Online Appendix for "Polarization, Valence, and Policy Competition"

Peter Buisseret* Richard Van Weelden ${ }^{\dagger}$

October 22, 2021

Abstract

In this Supplementary Appendix we prove the results in Section 4: More Actions from the main text and provide results for the five-policy case. For Online Publication only.

A. Proof of Results from Section 4

Proof of Proposition 3. We start with $p<v$. The payoff matrix is displayed in Figure 1. The probabilities $\underline{\pi}$ and $\bar{\pi}$ are the same as in the two-action case (defined in expressions (2) and (3) of the main text respectively and evaluated at $\mu=0$). The proof of Proposition 2 establishes that $\underline{\pi}<1 / 2$ for all parameters and that $\bar{\pi}>1 / 2$ if and only if $v<1-2 \mu=1$.

If $y_{L}=-1$ and $y_{R}=1$ a liberal voter supports candidate L if $y^{i}<(p-v) / 4$ and a conservative supports L if $y^{i}<(-p-v) / 4$. Note that if $v=0$ the candidates are symmetric and so each candidate wins with probability $1 / 2$ but that L 's vote share and win probability decreases in v. Thus L wins with probability $\hat{\pi}<1 / 2$.

[^0]| | R | | |
| :---: | :---: | :---: | :---: |
| | -1 | 0 | 1 |
| -1 | 0,1 | $\underline{\pi}, 1-\underline{\pi}$ | $\hat{\pi}, 1-\hat{\pi}$ |
| L 0 | $\bar{\pi}, 1-\bar{\pi}$ | 0,1 | $\bar{\pi}, 1-\bar{\pi}$ |
| 1 | $\hat{\pi}, 1-\hat{\pi}$ | $\pi, 1-\underline{\pi}$ | 0,1 |

Figure 1 - Low Polarization

Let $\sigma_{i}=\sigma_{i}(0)$ denote the probability of i choosing $y_{i}=0$, so in any symmetric strategy $\sigma_{i}(-1)=\sigma_{i}(1)=\left(1-\sigma_{i}\right) / 2$. Observation yields that $y_{R}=0$ is the unique best response to any symmetric strategy $\sigma_{L} \in[0,1]$ if and only if $\hat{\pi}>2 \underline{\pi}$. Moreover, if R chooses $y_{R}=0$, then $\sigma_{L}=0$ is L 's unique (symmetric) best response. We conclude that if $\hat{\pi}>2 \pi, \sigma_{R}=1$ and $\sigma_{L}=0$ is the unique symmetric equilibrium. When $\hat{\pi}<2 \pi$, we obtain a unique symmetric equilibrium in mixed strategies:

$$
\sigma_{R}^{L P}=\frac{2 \bar{\pi}-\hat{\pi}}{2(\bar{\pi}+\underline{\pi})-\hat{\pi}}>\frac{2 \underline{\pi}-\hat{\pi}}{2(\bar{\pi}+\underline{\pi})-\hat{\pi}}=\sigma_{L}^{L P} .
$$

In either case, R chooses policy 0 strictly more often than L.
Next, we consider $p>v$. In this case the payoff matrix is given in Figure 2. Recalling that $\bar{\pi}>1 / 2$ when $v<1$ and $\bar{\pi}<1 / 2$ when $v>1$, if $y_{L}=0$ then R's best response is $\sigma_{R}=1$ if $v<1$ and $\sigma_{R}=0$ if $v>1$.

Figure 2 - High Polarization

Now consider L. For any $\sigma_{R} \in[0,1], L$'s net payoff from $y=0$ versus $y \in\{-1,1\}$ is

$$
\Delta_{L}\left(\sigma_{R}\right)=\sigma_{R}\left(\frac{1}{2}-\underline{\pi}\right)+\left(1-\sigma_{R}\right)\left(\bar{\pi}-\frac{1}{2}\left(\frac{1}{2}+\hat{\pi}\right)\right) .
$$

Note that $\Delta_{L}(1)>0$ and that $\Delta_{L}(0)>0$ if and only if

$$
\bar{\pi}>\frac{1}{4}+\frac{\hat{\pi}}{2} .
$$

Since $\hat{\pi}<1 / 2<\bar{\pi}$ when $v<1$, it follows that L has a strictly best response of $y_{L}=0$ for all σ_{R} when $v<1$. Hence the unique equilibrium is the pure strategy equilibrium with median convergence: $\sigma_{L}=\sigma_{R}=1$.

When $v>1$ the equilibrium is in mixed strategies and there are two cases to consider. If $\bar{\pi}>1 / 4+\hat{\pi} / 2$, any symmetric equilibrium must have $\sigma_{L}=1$. Since R^{\prime} s best response is then $\sigma_{R}=0$, the unique symmetric equilibrium is $\sigma_{L}=1, \sigma_{R}=0$. If $\bar{\pi}<1 / 4+\hat{\pi} / 2$, any symmetric equilibrium involves $\sigma_{L}, \sigma_{R} \in(0,1)$. Using Figure 2 , we obtain

$$
\sigma_{L}^{H P}=\frac{\frac{1}{2}\left(\frac{1}{2}+\hat{\pi}\right)-\underline{\pi}}{\frac{1}{2}\left(\frac{1}{2}+\hat{\pi}\right)-\bar{\pi}+\frac{1}{2}-\underline{\pi}}>\frac{\frac{1}{2}\left(\frac{1}{2}+\hat{\pi}\right)-\bar{\pi}}{\frac{1}{2}\left(\frac{1}{2}+\hat{\pi}\right)-\bar{\pi}+\frac{1}{2}-\underline{\pi}}=\sigma_{R}^{H P}
$$

In either case L chooses policy strictly 0 more often than R.

Proof of Remark 1. The case $p<v$ is direct from the main text. We therefore focus on the case in which $p>v$. If $y_{L}=y_{R}=y$ then each candidate wins with probability $1 / 2$. We now show that R would have a profitable deviation for any such $y \in \mathbb{R}$. Without loss of generality consider $y \leq 0$, the expected median.

Let $0<\varepsilon<\sqrt{v}$, and suppose R deviates to $y_{R}=y+\varepsilon$. A liberal voter then prefers R if and only if

$$
y^{i} \geq y+\frac{1}{2}\left(\varepsilon+\frac{p-v}{\varepsilon}\right):=y^{*}
$$

and a conservative prefers R if and only if

$$
y^{i} \geq y+\frac{1}{2}\left(\varepsilon-\frac{p+v}{\varepsilon}\right)=y^{*}-\frac{p}{\varepsilon} .
$$

Now define $\gamma^{*}(r)$ to solve

$$
\begin{equation*}
r\left(1-B\left(y^{*}-\frac{p}{\varepsilon}-\gamma\right)\right)+(1-r)\left(1-B\left(y^{*}-\gamma\right)\right)=\frac{1}{2} \tag{A.1}
\end{equation*}
$$

The LHS is continuous and strictly increasing in γ; it approaches one as $\gamma \rightarrow \infty$ and approaches zero as $\gamma \rightarrow-\infty$ so there is a unique solution $\gamma^{*}(r)$. Using the symmetry of $B(\cdot)$, it is easy to verify that

$$
\begin{equation*}
\gamma^{*}(1-r)=-\gamma^{*}(r)+2 y^{*}-\frac{p}{\varepsilon} \tag{A.2}
\end{equation*}
$$

Since R wins the election if and only if $\gamma>\gamma^{*}(r)$, by locating at $y+\varepsilon$ her probability of winning is

$$
\int_{0}^{1}\left(1-G\left(\gamma^{*}(r)\right)\right) d F(r)
$$

Deviating from y to $y+\varepsilon$ is profitable if this is strictly greater than $1 / 2$, or equivalently if

$$
\int_{0}^{1 / 2}\left(1-G\left(\gamma^{*}(r)\right) d F(r)+\int_{1 / 2}^{1}\left(1-G\left(\gamma^{*}(r)\right) d F(r)>\frac{1}{2}=\int_{1 / 2}^{1} d F(r)\right.\right.
$$

Re-arranging and using the symmetry of $G(\cdot)$ this is equivalent to

$$
\int_{0}^{1 / 2} G\left(-\gamma^{*}(r)\right) d F(r)=\int_{1 / 2}^{1} G\left(-\gamma^{*}(1-r)\right) d F(r)>\int_{1 / 2}^{1} G\left(\gamma^{*}(r)\right) d F(r)
$$

Using (A.2), R therefore has a profitable deviation if

$$
\int_{1 / 2}^{1} G\left(\gamma^{*}(r)-2 y^{*}+\frac{p}{\varepsilon}\right) d F(r)>\int_{1 / 2}^{1} G\left(\gamma^{*}(r)\right) d F(r)
$$

which holds because when $y \leq 0$ and $0<\varepsilon<\sqrt{v}$,

$$
\begin{aligned}
-2 y^{*}+\frac{p}{\varepsilon} & =-2 y-\varepsilon-\frac{p-v}{\varepsilon}+\frac{p}{\varepsilon} \\
& =-2 y+\frac{v}{\varepsilon}-\varepsilon \\
& >0
\end{aligned}
$$

We conclude that R always has a profitable deviation from $y_{L}=y_{R}=y$. This implies that there is no pure strategy Nash equilibrium in which $y_{L}=y_{R}$.

Consider, instead, a pure strategy profile in which $y_{L} \neq y_{R}$. In that case, the candidates must win with probability one half: otherwise, the candidate who wins less often can profitably deviate to co-locate with the other candidate and win with probability one half. If the candidates win with probability one half, however, the previous argument shows that R has a profitable deviation to a policy in a neighborhood of y_{L}.

We conclude that there does not exist a pure strategy Nash equilibrium.

B. Five Policies

In this section we analyze the model with five policies: $Y=\{-2,-1,0,1,2\}$. To make the analysis tractable we assume that voter types, y_{i}, are uniformly distributed on the interval $[\gamma-$ $\tau, \gamma+\tau]$,

$$
B(x)= \begin{cases}0 & \text { if } x<\gamma-\tau \\ \frac{x-(\gamma-\tau)}{2 \tau} & \text { if } x \in[\gamma-\tau, \gamma+\tau] \\ 1 & \text { if } x>\gamma+\tau\end{cases}
$$

and that γ is uniformly distributed on $[-\kappa, \kappa]$,

$$
G(x)= \begin{cases}0 & \text { if } x<-\kappa \\ \frac{1}{2}+\frac{x}{2 \kappa} & \text { if } x \in[-\kappa, \kappa] \\ 1 & \text { if } x>\kappa\end{cases}
$$

Thus, the median position on the y issue is uniformly distributed as are voter bliss points around the median.

Our benchmark model assumes that $B(\cdot)$ and $G(\cdot)$ have unbounded support, but all results extend so long as these distributions' supports are 'large enough'. We assume $\kappa>\max \{v, 2\}$ so that $\gamma^{*}\left(y_{L}, y_{R}, r\right)$ defined in (B.3) lies in $[-\kappa, \kappa]$ for all $\left(y_{L}, y_{R}\right) \in Y^{2}$. Similarly, we assume that σ is large enough that for all $\left(y_{L}, y_{R}\right)$ and any $\gamma \in[-\kappa, \kappa]$, the cut-off voter types defined in (B.1) and (B.2) below lie in $[\gamma-\tau, \gamma+\tau]: \sigma>\kappa+v+p+2$.

Then, for any pair $\left(y_{L}, y_{R}\right)$ such that $y_{L} \neq y_{R}$, the indifferent liberal type $y_{\text {lib }}$ satisfies:

$$
\begin{equation*}
-\left(y_{\mathrm{lib}}-y_{L}\right)^{2}=-\left(y_{\mathrm{lib}}-y_{R}\right)^{2}-p+v \Longleftrightarrow y_{\mathrm{lib}}=\frac{y_{L}+y_{R}}{2}-\frac{v-p}{2\left(y_{R}-y_{L}\right)} \tag{B.1}
\end{equation*}
$$

Likewise, the indifferent conservative type $y_{\text {con }}$ satisfies:

$$
\begin{equation*}
-\left(y_{\text {con }}-y_{L}\right)^{2}=-\left(y_{\text {con }}-y_{R}\right)^{2}+p+v \Longleftrightarrow y_{\text {con }}=y_{\text {lib }}-\frac{p}{y_{R}-y_{L}} \tag{B.2}
\end{equation*}
$$

Thus, for any $y_{L}<y_{R}, L$ wins if and only if

$$
\begin{align*}
r\left(\frac{y_{\mathrm{con}}-(\gamma-\sigma)}{2 \sigma}\right) & +(1-r)\left(\frac{y_{\mathrm{lib}}-(\gamma-\sigma)}{2 \sigma}\right) \geq \frac{1}{2} \\
& \Longleftrightarrow \gamma \leq \gamma^{*}\left(y_{L}, y_{R}, r\right)=\frac{y_{L}+y_{R}}{2}-\frac{v+p(2 r-1)}{2\left(y_{R}-y_{L}\right)} \tag{B.3}
\end{align*}
$$

The assumption that $B(\cdot)$ is uniform permits a closed-form expression for γ^{*}. Similarly, for any
$y_{L}>y_{R}, L$ wins if and only if $\gamma \geq \gamma^{*}\left(y_{L}, y_{R}, r\right)$. Let $\pi_{i}\left(y_{i}, y_{j}\right)$ denote $i \in\{L, R\}^{\prime}$ s probability of winning the election when her platform is y_{i} and her opponent's is y_{j}. We have

$$
\pi_{L}\left(y_{L}, y_{R}\right)= \begin{cases}\int_{0}^{1} G\left(\gamma^{*}\left(y_{L}, y_{R}, r\right)\right) d F(r) & \text { if } y_{L}<y_{R} \\ 0 & \text { if } y_{L}=y_{R} \text { and } p<v \\ \frac{1}{2} & \text { if } y_{L}=y_{R} \text { and } p>v \\ 1-\int_{0}^{1} G\left(\gamma^{*}\left(y_{L}, y_{R}, r\right)\right) d F(r) & \text { if } y_{L}>y_{R}\end{cases}
$$

and R^{\prime} s probability of winning is $\pi_{R}\left(y_{R}, y_{L}\right)=1-\pi_{L}\left(y_{L}, y_{R}\right)$.
With these conditions we obtain the payoff matrix depicted in Figure 3 for the case of low polarization ($p<v$), and Figure 4 for high polarization ($p>v$). To economize on space, we display only $\pi_{L}\left(y_{L}, y_{R}\right)$ in each cell.

Strategies and Symmetric Equilibrium. Let $\sigma_{i}(y)$ denote the probability that candidate $i \in$ $\{L, R\}$ plays action $y \in Y$. We say that a strategy $\sigma=\left(\sigma_{L}, \sigma_{R}\right)$ is symmetric if $\sigma_{i}(y)=\sigma_{i}(-y)$ for all $y \in Y$ and each candidate $i \in\{L, R\}$. We focus on symmetric equilibria, in which strategies are symmetric.

For any symmetric strategy σ_{i}, the distance of candidate i 's platform from the expected me-

-2	-1		0		1
-2	0	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}+\frac{3}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{4}+1\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{6}+\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{v}{8 \kappa}\right)$
-1	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}-\frac{3}{2}\right)\right)$	0	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}+\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{v}{4 \kappa}\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{6}-\frac{1}{2}\right)\right)$
0	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{4}-1\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}-\frac{1}{2}\right)\right)$	0	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}-\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{4}-1\right)\right)$
1	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{6}-\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{v}{4 \kappa}\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}+\frac{1}{2}\right)\right)$	0	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}-\frac{3}{2}\right)\right)$
2	$\frac{1}{2}\left(1-\frac{v}{8 \kappa}\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{6}+\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{4}+1\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}+\frac{3}{2}\right)\right)$	0

Figure 3 - Low Polarization. Each cell contains L's probability of winning.

	-2		-1		0
2	1	2			
-2	$\frac{1}{2}$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}+\frac{3}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{4}+1\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{6}+\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{v}{8 \kappa}\right)$
-1	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}-\frac{3}{2}\right)\right)$	$\frac{1}{2}$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}+\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{v}{4 \kappa}\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{6}-\frac{1}{2}\right)\right)$
0	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{4}-1\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}-\frac{1}{2}\right)\right)$	$\frac{1}{2}$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}-\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{4}-1\right)\right)$
1	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{6}-\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{v}{4 \kappa}\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}+\frac{1}{2}\right)\right)$	$\frac{1}{2}$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}-\frac{3}{2}\right)\right)$
2	$\frac{1}{2}\left(1-\frac{v}{8 \kappa}\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{6}+\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{4}+1\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}+\frac{3}{2}\right)\right)$	$\frac{1}{2}$

Figure 4 - High Polarization. Each cell contains L's probability of winning.
dian $\left|y_{i}\right|$ is a random variable. Notice that if $\sigma_{i}(0) \leq \sigma_{j}(0)$, and $\sigma_{i}(0)+2 \sigma_{i}(1) \leq \sigma_{j}(0)+2 \sigma_{j}(1)$, with at least one strict inequality, then $\left|y_{i}\right| \succ_{F O S D}\left|y_{j}\right|$. That is $\left|y_{i}\right|$ first order stochastic dominates $\left|y_{j}\right|$ and so i unambiguously locates further from the expected median policy of 0 than candidate j. We have the following result.

Proposition B.1. A symmetric equilibrium always exists when $Y=\{-2,-1,0,1,2\}$. Furthermore:

1. When $p<v$, in every symmetric equilibrium $\left|y_{L}\right| \succ_{F O S D}\left|y_{R}\right|$.
2. If $p>v$ then,
(a) if $v<1$, in the unique symmetric equilibrium $\sigma_{R}^{*}(0)=\sigma_{L}^{*}(0)=1$.
(b) If $v>1$, in every symmetric equilibrium: $\left|y_{R}\right| \succ_{F O S D}\left|y_{L}\right|$

To prove Proposition B. 1 we first develop some notation. For $y \in\{1,2\}$, we let $\varsigma_{i}(y)=\sigma_{i}(y)+$ $\sigma_{i}(-y)$. That is: $\varsigma_{i}(y)$ is the frequency with which i plays either $+y$ or $-y$. Thus, $\sigma_{i}(0)+\varsigma_{i}(1)+$ $\varsigma_{i}(2)=1$, and a symmetric strategy satisfies $\sigma_{i}(y)=\sigma_{i}(-y)=\varsigma_{i}(y) / 2$ for each $y \in\{1,2\}$. Thus, $i \in\{L, R\}$'s symmetric strategy is fully described by $\left(\varsigma_{i}(1), \varsigma_{i}(2)\right)$.

Let:

$$
\begin{equation*}
\Pi_{L}\left(0 ; \varsigma_{R}(1), \varsigma_{R}(2)\right)=\sigma_{R}(0) \pi_{L}(0,0)+\varsigma_{R}(1) \pi_{L}(0,1)+\varsigma_{R}(2) \pi_{L}(0,2) \tag{B.4}
\end{equation*}
$$

$\Pi_{L}\left(0 ; \varsigma_{R}(1), \varsigma_{R}(2)\right)$ is L's payoff from choosing policy zero when R^{\prime} s symmetric strategy is $\left(\varsigma_{R}(1), \varsigma_{R}(2)\right)$. Similarly, for $y \in\{1,2\}$:

$$
\begin{align*}
\Pi_{L}\left(y ; \varsigma_{R}(1), \varsigma_{R}(2)\right) & =\sigma_{R}(0) \pi_{L}(y, 0) \\
& +\frac{1}{4} \sum_{x \in\{1,2\}} \varsigma_{R}(x)\left[\pi_{L}(y, x)+\pi_{L}(y,-x)+\pi_{L}(-y, x)+\pi_{L}(-y,-x)\right] \tag{B.5}
\end{align*}
$$

Here, $\Pi_{L}\left(y ; \varsigma_{R}(1), \varsigma_{R}(2)\right)$ is L's expected payoff from choosing policy $y \in\{1,2\}$ with probability one half and $-y$ with probability one half when R^{\prime} s symmetric strategy is $\left(\varsigma_{R}(1), \varsigma_{R}(2)\right)$. Notice that $\pi_{L}(y, 0)=\pi_{L}(-y, 0)$ for $y \in\{1,2\}$. The corresponding payoff $\Pi_{R}\left(\cdot ; \sigma_{L}(0), \sigma_{L}(1)\right)$ for R is similarly defined.

We first establish that a symmetric equilibrium exists.
Lemma B.1. A symmetric equilibrium exists.

Proof. Call the original game Γ, and consider a modified game Γ^{\prime} that differs from Γ in the following respects: (1) each player's action set is $Y\left(\Gamma^{\prime}\right)=\{0,1,2\}$, and (2) recalling $\Pi_{i}\left(y ; \varsigma_{i}(1), \varsigma_{i}(2)\right)$ that we defined in (B.5), i 's payoff from action pair $\left(y_{i}, y_{j}\right) \in\{0,1,2\}^{2}$ is:

$$
\tilde{\pi}_{i}\left(y_{i}, y_{j}\right) \equiv \begin{cases}\pi_{i}\left(0, y_{j}\right) & \text { if } y_{i}=0 \\ \pi_{i}\left(y_{i}, 0\right) & \text { if } y_{j}=0 \\ \Pi_{i}\left(y_{i} ; 1,0\right) & \text { if } y_{i} \in\{1,2\}, y_{j}=1 \\ \Pi_{i}\left(y_{i} ; 0,1\right) & \text { if } y_{i} \in\{1,2\}, y_{j}=2\end{cases}
$$

We note that if $\sigma^{\Gamma^{\prime}}=\left(\sigma_{L}^{\Gamma^{\prime}}, \sigma_{R}^{\Gamma^{\prime}}\right)$ is a Nash equilibrium of Γ^{\prime}, then the strategy profile σ^{Γ} satisfying:

$$
\sigma_{i}^{\Gamma}(y)= \begin{cases}\sigma_{i}^{\Gamma^{\prime}}(0) & \text { if } y=0 \\ \frac{1}{2} \sigma_{i}^{\Gamma^{\prime}}(1) & \text { if } y \in\{-1,1\} \\ \frac{1}{2} \sigma_{i}^{\Gamma^{\prime}}(2) & \text { if } y \in\{-2,2\}\end{cases}
$$

is a symmetric Nash equilibrium of Γ. Since Γ^{\prime} is a finite action game and thus possesses a Nash equilibrium, it follows that Γ possesses a symmetric equilibrium.

Having established a symmetric equilibrium exists we prove the characterization result separately for the cases in which $p<v$ and when $p>v$, breaking each argument into multiple lemmas.

Part 1: When $p<v$ the payoff matrix appears in Figure 3-each cell identifies L's payoff $\pi_{L}\left(y_{L}, y_{R}\right)$, and R^{\prime} s is $\pi_{R}\left(y_{R}, y_{L}\right) \equiv 1-\pi_{L}\left(y_{L}, y_{R}\right)$.

We first establish Lemma B. 2 which shows that in every symmetric equilibrium, if $p<v$, there are no 'gaps' in the support of candidate R 's strategy. Formally: candidate $i \in\{L, R\}$'s strategy σ_{i} has a gap at $y \in\{-1,0,1\}$ if $\sigma_{i}(y)=0$ and there exist $z \in Y$ and $x \in Y$ such that $z<y<x$, $\sigma_{i}(z)>0$, and $\sigma_{i}(x)>0$. Candidate $i \in\{L, R\}$'s strategy has no gaps if it does not have a gap at any $y \in\{-1,0,1\}$.

Lemma B.2. Let $p<v$. In every symmetric equilibrium, candidate R 's strategy has no gaps.

Proof. We proceed in two steps. The first step argues $\sigma_{R}(0)>0$ in a symmetric equilibrium, when $p<v$. The second step argues that $\varsigma_{R}(2)>0$ implies $\varsigma_{R}(1)>0$. Observe that when $p<v$, we cannot have a symmetric equilibrium in which $\sigma_{L}(0)=1$.

Step 1. First, we argue that when $p<v, \sigma_{R}(0)>0$ in every symmetric equilibrium. Suppose, to the contrary, $\sigma_{R}(0)=0 . \kappa>v$ implies $\Pi_{L}\left(0 ; \varsigma_{R}(1), 1-\varsigma_{R}(1)\right)>\Pi_{L}\left(1 ; \varsigma_{R}(1), 1-\varsigma_{R}(1)\right)$ for any $\varsigma_{R}(1) \in[0,1]$. Since $\sigma_{L}(0)<1$ in any equilibrium, $\sigma_{L}(0)=1-\varsigma_{L}(2) \in(0,1)$. L's indifference
requires $\varsigma_{R}(1)=\frac{24(\kappa+2)-9 v}{24 \kappa-v-24}$, and R^{\prime} s indifference requires $\sigma_{L}(0)=\frac{24 \kappa-13 v+48}{24 \kappa-v-24}$. Observe $\sigma_{L}(0) \geq 0$ if and only if $\kappa \geq(48+13 v) / 24$, which further implies $\varsigma_{R} \leq 1$ if and only if $v \geq 9$. Finally $\Pi_{R}\left(2 ; 0,-\frac{12(v+2)}{-24 \kappa+v+24}\right) \geq \Pi_{R}\left(0 ; 0,-\frac{12(v+2)}{-24 \kappa+v+24}\right)$ requires $\frac{24(\kappa-2)(2 \kappa+1)+11 v^{2}+(31-50 \kappa) v}{4 \kappa(-24 \kappa+v+24)} \geq 0$, which fails whenever $9 \leq v \leq \kappa$. This contradicts $\sigma_{R}(0)=0$.

Step 2. Second, we argue that when $p<v, \varsigma_{R}(2)>0$ implies $\varsigma_{R}(1)>0$ in every symmetric equilibrium. Suppose, to the contrary, $\varsigma_{R}(2)>0$ and $\varsigma_{R}(1)=0$. By the previous step, $\sigma_{R}(0)>0$. Thus, $\varsigma_{R}(2)=1-\sigma_{R}(0)$.
(a) Suppose $\sigma_{L}(0)=0$. If $\varsigma_{L}(1)>0$ and $\varsigma_{L}(2)>0, L^{\prime}$ s indifference requires $\sigma_{R}(0)=\frac{24 \kappa+48-13 v}{24(\kappa+1)-5 v}$, which implies $v \geq 3$. Likewise, R 's indifference pins down $\varsigma_{L}(1)=1-\frac{8(9+v)}{24(\kappa+1)-v}$. Algebra yields $\Pi_{R}\left(1 ; \varsigma_{L}(1), 1-\varsigma_{L}(1)\right)-\Pi_{L}\left(2 ; \varsigma_{L}(1), 1-\varsigma_{L}(1)\right)>0$, contradicting $\varsigma_{R}(2)>0$.
(b) Suppose $\sigma_{L}(0)>0$. Since $\Pi_{R}\left(1 ; 1-\sigma_{L}(0), 0\right)-\Pi_{L}\left(2 ; 1-\sigma_{L}(0), 0\right)>0$ for all $\sigma_{L}(0) \in[0,1]$, $\varsigma_{R}(1)=0$ implies that if $\sigma_{L}(0)>0$, then $\varsigma_{L}(2)>0$.
(i) If $\varsigma_{L}(2)=1-\sigma_{L}(0)>0, L^{\prime}$ s indifference requires $\sigma_{R}(0)=\frac{3 v-8(\kappa+2)}{7 v-24 \kappa}$. Algebra yields that for all $\kappa>\max \{2, v\}, \Pi_{L}\left(1 ; 0,1-\frac{3 v-8(\kappa+2)}{7 v-24 \kappa}\right)-\Pi_{L}\left(2 ; 0,1-\frac{3 v-8(\kappa+2)}{7 v-24 \kappa}\right)>0$, contradicting $\varsigma_{R}(1)=0$.
(ii) If $\varsigma_{L}(1)>0, L$'s indifference conditions pin down $\sigma_{R}(0)=1-\frac{12(v-2)}{24(\kappa+1)-v}=\frac{v}{12 \kappa-5 v-6}$, which is interior only if $v \geq 2$. For any $v \geq 2$, we find that $1-\frac{12(v-2)}{24(\kappa+1)-v}-\frac{v}{12 \kappa-5 v-6}$ strictly decreases in v; evaluating this difference at $v=\kappa$ yields $\frac{6(\kappa(9 \kappa+41)-48)}{(7 \kappa-6)(23 \kappa+24)}$, which is strictly positive for all $\kappa \geq 2$. We conclude that there is no $\sigma_{R}(0) \in[0,1]$ that yields L 's indifference between all her actions.

While R 's strategy cannot have a gap, L's could. Lemma B. 3 and Lemma B. 4 establish that for any location of the gap, the polarization of L^{\prime} 's strategy first order stochastic dominates R^{\prime} s.

Lemma B.3. Let $p<v$. In every symmetric equilibrium, $\varsigma_{L}(2)>0$ and $\varsigma_{L}(1)=0$ implies $\sigma_{R}(0)>$ $\sigma_{L}(0)$.

Proof. Let $\varsigma_{L}(2)>0$ and $\varsigma_{L}(1)=0$. If $\sigma_{R}(0)=1$, or if $\varsigma_{L}(2)=1$, the lemma trivially holds. Thus, we restrict subsequent attention to $\sigma_{L}(0)=1-\varsigma_{L}(2)>0$ and $\sigma_{R}(0)<1$; Lemma B. 2 implies we may further restrict attention to symmetric no-gap strategies by R.
(a) Suppose $\varsigma_{R}(1)=1-\sigma_{R}(0)$. R^{\prime} s indifference requires $\sigma_{L}(0)=\frac{v}{12 \kappa-5 v+6}$ and L^{\prime} 's indifference requires $\sigma_{R}(0)=\frac{2(v-9)}{-12 \kappa+5 v-6} ; \kappa>v$ implies $\sigma_{R}(0) \in[0,1]$ if and only if $v<9$. Moreover, $\frac{v}{12 \kappa-5 v+6} \geq$ $\frac{2(9-v)}{12 \kappa-5 v+6}$ only if $v \geq 6$. However, algebra yields that for all $v \in[6,9], \Pi_{R}\left(2 ; 0,1-\frac{v}{12 \kappa-5 v+6}\right)-$ $\Pi_{R}\left(0 ; 0,1-\frac{v}{12 \kappa-5 v+6}\right)>0$, contradicting $\varsigma_{R}(2)=0$.
(b) Suppose R plays all actions with strictly positive probability. R 's indifference conditions yield $\sigma_{L}(0)=\frac{v}{12 \kappa-5 v+6}=\frac{-24 \kappa+13 v+48}{-24 \kappa+v+24}$. For all $\kappa>v, \frac{-24 \kappa+13 v+48}{-24 \kappa+v+24}$ strictly decreases in v, and is strictly positive if and only if $v \leq(\kappa-2) 24 / 13$. We further observe that $\frac{v}{12 \kappa-5 v+6}$ strictly increases in v. We conclude that there exists at most one v^{*} such that $\sigma_{L}(0)=\frac{v^{*}}{12 \kappa-5 v^{*}+6}=\frac{-24 \kappa+13 v^{*}+48}{-24 \kappa+v^{*}+24} \equiv$ $\sigma^{*}\left(v^{*}\right)$, and direct calculation yields that $v^{*} \leq \kappa$ if and only if $\kappa \leq(41+\sqrt{3409}) / 18$, and also that $\sigma^{*}\left(v^{*}\right)<(71-\sqrt{3409}) / 102 \approx$.12366. L's indifference between policies 0 and 2 requires $\sigma_{R}(0)=\frac{\left(\varsigma_{R}(2)+8\right) v-24\left((\kappa-1) \varsigma_{R}(2)+3\right)}{4(-12 \kappa+5 v-6)}$. In conjunction with this value of $\sigma_{R}(0)$ and $\kappa \leq(41+\sqrt{3409}) / 18$, algebra yields that L 's weak preference not to select policy 1 implies a (not tight) upper bound $\varsigma_{R}(2) \leq .25$, which implies $\sigma_{R}(0)+\varsigma_{R}(1) \geq .75$. Further algebra yields a lower bound $\sigma_{R}(0) \geq$ $\frac{2(v-9)}{-12 \kappa+5 v-6}$ for all $\varsigma_{R}(2)$, and this lower bound itself weakly exceeds $\frac{1}{102}(23 \sqrt{3409}-1327) \approx .1558$. Since we showed $\sigma_{L}(0)<(71-\sqrt{3409}) / 102 \approx .12366$, we conclude that $\sigma_{R}(0)>\sigma_{L}(0)$.

Lemma B.4. Let $p<v$. In a symmetric equilibrium, if $\sigma_{L}(0)=0$ then $\left|y_{L}\right| \succ_{F O S D}\left|y_{R}\right|$.

Proof. If $\varsigma_{R}(2)=0$, the Lemma holds, trivially. If R randomizes over all actions, observe that since $\Pi_{R}(1 ; 1,0)>\Pi_{R}(2 ; 1,0)$, we must have $\varsigma_{L}(2)=1-\varsigma_{L}(1)>0$. R^{\prime} 's indifference requires $\sigma_{L}(1)=\frac{2 v}{12+11 v-12 \kappa}=\frac{24 \kappa-13 v-48}{48 \kappa-23 v}$. Observe that $\frac{2 v}{12+11 v-12 \kappa}-\frac{24 \kappa-13 v-48}{48 \kappa-23 v} \propto 288\left(\kappa^{2}-3 \kappa+2\right)+97 v^{2}-$ $36(9 \kappa-19) v$, which is strictly positive when $v=0$ for all $\kappa \geq 2$, and which strictly increases in v if $\kappa \leq 19 / 9$. If $\kappa>19 / 9$, then the expression is positive for all $v \in[0, \kappa]$. \square

Lemma B. 2 shows that R^{\prime} 's strategy cannot have a gap and Lemma B. 3 and Lemma B. 4 establish the first order stochastic dominance ranking if L 's strategy has a gap. We can now complete the proof restricting attention to strategy profiles in which neither candidate's strategy has a gap. Proof of Part 1. Focusing on no gap symmetric strategy profiles we can index the cases according
to R^{\prime} 's strategy. Recall that we must have $\sigma_{L}(0)<1$ so if $\sigma_{R}(0)=1$, the result is immediate.
Suppose $\varsigma_{R}(2)=0$ and $\varsigma_{R}(1)>0$. Since we must have $\sigma_{L}(0)<1$, there are two possibilities. If $\varsigma_{L}(2)=0$, indifference conditions yield mixtures such that $\sigma_{R}(0)>\sigma_{L}(0)$. If $\varsigma_{L}(2)>0, L$'s indifference conditions require $\sigma_{R}(0)=\frac{3 v-4(\kappa+1)}{7 v-12 \kappa}=\frac{2(v-9)}{-12 \kappa+5 v-6}$, which requires $v \leq 9$. R^{\prime} s indifference requires that $\sigma_{L}(0)=-\frac{12 \kappa \varsigma_{L}(1)-12 \varsigma_{L}(1)-11 \varsigma_{L}(1) v+2 v}{2(-12 \kappa+5 v-6)}$, which is linear in $\varsigma_{L}(1) \in\left[0,1-\sigma_{L}(0)\right]$. If $\varsigma_{L}(1)=1-\sigma_{L}(0)$, we obtain $\sigma_{L}(0)=\frac{4 \kappa-3 v-4}{12 \kappa-7 v}<\frac{4 \kappa+4-3 v}{12 \kappa-7 v}=\sigma_{R}(0)$. If $\varsigma_{L}(1)=0$, we obtain $\sigma_{L}(0)=\frac{v}{12 \kappa-5 v+6}<\frac{2(9-v)}{12 \kappa-5 v+6}$ for all $v<6$, while $\sigma_{R}(0)-\sigma_{L}(0)=\frac{3 v-4(\kappa+1)}{7 v-12 \kappa}-\frac{v}{12 \kappa+5 v-6}$ strictly increases in κ for all $v \geq 6$. Setting $\kappa=v$, the difference $\frac{3 v-4(\kappa+1)}{7 v-12 \kappa}-\frac{v}{12 \kappa+5 v-6}$ is strictly positive. Thus, $\sigma_{R}(0)>\sigma_{L}(0)$, and since $\sigma_{R}(0)+\varsigma_{R}(1)=1$, we are done.

Suppose, instead, $\varsigma_{R}(2)>0$ and $\varsigma_{R}(1)>0$. Recall that we focus on symmetric no-gap strategies by L. If $\varsigma_{L}(1)=1-\sigma_{L}(0), R^{\prime}$ s indifference over all her actions requires $\sigma_{L}(0)=\frac{-4 \kappa+3 v+4}{7 v-12 \kappa}=$ $\frac{6(v+2)}{12(\kappa+1)-11 v}+1$, but the the latter lies outside the unit interval. If both L and R randomize over all of their actions, solving indifference conditions yields strategies that satisfy the required properties.

Part 2: We now turn to the high-polarization setting, in which $p>v$ and the payoff matrix is given in Figure 4. The steps proceed as in part 1 with the candidates reversed. We begin by ruling out gaps for the L candidate.

Lemma B.5. Let $p>v$. In every symmetric equilibrium, candidate L's strategy has no gaps.
Proof. The proof proceeds in two steps.
Step 1. First, we argue that if $p>v, \sigma_{L}(0)>0$ in every symmetric equilibrium. Conjecture, to the contrary, that $\sigma_{L}(0)=0$.
(a) Suppose $\varsigma_{L}(1)=1$, which implies $\varsigma_{L}(2)=0$. Straightforward calculation yields $\Pi_{R}(0 ; 1,0)>$ $\max \left\{\Pi_{R}(1 ; 1,0), \Pi_{R}(2 ; 1,0)\right\}$, so that $\sigma_{R}(0)=1$ is R 's unique symmetric best response to L 's strategy. But since $\Pi_{L}(0 ; 0,0)>\max \left\{\Pi_{L}(1 ; 0,0), \Pi_{L}(2 ; 0,0)\right\}$, we cannot have $\sigma_{L}(0)=0$.
(b) Suppose $\varsigma_{L}(2)=1$, which implies $\varsigma_{L}(1)=0$. Straightforward calculation yields $\Pi_{R}(1 ; 0,1)>$
$\max \left\{\Pi_{R}(0 ; 0,1), \Pi_{R}(2 ; 0,1)\right\}, \varsigma_{R}(1)=1$ is R^{\prime} 's unique symmetric best response to L 's strategy. But since $\Pi_{L}(1 ; 1,0)>\Pi_{L}(2 ; 1,0), L$ strictly prefers $\varsigma_{L}(1)=1$ to $\varsigma_{L}(2)=1$, a contradiction.
(c) Suppose $0<\varsigma_{L}(1)<1$.
(i) If $\varsigma_{R}(2)=0, \Pi_{L}(1 ; 1,0)>\Pi_{L}(2 ; 1,0)$ and $\varsigma_{L}(1)<1$ implies $\varsigma_{R}(1)<1$. If $\varsigma_{R}(1)=0, \sigma_{L}(0)=1$ is strictly preferred to any $\varsigma_{L}(1) \in(0,1)$. So, we must have $\sigma_{R}(0)=1-\varsigma_{R}(1) \in(0,1)$. Solving L^{\prime} 's indifference condition yields $\sigma_{R}(0)=\frac{5 v+24}{11 v+12}$. Direct calculation yields $\Pi_{L}\left(1 ; 1-\frac{5 v+24}{11 v+12}, 0\right)<$ $\Pi_{L}\left(0 ; 1-\frac{5 v+24}{11 v+12}, 0\right)$, contradicting $\varsigma_{L}(1)>0$.
(ii) If $\varsigma_{R}(1)=0, L$'s indifference condition yields $\sigma_{R}(0)=1-\varsigma_{R}(2)=\frac{13 v-48}{v-24}$, which is positive only if $v \leq 48 / 13$, in which case $\Pi_{L}\left(0 ; 0,1-\frac{13 v-48}{v-24}\right)>\Pi_{L}\left(1 ; 0,1-\frac{13 v-48}{v-24}\right)$, contradicting $\varsigma_{L}(1)>0$. Steps (i) and (ii) yield that $\varsigma_{R}(1)>0$ and $\varsigma_{R}(2)>0$.
(iii) If $\sigma_{R}(0)=0$, then $\varsigma_{R}(2)=1-\varsigma_{R}(1) \in(0,1)$. Indifference for R requires $\varsigma_{L}(1)=\frac{48+13 v}{23 v}$. However, $\Pi_{R}\left(0 ; \frac{48+13 v}{23 v}, 1-\frac{48+13 v}{23 v}\right)>\Pi_{R}\left(1 ; \frac{48+13 v}{23 v}, 1-\frac{48+13 v}{23 v}\right)$, contradicting $\sigma_{R}(0)=0$.
(iv) If R randomizes chooses all her actions with strictly positive probability, her indifference between 0 and 1 requires $\varsigma_{L}(1)=\frac{2 v}{12+11 v}$. But, $\Pi_{R}\left(0 ; \frac{2 v}{12+11 v}, 1-\frac{2 v}{12+11 v}\right)>\Pi_{R}\left(2 ; \frac{2 v}{12+11 v}, 1-\frac{2 v}{12+11 v}\right)$, contradicting $\varsigma_{R}(2)>0$.

We conclude that $\sigma_{L}(0)>0$ in every symmetric equilibrium.
Step 2. We argue that if $p>v, \varsigma_{L}(1)=0$ implies $\varsigma_{L}(2)=0$ in every symmetric equilibrium. Conjecture, to the contrary, that $\varsigma_{L}(1)=0$ and $\varsigma_{L}(2)>0$. We already showed $\sigma_{L}(0)>0$, and thus $\varsigma_{L}(2)=1-\sigma_{L}(0)>0$. Moreover, $\Pi_{R}\left(1 ; 0,1-\sigma_{L}(0)\right)>\Pi_{R}\left(2 ; 0,1-\sigma_{L}(0)\right)$ for any $\sigma_{L}(0) \in[0,1]$, so $\varsigma_{R}(2)=0$. This implies $\varsigma_{R}(1)=1-\sigma_{R}(0)$. Since L plays both 0 and 2 with positive probability, her indifference requires $\Pi_{L}\left(0 ; 1-\sigma_{R}(0), 0\right)=\Pi_{L}\left(2 ; 1-\sigma_{R}(0), 0\right)$, which yields $\sigma_{R}(0)=\frac{2(v-9)}{5 v-6}$, which implies $v \geq 9$. However, $\Pi_{L}\left(1 ; 1-\frac{2(v-9)}{5 v-6}, 0\right)>\Pi_{L}\left(0 ; 1-\frac{2(v-9)}{5 v-6}, 0\right)$, contradicting $\varsigma_{L}(1)=0$ and $\sigma_{L}(0)>0$.

Steps 1 and 2 yield that when $p>v, L$'s strategy has no gaps in every symmetric equilibrium.
Having established that L 's strategy has no gaps the next two lemmas show that if R^{\prime} s strat-
egy has a gap it must be at 0 , and that in that case the first order stochastic dominance ranking holds.

Lemma B.6. Let $p>v$. In every symmetric equilibrium, $\varsigma_{R}(2)=0$ implies $\varsigma_{R}(1)=0$.

Proof. Suppose $\varsigma_{R}(2)>0$, but $\varsigma_{R}(1)=0$. For all $\sigma_{R}(0)=1-\varsigma_{R}(2) \in[0,1]$, we have $\Pi_{L}(0 ; 0,1-$ $\left.\sigma_{R}(0)\right)>\Pi_{L}\left(1 ; 0,1-\sigma_{R}(0)\right)$, which implies $\varsigma_{L}(1)=0$. The previous Lemma implies that L 's strategy has no gaps, so $\varsigma_{L}(2)=0$. But $\Pi_{R}(1 ; 0,0)>\Pi_{R}(2 ; 0,0)$ contradicts $\varsigma_{R}(2)>0$.

Lemma B.7. Let $p>v$. In a symmetric equilibrium, if $\sigma_{R}(0)=0$ then $\left|y_{R}\right| \succ_{F O S D}\left|y_{L}\right|$.

Proof. We need only consider possible equilibria in which L randomizes over all of her actions, and in which R^{\prime} 's strategy has a gap at zero. L's indifference conditions pin down $\varsigma_{R}(1)=$ $\frac{2 v}{11 v-12}=\frac{13 v-48}{23 v}$, which can only be satisfied if $v=\frac{6}{97}(57+\sqrt{1697})$. R^{\prime} 's indifference between policies 1 and 2 requires $\varsigma_{L}(1)=\frac{24 \varsigma_{L}(2)+\varsigma_{L}(2) v+12 v+24}{2(11 v-12)}$. When $v=\frac{6}{97}(57+\sqrt{1697})$, this implies however that for any $\left.\left.\varsigma_{L}(2) \in\right] 0,1\right], R$ strictly prefers to choose zero rather than 1 .

Lemma B.5, Lemma B. 6 and Lemma B. 7 imply that we may restrict our attention to symmetric equilibria in which neither candidate's strategy has a gap, which we use to complete the proof.

Proof of Part 2: We first consider $v<1$ show that $\sigma_{L}(0)=\sigma_{R}(0)=1$ is the unique symmetric equilibrium. This follows from the observation that when $v<1$ then $\sigma_{L}(0)=1$ is L 's unique best response to any symmetric σ_{R}, and that $\Pi_{R}(0 ; 0,0)>\max \left\{\Pi_{R}(1 ; 0,0), \Pi_{R}(2 ; 0,0)\right\}$ so R 's unique best response to $\sigma_{L}(0)=1$ is $\sigma_{R}(0)=1$. This proves part (a).

Henceforth, we focus on $v>1$ restricting attention to symmetric equilibria in which neither candidate's strategies have gaps. We index strategy profiles according to L 's symmetric no-gap strategy.
(1) Suppose $\sigma_{L}(0)=1$. Then, $v>1$ implies $\Pi_{R}(0 ; 0,0)<\max \left\{\Pi_{R}(1 ; 0,0), \Pi_{R}(2 ; 0,0)\right\}$, and thus $\sigma_{R}(0)=0$. The proposition follows.
(2) Suppose $\sigma_{L}(0)<1$ and $\varsigma_{L}(1)=1-\sigma_{L}(0)$. If $\sigma_{R}(0)=0$, the proposition follows. If $\varsigma_{R}(1)=$ $1-\sigma_{R}(0)$, indifference conditions yield $\sigma_{R}(0)=\frac{3}{7}-\frac{4}{7 v}$ and $\sigma_{L}(0)=\frac{3}{7}+\frac{4}{7 v}$, which satisfy the proposition. Finally, if R plays all actions with positive probability, then R 's indifference requires $\sigma_{L}(0)=\frac{3 v+4}{7 v}=\frac{5 v-24}{11 v-12}$, which is possible if and only if $v \in\left\{\frac{12}{\sqrt{478}+22}, 2(\sqrt{478}+22)\right\}$. Similarly, L 's indifference across actions 0 and 1 requires $\sigma_{R}(0)=\frac{-1 \varsigma_{R}(1)+1 \varsigma_{R}(1) v-2 v}{2(5 v+6)}$, which is strictly negative for all $\varsigma_{R}(1) \in[0,1]$ if $v=\frac{12}{\sqrt{478}+22}$. Thus, we must have $v=2(\sqrt{478}+22)$. In that case, straightforward calculation yields that L weakly prefers not to play action 2 only if $\varsigma_{R}(1) \geq \frac{2911 \sqrt{478}-38782}{46933}$. This yields that $\sigma_{R}(0) \leq \frac{820399-20827 \sqrt{478}}{985593}<\frac{1}{21}(31-\sqrt{478})=\frac{3 v+4}{7 v}=\sigma_{L}(0)$.
(3) Suppose L plays all of her actions with positive probability. We must have $\sigma_{R}(0)>0$ since R^{\prime} s strategy has no gaps, and we must also have $\sigma_{R}(0)<1$ if L does not play 0 with probability one. If $\varsigma_{R}(1)=1-\sigma_{R}(0)>0, L$'s indifference conditions require $\sigma_{R}(0)=\frac{3 v-4}{7 v}=\frac{5 v+24}{11 v+12}$, which holds for no $v>0$. If, instead, R plays all actions with positive probability, then it is straightforward to solve indifference conditions and obtain strategies that satisfy the proposition. Together, these three cases establish part (b).

[^0]: *Department of Government, Harvard University, Email: pbuisseret@fas.harvard.edu
 ${ }^{\dagger}$ Department of Economics, University of Pittsburgh, Email: rmv22@pitt. edu

