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Abstract

In this Supplementary Appendix we prove the results in Section 4: More Actions from the

main text and provide results for the five-policy case. For Online Publication only.

A. Proof of Results from Section 4

Proof of Proposition 3. We start with p < v. The payoff matrix is displayed in Figure 1. The

probabilities π and π are the same as in the two-action case (defined in expressions (2) and (3) of

the main text respectively and evaluated at µ = 0). The proof of Proposition 2 establishes that

π < 1/2 for all parameters and that π > 1/2 if and only if v < 1− 2µ = 1.

If yL = −1 and yR = 1 a liberal voter supports candidate L if yi < (p− v)/4 and a conservative

supports L if yi < (−p − v)/4. Note that if v = 0 the candidates are symmetric and so each

candidate wins with probability 1/2 but that L’s vote share and win probability decreases in v.

Thus L wins with probability π̂ < 1/2.
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R

−1 0 1

L

−1 0, 1 π, 1− π π̂, 1− π̂

0 π, 1− π 0, 1 π, 1− π

1 π̂, 1− π̂ π, 1− π 0, 1

Figure 1 – Low Polarization

Let σi = σi(0) denote the probability of i choosing yi = 0, so in any symmetric strategy

σi(−1) = σi(1) = (1 − σi)/2. Observation yields that yR = 0 is the unique best response to any

symmetric strategy σL ∈ [0, 1] if and only if π̂ > 2π. Moreover, if R chooses yR = 0, then σL = 0

is L’s unique (symmetric) best response. We conclude that if π̂ > 2π, σR = 1 and σL = 0 is the

unique symmetric equilibrium. When π̂ < 2π, we obtain a unique symmetric equilibrium in

mixed strategies:

σLPR =
2π − π̂

2(π + π)− π̂
>

2π − π̂
2(π + π)− π̂

= σLPL .

In either case, R chooses policy 0 strictly more often than L.

Next, we consider p > v. In this case the payoff matrix is given in Figure 2. Recalling that

π > 1/2 when v < 1 and π < 1/2 when v > 1, if yL = 0 then R’s best response is σR = 1 if v < 1

and σR = 0 if v > 1.
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Figure 2 – High Polarization
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Now consider L. For any σR ∈ [0, 1], L’s net payoff from y = 0 versus y ∈ {−1, 1} is

∆L(σR) = σR

(
1

2
− π

)
+ (1− σR)

(
π − 1

2

(
1

2
+ π̂

))
.

Note that ∆L(1) > 0 and that ∆L(0) > 0 if and only if

π >
1

4
+
π̂

2
.

Since π̂ < 1/2 < π when v < 1, it follows that L has a strictly best response of yL = 0 for

all σR when v < 1. Hence the unique equilibrium is the pure strategy equilibrium with median

convergence: σL = σR = 1.

When v > 1 the equilibrium is in mixed strategies and there are two cases to consider. If

π > 1/4 + π̂/2, any symmetric equilibrium must have σL = 1. Since R’s best response is then

σR = 0, the unique symmetric equilibrium is σL = 1, σR = 0. If π < 1/4 + π̂/2, any symmetric

equilibrium involves σL, σR ∈ (0, 1). Using Figure 2, we obtain

σHPL =
1
2

(
1
2

+ π̂
)
− π

1
2

(
1
2

+ π̂
)
− π + 1

2
− π

>
1
2

(
1
2

+ π̂
)
− π

1
2

(
1
2

+ π̂
)
− π + 1

2
− π

= σHPR .

In either case L chooses policy strictly 0 more often than R. �

Proof of Remark 1. The case p < v is direct from the main text. We therefore focus on the case in

which p > v. If yL = yR = y then each candidate wins with probability 1/2. We now show that R

would have a profitable deviation for any such y ∈ R. Without loss of generality consider y ≤ 0,

the expected median.

Let 0 < ε <
√
v, and suppose R deviates to yR = y + ε. A liberal voter then prefers R if and

only if

yi ≥ y +
1

2

(
ε+

p− v
ε

)
:= y∗
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and a conservative prefers R if and only if

yi ≥ y +
1

2

(
ε− p+ v

ε

)
= y∗ − p

ε
.

Now define γ∗(r) to solve

r
(

1−B
(
y∗ − p

ε
− γ
))

+ (1− r) (1−B(y∗ − γ)) =
1

2
. (A.1)

The LHS is continuous and strictly increasing in γ; it approaches one as γ →∞ and approaches

zero as γ → −∞ so there is a unique solution γ∗(r). Using the symmetry of B(·), it is easy to

verify that

γ∗(1− r) = −γ∗(r) + 2y∗ − p

ε
. (A.2)

SinceRwins the election if and only if γ > γ∗(r), by locating at y+ε her probability of winning

is ∫ 1

0

(1−G(γ∗(r))) dF (r).

Deviating from y to y + ε is profitable if this is strictly greater than 1/2, or equivalently if

∫ 1/2

0

(1−G(γ∗(r)) dF (r) +

∫ 1

1/2

(1−G(γ∗(r)) dF (r) >
1

2
=

∫ 1

1/2

dF (r).

Re-arranging and using the symmetry of G(·) this is equivalent to

∫ 1/2

0

G(−γ∗(r)) dF (r) =

∫ 1

1/2

G(−γ∗(1− r)) dF (r) >

∫ 1

1/2

G(γ∗(r)) dF (r).

Using (A.2), R therefore has a profitable deviation if

∫ 1

1/2

G
(
γ∗(r)− 2y∗ +

p

ε

)
dF (r) >

∫ 1

1/2

G(γ∗(r)) dF (r),
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which holds because when y ≤ 0 and 0 < ε <
√
v,

−2y∗ +
p

ε
= − 2y − ε− p− v

ε
+
p

ε

= − 2y +
v

ε
− ε

> 0.

We conclude that R always has a profitable deviation from yL = yR = y. This implies that there

is no pure strategy Nash equilibrium in which yL = yR.

Consider, instead, a pure strategy profile in which yL 6= yR. In that case, the candidates

must win with probability one half: otherwise, the candidate who wins less often can profitably

deviate to co-locate with the other candidate and win with probability one half. If the candidates

win with probability one half, however, the previous argument shows that R has a profitable

deviation to a policy in a neighborhood of yL.

We conclude that there does not exist a pure strategy Nash equilibrium. �

B. Five Policies

In this section we analyze the model with five policies: Y = {−2,−1, 0, 1, 2}. To make the

analysis tractable we assume that voter types, yi, are uniformly distributed on the interval [γ −

τ, γ + τ ],

B(x) =


0 if x < γ − τ

x−(γ−τ)
2τ

if x ∈ [γ − τ, γ + τ ],

1 if x > γ + τ ,
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and that γ is uniformly distributed on [−κ, κ],

G(x) =


0 if x < −κ

1
2

+ x
2κ

if x ∈ [−κ, κ].

1 if x > κ.

Thus, the median position on the y issue is uniformly distributed as are voter bliss points around

the median.

Our benchmark model assumes that B(·) and G(·) have unbounded support, but all results

extend so long as these distributions’ supports are ‘large enough’. We assume κ > max{v, 2} so

that γ∗(yL, yR, r) defined in (B.3) lies in [−κ, κ] for all (yL, yR) ∈ Y 2. Similarly, we assume that σ

is large enough that for all (yL, yR) and any γ ∈ [−κ, κ], the cut-off voter types defined in (B.1)

and (B.2) below lie in [γ − τ, γ + τ ]: σ > κ+ v + p+ 2.

Then, for any pair (yL, yR) such that yL 6= yR, the indifferent liberal type ylib satisfies:

− (ylib − yL)2 = −(ylib − yR)2 − p+ v ⇐⇒ ylib =
yL + yR

2
− v − p

2(yR − yL)
. (B.1)

Likewise, the indifferent conservative type ycon satisfies:

− (ycon − yL)2 = −(ycon − yR)2 + p+ v ⇐⇒ ycon = ylib −
p

yR − yL
. (B.2)

Thus, for any yL < yR, L wins if and only if

r

(
ycon − (γ − σ)

2σ

)
+ (1− r)

(
ylib − (γ − σ)

2σ

)
≥ 1

2

⇐⇒ γ ≤ γ∗(yL, yR, r) =
yL + yR

2
− v + p(2r − 1)

2(yR − yL)
. (B.3)

The assumption that B(·) is uniform permits a closed-form expression for γ∗. Similarly, for any
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yL > yR, L wins if and only if γ ≥ γ∗(yL, yR, r). Let πi(yi, yj) denote i ∈ {L,R}’s probability of

winning the election when her platform is yi and her opponent’s is yj . We have

πL(yL, yR) =



∫ 1

0
G (γ∗(yL, yR, r)) dF (r) if yL < yR

0 if yL = yR and p < v

1
2

if yL = yR and p > v

1−
∫ 1

0
G (γ∗(yL, yR, r)) dF (r) if yL > yR,

and R’s probability of winning is πR(yR, yL) = 1− πL(yL, yR).

With these conditions we obtain the payoff matrix depicted in Figure 3 for the case of low

polarization (p < v), and Figure 4 for high polarization (p > v). To economize on space, we

display only πL(yL, yR) in each cell.

Strategies and Symmetric Equilibrium. Let σi(y) denote the probability that candidate i ∈

{L,R} plays action y ∈ Y . We say that a strategy σ = (σL, σR) is symmetric if σi(y) = σi(−y) for

all y ∈ Y and each candidate i ∈ {L,R}. We focus on symmetric equilibria, in which strategies

are symmetric.

For any symmetric strategy σi, the distance of candidate i’s platform from the expected me-
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Figure 3 – Low Polarization. Each cell contains L’s probability of winning.
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Figure 4 – High Polarization. Each cell contains L’s probability of winning.

dian |yi| is a random variable. Notice that if σi(0) ≤ σj(0), and σi(0) + 2σi(1) ≤ σj(0) + 2σj(1),

with at least one strict inequality, then |yi| �FOSD |yj|. That is |yi| first order stochastic dominates

|yj| and so i unambiguously locates further from the expected median policy of 0 than candidate

j. We have the following result.

Proposition B.1. A symmetric equilibrium always exists when Y = {−2,−1, 0, 1, 2}. Furthermore:

1. When p < v, in every symmetric equilibrium |yL| �FOSD |yR|.

2. If p > v then,

(a) if v < 1, in the unique symmetric equilibrium σ∗R(0) = σ∗L(0) = 1.

(b) If v > 1, in every symmetric equilibrium: |yR| �FOSD |yL|

To prove Proposition B.1 we first develop some notation. For y ∈ {1, 2}, we let ςi(y) = σi(y) +

σi(−y). That is: ςi(y) is the frequency with which i plays either +y or −y. Thus, σi(0) + ςi(1) +

ςi(2) = 1, and a symmetric strategy satisfies σi(y) = σi(−y) = ςi(y)/2 for each y ∈ {1, 2}. Thus,

i ∈ {L,R}’s symmetric strategy is fully described by (ςi(1), ςi(2)).

Let:

ΠL(0; ςR(1), ςR(2)) =σR(0)πL(0, 0) + ςR(1)πL(0, 1) + ςR(2)πL(0, 2). (B.4)
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ΠL(0; ςR(1), ςR(2)) isL’s payoff from choosing policy zero whenR’s symmetric strategy is (ςR(1), ςR(2)).

Similarly, for y ∈ {1, 2}:

ΠL(y; ςR(1), ςR(2)) = σR(0)πL(y, 0)

+
1

4

∑
x∈{1,2}

ςR(x)[πL(y, x) + πL(y,−x) + πL(−y, x) + πL(−y,−x)]. (B.5)

Here, ΠL(y; ςR(1), ςR(2)) is L’s expected payoff from choosing policy y ∈ {1, 2} with probability

one half and −y with probability one half when R’s symmetric strategy is (ςR(1), ςR(2)). Notice

that πL(y, 0) = πL(−y, 0) for y ∈ {1, 2}. The corresponding payoff ΠR(·;σL(0), σL(1)) for R is

similarly defined.

We first establish that a symmetric equilibrium exists.

Lemma B.1. A symmetric equilibrium exists.

Proof. Call the original game Γ, and consider a modified game Γ′ that differs from Γ in the fol-

lowing respects: (1) each player’s action set is Y (Γ′) = {0, 1, 2}, and (2) recalling Πi(y; ςi(1), ςi(2))

that we defined in (B.5), i’s payoff from action pair (yi, yj) ∈ {0, 1, 2}2 is:

π̃i(yi, yj) ≡



πi(0, yj) if yi = 0,

πi(yi, 0) if yj = 0,

Πi(yi; 1, 0) if yi ∈ {1, 2}, yj = 1,

Πi(yi; 0, 1) if yi ∈ {1, 2}, yj = 2.
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We note that if σΓ′ = (σΓ′
L , σ

Γ′
R ) is a Nash equilibrium of Γ′, then the strategy profile σΓ satisfying:

σΓ
i (y) =


σΓ′
i (0) if y = 0

1
2
σΓ′
i (1) if y ∈ {−1, 1}

1
2
σΓ′
i (2) if y ∈ {−2, 2},

is a symmetric Nash equilibrium of Γ. Since Γ′ is a finite action game and thus possesses a Nash

equilibrium, it follows that Γ possesses a symmetric equilibrium. �

Having established a symmetric equilibrium exists we prove the characterization result sep-

arately for the cases in which p < v and when p > v, breaking each argument into multiple

lemmas.

Part 1: When p < v the payoff matrix appears in Figure 3—each cell identifies L’s payoff

πL(yL, yR), and R’s is πR(yR, yL) ≡ 1− πL(yL, yR).

We first establish Lemma B.2 which shows that in every symmetric equilibrium, if p < v, there

are no ‘gaps’ in the support of candidate R’s strategy. Formally: candidate i ∈ {L,R}’s strategy

σi has a gap at y ∈ {−1, 0, 1} if σi(y) = 0 and there exist z ∈ Y and x ∈ Y such that z < y < x,

σi(z) > 0, and σi(x) > 0. Candidate i ∈ {L,R}’s strategy has no gaps if it does not have a gap at

any y ∈ {−1, 0, 1}.

Lemma B.2. Let p < v. In every symmetric equilibrium, candidate R’s strategy has no gaps.

Proof. We proceed in two steps. The first step argues σR(0) > 0 in a symmetric equilibrium,

when p < v. The second step argues that ςR(2) > 0 implies ςR(1) > 0. Observe that when p < v,

we cannot have a symmetric equilibrium in which σL(0) = 1.

Step 1. First, we argue that when p < v, σR(0) > 0 in every symmetric equilibrium. Suppose,

to the contrary, σR(0) = 0. κ > v implies ΠL(0; ςR(1), 1 − ςR(1)) > ΠL(1; ςR(1), 1 − ςR(1)) for any

ςR(1) ∈ [0, 1]. Since σL(0) < 1 in any equilibrium, σL(0) = 1 − ςL(2) ∈ (0, 1). L’s indifference
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requires ςR(1) = 24(κ+2)−9v
24κ−v−24

, and R’s indifference requires σL(0) = 24κ−13v+48
24κ−v−24

. Observe σL(0) ≥ 0

if and only if κ ≥ (48 + 13v)/24, which further implies ςR ≤ 1 if and only if v ≥ 9. Finally

ΠR(2; 0,− 12(v+2)
−24κ+v+24

) ≥ ΠR(0; 0,− 12(v+2)
−24κ+v+24

) requires 24(κ−2)(2κ+1)+11v2+(31−50κ)v
4κ(−24κ+v+24)

≥ 0, which fails

whenever 9 ≤ v ≤ κ. This contradicts σR(0) = 0.

Step 2. Second, we argue that when p < v, ςR(2) > 0 implies ςR(1) > 0 in every symmetric

equilibrium. Suppose, to the contrary, ςR(2) > 0 and ςR(1) = 0. By the previous step, σR(0) > 0.

Thus, ςR(2) = 1− σR(0).

(a) Suppose σL(0) = 0. If ςL(1) > 0 and ςL(2) > 0, L’s indifference requires σR(0) = 24κ+48−13v
24(κ+1)−5v

,

which implies v ≥ 3. Likewise, R’s indifference pins down ςL(1) = 1− 8(9+v)
24(κ+1)−v . Algebra yields

ΠR(1; ςL(1), 1− ςL(1))− ΠL(2; ςL(1), 1− ςL(1)) > 0, contradicting ςR(2) > 0.

(b) Suppose σL(0) > 0. Since ΠR(1; 1− σL(0), 0)− ΠL(2; 1− σL(0), 0) > 0 for all σL(0) ∈ [0, 1],

ςR(1) = 0 implies that if σL(0) > 0, then ςL(2) > 0.

(i) If ςL(2) = 1 − σL(0) > 0, L’s indifference requires σR(0) = 3v−8(κ+2)
7v−24κ

. Algebra yields that

for all κ > max{2, v}, ΠL(1; 0, 1− 3v−8(κ+2)
7v−24κ

)− ΠL(2; 0, 1− 3v−8(κ+2)
7v−24κ

) > 0, contradicting ςR(1) = 0.

(ii) If ςL(1) > 0, L’s indifference conditions pin down σR(0) = 1− 12(v−2)
24(κ+1)−v = v

12κ−5v−6
, which

is interior only if v ≥ 2. For any v ≥ 2, we find that 1 − 12(v−2)
24(κ+1)−v −

v
12κ−5v−6

strictly decreases in

v; evaluating this difference at v = κ yields 6(κ(9κ+41)−48)
(7κ−6)(23κ+24)

, which is strictly positive for all κ ≥ 2.

We conclude that there is no σR(0) ∈ [0, 1] that yields L’s indifference between all her actions. �

While R’s strategy cannot have a gap, L’s could. Lemma B.3 and Lemma B.4 establish that

for any location of the gap, the polarization of L’s strategy first order stochastic dominates R’s.

Lemma B.3. Let p < v. In every symmetric equilibrium, ςL(2) > 0 and ςL(1) = 0 implies σR(0) >

σL(0).

Proof. Let ςL(2) > 0 and ςL(1) = 0. If σR(0) = 1, or if ςL(2) = 1, the lemma trivially holds. Thus,

we restrict subsequent attention to σL(0) = 1 − ςL(2) > 0 and σR(0) < 1; Lemma B.2 implies we

may further restrict attention to symmetric no-gap strategies by R.
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(a) Suppose ςR(1) = 1− σR(0). R’s indifference requires σL(0) = v
12κ−5v+6

and L’s indifference

requires σR(0) = 2(v−9)
−12κ+5v−6

; κ > v implies σR(0) ∈ [0, 1] if and only if v < 9. Moreover, v
12κ−5v+6

≥
2(9−v)

12κ−5v+6
only if v ≥ 6. However, algebra yields that for all v ∈ [6, 9], ΠR(2; 0, 1 − v

12κ−5v+6
) −

ΠR(0; 0, 1− v
12κ−5v+6

) > 0, contradicting ςR(2) = 0.

(b) Suppose R plays all actions with strictly positive probability. R’s indifference conditions

yield σL(0) = v
12κ−5v+6

= −24κ+13v+48
−24κ+v+24

. For all κ > v, −24κ+13v+48
−24κ+v+24

strictly decreases in v, and is

strictly positive if and only if v ≤ (κ−2)24/13. We further observe that v
12κ−5v+6

strictly increases

in v. We conclude that there exists at most one v∗ such that σL(0) = v∗

12κ−5v∗+6
= −24κ+13v∗+48

−24κ+v∗+24
≡

σ∗(v∗), and direct calculation yields that v∗ ≤ κ if and only if κ ≤ (41 +
√

3409)/18, and also

that σ∗(v∗) < (71 −
√

3409)/102 ≈ .12366. L’s indifference between policies 0 and 2 requires

σR(0) = (ςR(2)+8)v−24((κ−1)ςR(2)+3)
4(−12κ+5v−6)

. In conjunction with this value of σR(0) and κ ≤ (41+
√

3409)/18,

algebra yields that L’s weak preference not to select policy 1 implies a (not tight) upper bound

ςR(2) ≤ .25, which implies σR(0) + ςR(1) ≥ .75. Further algebra yields a lower bound σR(0) ≥
2(v−9)

−12κ+5v−6
for all ςR(2), and this lower bound itself weakly exceeds 1

102

(
23
√

3409− 1327
)
≈ .1558.

Since we showed σL(0) < (71−
√

3409)/102 ≈ .12366, we conclude that σR(0) > σL(0). �

Lemma B.4. Let p < v. In a symmetric equilibrium, if σL(0) = 0 then |yL| �FOSD |yR|.

Proof. If ςR(2) = 0, the Lemma holds, trivially. If R randomizes over all actions, observe that

since ΠR(1; 1, 0) > ΠR(2; 1, 0), we must have ςL(2) = 1 − ςL(1) > 0. R’s indifference requires

σL(1) = 2v
12+11v−12κ

= 24κ−13v−48
48κ−23v

. Observe that 2v
12+11v−12κ

− 24κ−13v−48
48κ−23v

∝ 288 (κ2 − 3κ+ 2) + 97v2 −

36(9κ− 19)v, which is strictly positive when v = 0 for all κ ≥ 2, and which strictly increases in v

if κ ≤ 19/9. If κ > 19/9, then the expression is positive for all v ∈ [0, κ]. �

Lemma B.2 shows that R’s strategy cannot have a gap and Lemma B.3 and Lemma B.4 estab-

lish the first order stochastic dominance ranking if L’s strategy has a gap. We can now complete

the proof restricting attention to strategy profiles in which neither candidate’s strategy has a gap.

Proof of Part 1. Focusing on no gap symmetric strategy profiles we can index the cases according
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to R’s strategy. Recall that we must have σL(0) < 1 so if σR(0) = 1, the result is immediate.

Suppose ςR(2) = 0 and ςR(1) > 0. Since we must have σL(0) < 1, there are two possibilities.

If ςL(2) = 0, indifference conditions yield mixtures such that σR(0) > σL(0). If ςL(2) > 0, L’s

indifference conditions require σR(0) = 3v−4(κ+1)
7v−12κ

= 2(v−9)
−12κ+5v−6

, which requires v ≤ 9. R’s indif-

ference requires that σL(0) = −12κςL(1)−12ςL(1)−11ςL(1)v+2v
2(−12κ+5v−6)

, which is linear in ςL(1) ∈ [0, 1 − σL(0)].

If ςL(1) = 1 − σL(0), we obtain σL(0) = 4κ−3v−4
12κ−7v

< 4κ+4−3v
12κ−7v

= σR(0). If ςL(1) = 0, we obtain

σL(0) = v
12κ−5v+6

< 2(9−v)
12κ−5v+6

for all v < 6, while σR(0) − σL(0) = 3v−4(κ+1)
7v−12κ

− v
12κ+5v−6

strictly

increases in κ for all v ≥ 6. Setting κ = v, the difference 3v−4(κ+1)
7v−12κ

− v
12κ+5v−6

is strictly positive.

Thus, σR(0) > σL(0), and since σR(0) + ςR(1) = 1, we are done.

Suppose, instead, ςR(2) > 0 and ςR(1) > 0. Recall that we focus on symmetric no-gap strate-

gies by L. If ςL(1) = 1 − σL(0), R’s indifference over all her actions requires σL(0) = −4κ+3v+4
7v−12κ

=

6(v+2)
12(κ+1)−11v

+ 1, but the the latter lies outside the unit interval. If both L and R randomize over all

of their actions, solving indifference conditions yields strategies that satisfy the required proper-

ties. �

Part 2: We now turn to the high-polarization setting, in which p > v and the payoff matrix is

given in Figure 4. The steps proceed as in part 1 with the candidates reversed. We begin by

ruling out gaps for the L candidate.

Lemma B.5. Let p > v. In every symmetric equilibrium, candidate L’s strategy has no gaps.

Proof. The proof proceeds in two steps.

Step 1. First, we argue that if p > v, σL(0) > 0 in every symmetric equilibrium. Conjecture, to the

contrary, that σL(0) = 0.

(a) Suppose ςL(1) = 1, which implies ςL(2) = 0. Straightforward calculation yields ΠR(0; 1, 0) >

max{ΠR(1; 1, 0),ΠR(2; 1, 0)}, so that σR(0) = 1 is R’s unique symmetric best response to L’s strat-

egy. But since ΠL(0; 0, 0) > max{ΠL(1; 0, 0),ΠL(2; 0, 0)}, we cannot have σL(0) = 0.

(b) Suppose ςL(2) = 1, which implies ςL(1) = 0. Straightforward calculation yields ΠR(1; 0, 1) >

13



max{ΠR(0; 0, 1),ΠR(2; 0, 1)}, ςR(1) = 1 is R’s unique symmetric best response to L’s strategy. But

since ΠL(1; 1, 0) > ΠL(2; 1, 0), L strictly prefers ςL(1) = 1 to ςL(2) = 1, a contradiction.

(c) Suppose 0 < ςL(1) < 1.

(i) If ςR(2) = 0, ΠL(1; 1, 0) > ΠL(2; 1, 0) and ςL(1) < 1 implies ςR(1) < 1. If ςR(1) = 0, σL(0) = 1

is strictly preferred to any ςL(1) ∈ (0, 1). So, we must have σR(0) = 1 − ςR(1) ∈ (0, 1). Solving

L’s indifference condition yields σR(0) = 5v+24
11v+12

. Direct calculation yields ΠL(1; 1 − 5v+24
11v+12

, 0) <

ΠL(0; 1− 5v+24
11v+12

, 0), contradicting ςL(1) > 0.

(ii) If ςR(1) = 0, L’s indifference condition yields σR(0) = 1− ςR(2) = 13v−48
v−24

, which is positive

only if v ≤ 48/13, in which case ΠL(0; 0, 1− 13v−48
v−24

) > ΠL(1; 0, 1− 13v−48
v−24

), contradicting ςL(1) > 0.

Steps (i) and (ii) yield that ςR(1) > 0 and ςR(2) > 0.

(iii) If σR(0) = 0, then ςR(2) = 1 − ςR(1) ∈ (0, 1). Indifference for R requires ςL(1) = 48+13v
23v

.

However, ΠR(0; 48+13v
23v

, 1− 48+13v
23v

) > ΠR(1; 48+13v
23v

, 1− 48+13v
23v

), contradicting σR(0) = 0.

(iv) If R randomizes chooses all her actions with strictly positive probability, her indifference

between 0 and 1 requires ςL(1) = 2v
12+11v

. But, ΠR(0; 2v
12+11v

, 1 − 2v
12+11v

) > ΠR(2; 2v
12+11v

, 1 − 2v
12+11v

),

contradicting ςR(2) > 0.

We conclude that σL(0) > 0 in every symmetric equilibrium.

Step 2. We argue that if p > v, ςL(1) = 0 implies ςL(2) = 0 in every symmetric equilibrium.

Conjecture, to the contrary, that ςL(1) = 0 and ςL(2) > 0. We already showed σL(0) > 0, and thus

ςL(2) = 1− σL(0) > 0. Moreover, ΠR(1; 0, 1− σL(0)) > ΠR(2; 0, 1− σL(0)) for any σL(0) ∈ [0, 1], so

ςR(2) = 0. This implies ςR(1) = 1 − σR(0). Since L plays both 0 and 2 with positive probability,

her indifference requires ΠL(0; 1 − σR(0), 0) = ΠL(2; 1 − σR(0), 0), which yields σR(0) = 2(v−9)
5v−6

,

which implies v ≥ 9. However, ΠL(1; 1 − 2(v−9)
5v−6

, 0) > ΠL(0; 1 − 2(v−9)
5v−6

, 0), contradicting ςL(1) = 0

and σL(0) > 0.

Steps 1 and 2 yield that when p > v, L’s strategy has no gaps in every symmetric equilibrium. �

Having established that L’s strategy has no gaps the next two lemmas show that if R’s strat-
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egy has a gap it must be at 0, and that in that case the first order stochastic dominance ranking

holds.

Lemma B.6. Let p > v. In every symmetric equilibrium, ςR(2) = 0 implies ςR(1) = 0.

Proof. Suppose ςR(2) > 0, but ςR(1) = 0. For all σR(0) = 1 − ςR(2) ∈ [0, 1], we have ΠL(0; 0, 1 −

σR(0)) > ΠL(1; 0, 1 − σR(0)), which implies ςL(1) = 0. The previous Lemma implies that L’s

strategy has no gaps, so ςL(2) = 0. But ΠR(1; 0, 0) > ΠR(2; 0, 0) contradicts ςR(2) > 0. �

Lemma B.7. Let p > v. In a symmetric equilibrium, if σR(0) = 0 then |yR| �FOSD |yL|.

Proof. We need only consider possible equilibria in which L randomizes over all of her ac-

tions, and in which R’s strategy has a gap at zero. L’s indifference conditions pin down ςR(1) =

2v
11v−12

= 13v−48
23v

, which can only be satisfied if v = 6
97

(
57 +

√
1697

)
. R’s indifference between

policies 1 and 2 requires ςL(1) = 24ςL(2)+ςL(2)v+12v+24
2(11v−12)

. When v = 6
97

(
57 +

√
1697

)
, this implies

however that for any ςL(2) ∈]0, 1], R strictly prefers to choose zero rather than 1. �

Lemma B.5, Lemma B.6 and Lemma B.7 imply that we may restrict our attention to symmetric

equilibria in which neither candidate’s strategy has a gap, which we use to complete the proof.

Proof of Part 2: We first consider v < 1 show that σL(0) = σR(0) = 1 is the unique symmetric

equilibrium. This follows from the observation that when v < 1 then σL(0) = 1 is L’s unique best

response to any symmetric σR, and that ΠR(0; 0, 0) > max{ΠR(1; 0, 0),ΠR(2; 0, 0)} so R’s unique

best response to σL(0) = 1 is σR(0) = 1. This proves part (a).

Henceforth, we focus on v > 1 restricting attention to symmetric equilibria in which neither

candidate’s strategies have gaps. We index strategy profiles according to L’s symmetric no-gap

strategy.

(1) Suppose σL(0) = 1. Then, v > 1 implies ΠR(0; 0, 0) < max{ΠR(1; 0, 0),ΠR(2; 0, 0)}, and thus

σR(0) = 0. The proposition follows.
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(2) Suppose σL(0) < 1 and ςL(1) = 1 − σL(0). If σR(0) = 0, the proposition follows. If ςR(1) =

1 − σR(0), indifference conditions yield σR(0) = 3
7
− 4

7v
and σL(0) = 3

7
+ 4

7v
, which satisfy the

proposition. Finally, ifR plays all actions with positive probability, thenR’s indifference requires

σL(0) = 3v+4
7v

= 5v−24
11v−12

, which is possible if and only if v ∈ { 12√
478+22

, 2
(√

478 + 22
)
}. Similarly, L’s

indifference across actions 0 and 1 requires σR(0) = −12ςR(1)+11ςR(1)v−2v
2(5v+6)

, which is strictly negative

for all ςR(1) ∈ [0, 1] if v = 12√
478+22

. Thus, we must have v = 2
(√

478 + 22
)
. In that case, straight-

forward calculation yields that Lweakly prefers not to play action 2 only if ςR(1) ≥ 2911
√

478−38782
46933

.

This yields that σR(0) ≤ 820399−20827
√

478
985593

< 1
21

(
31−

√
478
)

= 3v+4
7v

= σL(0).

(3) Suppose L plays all of her actions with positive probability. We must have σR(0) > 0 sinceR’s

strategy has no gaps, and we must also have σR(0) < 1 if L does not play 0 with probability one.

If ςR(1) = 1 − σR(0) > 0, L’s indifference conditions require σR(0) = 3v−4
7v

= 5v+24
11v+12

, which holds

for no v > 0. If, instead, R plays all actions with positive probability, then it is straightforward

to solve indifference conditions and obtain strategies that satisfy the proposition.

Together, these three cases establish part (b). �
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