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In this appendix, we consider the case in which each variable xi, i = 1, ..., n,

takes values in {−1, 1}, and the marginal distribution over each xi induced by
p is uniform. This can be viewed as a coarsening of an underlying Gaussian

distribution, such that xi records the sign of a Gaussian variable.

We do not have a complete analysis of our problem for this specification

of p, and focus on the chain model 1→ 2→ · · · → n. In Eliaz et al. (2019),

we provided a characterization of the maximal estimated correlation that

such a model can generate in a uniform-binary environment. The proof was

by induction on n. Here we give a constructive proof that emphasizes the

analogy with the Gaussian case. Our analysis is based on a few preliminary

observations.

Definition 1 A n × n matrix C is called “Binary Factorizable” (BF) if it

can be written as

C = lim
M→∞

1

M
AMA

T
M

Where each AM is a n×M matrix whose elements are all ±1 and each row
of AM is zero mean.

Note that any BF matrix is symmetric, positive semi-definite, and has

ones on the diagonal. Note also that any covariance matrix of zero-mean

binary random variables must be BF, since we can define the matrix AM as
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a sample covariance matrix, where the sample consists ofM i.i.d draws from

the underlying distribution. The converse is also true: any BF matrix corre-

sponds to the covariance matrix of zero-mean binary random variables. This

can be seen by defining a distribution over n binary variables by randomly

picking (with probability 1/M) one of the columns of AM .

Somewhat surprisingly, however, there exist symmetric, positive semi-

definite matrices which are not BF. For example, the reader may recall the

following correlation matrix from the example in the Introduction, where it

gave the maximal false correlation for n = 3 in the Gaussian environment:

C =

 1 b 0

b 1 b

0 b 1


with b =

√
1/2. This matrix is not BF. As we will see below, the largest

value of b for which C is BF is 1
2
.

Proposition 1 Suppose all variables take values in {−1, 1} and the objec-
tive distribution p induces a uniform marginal over each variable. Let the

objective (Pearson) coeffi cient of correlation between x1 and xn, according to

p, is r. Then, the maximal estimated correlation that can be achieved by a

linear DAG G : 1→ 2→ · · · → n is given by:

ρ∗1n = max
ρij=ρji for all i,j

(ρij) is BF
ρii=1 for all i

ρ1n=r

n−1∏
i=1

ρi,i+1

Proof. The constraints are self-evident. We only need to show that for

a linear DAG defined over uniformly distributed binary variables, the esti-

mated correlation between x1 and xn is given by the product of the objective

pairwise correlations of adjacent variables (as in the Gaussian case). We

can show this by viewing pG(x1, ..., xn) = p(x1)p(x2 | x1) · · · p(xn | xn−1) as a
Markov chain. The conditional probability pG(xn | x1) is thus given by a ma-
trix product - specifically, the product of all the transition matrices defined
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by p(xi+1 | xi). Since all variables are uniformly distributed, the transition
matrices are doubly stochastic, which means that they have the same eigen-

vectors. The top eigenvalue is always 1 and the second eigenvalue gives the

correlation. Since all matrices have the same eigenvectors, the eigenvalues

just multiply.

Note that Proposition 1 is exactly the same as the intermediate result

we established at the beginning of Section 4.3 for the Gaussian environment.

The only difference is that we replace the requirement that ρ be positive

semi-definite with the requirement that ρ be BF. As mentioned above, the

set of BF matrices is smaller than the set of positive semi-definite matrices.

Therefore, we should expect a more stringent upper bound on the maximal

false correlation.

Proposition 2 Suppose all variables take values in {−1, 1} and the objective
distribution p induces a uniform marginal over each variable. Let the objec-

tive (Pearson) coeffi cient of correlation between x1 and xn, according to p be

equal to r. Then, the maximal estimated correlation that can be generated by

the DAG 1→ 2→ · · · → n is given by:

ρ∗1n =

(
1− 1

n− 1(1− r)
)n−1

(1)

Proof. From Proposition 1, we know that the maximal estimated correlation
is obtained by multiplying elements in a BF correlation matrix (ρij) such that

ρ1n = r. For any n ×M matrix AM , let a
(M)
i denote its ith row. Then, we

can rewrite the estimated correlation induced by CM = 1
M
AMA

T
M as:

n−1∏
i=1

1

M
a
(M)
i

Ta
(M)
i+1

As we discussed following the definition of BF matrices, the dot product

between the ith and jth rows of AM is proportional to the empirical correlation

of xi and xj in a sample consisting of M i.i.d draws from the underlying

distribution.
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Given a matrix AM that gives an objective correlation of ρ1n = r, we can

always attempt to improve the estimated correlation by optimizing all other

rows of the matrix a2, ..., an−1. This implies that for any M :

ρ∗1n ≤ max
a2,··· ,an−1∈{−1,1}M ,a1=a

(M)
1 ,an=a

(M)
n

n−1∏
i=1

1

M
aTi ai+1 (2)

This is an upper bound for two reasons. First, we are not enforcing the

constraint that the binary vectors ai are zero mean. Second, if C = 1
M
AMA

T
M

for some finite M , then C is BF.

For binary vectors ai, aj ∈ {−1, 1}M , the dot product 1
M
aTi aj is a monotone

function of the proportion q of components for which the two vectors agree:
1
M
aTi aj = 2q − 1. Thus, maximizing the dot product between two binary

vectors is equivalent to minimizing the number of components on which they

disagree. This means that the R.H.S of (2) is a form of a shortest path on

a lattice: we are given two points in {−1, 1}M (a1 and an), and seek a set

of intermediate points on this lattice that are as close as possible to each

other. By analogy, in the third step of our proof for the Gaussian case, we

were also given two vectors in a high-dimensional space (an n-dimensional

unit sphere) and searched for a set of intermediate points on the sphere such

that the intermediate points are as close as possible to one another (in terms

of spherical distance).

To solve this “shortest path on a lattice” problem, we divide the M

indices into two disjoint groups: M1 indices k for which a1(k) = an(k) and

M−1 indices k for which a1(k) 6= an(k). For any of the M1 indices for which

a1(k) = an(k) , setting ai(k) = a1(k) for all i can only increase the objective

function (since this can only increase the dot product between consecutive

vectors).

For the remaining M−1 indices k for which a1(k) 6= an(k), denote by mi

the number of indices k for which ai(k) = a1(k) and ai(k) 6= an(k). Assuming

mi > mj, the dot product between ai and aj can be written as follows:

aTi aj =M − 2(mi −mj)
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This enables us to rewrite (2) as:

ρ∗1n ≤ max
m2,··· ,mn−1

n−1∏
i=1

1

M
(M − 2(mi−1 −mi)) (3)

The R.H.S. of (3) should be maximized subject to the constraint that

mi ∈ {0, 1, · · ·M−1}, but we can get an upper bound by maximizing over
real-valued mi.

Taking the logarithm of the R.H.S of (3) and differentiating with respect

to mi yields that at an optimum, mi should be linearly spaced between m1

and mn:

mi −mi+1 =
M−1
n− 1

Thus, the optimal shortest path is a set of binary vectors whose components

agree with x1 and xn whenever they coincide, and the rest of the indices

agree with x1 with a fraction that decreases linearly with i.

Now, for large M , M−1/M converges to the probability that x1 6= xn,

namely 1−r
2
, such that

1

M
aTi ai+1 →

(
1− 1

n− 1(1− r)
)

Since there are n−1 such dot products, we take their product, thus obtaining
the R.H.S of (1).

To show that the upper bound is tight, given two uniform binary random

variables x1, xn that satisfy E(x1xn) = r, consider a set of variables xi, whose

distribution conditional on x1, xn is defined as follows:

• If x1 = xn, then xi = x1 = xn.

• If x1 6= xn, then xi = x1 with probability 1 − i
n
and xi = xn with

probability i
n
.

By construction, a vector ofM random samples from xi and xi−1 will gen-

erate a normalized dot product 1
M
aTi ai+1 that converges to

(
1− 1

n−1(1− r)
)

when M →∞, thus attaining the upper bound.
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It is also worth noting that in Eliaz et al. (2019), we implement the upper

bound by taking the n variables to be the sign of the Gaussian variables we

used in the implementation of the upper bound of our the main theorem.

Let us illustrate the upper bound. For n = 3 and r = 0, the maximal

estimated correlation between x1 and x3 using the chain model 1→ 2→ 3 is
1
4
(compared with the value 1

2
in the Gaussian case). Finally, for any r, the

maximal estimated correlation converges to er−1 as n→∞ (compared with

1 in the Gaussian case).
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