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A. Flow Chart of the SEIRS Model with Demographics

Figure 1: States and flows in the SEIRS model.
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B. Tables

Parameter Value Source
ν 3.8/52 USA average 3.8 million births per year
µ 1/(80× 52) USA life expectancy 80 years
γ 7/14 Kissler et al. (2020)
β γ × 3 Kissler et al. (2020)
κ 7/5 Kissler et al. (2020) and references therein
ε 1/2 Davies et al. (2020)
δ γ × 0.0065 IFR, various sources.
α 1/52 Kissler et al. (2020)
ρ 0.04/52 Standard yearly macro discount rate, 4%
yS 1 Normalized to 1 unit of income
yE 1 Equal to yS
yI 0.9 10% reduction in productivity due to infection
yR 1 Equal to yS
y 1 Income per person after T , equal to yS
η 1 Quadratic costs
θ/2 330× 0.165 Aggregate income loss (Strong and Wellbourn, 2020)
T 100× 52 Approximation of long/infinite horizon
N0 330 US population, 330m
I0 0.000033 1 in 10 m initially infected, Atkeson (2020)
E0 3× I0 Atkeson (2020)

Table 1: Parameter values for benchmark simulations.

At the end of 6 years At the end of horizon T

T = 100 years Epi model Econ model Diff Epi model Econ model Diff
IFR = 0.30%, α = 1/52 4.496m 4.338m 158,010 61.744m 60.341m 1.403m
IFR = 0.65%, α = 1/52 9.636m 8.212m 1.423m 123.440m 116.670m 6.767m
IFR = 1.20%, α = 1/52 17.490m 14,174 17.476m 202.450m 351,920 202.100m
IFR = 0.65%, α = 1/26 16.716m 13,561 16.702m 206.140m 346,360 205.790m
IFR = 0.65%, α = 1/52 9.636m 8.212m 1.423m 123.440m 116.670m 6.767m
IFR = 0.65%, α = 1/104 5.764m 5.516m 248,120 69.296m 67.226m 2.070m
IFR = 0.65%, α = 0 2.061m 1.959m 102,120 3.280m 3.067m 213,590

IFR = 0.65%, α = 1/52 Epi model Econ model Diff
T = 2 years 3.852m 2.317m 1.535m
T = 4 years 6.784m 3.660m 3.123m
T = 6 years 9.636m 4.937m 4.699m

Table 2: Disease induced deaths for different scenarios. The benchmark case is highlighted in bold.
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C. Long Run Dynamics of the Epidemic Model

The system of differential equations for the epidemic model is given by:

Ṡ = ν − β (I + εE)S
N

+ αR− µS, (1)

Ė = β
(I + εE)S

N
− (κ+ µ)E, (2)

İ = κE − (γ + δ + µ) I, (3)

Ṙ = γI − (α+ µ)R, (4)

Ṅ = ν − µN − δI. (5)

We start by describing the basic reproductive rate R0, i.e. the number of secondary infectives per
index case in a (naive) population of susceptibles.1 Under the assumption that at the start of time

the entire population is susceptible, the average number of new infections per infectious individual is

determined by the transmission rate times the mean time that the exposed and infected individuals

are infectious, i.e. by the following expression:

R0 =
κ

κ+ µ

β

γ + δ + µ
+

εβ

κ+ µ
. (6)

We note that the basic reproduction rate is independent of the waning immunity parameter α, because

this parameter has no effect on how many infectives are generated per infectious individual.

To determine possible long run outcomes, we first note that in a long run steady state where

population does not grow, we have that ν = µN∗ + δI∗. The model has two such steady states, the

disease-free steady state and the endemic steady state. These can be recovered analytically as follows:

• Disease-free steady state: In this steady state I∗ = 0 and E∗ = 0. Then N∗ = ν/µ and

R∗ = 0, S∗ = ν/µ.

• Endemic steady state: We require that I∗ 6= 0, and assuming κ 6= 0 and α+ µ 6= 0, then

E∗ =

(
γ + δ + µ

κ

)
I∗ ≡ φI∗, (7)

R∗ =

(
γ

α+ µ

)
I∗ ≡ ψI∗. (8)

From the first ODE by setting Ṡ = 0, and substituting in the above we can show that

S∗

N∗
=

1

R0
. (9)

This means that in the endemic steady state of the SEIRS model with demographics (births

and deaths), the proportion of susceptibles is inversely proportional to the basic reproduction

rate R0.2 With these expressions in place we can derive the population at the endemic steady
1This definition is taken from Keeling and Rohani (2008).
2Similar results can be shown for variations of such models with demographics, as explained in Keeling and Rohani

(2008).
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state to be

N∗ = ν

(
δ

1 + φ+ ψ

(
1− 1

R0

)
+ µ

)−1
(10)

and the following relations

E∗

N∗
=

φ

1 + φ+ ψ

(
1− 1

R0

)
, (11)

I∗

N∗
=

1

1 + φ+ ψ

(
1− 1

R0

)
, (12)

R∗

N∗
=

ψ

1 + φ+ ψ

(
1− 1

R0

)
. (13)

To analyze the stability of the two steady states, we derive the Jacobian of the system:

J (S,E, I,N) =


−β (I+εE)N − (α+ µ) −βε SN − α −β S

N − α β (I+εE)S
N2 − α

β (I+εE)N βε SN − (κ+ µ) β S
N −β (I+εE)S

N2

0 κ −κφ 0

0 0 −δ −µ

 . (14)

For the disease-free steady state, this becomes

JDF =


− (α+ µ) −βε− α −β − α −α

0 βε− (κ+ µ) β 0

0 κ −κφ 0

0 0 −δ −µ

 (15)

and for the endemic steady state, this becomes

JE =


−β
(

1+εφ
1+φ+ψ

)(
1− 1

R0

)
− (α+ µ) −βε 1

R0 − α −β 1
R0 − α β

(
1+εφ
1+φ+ψ

)(
1− 1

R0

)
1
R0 − α

β
(

1+εφ
1+φ+ψ

)(
1− 1

R0

)
βε 1
R0 − (κ+ µ) β 1

R0 −β
(

1+εφ
1+φ+ψ

)(
1− 1

R0

)
1
R0

0 κ −φκ 0

0 0 −δ −µ

 .
(16)

It can be shown that whenever R0 < 1, then the disease-free steady state is stable and the endemic
steady state is unstable, while whenever R0 > 1, the disease-free steady state is unstable and the

endemic steady state is stable. We can also confirm numerically that for our calibrated parameters

and the ranges of parameters relevant for SARS-CoV-2, the disease-free steady state is unstable (i.e.

at least one eigenvalue of JDF has strictly positive real part) , while the endemic steady state is stable

(i.e. all eigenvalues of JE have strictly negative real parts). Importantly this is true for both α 6= 0,
i.e. for waning immunity and for α = 0, i.e. for the SEIR model, for which immunity of individuals

is permanent. Additionally, the endemic steady state exhibits damped oscillations (again irrespective

of α), because JE has eigenvalues that are conjugate complex.

The figures that follow show the uncontrolled disease dynamics in the following cases for short

and long horizons for permanent immunity α = 0 (Figure 2) and waning immunity α = 1/52 (Figure

3). For all these, the initial condition of the population has now been set to the disease-free steady

state N∗ = 304 million people.
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Figure 2: SEIR with demographics, uncontrolled dynamics. Top three rows show first six years,
bottom three rows 300 years.
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Figure 3: SEIRS with demographics, uncontrolled dynamics (α = 1/52). Top three rows show first
six years, bottom three rows 300 years.
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D. Infectivity Reductions in the Epidemic Model

In the main analysis, we interpret the policy instrument d as some measure that reduces contacts

between at-risk individuals and infectious individuals and we allow the social planner to vary this

instrument at will over time. It is instructive to consider the dynamics of the model with some fixed

value of d, which can be interpreted as other measures which reduce the infectiousness of the disease.

For example, mass vaccination with incomplete vaccination coverage or with vaccines that only confer

partial protection (as is the case with many vaccines) would effectively reduce the infectiousness

parameter of the disease below the level β in such a manner.

Let the epidemic model now be described by

Ṡ = ν − (1− d)β (I + εE)S
N

+ αR− µS, (17)

Ė = (1− d)β (I + εE)S
N

− (κ+ µ)E, (18)

İ = κE − (γ + δ + µ) I, (19)

Ṙ = γI − (α+ µ)R, (20)

Ṅ = ν − µN − δI, (21)

where here we think of d ∈ [0, 1] as a constant parameter. The interpretation is the same as in the
main part of the paper, i.e. that d is a way of reducing the contact rate between susceptibles and

infectious individuals (exposed and infected) and can be loosely interpreted as a measure of social

distancing. In this version of the model, the basic reproductive rate is given by

R̃0 =
κ

κ+ µ

β (1− d)
γ + δ + µ

+
εβ (1− d)
κ+ µ

. (22)

There are again two steady states, one endemic and one disease-free, and only one of them can be

stable for each set of parameters. Specifically, if R̃0 > 1, then the endemic steady state is stable, while
when R̃0 < 1 the disease-free steady state is stable. To link this with the original epidemic model, we
note that the condition for the disease-free steady state to be stable is equivalent to requiring that

d > 1− 1

R0
≡ d̃, (23)

where R0 is the rate of the basic epidemic model given in (6). This expression is very useful for
understanding and interpreting the effects of the optimal social distancing policy: it shows that

with enough social distancing (anything above a threshold d̃) it is possible to eradicate an otherwise

endemic disease. As will be the case for some extreme parameterizations of the model, the social

planner will optimally choose a long run social distancing policy that will be just about enough to tip

the dynamics of the system towards the disease-free steady state. For which parameters this happens

depends on the optimal control parameters, i.e. the cost of social distancing, the loss of income from

those infected, the loss of lives, etc. For our benchmark calibration as given in Table 1, the value of

this threshold is d̃ = 0.7154.
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E. Optimal Social Distancing Policy

The planner’s problem is

max
d∈[0,1]

{∫ T

0
exp (−ρt)

(
ySS (t) + yEE (t) + yII (t) + yRR (t)−

θ

2
d2
)
dt (24)

+

∫ ∞
T
exp (−ρt) yN(t)dt

}
.

The second integral, which represents the scrap or salvage value for the optimal control problem,

is the integral from time T to infinity of the discounted value of the income generated by the total

population, where the dynamics of the population are now determined by the ODE for N , but without

the disease induced death rate. We assume that the income produced by each individual after T is y,

and it satisfies y = yS . That is,

V =

∫ ∞
T
exp (−ρt)N (t) ydt. (25)

The ODE for population is Ṅ = ν − µN and therefore its solution is

N (t) =
ν

µ
+ C exp (−µt) , (26)

where C is the constant to be determined by the size of the population at time T . For N (T ) at the

start of the integral we have

N (T ) =
ν

µ
+ C exp (−µT ) =⇒ C =

(
N (T )− ν

µ

)
exp (µT ) . (27)

Therefore after T , the population evolves according to

N (t) =
ν

µ
+

(
N (T )− ν

µ

)
exp (−µ (t− T )) , for t ≥ T . (28)

With this in place we can now derive the scrap value to be

V =

∫ ∞
T

y exp (−ρt)N (t) dt (29)

=

∫ ∞
T

y exp (−ρt)
[
ν

µ
+

(
N (T )− ν

µ

)
exp (µT ) exp (−µt)

]
dt (30)

= exp (−ρT )
[
ν

ρµ
+

(
N (T )− ν

µ

)
1

ρ+ µ

]
y. (31)

Therefore, the problem of the planner can be rewritten as

max
d∈[0,1]

{∫ T

0
exp (−ρt)

(
ySS + yEE + yII + yRR−

θ

2
d2
)
dt (32)

+exp (−ρT )
[
ν

ρµ
+

1

ρ+ µ

(
N (T )− ν

µ

)]
y

}
.
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We start with the five differential equation constraints that describe the dynamics of the system:

Ṡ = ν − (1− d)β (I + εE) S
N
+ αR− µS, (33)

Ė = (1− d)β (I + εE) S
N
− (κ+ µ)E, (34)

İ = κE − (γ + δ + µ) I, (35)

Ṙ = γI − (α+ µ)R, (36)

Ṅ = ν − µN − δI. (37)

Because of the accounting equation, the social planner’s problem can be reduced to one with only four

differential equation constraints. We do so by eliminating R and substituting in R = N − S −E − I.
The constraints thus become

Ṡ = ν + αN − (α+ µ)S − αE − αI − (1− d)β (I + εE) S
N
, (38)

Ė = (1− d)β (I + εE) S
N
− (κ+ µ)E, (39)

İ = κE − (γ + δ + µ) I, (40)

Ṅ = ν − µN − δI. (41)

Letting the costate variables for the constraints be denoted by λS , λE , λI and λN , the planner’s

Hamiltonian is given by

H = e−ρt
[
(yS − yR)S + (yS − yR)E + (yI − yR) I + yRN −

θ

2
d2
]

(42)

+λS

[
ν + αN − (α+ µ)S − αE − αI − (1− d)β (I + εE) S

N

]
+λE

[
(1− d)β (I + εE) S

N
− (κ+ µ)E

]
+ λI [κE − (γ + δ + µ) I]

+λN (ν − µN − δI) .

The first order condition with respect to d is

∂H

∂d
= −e−ρtθd+ (λS − λE)β (I + εE)

S

N
= 0, (43)

and therefore the optimal d must satisfy

d =
eρt

θ
(λS − λE)β (I + εE)

S

N
. (44)

Additionally, the optimal d∗ must belong to the set of admissible controls, and since it is bounded

and must satisfy 0 ≤ d ≤ 1, it follows that:

d∗ = max

{
0,min

{
1,
eρt

θ
(λS − λE)β (I + εE)

S

N

}}
. (45)

A detailed explanation and derivations of how the maximum principle applies to bounded controls

can be found in Lenhart and Workman (2007, ch. 7).
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The laws of motion for the costate variables are given by

λ̇S = λS

[
β(1− d)(I + εE)

N
+ α+ µ

]
− λEβ(1− d)

(I + εE)

N
− e−ρt (yS − yR) , (46)

λ̇E = λS

[
α+ βε(1− d) S

N

]
+ λE

[
κ+ µ− (1− d)βε S

N

]
− κλI − e−ρt (yS − yR) , (47)

λ̇I =

[
α+ β (1− d) S

N
)

]
λS − β(1− d)

S

N
λE + (γ + δ + µ)λI + λNδ − e−ρt (yI − yR) , (48)

λ̇N = −λSα− λS(1− d)β (I + εE)
S

N2
+ λE(1− d)β (I + εE)

S

N2
+ µλN − e−ρtR yR. (49)

Last, we also need the following transversality conditions to be satisfied:

λS (T ) = λE (T ) = λI (T ) = 0 (50)

and the last transversality condition equates λN to the derivative with respect to N(T ) of the term∫ ∞
T

e−ρtN(t)ydt = exp (−ρT )
[
ν

ρµ
+

1

ρ+ µ

(
N (T )− ν

µ

)]
y. (51)

This yields

λN (T ) = exp (−ρT )
y

ρ+ µ
. (52)

We should point out that the conditions (43), (46), (47), (48), (49), (50) and (52) are necessary for

optimality but not suffi cient. This stems from the fact that the Hamiltonian (42) is non-concave in the

state variables. For this type of problem, neither Mangasarian nor Arrow type suffi ciency conditions

apply and alternative methods must be used to verify the optimality of a given candidate path.3

These typically rely on characterizing paths that satisfy the necessary conditions in a neighborhood

of multiple steady states and then directly computing and comparing value functions for any regions

of the state space in which those multiple paths overlap. In our simulations, we characterize the

trajectory of state and costate variables that satisfies the necessary Hamiltonian and transversality

conditions. As we have shown, for every parametrization the model exhibits two steady states, of

which only one is stable. Moreover, for the parameterizations that we have worked with, we have

found no instances of multiple equilibrium paths that satisfy the necessary conditions for optimality.

F. Numerical Solution Method

To solve the model numerically, we use a forward-backward sweep method as described in detail in

Lenhart and Workman (2007, ch. 4 and 12). We outline the method here and provide the details of

the numerical setup used for generating the figures in the paper.

First, the time interval [0, T ] is split into equal intervals each of which has length h < 1, and using

this time gird of M +1 points, the continuous time state and costate variables are approximated with

vectors of length M + 1. The algorithm for finding the optimal policy involves the following steps:

• Step 1: Set initial guess for [d1, ..., dM+1], typically set to zeros.

3Brock and Dochert (1983) introduced the generalized maximum principe in the context of growth models, while
Brock and Starrett (2003) applied this technique to shallow lake systems. Deissenberg et al. (2004) contains an excellent
synthesis of this literature. Rowthorn and Toxvaerd (2020) apply these techniques to the optimal control of disease
dynamics.



12

• Step 2: Use initial conditions for N1 ≡ N (0), S1 ≡ S (0), E1 ≡ E (0) and I1 ≡ I (0) as deter-

mined by the model calibration and solve forward in time the system of differential equations

(38)-(41), using a 4th order Runge-Kutta forward sweep.

• Step 3: Use the transversality conditions (50) and (52), i.e. the costates evaluated at time T ,
the current vector of d, and the vector of state variables from Step 2, to solve backward in time

the system of differential equations (46)-(49), using a 4th order Runge-Kutta backward sweep.

• Step 4: Use the current vector of states (from Step 2) and costates (from Step 3) to evaluate

dnew using (45). Update d using a convex combination of the old and new d, using an updating

‘gain’parameter 0 < g < 1:

d = g ∗ dnew + (1− g) ∗ dold (53)

• Step 5: Iterate until convergence according to a required tolerance level toler.

Our results and graphs were generated using the following specifications: First, we use h = 1/10.

For the smallest time interval we work with, i.e. T = 104 weeks, this implies a grid of more than

1,000 points, which is suffi cient for a good approximation. We have also tried values of h = 1/50 and

h = 1/100 and found that the improvements in precision are insignificant. Since a larger number of

grid points greatly increases computational time, we kept 1/10 as our benchmark value for h.

Second, we use an updating gain parameter of g = 0.01 for almost all simulations, apart from a

few simulations with high δ, or high α, and/or large (approximately infinite) time T . The smallest

updating gain we used was g = 0.0005. Smaller gain improves the stability of the algorithm, but

increases the computing time considerably.

Third, for the convergence of the ‘while’loop we use tolerance level tol = 1e− 13. Requiring tight
tolerance for the numerical simulations is very important for good accuracy of the algorithm because

of the control bounds. If the tolerance is wide, then the algorithm may ‘converge’too quickly and

produce solutions that are on the lower or upper bound of the control (i.e. at 0 or 1) for most of the

time horizon, and which are not optimal.

Fourth, for most of our simulations, our approximation of a very long horizon is done by setting

T = 100 years. For ‘infinite’horizon approximations we discard the last 200-400 weeks to avoid end-

of-horizon distortions. The Matlab code for the simulations is provided on the corresponding author’s

website.

G. Optimal Social Distancing in SEIR Without Demographics

The following two figures show the dynamics and optimal policy for the SEIR model (i.e. permanent

immunity) in (a) the benchmark case, i.e. with natural births and deaths, and (b) in a version

without demographics, i.e. ν = µ = 0, both showing the first six years of simulations for T = 100

years. We note that the main differences between these sets of plots are quantitative rather than

qualitative. Notably, optimal social distancing is significantly higher when a closed population is

considered. Intuitively, when the population is not replenished by new births, each individual life

receives a much higher weight in the planner’s objective and hence there is a much stronger need to

avoid infections. Disregarding demographics may thus lead to policy recommendations that inflate

the need for disease control, relative to the model with population turnover.
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Figure 4: SEIR model with demographics. Benchmark values 3.8 million births per year and life
expectancy of 80 years. Dotted line is uncontrolled (epidemic) model and solid line under optimal
social distancing policy.
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Figure 5: SEIR model without demographics (ν = µ = 0). Dotted line is uncontrolled (epidemic)
model and solid line under optimal social distancing policy.
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