed of convergence of the distribution
to steady-state is related to the size of the second largest eigenvalue, which is less
than one. We are able to compute this second largest eigenvalue and consider its
limiting value as N ! 1. We find that this limiting value of the second largest
eigenvalues of our finite Markov transition matrix T as N grows large corresponds
to the formula found in Gabaix et al. (2016) Proposition 1.

We present this analysis for two reasons. First, it may be of interest to readers
wishing to better understand spectral methods for analyzing dynamics of distri-
butions. Second, it allows us to highlight two di↵erences between the analytical
characterization of the dynamics of the distribution of wealth that we present in
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Figure E4. : Transition Results from Final Alternative Calibration

Note: This figure displays the transition of the tail coe�cient as well as the ratio of the top 0.01% wealth
share to the top 0.1% wealth share when the target steady state tail coe�cient is ⇣ss = 1.4 instead of
the baseline value ⇣ss = 1.43. The transition is computed for the years 1966-2016. Marked are also the
data from Smith, Zidar and Zwick (2021) (circles) and Piketty, Saez and Zucman (2018) (triangles).

our paper and those obtained using spectral methods. These are, first, that our
analysis does not require that we impose a bound on the tail coe�cient of the
initial distribution under consideration. Second, and more important, our analy-
sis directly highlights the connection between the speed of wealth mobility from
the bottom of the wealth distribution to the top and the dynamics of the shape
of the top of the wealth distribution as it converges to steady state.

F1. The eigenvalue problem of T

In the version of the model with one type, the operator T that maps a distri-
bution g at time t to a distribution T(g) at time t+1 can be defined through the
following equations
For 0 < n < N ,

(F1) T(g)(n) = pug(n� 1) + (1� pu � pd)g(n) + pdg(n+ 1)

for n = 0

(F2) T(g)(0) = (1� pu)g(0) + pdg(1)

and, if N < 1, for n = N

(F3) T(g)(N) = (1� pd)g(N) + pug(N � 1)

The eigenvalue problem �g = T(g) is therefore defined by the following equa-
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tions:

For 0 < n < N ,

(F4) �g(n) = pug(n� 1) + (1� pu � pd)g(n) + pdg(n+ 1),

for n = 0

(F5) �g(0) = (1� pu)g(0) + pdg(1)

and, if N < 1, for n = N

(F6) �g(N) = (1� pd)g(N) + pug(N � 1)

Note that when N < 1, T can be represented by an N + 1⇥N + 1 matrix P

of the form

(F7) P =

0

BBBBBBB@

1� pu pd 0 . . . . . . . . . 0
pu 1� pu � pd pd 0 . . . . . . 0
0 pu 1� pu � pd pd 0 . . . 0
... 0

. . .
. . .

. . . . . . 0
0 . . . . . . 0 pu 1� pd � pu pd

0 . . . . . . 0 0 pu 1� pd

1

CCCCCCCA

So that for all g given by vectors of size N + 1⇥ 1,

T(g) = Pg

Thus, the eigenvalue problem for T corresponds to finding the eigenvalues of P .

Note that the matrix P is not symmetric. Similarly, when N = 1, T is not self-
adjoint. This prevents a direct application of the Spectral Theorem for analyzing
the eigenvalue problem presented above.

Following Lemma 6 in Gabaix et al. (2016), we analyze a related operator S
that is self-adjoint and which, under certain conditions discussed below, has the
same eigenvalues as T.

We define this related self-adjoint operator S as follows. For each n, scale the

equations (F1)-(F3) that define the operator T by a factor
⇣p

pd/pu

⌘n
. This

gives the equations
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✓
pd

pu

◆n/2

T(g)(n) = pu

✓
pd

pu

◆n/2

g(n� 1) + (1� pu � pd)

✓
pd

pu

◆n/2

g(n) + pd

✓
pd

pu

◆n/2

g(n+ 1)

T(g)(0) = (1� pu)g(0) + pdg(1)
✓
pd

pu

◆N/2

T(g)(N) = (1� pd)

✓
pd

pu

◆N/2

g(N) + pu

✓
pd

pu

◆N/2

g(N � 1)

For any vector g, let h(n) = g(n)
⇣p

pd/pu

⌘n
. We will use the notation hg refer

to this vector. For N < 1, define the operator S by

(F8) S(h)(n) =
✓
pd

pu

◆n/2

T(g)(n)

In other words, S is defined by the following set of equations:
For 0 < n < N ,

(F9) S(h)(n) = (
p
pupd)h(n� 1) + (1� pu � pd)h(n) + (

p
pupd)h(n+ 1)

for n = 0,

(F10) S(h)(0) = (1� pu)h(0) + (
p
pupd)h(1)

and, if N < 1

(F11) S(h)(N) = (1� pd)h(N) + (
p
pupd)h(N � 1)

As with the operator T, for fixed N < 1, the operator S can be represented as
an N + 1⇥N + 1 matrix Q:

(F12)

Q =

0

BBBBBBB@

1� pu
p
pupd 0 . . . . . . . . . 0p

pdpu 1� pu � pd
p
pupd 0 . . . . . . 0

0
p
pupd 1� pu � pd

p
pupd 0 . . . 0

... 0
. . .

. . .
. . . . . . 0

0 . . . . . . 0
p
pupd 1� pu � pd

p
pupd

0 . . . . . . 0 0
p
pupd 1� pd

1

CCCCCCCA

That is, for all h given by vectors of size N + 1⇥ 1,

S(h) = Qh

Note that for any fixed N  1, we can recover the dynamics of g from the

23



dynamics of h. That is, if we start from g0, we construct h0(n) = g0(n)
⇣

pd
pu

⌘n/2
.

We then construct ht by applying the operator S, t times, or, equivalently, when
N < 1

ht = Q
t
h0

We then can construct gt from gt(n) = ht(n)
⇣p

pu/pd

⌘n
.

Note as well that when N < 1 the matrix Q is real valued and symmetric.
That is

Q(i, j) = Q(j, i), 8i, j
Thus, we have that when N < 1 the eigenvalues of Q are real, that the eigenvec-
tors are orthogonal, and that the Spectral Theorem for finite dimensional spaces
applies. That is, we can diagonalize Q and use that eigenvalue-eigenvector de-
composition to characterize the dynamics of ht.

The eigenvalue problem �h = S(h) can be written

(F13) �h(n) = (
p
pupd)h(n� 1) + (1� pu � pd)h(n) + (

p
pupd)h(n+ 1)

for 0 < n < N and for n = 0

(F14) �h(0) = (1� pu)h(0) + (
p
pupd)h(1)

and, if N < 1, for n = N

(F15) �h(N) = (1� pd)h(N) + (
p
pupd)h(N � 1)

Direct comparison of these two eigenvalue problems gives us our first proposi-
tion:

Proposition F1: When N < 1, the set of N + 1 eigenvalues {�k}N+1
k=1 of the

two operators T and S are the same, and the eigenvectors of the two eigenvalue
problems are related by h(n;�k) = (

p
pd/pu)ng(n;�k).

To prove this proposition, observe that the operators satisfy S(h)(n) =
⇣

pd
pu

⌘n/2
T(g)(n)

for any two vectors h and g such that h(n) = (
p
pd/pu)ng(n). Suppose that �k

is an eigenvalue of S, and that h(n;�k) is the corresponding eigenvector, then for
all 0  n  N :
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S(h)(n) = �kh(n;�k)

,
✓
pd

pu

◆n/2

T(g)(n) = �kh(n;�k)

,
T(g)(n) = �kg(n;�k)

So that �k is also an eigenvalue of T, with g(n;�k) being the corresponding
eigenvector. By the same argument, if �k is an eigenvalue of T, with g(n;�k)
being the corresponding eigenvector, then �k is an eigenvalue of S, with h(n;�k)
as the corresponding eigenvector.

Note that equations (F4) and (F13) in the eigenvalue problems for the operators
T and S are both regular homogeneous second-order di↵erence equation with
constant coe�cients. For a given eigenvalue, �, the characteristic equations for
these two di↵erence equations are as follows

(F16) k(�)2 � (�� 1 + pu + pd)

pd
k(�) +

pu

pd
= 0

(F17) m(�)2 � (�� 1 + pu + pd)p
pupd

m(�) + 1 = 0

The characteristic equation for the eigenvalue problem for the operator T has
the two solutions

k1(�) =
(�� 1 + pu + pd)

2pd
+

p
(�� 1 + pu + pd)2 � 4pupd

2pd
(F18)

k2(�) =
(�� 1 + pu + pd)

2pd
�
p

(�� 1 + pu + pd)2 � 4pupd
2pd

(F19)

while that for the operator S has the two solutions

m1(�) =
(�� 1 + pu + pd)

2
p
pupd

+

p
(�� 1 + pu + pd)2 � 4pupd

2
p
pupd

=
p
pd/puk1(�)

(F20)

m2(�) =
(�� 1 + pu + pd)

2
p
pupd

�
p
(�� 1 + pu + pd)2 � 4pupd

2
p
pupd

=
p
pd/puk2(�)

(F21)
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Note that these roots of these characteristic equations are both real whenever

(F22) (�� 1 + pu + pd)
2 � 4pupd � 0

and are complex conjugates of each other whenever

(F23) (�� 1 + pu + pd)
2 � 4pupd < 0

Define the cuto↵s �̄ and � as the two solutions to

(�� 1 + pu + pd)
2 � 4pupd = 0

These are given by

(F24) �̄ = 1� (pu + pd) + 2
p
pupd

and

(F25) � = 1� (pu + pd)� 2
p
pupd

we have 1 > �̄ > �. We distinguish between three cases surrounding the larger
cuto↵ point �̄:

1. In the interval (�̄, 1), the characteristic equations corresponding to the dif-
ference equations (F4) and (F13) have two distinct real roots, and the so-
lutions to the di↵erence equations are of the form

(F26) g(n;�) = a1(�)k1(�)
n + a2(�)k2(�)

n

(F27) h(n;�) = a1(�)m1(�)
n + a2(�)m2(�)

n

respectively. Here the parameters a1(�) and a2(�) are to be chosen to match
boundary conditions.

2. At �̄, the characteristic equations have one real root and the solutions to
the di↵erence equations are of the form

(F28) g(n;�) = (a1(�) + na2(�)) k(�)
n

(F29) h(n;�) = (a1(�) + na2(�))m2(�)
n

3. When � 2 (�, �̄), the roots of the two characteristic equations are complex
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and the solution to the di↵erence equations can be written

(F30) g(n;�) =
⇣p

pu/pd

⌘n
a(�) cos (✓(�)n+ !(�))

(F31) h(n;�) = a(�) cos (✓(�)n+ !(�))

where

(F32) ✓(�) = cos�1

✓
(�� 1 + pu + pd)

2
p
pdpu

◆

and a(�) and !(�) are to be chosen to match boundary conditions

[a1(�)m1(�) + a2(�)m2(�)]

(a1(�)m1(�)
N + a2(�)m2(�)

N )(�� 1 + pd) = (
p
pupd)

⇥
a1(�)m1(�)

N�1 + a2(�)m2(�)
N�1

⇤

these in turn imply

a1(�) = �
✓
�� 1 + pu � (

p
pdpu)m2(�)

�� 1 + pu � (
p
pdpu)m1(�)

◆
a2(�)

a1(�) = �
✓
m2(�)

m1(�)

◆N ✓
�� 1 + pd � (

p
pdpu)m2(�)�1

�� 1 + pd � (
p
pdpu)m1(�)�1

◆
a2(�)

Hence, � is an eigenvalue if and only if

(F33)✓
�� 1 + pu � (

p
pdpu)m2(�)

�� 1 + pu � (
p
pdpu)m1(�)

◆
=

✓
m2(�)

m1(�)

◆N ✓
�� 1 + pd � (

p
pdpu)m2(�)�1

�� 1 + pd � (
p
pdpu)m1(�)�1

◆

Recall that when � 2 (�̄, 1), m1(�) > 1 > m2(�). Hence, the left-hand side of
(F33) is larger than 1. But, the right-hand side is smaller than 1 for the same
reason. Hence, there are no eigenvalues in the interval � 2 (�̄, 1), when N is
finite. A similar argument can be used to rule out eigenvalues smaller than �.
We thus have the following proposition
Proposition F2: For N < 1, all eigenvalues of the operator S that are less

than 1 lie in the interval (�, �̄).
Since S and T have the same eigenvalues when N < 1, the proposition holds

for the operator T as well.
Next, we show how to find the N + 1 eigenvalues. Since all eigenvalues lie in

the interval (�, �̄), we know that for a given eigenvalue �, the eigenvectors are of
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of the form (F31) corresponding to complex roots of the characteristic equation
associated with the di↵erence equation defining S:

h(n;�) = a(�) cos (✓(�)n+ !(�))

To pin down !(�) for a given eigenvalue �, we use the lower boundary condition
(F14) and the fact that cos (x+ y) = cos(y) cos(x)� sin(y) sin(x). This gives us

0 = (1� pu � �)h(0;�) + (
p
pupd)h(1;�)

,
0 = (1� pu � �) cos(!(�)) + (

p
pupd) [cos(!(�)) cos(✓(�))� sin(!(�)) sin(✓(�))]

This condition can in turn be written

�� 1 + pu � pd

2
p
pupd

= � sin(✓(�)) tan(!(�))

by using (F32). Moreover, note that

sin(✓(�)) =

 
1�

✓
(�� 1 + pu + pd)

2
p
pdpu

◆2
!1/2

since ✓(�) = cos�1
⇣
(��1+pu+pd)

2
p
pdpu

⌘
, so we can solve for !(�) as:

(F34) !(�) = arctan

0

BBB@
�

⇣
��1+pu�pd

2
p
pupd

⌘

✓
1�

⇣
(��1+pu+pd)

2
p
pdpu

⌘2◆1/2

1

CCCA

We can then find all eigenvalues as solutions to the upper boundary condition
(F15) plugging in the above expressions for ✓(�) and !(�):

(F35) (�� 1 + pd) cos (✓(�)N + !(�))� (
p
pupd) cos (✓(�)(N � 1) + !(�)) = 0

where ✓(�) and !(�) are given by (F32) and (F34), respectively. In figure F1,
we plot the left-hand side of (F35) for increasing N . The eigenvalues are the
points at which the left-hand side of (F35) is equal to zero.
We see that as N grows, the eigenvalues successively fill out the entire interval

(�, �̄). This shows that the second largest eigenvalue in a model with a finite grid
approaches �̄ as the size of the grid grows.
In conclusion, an upper bound on the second largest eigenvalue of the operator

T is given by �̄. To relate this to Gabaix et al. (2016) we compute the continuous
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(a) N = 10
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(b) N = 50
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(c) N = 2000

Figure F1. : Roots of the upper boundary condition

Note: Roots of the upper boundary condition for N = 10, N = 50, and N = 2000. The red line indicates
the interval (�, �̄)

time analogue of �̄:

lim
�t!0

� 1

�t
log(�̄)

and show that it is equal to µ2

2�2 which is the same value they obtain. To show
this we first rewrite �̄ in terms of the annualized moments µ and � using equations
(E1) and (E2), and then apply L’Hôpital’s rule. Specifically, we can rewrite �̄ as
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�̄ = 1� pu � pd + 2
p
pdpu

= 1�
✓
�t

�2
�
2 +

�2
t

�2
µ
2

◆
+ 2

s
1

4

✓✓
�t

�2
�2 +

�2
t

�2
µ2

◆
+
�t

�
µ

◆✓✓
�t

�2
�2 +

�2
t

�2
µ2

◆
� �t

�
µ

◆

= 1�
✓
�t

�2
�
2 +

�2
t

�2
µ
2

◆
+

s✓
�t

�2
�2 +

�2
t

�2
µ2

◆2

� �2
t

�2
µ2

= 1�
�
c�

2 + c�tµ
2
�
+
q
(c�2 + c�tµ

2)2 � c�tµ
2

where c = 1
2�2

max
is a constant. To use L’Hôpital’s rule we need to compute

d
d�t

log(�̄), which is given by

d

d�t
log(�̄) =

�cµ
2 + 2(c�2+c�tµ2)cµ2�cµ2

2
p

(c�2+c�tµ2)2�c�tµ2

1� (c�2 + c�tµ
2) +

q
(c�2 + c�tµ

2)2 � c�tµ
2

Letting �t ! 0 we have

d

d�t
log(�̄) !

�cµ
2 + 2c2�2µ2�cµ2

2c�2

1
=

�µ
2

2�2

So by L’Hôpital’s

lim
�t!1

� 1

�t
log(�̄) = lim

�t!1
�

d
d�t

log(�̄)

1
=

µ
2

2�2

which is what we wanted to show.
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