Online Appendix for "Polarization, Valence, and Policy Competition"

Peter Buisseret* Richard Van Weelden⁺

October 22, 2021

Abstract

In this Supplementary Appendix we prove the results in Section 4: More Actions from the main text and provide results for the five-policy case. For Online Publication only.

A. Proof of Results from Section 4

Proof of Proposition 3. We start with p < v. The payoff matrix is displayed in Figure 1. The probabilities $\underline{\pi}$ and $\overline{\pi}$ are the same as in the two-action case (defined in expressions (2) and (3) of the main text respectively and evaluated at $\mu = 0$). The proof of Proposition 2 establishes that $\underline{\pi} < 1/2$ for all parameters and that $\overline{\pi} > 1/2$ if and only if $v < 1 - 2\mu = 1$.

If $y_L = -1$ and $y_R = 1$ a liberal voter supports candidate L if $y^i < (p-v)/4$ and a conservative supports L if $y^i < (-p - v)/4$. Note that if v = 0 the candidates are symmetric and so each candidate wins with probability 1/2 but that L's vote share and win probability decreases in v. Thus L wins with probability $\hat{\pi} < 1/2$.

^{*}Department of Government, Harvard University, Email: pbuisseret@fas.harvard.edu

[†]Department of Economics, University of Pittsburgh, *Email*: rmv22@pitt.edu

Figure 1 – Low Polarization

Let $\sigma_i = \sigma_i(0)$ denote the probability of *i* choosing $y_i = 0$, so in any symmetric strategy $\sigma_i(-1) = \sigma_i(1) = (1 - \sigma_i)/2$. Observation yields that $y_R = 0$ is the unique best response to any symmetric strategy $\sigma_L \in [0, 1]$ if and only if $\hat{\pi} > 2\pi$. Moreover, if *R* chooses $y_R = 0$, then $\sigma_L = 0$ is *L*'s unique (symmetric) best response. We conclude that if $\hat{\pi} > 2\pi$, $\sigma_R = 1$ and $\sigma_L = 0$ is the unique symmetric equilibrium. When $\hat{\pi} < 2\pi$, we obtain a unique symmetric equilibrium in mixed strategies:

$$\sigma_R^{LP} = \frac{2\overline{\pi} - \hat{\pi}}{2(\overline{\pi} + \underline{\pi}) - \hat{\pi}} > \frac{2\underline{\pi} - \hat{\pi}}{2(\overline{\pi} + \underline{\pi}) - \hat{\pi}} = \sigma_L^{LP}.$$

In either case, *R* chooses policy 0 strictly more often than *L*.

Next, we consider p > v. In this case the payoff matrix is given in Figure 2. Recalling that $\overline{\pi} > 1/2$ when v < 1 and $\overline{\pi} < 1/2$ when v > 1, if $y_L = 0$ then R's best response is $\sigma_R = 1$ if v < 1 and $\sigma_R = 0$ if v > 1.

			R	
		-1	0	1
	-1	$\frac{1}{2}, \frac{1}{2}$	$\underline{\pi}, 1 - \underline{\pi}$	$\hat{\pi}, 1 - \hat{\pi}$
L	0	$\overline{\pi}, 1 - \overline{\pi}$	$rac{1}{2},rac{1}{2}$	$\overline{\pi}, 1 - \overline{\pi}$
	1	$\hat{\pi}, 1 - \hat{\pi}$	$\underline{\pi}, 1 - \underline{\pi}$	$\frac{1}{2}, \frac{1}{2}$

Figure 2 – High Polarization

Now consider *L*. For any $\sigma_R \in [0, 1]$, *L*'s net payoff from y = 0 versus $y \in \{-1, 1\}$ is

$$\Delta_L(\sigma_R) = \sigma_R\left(\frac{1}{2} - \underline{\pi}\right) + (1 - \sigma_R)\left(\overline{\pi} - \frac{1}{2}\left(\frac{1}{2} + \hat{\pi}\right)\right).$$

Note that $\Delta_L(1) > 0$ and that $\Delta_L(0) > 0$ if and only if

$$\overline{\pi} > \frac{1}{4} + \frac{\hat{\pi}}{2}.$$

Since $\hat{\pi} < 1/2 < \overline{\pi}$ when v < 1, it follows that *L* has a strictly best response of $y_L = 0$ for all σ_R when v < 1. Hence the unique equilibrium is the pure strategy equilibrium with median convergence: $\sigma_L = \sigma_R = 1$.

When v > 1 the equilibrium is in mixed strategies and there are two cases to consider. If $\overline{\pi} > 1/4 + \hat{\pi}/2$, any symmetric equilibrium must have $\sigma_L = 1$. Since *R*'s best response is then $\sigma_R = 0$, the unique symmetric equilibrium is $\sigma_L = 1$, $\sigma_R = 0$. If $\overline{\pi} < 1/4 + \hat{\pi}/2$, any symmetric equilibrium involves σ_L , $\sigma_R \in (0, 1)$. Using Figure 2, we obtain

$$\sigma_L^{HP} = \frac{\frac{1}{2} \left(\frac{1}{2} + \hat{\pi}\right) - \underline{\pi}}{\frac{1}{2} \left(\frac{1}{2} + \hat{\pi}\right) - \overline{\pi} + \frac{1}{2} - \underline{\pi}} > \frac{\frac{1}{2} \left(\frac{1}{2} + \hat{\pi}\right) - \overline{\pi}}{\frac{1}{2} \left(\frac{1}{2} + \hat{\pi}\right) - \overline{\pi} + \frac{1}{2} - \underline{\pi}} = \sigma_R^{HP}.$$

In either case *L* chooses policy strictly 0 more often than *R*. \Box

Proof of Remark 1. The case p < v is direct from the main text. We therefore focus on the case in which p > v. If $y_L = y_R = y$ then each candidate wins with probability 1/2. We now show that R would have a profitable deviation for any such $y \in \mathbb{R}$. Without loss of generality consider $y \le 0$, the expected median.

Let $0 < \varepsilon < \sqrt{v}$, and suppose *R* deviates to $y_R = y + \varepsilon$. A liberal voter then prefers *R* if and only if

$$y^i \ge y + \frac{1}{2}\left(\varepsilon + \frac{p-v}{\varepsilon}\right) := y^*$$

and a conservative prefers R if and only if

$$y^i \ge y + \frac{1}{2}\left(\varepsilon - \frac{p+v}{\varepsilon}\right) = y^* - \frac{p}{\varepsilon}.$$

Now define $\gamma^*(r)$ to solve

$$r\left(1 - B\left(y^* - \frac{p}{\varepsilon} - \gamma\right)\right) + (1 - r)\left(1 - B(y^* - \gamma)\right) = \frac{1}{2}.$$
(A.1)

The LHS is continuous and strictly increasing in γ ; it approaches one as $\gamma \to \infty$ and approaches zero as $\gamma \to -\infty$ so there is a unique solution $\gamma^*(r)$. Using the symmetry of $B(\cdot)$, it is easy to verify that

$$\gamma^*(1-r) = -\gamma^*(r) + 2y^* - \frac{p}{\varepsilon}.$$
 (A.2)

Since R wins the election if and only if $\gamma>\gamma^*(r)$, by locating at $y+\varepsilon$ her probability of winning is

$$\int_0^1 (1 - G(\gamma^*(r))) \, dF(r).$$

Deviating from y to $y + \varepsilon$ is profitable if this is strictly greater than 1/2, or equivalently if

$$\int_0^{1/2} (1 - G(\gamma^*(r)) \, dF(r) + \int_{1/2}^1 (1 - G(\gamma^*(r)) \, dF(r) > \frac{1}{2} = \int_{1/2}^1 \, dF(r).$$

Re-arranging and using the symmetry of $G(\cdot)$ this is equivalent to

$$\int_0^{1/2} G(-\gamma^*(r)) \, dF(r) = \int_{1/2}^1 G(-\gamma^*(1-r)) \, dF(r) > \int_{1/2}^1 G(\gamma^*(r)) \, dF(r).$$

Using (A.2), R therefore has a profitable deviation if

$$\int_{1/2}^{1} G\left(\gamma^{*}(r) - 2y^{*} + \frac{p}{\varepsilon}\right) dF(r) > \int_{1/2}^{1} G(\gamma^{*}(r)) dF(r),$$

which holds because when $y \leq 0$ and $0 < \varepsilon < \sqrt{v}$,

$$-2y^* + \frac{p}{\varepsilon} = -2y - \varepsilon - \frac{p - v}{\varepsilon} + \frac{p}{\varepsilon}$$
$$= -2y + \frac{v}{\varepsilon} - \varepsilon$$
$$> 0.$$

We conclude that *R* always has a profitable deviation from $y_L = y_R = y$. This implies that there is no pure strategy Nash equilibrium in which $y_L = y_R$.

Consider, instead, a pure strategy profile in which $y_L \neq y_R$. In that case, the candidates must win with probability one half: otherwise, the candidate who wins less often can profitably deviate to co-locate with the other candidate and win with probability one half. If the candidates win with probability one half, however, the previous argument shows that R has a profitable deviation to a policy in a neighborhood of y_L .

We conclude that there does not exist a pure strategy Nash equilibrium. \Box

B. Five Policies

In this section we analyze the model with five policies: $Y = \{-2, -1, 0, 1, 2\}$. To make the analysis tractable we assume that voter types, y_i , are uniformly distributed on the interval $[\gamma - \tau, \gamma + \tau]$,

$$B(x) = \begin{cases} 0 & \text{if } x < \gamma - \tau \\ \frac{x - (\gamma - \tau)}{2\tau} & \text{if } x \in [\gamma - \tau, \gamma + \tau], \\ 1 & \text{if } x > \gamma + \tau, \end{cases}$$

and that γ is uniformly distributed on $[-\kappa,\kappa]$,

$$G(x) = \begin{cases} 0 & \text{if } x < -\kappa \\ \frac{1}{2} + \frac{x}{2\kappa} & \text{if } x \in [-\kappa, \kappa]. \\ 1 & \text{if } x > \kappa. \end{cases}$$

Thus, the median position on the *y* issue is uniformly distributed as are voter bliss points around the median.

Our benchmark model assumes that $B(\cdot)$ and $G(\cdot)$ have unbounded support, but all results extend so long as these distributions' supports are 'large enough'. We assume $\kappa > \max\{v, 2\}$ so that $\gamma^*(y_L, y_R, r)$ defined in (B.3) lies in $[-\kappa, \kappa]$ for all $(y_L, y_R) \in Y^2$. Similarly, we assume that σ is large enough that for all (y_L, y_R) and any $\gamma \in [-\kappa, \kappa]$, the cut-off voter types defined in (B.1) and (B.2) below lie in $[\gamma - \tau, \gamma + \tau]$: $\sigma > \kappa + v + p + 2$.

Then, for any pair (y_L, y_R) such that $y_L \neq y_R$, the indifferent liberal type y_{lib} satisfies:

$$-(y_{\rm lib} - y_L)^2 = -(y_{\rm lib} - y_R)^2 - p + v \iff y_{\rm lib} = \frac{y_L + y_R}{2} - \frac{v - p}{2(y_R - y_L)}.$$
 (B.1)

Likewise, the indifferent conservative type y_{con} satisfies:

$$-(y_{\rm con} - y_L)^2 = -(y_{\rm con} - y_R)^2 + p + v \iff y_{\rm con} = y_{\rm lib} - \frac{p}{y_R - y_L}.$$
 (B.2)

Thus, for any $y_L < y_R$, L wins if and only if

$$r\left(\frac{y_{\text{con}} - (\gamma - \sigma)}{2\sigma}\right) + (1 - r)\left(\frac{y_{\text{lib}} - (\gamma - \sigma)}{2\sigma}\right) \ge \frac{1}{2}$$
$$\iff \gamma \le \gamma^*(y_L, y_R, r) = \frac{y_L + y_R}{2} - \frac{v + p(2r - 1)}{2(y_R - y_L)}.$$
(B.3)

The assumption that $B(\cdot)$ is uniform permits a closed-form expression for γ^* . Similarly, for any

 $y_L > y_R$, *L* wins if and only if $\gamma \ge \gamma^*(y_L, y_R, r)$. Let $\pi_i(y_i, y_j)$ denote $i \in \{L, R\}$'s probability of winning the election when her platform is y_i and her opponent's is y_j . We have

$$\pi_L(y_L, y_R) = \begin{cases} \int_0^1 G\left(\gamma^*(y_L, y_R, r)\right) \, dF(r) & \text{if } y_L < y_R \\\\ 0 & \text{if } y_L = y_R \text{ and } p < v \\\\ \frac{1}{2} & \text{if } y_L = y_R \text{ and } p > v \\\\ 1 - \int_0^1 G\left(\gamma^*(y_L, y_R, r)\right) \, dF(r) & \text{if } y_L > y_R, \end{cases}$$

and *R*'s probability of winning is $\pi_R(y_R, y_L) = 1 - \pi_L(y_L, y_R)$.

.

With these conditions we obtain the payoff matrix depicted in Figure 3 for the case of low polarization (p < v), and Figure 4 for high polarization (p > v). To economize on space, we display only $\pi_L(y_L, y_R)$ in each cell.

Strategies and Symmetric Equilibrium. Let $\sigma_i(y)$ denote the probability that candidate $i \in \{L, R\}$ plays action $y \in Y$. We say that a strategy $\sigma = (\sigma_L, \sigma_R)$ is *symmetric* if $\sigma_i(y) = \sigma_i(-y)$ for all $y \in Y$ and each candidate $i \in \{L, R\}$. We focus on symmetric equilibria, in which strategies are symmetric.

For any symmetric strategy σ_i , the distance of candidate *i*'s platform from the expected me-

		R					
		-2	-1	0	1	2	
	-2	0	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}+\frac{3}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{4}+1\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{6}+\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{v}{8\kappa}\right)$	
L -	-1	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}-\frac{3}{2}\right)\right)$	0	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}+\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{v}{4\kappa}\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{6}-\frac{1}{2}\right)\right)$	
	0	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{4}-1\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}-\frac{1}{2}\right)\right)$	0	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}-\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{4}-1\right)\right)$	
	1	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{6}-\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{v}{4\kappa}\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}+\frac{1}{2}\right)\right)$	0	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}-\frac{3}{2}\right)\right)$	
	2	$\frac{1}{2}\left(1-\frac{v}{8\kappa}\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{6}+\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{4}+1\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}+\frac{3}{2}\right)\right)$	0	

Figure 3 – Low Polarization. Each cell contains *L*'s probability of winning.

	-2	-1	0	1	2
-2	$\frac{1}{2}$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}+\frac{3}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{4}+1\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{6}+\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{v}{8\kappa}\right)$
-1	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}-\frac{3}{2}\right)\right)$	$\frac{1}{2}$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}+\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{v}{4\kappa}\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{6}-\frac{1}{2}\right)\right)$
- 0	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{4}-1\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}-\frac{1}{2}\right)\right)$	$\frac{1}{2}$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}-\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{4}-1\right)\right)$
1	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{6}-\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{v}{4\kappa}\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}+\frac{1}{2}\right)\right)$	$\frac{1}{2}$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}-\frac{3}{2}\right)\right)$
2	$\frac{1}{2}\left(1-\frac{v}{8\kappa}\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{6}+\frac{1}{2}\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{4}+1\right)\right)$	$\frac{1}{2}\left(1-\frac{1}{\kappa}\left(\frac{v}{2}+\frac{3}{2}\right)\right)$	$\frac{1}{2}$

R

Figure 4 – High Polarization. Each cell contains *L*'s probability of winning.

dian $|y_i|$ is a random variable. Notice that if $\sigma_i(0) \leq \sigma_j(0)$, and $\sigma_i(0) + 2\sigma_i(1) \leq \sigma_j(0) + 2\sigma_j(1)$, with at least one strict inequality, then $|y_i| \succ_{FOSD} |y_j|$. That is $|y_i|$ first order stochastic dominates $|y_j|$ and so *i* unambiguously locates further from the expected median policy of 0 than candidate *j*. We have the following result.

Proposition B.1. A symmetric equilibrium always exists when $Y = \{-2, -1, 0, 1, 2\}$. Furthermore:

- 1. When p < v, in every symmetric equilibrium $|y_L| \succ_{FOSD} |y_R|$.
- 2. If p > v then,
 - (a) if v < 1, in the unique symmetric equilibrium $\sigma_R^*(0) = \sigma_L^*(0) = 1$.
 - (b) If v > 1, in every symmetric equilibrium: $|y_R| \succ_{FOSD} |y_L|$

To prove Proposition B.1 we first develop some notation. For $y \in \{1, 2\}$, we let $\varsigma_i(y) = \sigma_i(y) + \sigma_i(-y)$. That is: $\varsigma_i(y)$ is the frequency with which *i* plays *either* +*y* or -*y*. Thus, $\sigma_i(0) + \varsigma_i(1) + \varsigma_i(2) = 1$, and a symmetric strategy satisfies $\sigma_i(y) = \sigma_i(-y) = \varsigma_i(y)/2$ for each $y \in \{1, 2\}$. Thus, $i \in \{L, R\}$'s symmetric strategy is fully described by $(\varsigma_i(1), \varsigma_i(2))$.

Let:

L

$$\Pi_L(0;\varsigma_R(1),\varsigma_R(2)) = \sigma_R(0)\pi_L(0,0) + \varsigma_R(1)\pi_L(0,1) + \varsigma_R(2)\pi_L(0,2).$$
(B.4)

 $\Pi_L(0;\varsigma_R(1),\varsigma_R(2))$ is L's payoff from choosing policy zero when R's symmetric strategy is $(\varsigma_R(1),\varsigma_R(2))$. Similarly, for $y \in \{1,2\}$:

$$\Pi_{L}(y;\varsigma_{R}(1),\varsigma_{R}(2)) = \sigma_{R}(0)\pi_{L}(y,0) + \frac{1}{4}\sum_{x\in\{1,2\}}\varsigma_{R}(x)[\pi_{L}(y,x) + \pi_{L}(y,-x) + \pi_{L}(-y,x) + \pi_{L}(-y,-x)].$$
(B.5)

Here, $\Pi_L(y;\varsigma_R(1),\varsigma_R(2))$ is *L*'s expected payoff from choosing policy $y \in \{1,2\}$ with probability one half and -y with probability one half when *R*'s symmetric strategy is $(\varsigma_R(1),\varsigma_R(2))$. Notice that $\pi_L(y,0) = \pi_L(-y,0)$ for $y \in \{1,2\}$. The corresponding payoff $\Pi_R(\cdot;\sigma_L(0),\sigma_L(1))$ for *R* is similarly defined.

We first establish that a symmetric equilibrium exists.

Lemma B.1. A symmetric equilibrium exists.

Proof. Call the original game Γ , and consider a modified game Γ' that differs from Γ in the following respects: (1) each player's action set is $Y(\Gamma') = \{0, 1, 2\}$, and (2) recalling $\Pi_i(y; \varsigma_i(1), \varsigma_i(2))$ that we defined in (B.5), *i*'s payoff from action pair $(y_i, y_j) \in \{0, 1, 2\}^2$ is:

$$\tilde{\pi}_i(y_i, y_j) \equiv \begin{cases} \pi_i(0, y_j) & \text{if } y_i = 0, \\\\ \pi_i(y_i, 0) & \text{if } y_j = 0, \\\\ \Pi_i(y_i; 1, 0) & \text{if } y_i \in \{1, 2\}, y_j = 1, \\\\ \Pi_i(y_i; 0, 1) & \text{if } y_i \in \{1, 2\}, y_j = 2. \end{cases}$$

We note that if $\sigma^{\Gamma'} = (\sigma_L^{\Gamma'}, \sigma_R^{\Gamma'})$ is a Nash equilibrium of Γ' , then the strategy profile σ^{Γ} satisfying:

$$\sigma_i^{\Gamma}(y) = \begin{cases} \sigma_i^{\Gamma'}(0) & \text{ if } y = 0\\ \frac{1}{2}\sigma_i^{\Gamma'}(1) & \text{ if } y \in \{-1,1\}\\ \frac{1}{2}\sigma_i^{\Gamma'}(2) & \text{ if } y \in \{-2,2\}, \end{cases}$$

is a symmetric Nash equilibrium of Γ . Since Γ' is a finite action game and thus possesses a Nash equilibrium, it follows that Γ possesses a symmetric equilibrium. \Box

Having established a symmetric equilibrium exists we prove the characterization result separately for the cases in which p < v and when p > v, breaking each argument into multiple lemmas.

Part 1: When p < v the payoff matrix appears in Figure 3—each cell identifies *L*'s payoff $\pi_L(y_L, y_R)$, and *R*'s is $\pi_R(y_R, y_L) \equiv 1 - \pi_L(y_L, y_R)$.

We first establish Lemma B.2 which shows that in every symmetric equilibrium, if p < v, there are no 'gaps' in the support of candidate R's strategy. Formally: candidate $i \in \{L, R\}$'s strategy σ_i has a gap at $y \in \{-1, 0, 1\}$ if $\sigma_i(y) = 0$ and there exist $z \in Y$ and $x \in Y$ such that z < y < x, $\sigma_i(z) > 0$, and $\sigma_i(x) > 0$. Candidate $i \in \{L, R\}$'s strategy has *no gaps* if it does not have a gap at any $y \in \{-1, 0, 1\}$.

Lemma B.2. Let p < v. In every symmetric equilibrium, candidate R's strategy has no gaps.

Proof. We proceed in two steps. The first step argues $\sigma_R(0) > 0$ in a symmetric equilibrium, when p < v. The second step argues that $\varsigma_R(2) > 0$ implies $\varsigma_R(1) > 0$. Observe that when p < v, we cannot have a symmetric equilibrium in which $\sigma_L(0) = 1$.

Step 1. First, we argue that when p < v, $\sigma_R(0) > 0$ in every symmetric equilibrium. Suppose, to the contrary, $\sigma_R(0) = 0$. $\kappa > v$ implies $\Pi_L(0; \varsigma_R(1), 1 - \varsigma_R(1)) > \Pi_L(1; \varsigma_R(1), 1 - \varsigma_R(1))$ for any $\varsigma_R(1) \in [0, 1]$. Since $\sigma_L(0) < 1$ in any equilibrium, $\sigma_L(0) = 1 - \varsigma_L(2) \in (0, 1)$. *L*'s indifference requires $\varsigma_R(1) = \frac{24(\kappa+2)-9v}{24\kappa-v-24}$, and *R*'s indifference requires $\sigma_L(0) = \frac{24\kappa-13v+48}{24\kappa-v-24}$. Observe $\sigma_L(0) \ge 0$ if and only if $\kappa \ge (48 + 13v)/24$, which further implies $\varsigma_R \le 1$ if and only if $v \ge 9$. Finally $\Pi_R(2; 0, -\frac{12(v+2)}{-24\kappa+v+24}) \ge \Pi_R(0; 0, -\frac{12(v+2)}{-24\kappa+v+24})$ requires $\frac{24(\kappa-2)(2\kappa+1)+11v^2+(31-50\kappa)v}{4\kappa(-24\kappa+v+24)} \ge 0$, which fails whenever $9 \le v \le \kappa$. This contradicts $\sigma_R(0) = 0$.

Step 2. Second, we argue that when p < v, $\varsigma_R(2) > 0$ implies $\varsigma_R(1) > 0$ in every symmetric equilibrium. Suppose, to the contrary, $\varsigma_R(2) > 0$ and $\varsigma_R(1) = 0$. By the previous step, $\sigma_R(0) > 0$. Thus, $\varsigma_R(2) = 1 - \sigma_R(0)$.

(a) Suppose $\sigma_L(0) = 0$. If $\varsigma_L(1) > 0$ and $\varsigma_L(2) > 0$, *L*'s indifference requires $\sigma_R(0) = \frac{24\kappa + 48 - 13v}{24(\kappa + 1) - 5v}$, which implies $v \ge 3$. Likewise, *R*'s indifference pins down $\varsigma_L(1) = 1 - \frac{8(9+v)}{24(\kappa + 1) - v}$. Algebra yields $\Pi_R(1; \varsigma_L(1), 1 - \varsigma_L(1)) - \Pi_L(2; \varsigma_L(1), 1 - \varsigma_L(1)) > 0$, contradicting $\varsigma_R(2) > 0$.

(b) Suppose $\sigma_L(0) > 0$. Since $\Pi_R(1; 1 - \sigma_L(0), 0) - \Pi_L(2; 1 - \sigma_L(0), 0) > 0$ for all $\sigma_L(0) \in [0, 1]$, $\varsigma_R(1) = 0$ implies that if $\sigma_L(0) > 0$, then $\varsigma_L(2) > 0$.

(i) If $\varsigma_L(2) = 1 - \sigma_L(0) > 0$, *L*'s indifference requires $\sigma_R(0) = \frac{3v - 8(\kappa + 2)}{7v - 24\kappa}$. Algebra yields that for all $\kappa > \max\{2, v\}$, $\Pi_L(1; 0, 1 - \frac{3v - 8(\kappa + 2)}{7v - 24\kappa}) - \Pi_L(2; 0, 1 - \frac{3v - 8(\kappa + 2)}{7v - 24\kappa}) > 0$, contradicting $\varsigma_R(1) = 0$.

(ii) If $\varsigma_L(1) > 0$, *L*'s indifference conditions pin down $\sigma_R(0) = 1 - \frac{12(v-2)}{24(\kappa+1)-v} = \frac{v}{12\kappa-5v-6}$, which is interior only if $v \ge 2$. For any $v \ge 2$, we find that $1 - \frac{12(v-2)}{24(\kappa+1)-v} - \frac{v}{12\kappa-5v-6}$ strictly decreases in v; evaluating this difference at $v = \kappa$ yields $\frac{6(\kappa(9\kappa+41)-48)}{(7\kappa-6)(23\kappa+24)}$, which is strictly positive for all $\kappa \ge 2$. We conclude that there is no $\sigma_R(0) \in [0, 1]$ that yields *L*'s indifference between all her actions. \Box

While *R*'s strategy cannot have a gap, *L*'s could. Lemma B.3 and Lemma B.4 establish that for any location of the gap, the polarization of *L*'s strategy first order stochastic dominates *R*'s.

Lemma B.3. Let p < v. In every symmetric equilibrium, $\varsigma_L(2) > 0$ and $\varsigma_L(1) = 0$ implies $\sigma_R(0) > \sigma_L(0)$.

Proof. Let $\varsigma_L(2) > 0$ and $\varsigma_L(1) = 0$. If $\sigma_R(0) = 1$, or if $\varsigma_L(2) = 1$, the lemma trivially holds. Thus, we restrict subsequent attention to $\sigma_L(0) = 1 - \varsigma_L(2) > 0$ and $\sigma_R(0) < 1$; Lemma B.2 implies we may further restrict attention to symmetric no-gap strategies by *R*.

(a) Suppose $\varsigma_R(1) = 1 - \sigma_R(0)$. *R*'s indifference requires $\sigma_L(0) = \frac{v}{12\kappa - 5v + 6}$ and *L*'s indifference requires $\sigma_R(0) = \frac{2(v-9)}{-12\kappa + 5v - 6}$; $\kappa > v$ implies $\sigma_R(0) \in [0, 1]$ if and only if v < 9. Moreover, $\frac{v}{12\kappa - 5v + 6} \ge \frac{2(9-v)}{12\kappa - 5v + 6}$ only if $v \ge 6$. However, algebra yields that for all $v \in [6, 9]$, $\Pi_R(2; 0, 1 - \frac{v}{12\kappa - 5v + 6}) - \Pi_R(0; 0, 1 - \frac{v}{12\kappa - 5v + 6}) > 0$, contradicting $\varsigma_R(2) = 0$.

(b) Suppose *R* plays all actions with strictly positive probability. *R*'s indifference conditions yield $\sigma_L(0) = \frac{v}{12\kappa-5v+6} = \frac{-24\kappa+13v+48}{-24\kappa+v+24}$. For all $\kappa > v$, $\frac{-24\kappa+13v+48}{-24\kappa+v+24}$ strictly decreases in *v*, and is strictly positive if and only if $v \le (\kappa-2)24/13$. We further observe that $\frac{v}{12\kappa-5v+6}$ strictly increases in *v*. We conclude that there exists at most one v^* such that $\sigma_L(0) = \frac{v^*}{12\kappa-5v+6} = \frac{-24\kappa+13v^*+48}{-24\kappa+v^*+24} \equiv$ $\sigma^*(v^*)$, and direct calculation yields that $v^* \le \kappa$ if and only if $\kappa \le (41 + \sqrt{3409})/18$, and also that $\sigma^*(v^*) < (71 - \sqrt{3409})/102 \approx .12366$. *L*'s indifference between policies 0 and 2 requires $\sigma_R(0) = \frac{(\varsigma_R(2)+8)v-24((\kappa-1)\varsigma_R(2)+3)}{4(-12\kappa+5v-6)}$. In conjunction with this value of $\sigma_R(0)$ and $\kappa \le (41 + \sqrt{3409})/18$, algebra yields that *L*'s weak preference not to select policy 1 implies a (not tight) upper bound $\varsigma_R(2) \le .25$, which implies $\sigma_R(0) + \varsigma_R(1) \ge .75$. Further algebra yields a lower bound $\sigma_R(0) \ge \frac{2(v-9)}{-12\kappa+5v-6}$ for all $\varsigma_R(2)$, and this lower bound itself weakly exceeds $\frac{1}{102} (23\sqrt{3409} - 1327) \approx .1558$. Since we showed $\sigma_L(0) < (71 - \sqrt{3409})/102 \approx .12366$, we conclude that $\sigma_R(0) > \sigma_L(0)$. \Box

Lemma B.4. Let p < v. In a symmetric equilibrium, if $\sigma_L(0) = 0$ then $|y_L| \succ_{FOSD} |y_R|$.

Proof. If $\varsigma_R(2) = 0$, the Lemma holds, trivially. If R randomizes over all actions, observe that since $\Pi_R(1;1,0) > \Pi_R(2;1,0)$, we must have $\varsigma_L(2) = 1 - \varsigma_L(1) > 0$. R's indifference requires $\sigma_L(1) = \frac{2v}{12+11v-12\kappa} = \frac{24\kappa-13v-48}{48\kappa-23v}$. Observe that $\frac{2v}{12+11v-12\kappa} - \frac{24\kappa-13v-48}{48\kappa-23v} \propto 288 (\kappa^2 - 3\kappa + 2) + 97v^2 - 36(9\kappa - 19)v$, which is strictly positive when v = 0 for all $\kappa \ge 2$, and which strictly increases in vif $\kappa \le 19/9$. If $\kappa > 19/9$, then the expression is positive for all $v \in [0, \kappa]$. \Box

Lemma B.2 shows that *R*'s strategy cannot have a gap and Lemma B.3 and Lemma B.4 establish the first order stochastic dominance ranking if *L*'s strategy has a gap. We can now complete the proof restricting attention to strategy profiles in which neither candidate's strategy has a gap. **Proof of Part 1.** Focusing on no gap symmetric strategy profiles we can index the cases according to *R*'s strategy. Recall that we must have $\sigma_L(0) < 1$ so if $\sigma_R(0) = 1$, the result is immediate.

Suppose $\varsigma_R(2) = 0$ and $\varsigma_R(1) > 0$. Since we must have $\sigma_L(0) < 1$, there are two possibilities. If $\varsigma_L(2) = 0$, indifference conditions yield mixtures such that $\sigma_R(0) > \sigma_L(0)$. If $\varsigma_L(2) > 0$, *L*'s indifference conditions require $\sigma_R(0) = \frac{3v-4(\kappa+1)}{7v-12\kappa} = \frac{2(v-9)}{-12\kappa+5v-6}$, which requires $v \le 9$. *R*'s indifference requires that $\sigma_L(0) = -\frac{12\kappa\varsigma_L(1)-12\varsigma_L(1)-11\varsigma_L(1)v+2v}{2(-12\kappa+5v-6)}$, which is linear in $\varsigma_L(1) \in [0, 1 - \sigma_L(0)]$. If $\varsigma_L(1) = 1 - \sigma_L(0)$, we obtain $\sigma_L(0) = \frac{4\kappa-3v-4}{12\kappa-7v} < \frac{4\kappa+4-3v}{12\kappa-7v} = \sigma_R(0)$. If $\varsigma_L(1) = 0$, we obtain $\sigma_L(0) = \frac{v}{12\kappa-5v+6} < \frac{2(9-v)}{12\kappa-5v+6}$ for all v < 6, while $\sigma_R(0) - \sigma_L(0) = \frac{3v-4(\kappa+1)}{7v-12\kappa} - \frac{v}{12\kappa+5v-6}$ strictly increases in κ for all $v \ge 6$. Setting $\kappa = v$, the difference $\frac{3v-4(\kappa+1)}{7v-12\kappa} - \frac{v}{12\kappa+5v-6}$ is strictly positive. Thus, $\sigma_R(0) > \sigma_L(0)$, and since $\sigma_R(0) + \varsigma_R(1) = 1$, we are done.

Suppose, instead, $\varsigma_R(2) > 0$ and $\varsigma_R(1) > 0$. Recall that we focus on symmetric no-gap strategies by *L*. If $\varsigma_L(1) = 1 - \sigma_L(0)$, *R*'s indifference over all her actions requires $\sigma_L(0) = \frac{-4\kappa + 3v + 4}{7v - 12\kappa} = \frac{6(v+2)}{12(\kappa+1)-11v} + 1$, but the latter lies outside the unit interval. If both *L* and *R* randomize over all of their actions, solving indifference conditions yields strategies that satisfy the required properties. \Box

Part 2: We now turn to the high-polarization setting, in which p > v and the payoff matrix is given in Figure 4. The steps proceed as in part 1 with the candidates reversed. We begin by ruling out gaps for the *L* candidate.

Lemma B.5. Let p > v. In every symmetric equilibrium, candidate L's strategy has no gaps.

Proof. The proof proceeds in two steps.

Step 1. First, we argue that if p > v, $\sigma_L(0) > 0$ in every symmetric equilibrium. Conjecture, to the contrary, that $\sigma_L(0) = 0$.

(a) Suppose $\varsigma_L(1) = 1$, which implies $\varsigma_L(2) = 0$. Straightforward calculation yields $\Pi_R(0; 1, 0) > \max\{\Pi_R(1; 1, 0), \Pi_R(2; 1, 0)\}$, so that $\sigma_R(0) = 1$ is R's unique symmetric best response to L's strategy. But since $\Pi_L(0; 0, 0) > \max\{\Pi_L(1; 0, 0), \Pi_L(2; 0, 0)\}$, we cannot have $\sigma_L(0) = 0$.

(b) Suppose $\varsigma_L(2) = 1$, which implies $\varsigma_L(1) = 0$. Straightforward calculation yields $\Pi_R(1;0,1) > 0$

 $\max{\{\Pi_R(0;0,1), \Pi_R(2;0,1)\}, \varsigma_R(1) = 1 \text{ is } R' \text{s unique symmetric best response to } L' \text{s strategy. But}}$ since $\Pi_L(1;1,0) > \Pi_L(2;1,0), L$ strictly prefers $\varsigma_L(1) = 1$ to $\varsigma_L(2) = 1$, a contradiction.

(c) Suppose $0 < \varsigma_L(1) < 1$.

(i) If $\varsigma_R(2) = 0$, $\Pi_L(1;1,0) > \Pi_L(2;1,0)$ and $\varsigma_L(1) < 1$ implies $\varsigma_R(1) < 1$. If $\varsigma_R(1) = 0$, $\sigma_L(0) = 1$ is strictly preferred to any $\varsigma_L(1) \in (0,1)$. So, we must have $\sigma_R(0) = 1 - \varsigma_R(1) \in (0,1)$. Solving L's indifference condition yields $\sigma_R(0) = \frac{5v+24}{11v+12}$. Direct calculation yields $\Pi_L(1;1-\frac{5v+24}{11v+12},0) < \Pi_L(0;1-\frac{5v+24}{11v+12},0)$, contradicting $\varsigma_L(1) > 0$.

(ii) If $\varsigma_R(1) = 0$, *L*'s indifference condition yields $\sigma_R(0) = 1 - \varsigma_R(2) = \frac{13v - 48}{v - 24}$, which is positive only if $v \le 48/13$, in which case $\prod_L(0; 0, 1 - \frac{13v - 48}{v - 24}) > \prod_L(1; 0, 1 - \frac{13v - 48}{v - 24})$, contradicting $\varsigma_L(1) > 0$. Steps (i) and (ii) yield that $\varsigma_R(1) > 0$ and $\varsigma_R(2) > 0$.

(iii) If $\sigma_R(0) = 0$, then $\varsigma_R(2) = 1 - \varsigma_R(1) \in (0, 1)$. Indifference for R requires $\varsigma_L(1) = \frac{48+13v}{23v}$. However, $\Pi_R(0; \frac{48+13v}{23v}, 1 - \frac{48+13v}{23v}) > \Pi_R(1; \frac{48+13v}{23v}, 1 - \frac{48+13v}{23v})$, contradicting $\sigma_R(0) = 0$.

(iv) If *R* randomizes chooses all her actions with strictly positive probability, her indifference between 0 and 1 requires $\varsigma_L(1) = \frac{2v}{12+11v}$. But, $\Pi_R(0; \frac{2v}{12+11v}, 1 - \frac{2v}{12+11v}) > \Pi_R(2; \frac{2v}{12+11v}, 1 - \frac{2v}{12+11v})$, contradicting $\varsigma_R(2) > 0$.

We conclude that $\sigma_L(0) > 0$ in every symmetric equilibrium.

Step 2. We argue that if p > v, $\varsigma_L(1) = 0$ implies $\varsigma_L(2) = 0$ in every symmetric equilibrium. Conjecture, to the contrary, that $\varsigma_L(1) = 0$ and $\varsigma_L(2) > 0$. We already showed $\sigma_L(0) > 0$, and thus $\varsigma_L(2) = 1 - \sigma_L(0) > 0$. Moreover, $\Pi_R(1; 0, 1 - \sigma_L(0)) > \Pi_R(2; 0, 1 - \sigma_L(0))$ for any $\sigma_L(0) \in [0, 1]$, so $\varsigma_R(2) = 0$. This implies $\varsigma_R(1) = 1 - \sigma_R(0)$. Since *L* plays both 0 and 2 with positive probability, her indifference requires $\Pi_L(0; 1 - \sigma_R(0), 0) = \Pi_L(2; 1 - \sigma_R(0), 0)$, which yields $\sigma_R(0) = \frac{2(v-9)}{5v-6}$, which implies $v \ge 9$. However, $\Pi_L(1; 1 - \frac{2(v-9)}{5v-6}, 0) > \Pi_L(0; 1 - \frac{2(v-9)}{5v-6}, 0)$, contradicting $\varsigma_L(1) = 0$ and $\sigma_L(0) > 0$.

Steps 1 and 2 yield that when p > v, *L*'s strategy has no gaps in every symmetric equilibrium. \Box

Having established that L's strategy has no gaps the next two lemmas show that if R's strat-

egy has a gap it must be at 0, and that in that case the first order stochastic dominance ranking holds.

Lemma B.6. Let p > v. In every symmetric equilibrium, $\varsigma_R(2) = 0$ implies $\varsigma_R(1) = 0$.

Proof. Suppose $\varsigma_R(2) > 0$, but $\varsigma_R(1) = 0$. For all $\sigma_R(0) = 1 - \varsigma_R(2) \in [0, 1]$, we have $\Pi_L(0; 0, 1 - \sigma_R(0)) > \Pi_L(1; 0, 1 - \sigma_R(0))$, which implies $\varsigma_L(1) = 0$. The previous Lemma implies that *L*'s strategy has no gaps, so $\varsigma_L(2) = 0$. But $\Pi_R(1; 0, 0) > \Pi_R(2; 0, 0)$ contradicts $\varsigma_R(2) > 0$. \Box

Lemma B.7. Let p > v. In a symmetric equilibrium, if $\sigma_R(0) = 0$ then $|y_R| \succ_{FOSD} |y_L|$.

Proof. We need only consider possible equilibria in which *L* randomizes over all of her actions, and in which *R*'s strategy has a gap at zero. *L*'s indifference conditions pin down $\varsigma_R(1) = \frac{2v}{11v-12} = \frac{13v-48}{23v}$, which can only be satisfied if $v = \frac{6}{97} (57 + \sqrt{1697})$. *R*'s indifference between policies 1 and 2 requires $\varsigma_L(1) = \frac{24\varsigma_L(2)+\varsigma_L(2)v+12v+24}{2(11v-12)}$. When $v = \frac{6}{97} (57 + \sqrt{1697})$, this implies however that for any $\varsigma_L(2) \in]0, 1]$, *R* strictly prefers to choose zero rather than 1. \Box

Lemma B.5, Lemma B.6 and Lemma B.7 imply that we may restrict our attention to symmetric equilibria in which neither candidate's strategy has a gap, which we use to complete the proof.

Proof of Part 2: We first consider v < 1 show that $\sigma_L(0) = \sigma_R(0) = 1$ is the unique symmetric equilibrium. This follows from the observation that when v < 1 then $\sigma_L(0) = 1$ is *L*'s unique best response to any symmetric σ_R , and that $\Pi_R(0; 0, 0) > \max{\{\Pi_R(1; 0, 0), \Pi_R(2; 0, 0)\}}$ so *R*'s unique best response to $\sigma_L(0) = 1$ is $\sigma_R(0) = 1$. This proves part (a).

Henceforth, we focus on v > 1 restricting attention to symmetric equilibria in which neither candidate's strategies have gaps. We index strategy profiles according to *L*'s symmetric no-gap strategy.

(1) Suppose $\sigma_L(0) = 1$. Then, v > 1 implies $\Pi_R(0; 0, 0) < \max\{\Pi_R(1; 0, 0), \Pi_R(2; 0, 0)\}$, and thus $\sigma_R(0) = 0$. The proposition follows.

(2) Suppose $\sigma_L(0) < 1$ and $\varsigma_L(1) = 1 - \sigma_L(0)$. If $\sigma_R(0) = 0$, the proposition follows. If $\varsigma_R(1) = 1 - \sigma_R(0)$, indifference conditions yield $\sigma_R(0) = \frac{3}{7} - \frac{4}{7v}$ and $\sigma_L(0) = \frac{3}{7} + \frac{4}{7v}$, which satisfy the proposition. Finally, if R plays all actions with positive probability, then R's indifference requires $\sigma_L(0) = \frac{3v+4}{7v} = \frac{5v-24}{11v-12}$, which is possible if and only if $v \in \{\frac{12}{\sqrt{478}+22}, 2(\sqrt{478}+22)\}$. Similarly, L's indifference across actions 0 and 1 requires $\sigma_R(0) = \frac{-12\varsigma_R(1)+11\varsigma_R(1)v-2v}{2(5v+6)}$, which is strictly negative for all $\varsigma_R(1) \in [0, 1]$ if $v = \frac{12}{\sqrt{478}+22}$. Thus, we must have $v = 2(\sqrt{478}+22)$. In that case, straightforward calculation yields that L weakly prefers not to play action 2 only if $\varsigma_R(1) \ge \frac{2911\sqrt{478}-38782}{46933}$. This yields that $\sigma_R(0) \le \frac{820399-20827\sqrt{478}}{985593} < \frac{1}{21}(31 - \sqrt{478}) = \frac{3v+4}{7v} = \sigma_L(0)$.

(3) Suppose *L* plays all of her actions with positive probability. We must have $\sigma_R(0) > 0$ since *R*'s strategy has no gaps, and we must also have $\sigma_R(0) < 1$ if *L* does not play 0 with probability one. If $\varsigma_R(1) = 1 - \sigma_R(0) > 0$, *L*'s indifference conditions require $\sigma_R(0) = \frac{3v-4}{7v} = \frac{5v+24}{11v+12}$, which holds for no v > 0. If, instead, *R* plays all actions with positive probability, then it is straightforward to solve indifference conditions and obtain strategies that satisfy the proposition.

Together, these three cases establish part (b). \Box