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SA-1 Additional Methodological Results

We discuss two important issues related to the results in the main text. First, building on Section

I.A, we provide two simple and stylized analytical examples which explicitly characterize the effect

of using the incorrect covariate adjustment for binscatter. Second, building on Section I.B, we

discuss the role of the choice of the evaluation point w for visualization, estimation, and inference

for Υ0(x,w) = E[yi|xi = x,wi = w].

SA-1.1 Bias of Residualized Binscatter

We present two examples to showcase the potential problems resulting from the incorrect residual-

ization method. In the following we use m!! to denote the double factorial of a number m, U(a, b)

to denote the uniform distribution on [a, b] and Bernoulli(p) to denote the Bernoulli distribution

with mean equal to p.

SA-1.1.1 Example 1: Gaussian Polynomial Regression Model

Suppose that for some integer m > 1,

yi = xmi + wiγ0 + εi, γ0 = 0,

xiwi
εi

 ∼ Normal

0
0
0

 ,
 σ2

x ρσx 0
ρσx 1 0
0 0 σ2

 .

Thus, using the notation in the paper, µ0(xi) = xmi and wi is scalar (d = 1).

Residualizing the covariate xi with respect to the control wi in this Gaussian model yields

xi − L(xi|wi) = xi − ρσxwi,

The residualized covariate xi − ρσxwi is still supported on the whole real line, but its variance

shrinks to (1− ρ2)σ2
x. In addition, residualizing the outcome yi with respect to wi yields

yi − L(yi|wi) = yi − (1 w)(E[xmi ] E[xmi wi])
′ = yi − α0 − α1wi
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where

α0 =


0 if m is odd

σmx (m− 1)!! if m is even

and α1 =


mρσmx (m− 2)!! if m is odd

0 if m is even

.

Then, letting zi = xi − ρσxwi, we have

E[yi − L(yi|wi)|xi − L(xi|wi)] = E[xmi − α0 − α1wi|zi] = E[xmi |zi]− α0.

Note that xi|zi ∼ N(zi, ρ
2σ2
x). Then, we can concisely write

E[xmi |zi] =
∑

0≤l≤m
m−l is even

(
m

l

)
zli|ρσx|m−l(m− l − 1)!!.

For instance, if the true underlying model is a quadratic regression model (m = 2) we obtain

E[yi − L(yi|wi)|zi] = (ρ2 − 1)σ2
x + z2

i (for m = 2),

while for a cubic regression model (m = 3) we obtain

E[yi − L(yi|wi)|zi] = 3ρ2σ2
xzi + z3

i (for m = 3).

Clearly, for m = 2, the residualization leads to a vertical shift of the true function (quadratic

monomial). For m = 3, however, the problem is more severe: residualization adds a linear function

of the covariate to the true function (cubic monomial), and when |ρσx| is large, the linear component

3ρ2σ2
xzi will visually dominate in a binscatter plot, leading to an incorrect “linear” specification

of the model. Moreover, in any sample, this effect is likely to be amplified because zi is more

concentrated around its mean than xi is.

Using the above results, we can even obtain the functional form of the residualized binscatter

when µ0 is any polynomial function and all variables are multivariate normal. Generally, the resid-

ualized binscatter yields a polynomial relationship between the residualized yi and the residualized

xi that may be different from the original polynomial µ0.
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SA-1.1.2 Example 2: Semiparametric Bernoulli Model

Suppose that

yi = µ0(xi) + wiγ0 + εi, γ0 = 0,

where

wi ∼ Bernoulli(0.5), xi|wi = 0 ∼ U(0, 1), xi|wi = 1 ∼ U(1, 2), εi ⊥⊥ (xi, wi).

It follows that xi ∼ U(0, 2). Residualizing the covariate xi with respect to wi yields

xi − L(xi|wi) = xi − 0.5− wi ∈ [−0.5, 0.5] .

The support of this residualized covariate is different from that of the original one, not only in the

location but also in the length.

In addition, residualizing the outcome yi with respect to wi yields

yi − L(yi|wi) = yi − α0 − δ0wi

where α0 = E[µ0(xi)|wi = 0], and δ0 = E[µ0(xi)|wi = 1] − E[µ0(xi)|wi = 0]. Then, letting

zi = xi − 0.5− wi, we have

E[yi − L(yi|wi)|xi − L(xi|wi)]

= E[yi − α0 − δ0wi|zi]

= (µ0(zi + 0.5)− α0)× P(wi = 0|zi) + (µ0(zi + 1.5)− α0 − δ0)× P(wi = 1|zi)

=
1

2
µ0(zi + 0.5) +

1

2
µ0(zi + 1.5)− α0 −

1

2
δ0.

Ignoring the constants, the residualized binscatter in this example characterizes a linear combination

of two “horizontally shifted” versions of the true function µ0(·), which in general can be very different

from the original µ0(·). For instance, consider

µ0(x) = x21(x ∈ [0, 1)) + (2− (x− 2)2)1(x ∈ [1, 2]),
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which is continuously differentiable. This specification actually implies that yi and xi have a

quadratic relationship which is heterogeneous across the two groups with wi = 0 and wi = 1.

However, the residualized binscatter yields

E[yi − L(yi|wi)|xi − L(xi|wi)] = zi + 1− α0 −
1

2
δ0

which becomes a linear function in zi, thereby giving a (visually and theoretically) wrong functional

form for the true underlying conditional expectation.

SA-1.2 Impact of Evaluation Point w

This supplemental appendix will focus on estimation and inference for the conditional expectation

Υ0(x,w) = E[yi|xi = x,wi = w] and its derivatives with respect to x, where w is a user-specified

value of control variables at which Υ0(x, ·) is evaluated, such as w = 0, E[wi], or median(wi), where

0 denotes a vector of zeros and median(wi) denotes the population median of each component in wi.

In the paper attention is restricted to Υ0(x) = Υ0(x,E[wi]). In this section we provide a detailed

discussion regarding the role of the evaluation point w, which may be important for interpretation

and for numerical results, and even for the visualization itself.

One might expect that since the additional controls are modeled as additively linear, the eval-

uation point w (and the coefficient γ0) should not impact conclusions about the nonparametric

relationship between y and x. But this intuition overlooks the fact that the function µ0(x) is only

defined relative to how wi is coded. We will show that the results of parametric specification tests

and confidence bands for the mean function Υ0(x,w) might be sensitive to the choice of w, and

how this issue may be circumvented by focusing instead on the derivative of the mean function,

highlighting the importance of our theoretical contributions which can accommodate the estimation

of derivatives.

Let us first consider the hypothesis testing procedure behind the informal practice of checking if

the “dots” are roughly linear, and then running ordinary least squares regression of yi on xi and

wi. This idea motivates the standard practice of plotting the fitted regression line along with the

binned scatter plot, as in Figures 1 and 2 in the paper. In this case, the null hypothesis is not

merely that µ0(x) = θ0 + θ1x, i.e., a linear function, but rather that the full model is linear, so
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that Υ0(x,w) = θ0 + xθ1 + w′γ0. Under the partially linear assumption of the model (SA-2.2)

below, these would seem identical, because in either case w enters linearly. But this is not so in

practice for two reasons: the estimates of the coefficients γ0 will differ in general, as will the implied

intercepts, and the chosen w will impact the uncertainty about the estimate of θ0.

In a standard binscatter plot such as Figure 1 in the paper, the “dots” show the semiparametric

estimate Υ̂(x, ŵ) = µ̂(x) + ŵ′γ̂, defined in (SA-2.3) below, while the plotted line is the parametric

fit θ̃0 + xθ̃1 + ŵ′γ̃, obtained from least squares regression. Thus, while we are only interested in

assessing the linearity of µ0(x), we are actually testing these two functional forms for Υ0(x,w), and

the fact that γ̂ 6= γ̃ becomes important. Moreover, because θ̃0 + xθ̃1 + ŵ′γ̃ is a global parametric

fit while Υ̂(x, ŵ) = µ̂(x) + ŵ′γ̂ is local and nonparametric, the implied intercept when plotted

depends on the chosen ŵ, and this can shift the line away from the dots. Figure SA-1 demonstrates

this by example: everything is identical between the three plots except for choice of ŵ. Notice

the shift in absolute position (note the y axis) and the change in the relative position of the line

and the binscatter. This phenomenon is unavoidable in this setting, and the user must select ŵ

appropriately. (Note that this does not occur when using the incorrect residualization because the

covariates are mishandled.)

Figure SA-1: Role of the Evaluation Point. This figure demonstrates that the choice of ŵ shifts both the
absolute position (note the y axis) of the visualization and estimator, but also affects the comparison to parametric
fits. The data is the same as in Figure 2 in the paper except that state and year fixed effects are omitted for simplicity.

(a) ŵ = wmin (b) ŵ = w̄ (c) ŵ = wmax

Beyond the visual inspection of a plot like Figure SA-1, we can also consider a formal test for the

hypothesis Υ0(x,w) = M(x,w;θ,γ0) = m(x;θ) + w′γ0. (In the case of linearity, θ = (θ0, θ1)′ and

m(x;θ) = θ0 + xθ1.) This is a special case of the specification tests discussed in Section SA-3.7:

Ḣ0 : sup
x∈X

∣∣∣Υ0(x,w)−M(x,w;θ,γ0)
∣∣∣ = 0, for some θ, vs.
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ḢA : sup
x∈X

∣∣∣Υ0(x,w)−M(x,w;θ,γ0)
∣∣∣ > 0, for all θ.

One rejects Ḣ0 if and only if supx∈X |Ṫp(x)| ≥ c for some critical value c where Ṫp(x) = Υ̂(x,ŵ)−M(x,ŵ;θ̃,γ̃)√
Ω̂(x)/n

.

This testing procedure formalizes the idea of visually examining a binned scatter plot compared

to a parametric specification; a common step before regression analysis. But it also formalizes the

problematic dependency on the evaluation point w and the difference between γ̂ and γ̃. Despite

the fact that w′γ0 cancels out in both the null and alternative statements, the numerator of the

t-statistic depends on ŵ′(γ̂−γ̃), because in finite samples γ0 is unknown. Therefore our uncertainty

about how x enters the model depends on the controls wi. As mentioned above, this comes about

because µ0(x) is only defined relative to wi.

Consider the case where wi is an indicator (or fixed effect). Then setting ŵ = 0 would seem

to remove the problem, because the numerator of Ṫp(x) depends only on µ̂(x) and m(x; θ̃), while

setting ŵ = 1 maximizes it. This is correct, but is then sensitive to how the researcher has coded

wi, i.e., which category is considered the baseline. Thus we can get a different answer to the test

depending on which category of w we consider, even though the hypothesis applies to both. This

is intuitively the same as the fact that in a linear model with dummy variables the standard error

of the intercept changes depending on how w is coded. The case of a continuous wi (especially

with large support, such as annual income) is perhaps worse: if γ̂ 6= γ̃, then there is always some

value ŵ for which we reject the null. Thus, using the procedure described above to test parametric

specifications is potentially confusing at best, and at worst is vulnerable to p-hacking. It is worth

noting that in most papers studying the partially linear model, the parameter of interest is γ0, and

so these concerns have gone largely unnoticed. (And are masked by construction when using the

incorrect residualization approach.)

To avoid these issues, and motivated by the fact that the central point of binscatter is to study

how yi relates to xi, controlling for wi, we advocate reformulating the hypothesis as pertaining to the

derivative of µ0(x), instead of the level. Under the partially linear model maintained throughout,

any derivative of E[yi|xi = x,wi = w] is exactly µ
(v)
0 (x), and is by definition Υ

(v)
0 (x,w). Therefore,

instead of testing the null Υ0(x,w) = m(x;θ) + w′γ0, we test the equivalent hypothesis that

Υ
(v)
0 (x,w) = m(v)(x;θ) for some v ≥ 1. For example, instead of testing that µ0(x) is linear, we

6



test that it has constant first derivative. To test if µ0(x) itself is constant, the null would be that

µ
(1)
0 (x) = m(1)(x;θ) = 0.

Such (more robust) tests are still special cases of the specification tests discussed in Section

SA-3.7: for some v ≥ 1,

Ḣ0 : sup
x∈X

∣∣∣Υ(v)
0 (x,w)−m(v)(x;θ)

∣∣∣ = 0, for some θ, vs.

ḢA : sup
x∈X

∣∣∣Υ(v)
0 (x,w)−m(v)(x;θ)

∣∣∣ > 0, for all θ.

One rejects Ḣ0 if and only if supx∈X |Ṫp(x)| ≥ c for some critical value c where Ṫp(x) = µ̂(v)(x)−m(v)(x;θ̃)√
Ω̂(x)/n

.

Finally, notice that the visual appearance of the confidence band for the mean function Υ0(x,w) =

E[yi|xi = x,wi = w] will also be impacted by the evaluation point w (or its feasible version ŵ).

This is important to keep in mind when evaluating binscatter plots. By definition, each binscatter

plot shows only one choice of w, and therefore while the shape of Υ̂(x, ŵ) is unchanged, a level

shift will occur and the size of the band can change. For an intuitive example, again consider the

case where w is categorical, and some categories have much larger or smaller sample sizes. These

different sample sizes will naturally be reflected in the uncertainty for Υ0(x,w).

For this reason, we must be careful when using confidence bands as visual aids in parametric

specification testing. If we plot Υ̂(x, ŵ) and its associated confidence band, it is tempting to say

that if this band does not contain a line (or quadratic function), then we say that at level α we

reject the null hypothesis that µ0(x) is linear (or quadratic). Although this is formally justified,

we must interpret such analyses with caution because of the role of the evaluation point.

SA-2 General Setup and Notation

To present all our complete theoretical results we first review and generalize the notation introduced

in the main text. Suppose that (yi, xi,w
′
i), 1 ≤ i ≤ n, is a random sample where yi ∈ Y is a scalar

response variable, xi ∈ X is a scalar covariate, and wi ∈ W is a vector of additional control variables

of dimension d. Define the following least squares estimand:

(µ0(·),γ0) = arg min
µ∈M,γ∈Rd

E
[(
yi − µ(xi)−w′iγ

)2]
, (SA-2.1)

7



where M is a space of functions satisfying certain smoothness conditions to be specified later.

We study binscatter estimators in the partially linear regression model:

yi = µ0(xi) + w′iγ0 + εi, E[εi|xi,wi] = 0. (SA-2.2)

The parameter of interest is

Υ
(v)
0 (x,w) =

∂v

∂xv
E[yi|xi = x,wi = w], v ∈ N0,

for some evaluation points x and w. Given the assumption E[εi|xi,wi] = 0 in (SA-2.2):

Υ0(x,w) = Υ
(0)
0 (x,w) = µ0(x) + w′γ0 and Υ

(v)
0 (x,w) = µ

(v)
0 (x) for v > 0.

In the paper, we focused on Υ
(v)
0 (x) = Υ

(v)
0 (x,E[wi]), one special case of Υ

(v)
0 (x,w) defined above

for some evaluation point w.

The following basic conditions on the data generating process are imposed throughout.

Assumption SA-DGP (Data Generating Process). {(yi, xi,w′i) : 1 ≤ i ≤ n} is i.i.d. satisfying

(SA-2.1) with X a compact interval; xi has a distribution function FX(x) with a Lipschitz contin-

uous (Lebesgue) density fX(x) bounded away from zero on X ; and µ0(x) is ςµ-times continuously

differentiable for some ςµ ≥ p+ 1.

We next impose a condition that is specific to the least squares binscatter. Binscatters in more

general models are studied in Cattaneo et al. (2023). Section SA-2.1 defines standard notation.

Assumption SA-LS (Least Squares).

(i) E[εi|xi,wi] = 0; σ2(x) := E[ε2i |xi = x] is Lipschitz continuous and bounded away from zero

on X ; and supx∈X E[|εi|ν |xi = x] . 1 for some ν > 2.

(ii) max1≤i≤n E[ε2i |wi, xi] .P 1; E[wi|xi = x] is ςw-times continuously differentiable for some ςw ≥

1; supx∈X E[‖wi‖ν |xi = x] . 1; max1≤i≤n E[‖wi−E[wi|xi]‖4|xi] .P 1; and min1≤i≤n λmin(E[(wi−

E[wi|xi])(wi − E[wi|xi])′|xi]) &P 1.

8



Part (i) imposes some moment conditions on the error term which are commonly used in the

nonparametric series estimation literature. Part (ii) includes a set of conditions similar to those

used in Cattaneo, Jansson and Newey (2018a,b) to analyze the semiparametric partially linear

regression model. They ensure the negligibility of the estimation error of γ̂. To reduce notation,

we use the same constant ν > 2 in the conditional moment bounds for εi and wi.

Binscatter estimators are typically constructed based on quantile-spaced partitions, and a major

innovation herein is accounting for this additional randomness. Our results allow for other options

as well, including evenly spaced partitioning. Specifically, the relevant support of xi is partitioned

into J disjoint intervals employing the empirical quantiles, leading to the partitioning scheme

∆̂ = {B̂1, B̂2, . . . , B̂J}, where

B̂j =



[
x(1), x(bn/Jc)

)
if j = 1[

x(b(j−1)n/Jc), x(bjn/Jc)
)

if j = 2, 3, . . . , J − 1[
x(b(J−1)n/Jc), x(n)

]
if j = J

,

x(i) denotes the i-th order statistic of the sample {x1, x2, . . . , xn}, and b·c is the floor operator. The

number of bins J plays the role of tuning parameter for the binscatter method, and is assumed to

diverge: J →∞ as n→∞ throughout the supplement, unless explicitly stated otherwise.

The piecewise polynomial basis of degree p, for some choice of p = 0, 1, 2, . . . , is defined as

[
1B̂1

(x) 1B̂2
(x) · · · 1B̂J (x)

]′
⊗
[

1 x · · · xp
]′
,

where 1A(x) = 1(x ∈ A) and ⊗ is the Kronecker product operator. For convenience of later

analysis, we use b̂p,0(x) to denote a standardized rotated basis, the jth element of which is given by

√
J × 1B̂j̄ (x)×

(x− x(b(j̄−1)n/Jc)

ĥj̄

)j−1−(j̄−1)(p+1)
, j = 1, · · · , (p+ 1)J,

where j̄ = dj/(p + 1)e, d·e is the ceiling operator, and ĥj̄ = x(bj̄n/Jc) − x(b(j̄−1)n/Jc). Thus, each

local polynomial is centered at the start of each bin and scaled by the length of the bin.
√
J is an

additional scaling factor which helps simplify some expressions of our results. The standardized

rotated basis b̂p,0(x) is equivalent to the original piecewise polynomial basis in the sense that they
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represent the same (linear) function space.

To impose the restriction that the estimated function is (s− 1)-times continuously differentiable

for 1 ≤ s ≤ p, we introduce a new basis

b̂p,s(x) =
(
b̂p,s,1(x), . . . , b̂p,s,Kp,s(x)

)′
= T̂sb̂p,0(x), Kp,s = (p+ 1)J − s(J − 1),

where T̂s := T̂s(∆̂) is a Kp,s × (p + 1)J matrix depending on ∆̂, which transforms a piecewise

polynomial basis to a smoothed binscatter basis. When s = 0, we let T̂0 = I(p+1)J , the identity

matrix of dimension (p + 1)J . Thus b̂p,0(x) is the discontinuous basis without any constraints

defined previously. When s = p, b̂p,s(x) is the well-known B-spline basis of order p + 1 with

simple knots, which is (p − 1)-times continuously differentiable. When 0 < s < p, they can be

defined similarly as B-splines with knots of certain multiplicities. See Definition 4.1 in Section 4 of

Schumaker (2007) for more details. We require s ≤ p, since if s = p+ 1, b̂p,s(x) reduces to a global

polynomial basis of degree p.

A key feature of the transformation matrix T̂s is that on every row it has at most (p + 1)2

nonzeros, and on every column it has at most p+ 1 nonzeros. The expression of these elements is

cumbersome. The proof of Lemma SA-3.2 describes the structure of T̂s in more detail and provides

an explicit representation for T̂s.

Given a choice of basis, we consider the following least squares binscatter estimator:

µ̂(v)(x) = b̂(v)
p,s(x)′β̂,

[
β̂
γ̂

]
= arg min

β,γ

n∑
i=1

(
yi − b̂p,s(xi)

′β −w′iγ
)2
, (SA-2.3)

where b̂
(v)
p,s(x) = dv

dxv b̂p,s(x) for some v ∈ Z+ such that v ≤ p. It is well known that this estimator

admits the following “backfitting” expression, which will be convenient for later theoretical analysis:

β̂ = (B′B)−1B′(Y −Wγ̂), γ̂ = (W′MBW)−1(W′MBY),

where Y = (y1, . . . , yn)′, B = (b̂p,s(x1), . . . , b̂p,s(xn))′, W = (w1, · · · ,wn)′ and MB = In −

B(B′B)−1B′ with In denoting the identify matrix of size n.
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Given an estimator ŵ of the evaluation point w, we have the following estimator of Υ
(v)
0 (x,w):

Υ̂(v)(x, ŵ) =


µ̂(x) + ŵ′γ̂ if v = 0

µ̂(v)(x) if v ≥ 1

.

Throughout the supplement (and the paper), we always assume that the estimator ŵ is either

nonrandom (e.g., a fixed value) or generated based on W.

Remark SA-2.1 (Smoothness and Bias Correction). We remind readers that this supplemental

appendix presents all results under general choices of the number of bins J , the degree of the basis

p, and the smoothness of the basis s. By contrast, for simplicity, the paper only uses the binscatter

basis with s = p, where p = 0 for binscatter estimation and p = 1 for inference. In addition, in

the paper we let J be the IMSE-optimal choice corresponding to p = p for a fixed number p (see

Theorem SA-3.4), and inference is conducted based on the binscatter basis of degree p = p + 1. In

particular, we set p = 0 to construct confidence bands in Section III. This can be viewed as a bias

correction strategy (Calonico, Cattaneo and Farrell, 2018, 2022) which guarantees the smoothing

bias of the binscatter estimator is negligible in inference under mild conditions. y

SA-2.1 Notation

For background definitions, see van der Vaart and Wellner (1996), Bhatia (2013), Giné and Nickl

(2016), and references therein.

Matrices and Norms. For (column) vectors, ‖ · ‖ denotes the Euclidean norm, ‖ · ‖1 denotes

the L1 norm, ‖ · ‖∞ denotes the sup-norm, and ‖ · ‖0 denotes the number of nonzeros. For matrices,

‖ · ‖ is the operator matrix norm induced by the L2 norm, and ‖ · ‖∞ is the matrix norm induced

by the supremum norm, i.e., the maximum absolute row sum of a matrix. For a square matrix

A, λmax(A) and λmin(A) are the maximum and minimum eigenvalues of A, respectively. [A]ij

denotes the (i, j)th entry of a generic matrix A. We will use SL to denote the unit circle in

RL, i.e., ‖a‖ = 1 for any a ∈ SL. For a real-valued function g(·) defined on a measure space

Z, let ‖g‖Q,2 := (
∫
Z |g|

2dQ)1/2 be its L2-norm with respect to the measure Q. In addition, let

‖g‖∞ = supz∈Z |g(z)| be L∞-norm of g(·), and g(v)(z) = dvg(z)/dzv be the vth derivative for

v ≥ 0.
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Asymptotics. For sequences of numbers or random variables, we use ln . mn to denote that

lim supn |ln/mn| is finite, ln .P mn or ln = OP(mn) to denote lim supε→∞ lim supn P[|ln/mn| ≥ ε] =

0, ln = o(mn) implies ln/mn → 0, and ln = oP(mn) implies that ln/mn →P 0, where →P denotes

convergence in probability. ln � mn implies that ln . mn and mn . ln.

Empirical Process. We employ standard empirical process notation: En[g(vi)] = 1
n

∑n
i=1 g(vi),

and Gn[g(vi)] = 1√
n

∑n
i=1(g(vi)−E[g(vi)]) for a sequence of random variables {vi}ni=1. In addition,

we employ the notion of covering number extensively in the proofs. Specifically, given a measurable

space (A,A) and a suitably measurable class of functions G mapping A to R equipped with a

measurable envelop function Ḡ(z) ≥ supg∈G |g(z)|, the covering number of N(G, L2(Q), ε) is the

minimal number of L2(Q)-balls of radius ε needed to cover G for a measure Q. The covering number

of G relative to the envelope is denoted as N(G, L2(Q), ε‖Ḡ‖Q,2).

Partitions. Given the random partition ∆̂, we use the notation E
∆̂

[·] to denote that the ex-

pectation is taken with the partition ∆̂ understood as fixed. To further simplify notation, we let

{τ̂0 ≤ τ̂1 ≤ · · · ≤ τ̂J} denote the empirical quantile sequence employed by ∆̂ and ĥj = τ̂j − τ̂j−1

be the width of the j-th bin B̂j . Accordingly, let {τ0 ≤ · · · ≤ τJ} be the population quantile

sequence, i.e., τj = F−1
X (j/J) for 0 ≤ j ≤ J . Then ∆0 = {B1, . . . ,BJ} denotes the partition based

on population quantiles, i.e.,

Bj =



[
τ0, τ1

)
if j = 1[

τj−1, τj
)

if j = 2, 3, . . . , J − 1[
τJ−1, τJ

]
if j = J

.

Let hj = F−1
X (j/J)−F−1

X ((j−1)/J) be the width of Bj . Analogously to b̂p,s(x), bp,s(x) denotes the

binscatter basis of degree p that is (s−1)-times continuously differentiable and is constructed based

on the nonrandom partition ∆0. We sometimes write bp,s(x; ∆) = (bp,s,1(x; ∆), . . . , bp,s,Kp,s(x; ∆))′

to emphasize a binscatter basis is constructed based on a particular partition ∆. Therefore,

b̂p,s(x) = bp,s(x; ∆̂) and bp,s(x) = bp,s(x; ∆0).

For any given partition ∆, the population least squares projection of µ0(·) is given by bp,s(·; ∆)′β0(∆)
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with

β0(∆) := arg min
β∈RKp,s

E[(µ0(xi)− bp,s(xi; ∆)′β)2]. (SA-2.4)

Accordingly, given the random partition ∆̂ and the nonrandom partition ∆0, we have

β̂0 := β0(∆̂) := arg min
β∈RKp,s

E
∆̂

[(µ0(xi)− bp,s(xi; ∆̂)′β)2], and

β0 := β0(∆0) := arg min
β∈RKp,s

E[(µ0(xi)− bp,s(xi; ∆0)′β)2].

The corresponding L2 projection error is r0,v(x; ∆) = µ
(v)
0 (x) − b

(v)
p,s(x; ∆)′β0(∆). We therefore

define the approximation errors

r̂0,v(x) := r0,v(x; ∆̂), and r0,v(x) := r0,v(x; ∆0).

For v = 0, we write r̂0(x) := r̂0,0(x) and r0(x) := r0,0(x)

Other. Let X = [x1, . . . , xn]′, W = [w1, · · · ,wn]′, and D = [(yi, xi,w
′
i)
′ : i = 1, 2, . . . , n].

dze outputs the smallest integer no less than z and a ∧ b = min{a, b}. “w.p.a. 1” means “with

probability approaching one”.

SA-3 Theoretical Results

Our main theoretical results are presented in this section. We will focus on the estimator Υ̂(v)(x, ŵ)

of Υ
(v)
0 (x,w). The estimator Υ̂(x) of Υ

(v)
0 (x) = Υ

(v)
0 (x,E[wi]) discussed in the paper is covered as

a special case.

SA-3.1 Properties of Quantile-Based Partition and Binscatter Basis

In this section we first give some preliminary lemmas concerning the basic properties of the quantile-

based partition and the binscatter basis, which are necessary for our main analysis and may be of

independent interest.

The asymptotic properties of partitioning-based estimators require a partition that is not too

“irregular”. In the binscatter setting, we let f̄X = supx∈X fX(x) and f
X

= infx∈X fX(x), and

for any partition ∆ with J bins, we let hj(∆) denote the length of the jth bin in ∆. Therefore,
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ĥj = hj(∆̂) and hj = hj(∆0). Then, we introduce the family of partitions:

Π =
{

∆ :
max1≤j≤J hj(∆)

min1≤j≤J hj(∆)
≤ 3f̄X

f
X

}
. (SA-3.1)

Intuitively, if a partition belongs to Π, then the lengths of its bins do not differ “too” much, a

property usually referred to as “quasi-uniformity” in approximation theory. Our first lemma shows

that a quantile-spaced partition possesses this property with probability approaching one.

Lemma SA-3.1 (Quasi-Uniformity of Quantile-Spaced Partitions). Suppose that Assumption SA-

DGP holds. If J log J
n = o(1) and logn

J = o(1), then (i) max1≤j≤J |ĥj − hj | .P J
−1
(
J log J
n

)1/2
, and

(ii) ∆̂ ∈ Π w.p.a. 1.

As discussed previously, T̂s links the more complex spline basis with a simple piecewise polyno-

mial basis. Recall that T̂s = T̂s(∆̂) depends on the empirical-quantile-based partition ∆̂. The next

lemma describes its key features. We let Ts := Ts(∆0) be the transformation matrix corresponding

to the nonrandom basis bp,s(x), i.e., bp,s(x) = Tsbp,0(x).

Lemma SA-3.2 (Transformation Matrix). Suppose that Assumption SA-DGP holds. If J log J
n =

o(1) and logn
J = o(1), then b̂p,s(x) = T̂sb̂p,0(x) with ‖T̂s‖∞ .P 1, ‖T̂s‖ .P 1, ‖T̂s − Ts‖∞ .P(

J log J
n

)1/2
, and ‖T̂s −Ts‖ .P

(
J log J
n

)1/2
.

The following lemma provides some simple bounds on the basis.

Lemma SA-3.3 (Local Basis). Suppose that Assumption SA-DGP holds. Then, supx∈X ‖b̂
(v)
p,s(x)‖0 ≤

(p+ 1)2. If, in addition, J log J
n = o(1) and logn

J = o(1), then supx∈X ‖b̂
(v)
p,s(x)‖ .P J

1
2

+v.

The following lemma characterizes the approximation error r̂0,v(x) in terms of the sup norm.

Lemma SA-3.4 (Approximation Error). Suppose that Assumption SA-DGP holds. If J log J
n = o(1)

and logn
J = o(1), then

sup
∆∈Π

sup
x∈X
|b(v)
p,s(x; ∆)′β0(∆)− µ(v)

0 (x)| . J−p−1+v and sup
x∈X
|b̂(v)
p,s(x)′β̂0 − µ(v)

0 (x)| .P J
−p−1+v.

Remark SA-3.1 (Improvements over literature). Lemmas SA-3.1–SA-3.4 show some basic char-

acteristics of the binscatter basis, which are used in the subsequent main analysis. Compared with
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other studies of splines (see, e.g., Shen, Wolfe and Zhou, 1998; Huang, 2003; Schumaker, 2007), we

formally take into account the randomness of the partition formed by empirical quantiles. y

SA-3.2 Preliminary Technical Lemmas

This section collects a set of technical lemmas, which are key ingredients of our main theorems.

We first introduce the following quantities that will be frequently used:

Q̂ := Q̂(∆̂) := En[b̂p,s(xi)b̂p,s(xi)
′], Q0 := Q(∆0) := E[bp,s(xi)bp,s(xi)

′],

Σ̂ := Σ̂(∆̂) := En[b̂p,s(xi)b̂p,s(xi)
′ε̂2i ], Σ̄ := Σ̄(∆̂) := En

[
E[b̂p,s(xi)b̂p,s(xi)

′ε2i |X]
]
,

Σ0 := Σ(∆0) := E[bp,s(xi)bp,s(xi)
′ε2i ],

Ω̂(x) := Ω̂(x; ∆̂) := b̂(v)
p,s(x)′Q̂−1Σ̂Q̂−1b̂(v)

p,s(x),

Ω̄(x) := Ω̄(x; ∆̂) := b̂(v)
p,s(x)′Q̂−1Σ̄Q̂−1b̂(v)

p,s(x), and

Ω(x) := Ω(x; ∆̂) := b̂(v)
p,s(x)′Q−1

0 Σ0Q
−1
0 b̂(v)

p,s(x),

where ε̂i = yi − b̂p,s(xi)
′β̂ −w′iγ̂. All quantities with ̂ or ¯ depend on the random partition ∆̂,

and those without any accents are nonrandom with the only exception of Ω(x), where the basis

b̂
(v)
p,s(x) still depends on ∆̂. The dependence on p, s and v is often omitted for simplicity.

The following lemma characterizes the properties of the Gram matrix of the binscatter basis.

Lemma SA-3.5 (Gram). Suppose that Assumption SA-DGP holds. Then, 1 . λmin(Q0) ≤

λmax(Q0) . 1. If, in addition, J log J
n = o(1) and logn

J = o(1), then

‖Q̂−Q0‖ .P

(J log J

n

)1/2
, ‖Q̂−1‖∞ .P 1, and ‖Q̂−1 −Q−1

0 ‖∞ .P

(J log J

n

)1/2
.

The next lemma shows that the limiting variance of µ̂(v)(x) is bounded from above and below if

properly scaled. Recall that Ω̄(x) = Ω̄(x; ∆̂) and Ω(x) = Ω(x; ∆̂).

Lemma SA-3.6 (Asymptotic Variance). Suppose that Assumptions SA-DGP and SA-LS(i) hold.

If J log J
n = o(1) and logn

J = o(1), then w.p.a. 1,

J1+2v . inf
x∈X

Ω̄(x) ≤ sup
x∈X

Ω̄(x) . J1+2v and J1+2v . inf
x∈X

Ω(x) ≤ sup
x∈X

Ω(x) . J1+2v.
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The next lemma gives a bound on the variance component of the binscatter estimator, which is

the main building block of uniform convergence.

Lemma SA-3.7 (Uniform Convergence: Variance). Suppose that Assumptions SA-DGP and SA-

LS(i) hold. If J
ν
ν−2 log J

n = o(1) and logn
J = o(1), then

sup
x∈X

∣∣∣b̂(v)
p,s(x)′Q̂−1En[bp,s(xi)εi]

∣∣∣ .P J
v
(J log J

n

)1/2
.

As explained before, r̂0(x) is understood as the L2 approximation error of least squares estimators

for µ0(x). The next lemma establishes the bound on the projection of r̂0(x) onto the space spanned

by b̂p,s(x) in terms of sup-norm.

Lemma SA-3.8 (Projection of Approximation Error). Under Assumption SA-DGP, if J log J
n =

o(1) and logn
J = o(1), then

sup
x∈X

∣∣∣b̂(v)
p,s(x)′Q̂−1En[b̂p,s(xi)r̂0(xi)]

∣∣∣ .P J
−p−1+v

(J log J

n

)1/2
.

The last lemma in this subsection characterizes the convergence of the parametric component in

the expression of β̂.

Lemma SA-3.9 (Covariate Adjustment). Suppose that Assumptions SA-DGP and SA-LS hold.

If J log J
n = o(1) and logn

J = o(1), then

‖γ̂ − γ0‖ .P
1√
n

+ J−p−1−(ςw∧(p+1)) and ‖b̂(v)
p,s(x)′Q̂−1En[b̂p,s(xi)w

′
i]‖∞ .P J

v for each x ∈ X .

If, in addition, J
ν
ν−2 log J

n . 1, then supx∈X ‖b̂
(v)
p,s(x)′Q̂−1En[b̂p,s(xi)w

′
i]‖∞ .P J

v.

Let (an : n ≥ 1) be a sequence of non-vanishing constants, which will be used later to characterize

the strong approximation rate. Lemma SA-3.9 implies that if an√
J

= o(1) and an
√
nJ−p−(ςw∧(p+1))− 3

2 =

o(1), then we have

‖γ̂ − γ0‖ = oP(a−1
n

√
J/n).

This result suffices to make the estimation error of γ̂ negligible in the large sample inference on

µ
(v)
0 (·) or Υ0(·,w).
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Remark SA-3.2 (Improvements over literature). The results in this subsection give novel rates of

approximations for semi-linear partitioning-based estimators with random partitions. Compared

to standard semi-linear regression results, our results provide sharper approximation rates due to

the specific binscatter basis, and also formally take into account the randomness of the partition

formed by empirical quantiles. See Cattaneo, Jansson and Newey (2018a,b), and reference therein,

for related literature. y

SA-3.3 Stochastic Linear Approximation and Point Estimation

Theorem SA-3.1 (Stochastic Linear Approximation). Suppose that Assumptions SA-DGP and

SA-LS hold. If J
ν
ν−2 log J

n . 1 and logn
J = o(1), then

sup
x∈X

∣∣∣Υ̂(v)(x, ŵ)−Υ
(v)
0 (x,w)− b̂(v)

p,s(x)′Q̂−1En[b̂p,s(xi)εi]
∣∣∣

.P J
v
( 1√

n
+ J−p−1−(ςw∧(p+1)) + J−p−1

)
+ ‖ŵ −w‖1(v = 0).

An immediate corollary of Theorem SA-3.1 is the uniform convergence of Υ̂(v)(·, ŵ).

Corollary SA-3.1 (Uniform Convergence). Suppose that Assumptions SA-DGP and SA-LS hold.

If
√
nJ−p−(ςw∧(p+1))− 3

2 = o(1) and J
ν
ν−2 log J

n . 1, then

sup
x∈X

∣∣∣µ̂(v)(x)− µ(v)
0 (x)

∣∣∣ .P J
v
(J log J

n

)1/2
+ J−p−1+v.

If, in addition, ‖ŵ −w‖ .P

√
J log J
n + J−p−1, then

sup
x∈X

∣∣∣Υ̂(0)(x, ŵ)−Υ(0)(x,w)
∣∣∣ .P

(J log J

n

)1/2
+ J−p−1.

Based on the above facts, we can also show that the proposed variance estimator is consistent.

Theorem SA-3.2 (Variance Estimate). Suppose that Assumptions SA-DGP and SA-LS hold. If

J
ν
ν−2 (log J)

ν
ν−2

n = o(1) and
√
nJ−p−(ςw∧(p+1))− 3

2 = o(1), then

∥∥∥Σ̂−Σ0

∥∥∥ .P J
−p−1 +

(J log J

n1− 2
ν

)1/2
, and sup

x∈X

∣∣∣Ω̂(x)− Ω(x)
∣∣∣ .P J

1+2v
(
J−p−1 +

(J log J

n1− 2
ν

)1/2)
.
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Remark SA-3.3 (Improvements over literature). The results in this subsection improve on the

linear series estimation literature (Belloni, Chernozhukov, Chetverikov and Kato, 2015; Cattaneo,

Farrell and Feng, 2020) by formally taking into account the randomness of the partition formed

by empirical quantiles, and by accounting for the semi-linear regression estimation structure. The

final approximation rate in the Bahadur-type (linear) approximation is sharp for the binscatter

basis (with or without random binning). y

SA-3.4 Pointwise Distributional Approximation and Inference

In this subsection we focus on the pointwise inference on the unknown parameter Υ
(v)
0 (x,w) =

∂v

∂xvE[yi|xi = x,wi = w] and construct the t-statistic based on Υ̂(v)(x, ŵ):

Tp(x) =
Υ̂(v)(x, ŵ)−Υ

(v)
0 (x,w)√

Ω̂(x)/n
.

Recall in our semi-linear model Υ̂(v)(x, ŵ) differs from µ̂(v)(x) only when v = 0 and ŵ 6= 0.

Therefore, the condition that ŵ converges to w at a fast rate imposed below is needed only when

v = 0.

Let Φ(·) be the cumulative distribution function of a standard normal random variable. The

following theorem constructs the pointwise inference for Υ
(v)
0 (x,w).

Theorem SA-3.3 (Pointwise Asymptotic Distribution). Suppose that Assumptions SA-DGP and

SA-LS hold. If supx∈X E[|εi|ν |xi = x] . 1 for some ν ≥ 3, J
ν
ν−2 (log J)

ν
ν−2

n = o(1), nJ−2p−3 = o(1)

and ‖ŵ −w‖ = o(
√
J/n), then

sup
u∈R

∣∣∣P(Tp(x) ≤ u)− Φ(u)
∣∣∣ = o(1), for each x ∈ X ,

and accordingly,

P
[
Υ

(v)
0 (x,w) ∈ Îp(x)

]
= 1− α+ o(1), for each x ∈ X ,

where Îp(x) = [Υ̂(v)(x, ŵ)± c

√
Ω̂(x)/n] and c = Φ−1(1− α/2).

Remark SA-3.4 (Robust Bias Correction). In practice, we suggest employing the robust bias

correction method (Calonico, Cattaneo and Farrell, 2018, 2022) to construct valid confidence inter-
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vals. Specifically, for a given p, let J be the corresponding IMSE-optimal choice JIMSE (see Section

SA-4 for implementation details). By Theorem SA-3.4 and Remark SA-3.7 below, JIMSE � n
1

2p+3 in

general. Then, construct the confidence intervals Îp+q(x) (i.e., use (p + q)th-order binscatter esti-

mator). This particular choice of J = JIMSE satisfies nJ−2p−2q−3 = o(1) and J2 log2 J
n = o(1). Then,

the conclusion of Theorem SA-3.3 immediately applies to Îp+q(x) if ν = 4 and ςµ = ςw = p+ q+ 1.

y

Remark SA-3.5 (Improvements over literature). The results in this subsection improve upon

Cattaneo, Farrell and Feng (2020, Section 5), the best results available for partitioning-based

estimation, by formally taking into account the randomness of the partition formed by empirical

quantiles, and by accounting for the semi-linear regression estimation structure. y

SA-3.5 Integrated Mean Squared Error

Theorem SA-3.4 (IMSE). Suppose that Assumptions SA-DGP and SA-LS hold. Let ω(x) be a

continuous weighting function over X bounded away from zero. If
√
nJ−p−(ςw∧(p+1))− 3

2 = o(1),

J log J
n = o(1) and ‖ŵ −w‖ = oP(

√
J/n+ J−p−1), then

∫
X
E
[(

Υ̂(v)(x, ŵ)−Υ
(v)
0 (x,w)

)2∣∣∣X,W]
ω(x)dx

=
J1+2v

n
Vn(p, s, v) + J−2(p+1−v)Bn(p, s, v) + oP

(J1+2v

n
+ J−2(p+1−v)

)
,

where

Vn(p, s, v) := J−(1+2v) trace
(
Q−1

0 Σ0Q
−1
0

∫
X

b(v)
p,s(x)b(v)

p,s(x)′ω(x)dx
)
� 1,

Bn(p, s, v) := J2p+2−2v

∫
X

(
b(v)
p,s(x)′β0 − µ(v)

0 (x)
)2
ω(x)dx . 1.

Remark SA-3.6 (Proof of Theorem 1). Theorem 1 stated in the paper is a special case of Theorem

SA-3.4. In Theorem 1 we let s = p and ŵ = w̄ and take ω(x) in Theorem SA-3.4 to be fX(x);

Assumption 1 implies that Assumption SA-DGP holds with ςµ = p + 2, and Assumption SA-LS

holds with ν = 4 and ςw = p + 2; and the rate condition
√
nJ−p−(ςw∧(p+1))− 3

2 = o(1) in Theorem

SA-3.4 is equivalent to nJ−4p−5 = o(1). y
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As a consequence, the IMSE-optimal choice of J is JIMSE = JIMSE(p, s, v) � n
1

2p+3 whenever

Bn(p, s, v) & 1. See Remark SA-3.7 below for discussion of the lower bound on Bn(p, s, v). More

precisely, if Bn(p, s, v) = B(p, s, v) + o(1) and Vn(p, s, v) = V (p, s, v) + o(1) for some constants

B(p, s, v) and V (p, s, v), then we can take

JIMSE = JIMSE(p, s, v) =

⌈(
2(p− v + 1)B(p, s, v)

(1 + 2v)V (p, s, v)

) 1
2p+3

n
1

2p+3

⌉
.

Regarding the bias component Bn(p, s, v), a more explicit but more cumbersome expression

is available in the proof, which forms the foundation of our bin selection procedure discussed in

Section SA-4. However, for s = 0, both variance and bias terms admit concise explicit formulas,

as shown in the following corollary. To state the results, we introduce a polynomial function

Bp(x) = (−1)p
∑p

k=0

(
p
k

)(
p+k
k

)
(−x)k/

(
2p
p

)
for p ∈ Z+.

(
2p
p

)
Bp(x) are usually termed the shifted

Legendre polynomials on [0, 1], which are orthogonal on [0, 1] with respect to the Lebesgue measure.

Also, let ϕ(z) = (1, z, . . . , zp)′.

Corollary SA-3.2. Under the assumptions in Theorem SA-3.4, Vn(p, 0, v) = V (p, 0, v) +o(1) and

Bn(p, 0, v) = B(p, 0, v) + o(1) where

V (p, 0, v) := trace
{(∫ 1

0
ϕ(z)ϕ(z)′dz

)−1
∫ 1

0
ϕ(v)(z)ϕ(v)(z)′dz

}∫
X
σ2(x)fX(x)2vω(x)dx,

B(p, 0, v) :=

∫ 1
0 [Bp+1−v(z)]

2dz

((p+ 1− v)!)2

∫
X

[µ
(p+1)
0 (x)]2

fX(x)2p+2−2v
ω(x)dx.

Remark SA-3.7. The above corollary implies that the bias constant B(p, 0, v) is nonzero unless

µ
(p+1)
0 (x) is zero almost everywhere on X . For other s > 0, notice that b

(v)
p,s(x)′β0 can be viewed

as an approximation of µ
(v)
0 (x) in the space spanned by piecewise polynomials of order (p − v).

The best L2(x) approximation error in this space, according to the above corollary, is bounded

away from zero if rescaled by Jp+1−v. b
(v)
p,s(x)′β0, as a non-optimal L2 approximation in such a

space, must have a larger L2 error than the best one (in terms of L2-norm). Since ω(x) and fX(x)

are both bounded and bounded away from zero, the above fact implies that except for the quite

special case mentioned previously, B(p, s, v) � 1, a slightly stronger result than that in Theorem

SA-3.4. We exclude this special case by assuming that the leading bias is non-degenerate, and thus

JIMSE � n
1

2p+3 . y
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Remark SA-3.8 (Improvements over literature). The results in this subsection improve upon

Cattaneo, Farrell and Feng (2020, Section 4), the best results available for partitioning-based

estimation, by formally taking into account the randomness of the partition formed by empirical

quantiles, and by accounting for the semi-linear regression estimation structure. y

SA-3.6 Uniform Distributional Approximation

Recall that (an : n ≥ 1) is a sequence of non-vanishing constants. We will first show that the

(feasible) Studentized t-statistic process Tp(·) can be approximated by a Gaussian process in a

proper sense at certain rate.

Theorem SA-3.5 (Strong Approximation). Suppose that Assumptions SA-DGP and SA-LS hold

and ‖ŵ −w‖ = oP(a−1
n

√
J/n). If

J(log J)2

n1− 2
ν

+ J−1 + nJ−2p−3 = o(a−2
n ),

then, on a properly enriched probability space, there exists some Kp,s-dimensional standard normal

random vector NKp,s such that for any ξ > 0,

P
(

sup
x∈X
|Tp(x)− Zp(x)| > ξa−1

n

)
= o(1), Zp(x) =

b̂
(v)
p,0(x)′T′sQ

−1
0 Σ

1/2
0√

Ω(x)
NKp,s .

The approximating process (Zp(x) : x ∈ X ) is a Gaussian process conditional on X by con-

struction. In practice, one can replace all unknowns in Zp(x) by their sample analogues, and then

construct the following feasible (conditional) Gaussian process:

Ẑp(x) =
b̂

(v)
p,0(x)′T̂′sQ̂

−1Σ̂1/2√
Ω̂(x)

N?
Kp,s =

b̂
(v)
p,s(x)′Q̂−1Σ̂1/2√

Ω̂(x)
N?
Kp,s ,

where N?
Kp,s

denotes a Kp,s-dimensional standard normal vector independent of the data D.

Theorem SA-3.6 (Plug-in Approximation). Suppose that the conditions in Theorem SA-3.5 hold.

Then, on a properly enriched probability space there exists a Kp,s-dimensional standard normal
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random vector N?
Kp,s

independent of D such that for any ξ > 0,

P
(

sup
x∈X
|Ẑp(x)− Zp(x)| > ξa−1

n

∣∣∣D) = oP(1).

Remark SA-3.9 (Proof of Theorem 2). Theorem 2 in the paper is a special case of Theorems SA-

3.5 and SA-3.6. In Theorem 2 we let s = p and ŵ = w̄; Assumption 1 imposed in the paper implies

that Assumption SA-DGP holds with ςµ = p+ 2 and Assumption SA-LS holds with ςw = p+ 2 and

ν = 4. Therefore, the desired strong approximation for Υ̂(v)(x, ŵ) follows from Theorem SA-3.5

and Theorem SA-3.6. For ease of presentation, Theorem 2 in the paper defines

Zp(x) =
b̂

(v)
p,s(x)′Q−1

0 Σ
1/2
0√

Ω(x)
NKp,s =

b̂
(v)
p,0(x)′T̂sQ

−1
0 Σ

1/2
0√

Ω(x)
NKp,s .

That is, we replace Ts in Theorem SA-3.5 with T̂s. As shown in the proof of Theorem SA-3.5 (see

Step 3 therein), this does not affect the strong approximation result. y

Remark SA-3.10 (Improvements over literature). Theorems SA-3.5 and SA-3.6 offer a new easy-

to-implement approach to conduct binscatter-based uniform distributional approximation and in-

ference. We formally take into account the randomness of the empirical-quantile-based partition

and approximate the whole t-statistic process by a (conditional) Gaussian process under seemingly

minimal rate conditions. In fact, it can be shown that when an =
√

log n and a subexponential

moment restriction holds for the error term, it suffices that J/n = o(1), up to log n terms. In

contrast, a strong approximation of the t-statistic process for general series estimators was ob-

tained based on Yurinskii coupling in Belloni, Chernozhukov, Chetverikov and Kato (2015), which

requires J5/n = o(1), up to log n terms. Alternatively, a strong approximation of the supremum of

the t-statistic process can be obtained under weaker rate restrictions. For instance, Chernozhukov,

Chetverikov and Kato (2014a) requires J/n1−2/ν = o(1), up to log n terms, a result that applies

exclusively to the suprema of the stochastic process. y

Theorems SA-3.5 and SA-3.6 offer a way to approximate the distribution of the whole t-statistic

process based on Υ̂(v)(·, ŵ). One direct application of these results is to approximate the supremum

of the t-statistic process. The following theorem shows that our strong approximation results
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can be used to obtain the convergence of the Kolmogorov distance between the distributions of

supx∈X |Tp(x)| and its (conditionally) Gaussian analogue supx∈X |Ẑp(x)|.

Theorem SA-3.7 (Supremum Approximation). Let an =
√

log J . Suppose that the conditions of

Theorem SA-3.5 hold. Then,

sup
u∈R

∣∣∣P( sup
x∈X
|Tp(x)| ≤ u

)
− P

(
sup
x∈X
|Ẑp(x)| ≤ u

∣∣∣D)∣∣∣ = oP(1).

SA-3.7 Uniform Inference

One important application of the strong approximation results in Theorems SA-3.5 and SA-3.6 is

to construct uniform confidence bands. Let Îp(x) = [Υ̂(v)(x, ŵ)±c

√
Ω̂(x)/n] for some critical value

c to be specified, which is constructed based on a certain choice of J and the pth-order binscatter

basis.

Theorem SA-3.8. Let an =
√

log J . Suppose that the conditions in Theorem SA-3.5 hold. If

c = inf
{
c ∈ R+ : P[supx∈X |Ẑp(x)| ≤ c |D] ≥ 1− α

}
, then

P
[
Υ

(v)
0 (x,w) ∈ Îp(x), for all x ∈ X

]
= 1− α+ o(1).

Remark SA-3.11 (Robust Bias Correction). In practice, we suggest employing the robust bias

correction method to construct valid confidence bands. Specifically, for a given p, let J be the cor-

responding IMSE-optimal choice JIMSE (see Section SA-4 for implementation details). By Theorem

SA-3.4 and Remark SA-3.7, JIMSE � n
1

2p+3 in general. Then, construct the confidence band Îp+q(x)

(i.e., use (p+ q)th-order binscatter estimator). This particular choice of J = JIMSE satisfies

J(log n)2

√
n

+ J−1 + nJ−2(p+1)−3 = o(log n−1).

Then, the conclusion of Theorem SA-3.8 immediately applies to Îp+q(x) if ν = 4 and ςµ = ςw =

p+ q + 1.

In the paper we considered one special case of such robust bias-corrected confidence band: let J

be the IMSE-optimal choice corresponding to p = s = v = 0, and construct the confidence band

Î1(x) (i.e., let q = 1 in the above construction). y
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Remark SA-3.12. The above results construct valid uniform confidence bands for least squares

binscatter estimators under mild rate restrictions. Specifically, when ν ≥ 4, we require J2/n = o(1),

up to log n terms. By contrast, Belloni, Chernozhukov, Chetverikov and Kato (2015) considers

general series-based least squares estimators, and Theorem 5.6 therein can construct confidence

bands under similar rate restrictions, which relies on the strong approximation technique for the

suprema of the stochastic process developed in Chernozhukov, Chetverikov and Kato (2014a). y

Using our main theoretical results, we can also test parametric specifications of the unknown

function Υ
(v)
0 (x,w). Consider the following testing problem:

Ḣ0 : sup
x∈X

∣∣∣Υ(v)
0 (x,w)−M (v)(x,w;θ,γ0)

∣∣∣ = 0, for some θ, vs.

ḢA : sup
x∈X

∣∣∣Υ(v)
0 (x,w)−M (v)(x,w;θ,γ0)

∣∣∣ > 0, for all θ.

where M(x,w;θ,γ0) = m(x;θ) + w′γ0. This testing problem can be viewed as a two-sided test

where the equality between two functions holds uniformly over x ∈ X . We introduce θ̃ and γ̃ as

consistent estimators of θ and and γ0 under Ḣ0, and then consider the following test statistic:

Ṫp(x) :=
Υ̂(v)(x, ŵ)−M (v)(x, ŵ; θ̃, γ̃)√

Ω̂(x)/n
.

The null hypothesis is rejected if supx∈X |Ṫp(x)| > c for some critical value c.

Theorem SA-3.9 (Parametric Specification Tests). Let an =
√

log J . Suppose that the conditions

in Theorem SA-3.5 hold. Let c = inf{c ∈ R+ : P[supx∈X |Ẑp(x)| ≤ c|D] ≥ 1− α}.

Under Ḣ0, if supx∈X |Υ(v)(x,w)−M (v)(x, ŵ; θ̃, γ̃)| = oP

(√
J1+2v

n log J

)
, then

lim
n→∞

P
[

sup
x∈X
|Ṫp(x)| > c

]
= α.

Under ḢA, if there exist some fixed θ̄ and γ̄ such that supx∈X |M (v)(x, ŵ; θ̃, γ̃)−M (v)(x,w; θ̄, γ̄)| =

oP(1), and Jv
(
J log J
n

)1/2
= o(1), then

lim
n→∞

P
[

sup
x∈X
|Ṫp(x)| > c

]
= 1.
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Remark SA-3.13 (Robust Bias Correction). In practice, we suggest employing the robust bias

correction method to conduct specification tests. Specifically, for a given p, let J be the corre-

sponding IMSE-optimal choice JIMSE (see Section SA-4 for implementation details). By Theorem

SA-3.4 and Remark SA-3.7, JIMSE � n
1

2p+3 in general. Then, construct the t-statistic Ṫp+q(x), (i.e.,

use (p+ q)th-order binscatter estimator). This particular choice of J = JIMSE satisfies

J(log n)2

√
n

+ J−1 + nJ−2(p+1)−3 = o(log n−1).

Also, J1+2v(log J)
n � n

− 2p−2v+2
2p+3 log n = o(1) since we always require p ≥ v. Then, the conclusion of

Theorem SA-3.9 immediately applies to the test based on Ṫp+q(x) if ν = 4 and ςµ = ςw = p+ q+ 1.

y

Another application of our theoretical results is to test certain shape restrictions on the unknown

Υ
(v)
0 (x,w). To be specific, consider the following testing problem:

Ḧ0 : sup
x∈X

(Υ
(v)
0 (x,w)−M (v)(x,w; θ̄, γ̄)) ≤ 0 for certain θ̄ and γ̄ v.s.

ḦA : sup
x∈X

(Υ
(v)
0 (x,w)−M (v)(x,w; θ̄, γ̄)) > 0 for θ̄ and γ̄,

which can be viewed as a one-sided test where the inequality holds uniformly over x ∈ X . Impor-

tantly, it should be noted that under both Ḧ0 and ḦA, we fix θ̄ and γ̄ to be the same values in the

parameter space. We introduce θ̃ and γ̃ as consistent estimators of θ̄ and γ̄ under both Ḧ0 and

ḦA, and then rely on the following test statistic:

T̈p(x) :=
Υ̂(v)(x, ŵ)−M (v)(x, ŵ; θ̃, γ̃)√

Ω̂(x)/n
.

The null hypothesis is rejected if supx∈X T̈p(x) > c for some critical value c.

The following theorem characterizes the size and power of such tests.

Theorem SA-3.10 (Shape Restriction Tests). Let an =
√

log J . Suppose that the conditions in

Theorem SA-3.5 hold. In addition, supx∈X |M (v)(x, ŵ; θ̃, γ̃) −M (v)(x,w; θ̄, γ̄)| = oP

(√
J1+2v

n log J

)
.

Let c = inf{c ∈ R+ : P[supx∈X Ẑp(x) ≤ c|D] ≥ 1− α}.
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Under Ḧ0,

lim
n→∞

P
[

sup
x∈X

T̈p(x) > c
]
≤ α.

Under ḦA, if Jv
(
J log J
n

)1/2
= o(1),

lim
n→∞

P
[

sup
x∈X

T̈p(x) > c
]

= 1.

Remark SA-3.14 (Robust Bias Correction). In practice, we suggest employing the robust bias

correction method to conduct shape restriction tests. Specifically, for a given p, let J be the cor-

responding IMSE-optimal choice JIMSE (see Section SA-4 for implementation details). By Theorem

SA-3.4 and Remark SA-3.7, JIMSE � n
1

2p+3 in general. Then, construct the t-statistic T̈p+q(x), (i.e.,

use (p+ q)th-order binscatter estimator). This particular choice of J = JIMSE satisfies

J(log n)2

√
n

+ J−1 + nJ−2(p+1)−3 = o(log n−1).

Also, J1+2v(log J)
n � n

− 2p−2v+2
2p+3 log n = o(1) since we always require p ≥ v. Then, the conclusion of

Theorem SA-3.10 immediately applies to the test based on T̈p+q(x) if ν = 4 and ςµ = ςw = p+q+1.

y

Remark SA-3.15 (Improvements over literature). The results presented in this section improve

on the literature, even in the case of non-random partitioning and without covariate-adjustments,

because they take advantage of the specific binscatter structure (i.e., locally bounded series ba-

sis), thereby offering faster approximation rates under weaker side restrictions (c.f., Belloni, Cher-

nozhukov, Chetverikov and Kato, 2015; Cattaneo, Farrell and Feng, 2020). Furthermore, relative

to prior work, our results formally take into account the randomness of the partition formed by em-

pirical quantiles, account for the semi-linear regression estimation structure, and consider an array

of inference problems. In particular, the underlying approach to establish strong approximation

and related distributional approximations for binscatter statistics may be of independent interest.

y
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SA-4 Feasible Number of Bins Selector

We discuss the implementation details for data-driven selection of the number of bins, based on

the integrated mean squared error expansion for least squares binscatter estimators (see Theorem

SA-3.4 and Corollary SA-3.2). Thus, the selectors given below can provide a choice of J that is

optimal in the IMSE sense.

We offer two procedures for estimating the bias and variance constants, and once these estimates

(B̂n(p, s, v) and V̂n(p, s, v)) are available, the estimated optimal J is

ĴIMSE = ĴIMSE(p, s, v) =

⌈(
2(p− v + 1)B̂n(p, s, v)

(1 + 2v)V̂n(p, s, v)

) 1
2p+3

n
1

2p+3

⌉
.

We always let ω(x) = fX(x) as weighting function for concreteness.

SA-4.1 Rule-of-thumb Selector

A rule-of-thumb choice of J is obtained based on Corollary SA-3.2, in which case s = 0.

Regarding the variance constants V (p, 0, v), the unknowns are the density function fX(x) and

the conditional variance σ2(x). A Gaussian reference model is employed to get the estimate f̂X of

fX(x). For the conditional variance, recall σ2(xi,wi) = E[y2
i |xi,wi]− (E[yi|xi,wi])

2, where the two

conditional expectations can be approximated by global polynomial regressions of degree p+1. Let

σ̂2(xi,wi) denote the resulting estimate. Then, the variance constant is estimated by

V̂ (p, 0, v) = trace
{(∫ 1

0
ϕ(z)ϕ(z)′dz

)−1
∫ 1

0
ϕ(v)(z)ϕ(v)(z)′dz

}
× 1

n

n∑
i=1

σ̂2(xi,wi)f̂X(xi)
2v.

Regarding the bias constant, the unknowns are fX(x), which is estimated using the Gaussian

reference model, and µ
(p+1)
0 (x), which can be estimated based on the global polynomial regression

that approximates E[yi|xi,wi]. Then, the bias constant is estimated by

B̂(p, 0, v) =

∫ 1
0 [Bp+1−v(z)]

2dz

((p+ 1− v)!)2
× 1

n

n∑
i=1

[µ̂(p+1)(xi)]
2

f̂X(xi)2p+2−2v
.

The resulting J selector employs the correct rate but an inconsistent constant approximation.

Recall that s does not change the rate of JIMSE. Thus, even for other s > 0, this selector still gives
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a correct rate.

SA-4.2 Direct-plug-in Selector

The direct-plug-in selector is implemented based on binscatter estimators, which applies to any

user-specified p, s and v. It requires a preliminary choice of J , for which the rule-of-thumb selector

previously described can be used.

More generally, suppose that a preliminary choice Jpre is given, and then a binscatter basis

b̂p,s(x) (of order p) can be constructed immediately on the preliminary partition. Implementing a

binscatter regression using this basis and partitioning, we can obtain the variance constant estimate

using a standard variance estimator, such as the one in Theorem SA-3.2.

Regarding the bias constant, we employ the uniform approximation (SA-5.6) in the proof of

Theorem SA-3.4. The key idea of the bias representation is to “orthogonalize” the leading error of

the uniform approximation based on splines with simple knots (i.e., p smoothness constraints are

imposed) with respect to the preliminary binscatter basis b̂p,s(x). Specifically, the key unknown

in the expression of the leading error is µ
(p+1)
0 (x), which can be estimated by implementing a

binscatter regression of order p+1 (with the preliminary partition unchanged). Plug it in (SA-5.7),

and all other quantities in that equation can be replaced by their sample analogues. Then, a bias

constant estimate is available.

By this construction, the direct-plug-in selector employs the correct rate and a consistent constant

approximation for any p, s and v.

SA-5 Proofs

SA-5.1 Proof of Lemma SA-3.1

Proof. The first result follows by Lemma SA2 of Calonico, Cattaneo and Titiunik (2015). To show

the second result, first consider the deterministic partition sequence ∆0 based on the population

quantiles. By the mean value theorem,

hj = F−1
X

( j
J

)
− F−1

X

(j − 1

J

)
=

1

fX(F−1
X (ξ))

· 1

J
,
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where ξ is some point between (j−1)/J and j/J . Since fX is bounded and bounded away from zero,

max1≤j≤J hj/min1≤j≤J hj ≤ f̄X/fX . Using the first result, we have with probability approaching

one,

max
1≤j≤J

|ĥj − hj | ≤ J−1f̄−1
X /2.

Then,

max1≤j≤J ĥj

min1≤j≤J ĥj
=

max1≤j≤J hj + max1≤j≤J |ĥj − hj |
min1≤j≤J hj −max1≤j≤J |ĥj − hj |

≤ 3f̄X
f
X

,

and the desired result follows.

SA-5.2 Proof of Lemma SA-3.2

Proof. For s = 0, the result is trivial. For 0 < s ≤ p, b̂p,s(x) is formally known as B-spline basis

of order p+ 1 with knots {τ̂1, . . . , τ̂J−1} of multiplicities (p− s+ 1, . . . , p− s+ 1). See Schumaker

(2007, Definition 4.1). Without loss of generality, suppose X = [0, 1]. Specifically, such a basis is

constructed on an extended knot sequence {ξj}2(p+1)+(p−s+1)(J−1)
j=1 :

ξ1 ≤ · · · ≤ ξp+1 ≤ 0, 1 ≤ ξp+2+(p−s+1)(J−1) ≤ · · · ≤ ξ2(p+1)+(p−s+1)(J−1).

and

ξp+2 ≤ · · · ≤ ξp+1+(p−s+1)(J−1) = τ̂1, · · · , τ̂1︸ ︷︷ ︸
p−s+1

, · · · , τ̂J−1, · · · , τ̂J−1︸ ︷︷ ︸
p−s+1

.

By the well-known Recursive Relation of Splines, a typical function b̂p,s,`(x) in b̂p,s(x) supported

on (ξ`, ξ`+p+1) is expressed as

b̂p,s,`(x) =
√
J

`+p+1∑
j=`+1

Cj(x)1(x ∈ [ξj−1, ξj)).

where each Cj(x) is a polynomial of degree p as the sum of products of p linear polynomials. See

de Boor (1978, Section IX, Equation (19)). Since s ≤ p, we always have ξ` < ξ`+p+1. Thus, the

support of such a basis function is well defined. Specifically, all Cj(x)s take the following form:

Cj(x) =

M∑
ι=1

∏
(k,k′)∈Kι

(−1)ck,k′ (x− ξk)
ξk − ξk′

.

29



Here, the convention is that “0/0 = 0”, M ≤ 2p is a constant denoting the number of summands,

the cardinality of the set Ks of index pairs is exactly p, and ck,k′ is a constant used to change the

sign of the summand. These indices may depend on j, which is omitted for notation simplicity. As

explained previously, such a function is supported on at least one bin.

We want to linearly represent bp,s,`(x) in terms of bp,0(x) with typical element

ϕj,α(x) =
√
J · 1B̂j (x)

(x− τ̂j−1

ĥj

)α
, 0 ≤ α ≤ p, 1 ≤ j ≤ J. (SA-5.1)

Suppose without loss of generality, ξj−1 < ξj and (ξj−1, ξj) is a cell within the support of b̂p,s,`(x).

Let cj,α be the coefficient of ϕj,α(x) in the linear representation of b̂p,s(x). Using the above results,

it takes the following form

cj,α =
M∑
ι=1

(ξj − ξj−1)α
∑Cp,α

lι=1

∏klι,p−α
k=klι,1

(ξj−1 − ξk)∏
(k,k′)∈Kι

(−1)ck,k′ (ξk − ξk′)
.

The quantities within the summation only depend on distance between knots, which is no greater

than (p+1) maxj ĥj since the support covers at most (p+1) bins. Both denominator and numerator

are products of p such distances, and hence by Lemma SA-3.1, supj,α |cj,α| .P 1. Then, bp,s,`(x)

can be written as

bp,s,`(x) =
∑

j:Bj⊂[ξ`,ξ`+p+1]

p∑
α=0

cj,αψj,α(x).

The above expression gives the elements of the `th row of T̂s.

Since each row and each column of T̂s only contain a finite number of nonzeros, ‖T̂s‖∞ .P 1

and ‖T̂s‖ .P 1. Using the fact max1≤j≤J |ĥj −hj | .P J
−1
√
J log J/n given in the proof of Lemma

SA-3.1, and noticing the form of cj,α, maxk,l |(T̂s − Ts)k,l| .
√
J log J/n where (T̂s − Ts)k,l is

(k, l)th element of T̂s−Ts. Since (T̂s−Ts) only has a finite number of nonzeros on every row and

column, ‖T̂s −Ts‖∞ .P
√
J log J/n and ‖T̂s −Ts‖ .P

√
J log J/n.

Finally, we give an explicit expression of cj,α for the case s = p, which may be of independent

interest. In this case, bp,p(x) is the usual B-spline basis with simple knots. Let b̂p,p,`(x) be a

typical basis function supported on [τ̂`, τ̂`+p+1]. Then, using the recursive formula of B-splines, by
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induction we have

b̂p,p,`(x) = (τ̂`+p+1 − τ̂`)
`+p+1∑
j=`

(x− τ̂j)p+∏`+p+1
k=`
k 6=j

(τ̂k − τ̂j)
, (SA-5.2)

where (z)+ equals to z if z ≥ 0 and 0 otherwise. Since b̂p,p,`(x) is zero outside of (τ̂`, τ̂`+p+1),

b̂p,p,`(x) can be written as a linear combination of ϕj,α(x), j = `+ 1, . . . , `+ p+ 1, α = 0, . . . , p:

b̂p,p,`(x) =

p∑
α=0

`+p+1∑
j=`+1

cj,αϕj,α(x), for some cj,α. (SA-5.3)

For a generic cell (τ̂j−1, τ̂j) ⊂ (τ̂`, τ̂`+p+1), all truncated polynomials (x− τ̂k)p+ does not contribute

to the coefficients of ϕj,α(x) if k > j − 1. For any ` ≤ k ≤ j − 1, we can expand (x − τ̂k)p+ on

(τ̂j−1, τ̂j) as

(x− τ̂k)p = (x− τ̂j−1 + τ̂j−1 − τ̂k)p =

p∑
α=0

(
p

α

)( x− τ̂j−1

τ̂j − τ̂j−1

)α
(τ̂j−1 − τ̂k)p−α(τ̂j − τ̂j−1)α.

Thus, the contribution of (x − τ̂k)p+ to the coefficients of ϕj,α(x) in Equation (SA-5.3), combined

with its coefficient in Equation (SA-5.2), is

(
p

α

)
(τ̂j−1 − τ̂k)p−α(τ̂j − τ̂j−1)α(τ̂`+p+1 − τ̂`)

( `+p+1∏
k′=`
k′ 6=k

(τ̂k′ − τ̂k)
)−1

.

Collecting all such coefficients contributed by (x− τ̂k)p+, k = `, . . . , j − 1, we obtain

cj,α =

j−1∑
k=`

(
p

α

)
(τ̂j−1 − τ̂k)p−α(τ̂j − τ̂j−1)α(τ̂`+p+1 − τ̂`)

( `+p+1∏
k′=`
k′ 6=k

(τ̂k′ − τ̂k)
)−1

.

SA-5.3 Proof of Lemma SA-3.3

Proof. The sparsity of the basis follows by construction. To show the bound on ‖b̂(v)
p,s(x)‖, notice

that when s = 0, for any x ∈ X and any j = 1, . . . , J(p+ 1), 0 ≤ b̂p,0,j(x) ≤
√
J . Define ϕj,α(x) as
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in Equation (SA-5.1). Since

ϕ
(v)
j,α =

√
Jα(α− 1) · · · (α− v + 1)ĥ−vj 1B̂j (x)

(x− τ̂j−1

ĥj

)α−v
.
√
Jĥ−vj ,

the bound on ‖b̂(v)
p,s(x)‖ simply follows from Lemma SA-3.1 and Lemma SA-3.2.

SA-5.4 Proof of Lemma SA-3.4

Proof. By Lemma SA-3.1, it suffices to establish the approximation power of bp,s(x; ∆) for all

∆ ∈ Π. For v = 0, by Theorem 6.27 of Schumaker (2007), max∆∈Π minβ∈RKp,s supx∈X |µ0(x) −

bp,s(x; ∆)′β| . J−p−1. By Huang (2003) and Assumption SA-DGP, the Lebesgue factor of spline

bases is bounded. Then, the bound on uniform approximation error coincides with that for L2

projection error up to some universal constant.

For v > 0, again, we only need to consider the case where ∆ belongs to Π. For any ∆ ∈ Π,

we can take the best L∞-approximation: for some β∞(∆) ∈ RKp,s , ‖µ0(·)− bp,s(·; ∆)′β∞(∆)‖∞ .

J−p−1, and ‖µ(v)
0 (·) − b

(v)
p,s(·; ∆)′β∞(∆)‖∞ . J−p−1+v. Such a construction exists by Lemma

SA-6.1 of Cattaneo, Farrell and Feng (2020). Then, ‖µ(v)
0 (·) − b

(v)
p,s(·; ∆)′β0(∆)‖∞ . ‖µ(v)

0 (·) −

b
(v)
p,s(·; ∆)′β∞(∆)‖∞+‖b(v)

p,s(·; ∆)′(β∞(∆)−β0(∆))‖∞ . J−p−1+v+‖b(v)
p,s(·; ∆)′(β∞(∆)−β0(∆))‖∞.

By definition of β0(∆),

β0(∆)− β∞(∆) = E[bp,s(xi; ∆)bp,s(xi; ∆)′]−1E[bp,s(xi; ∆)r∞(xi; ∆)],

where r∞(xi; ∆) = µ0(xi)−bp,s(xi; ∆)′β∞(∆). By the argument given later in the proof of Lemma

SA-3.5 in Section SA-3, we have ‖E[bp,s(xi; ∆)bp,s(xi; ∆)′]−1‖∞ . 1 uniformly over ∆ ∈ Π. Since

bp,s(xi; ∆) is supported on a finite number of bins, ‖E[bp,s(xi; ∆)r∞(xi; ∆)]‖∞ . J−p−1−1/2. Then

the desired result follows.

SA-5.5 Proof of Lemma SA-3.5

Proof. The upper bound on the maximum eigenvalue of Q0 follows from Lemma SA-3.2 and the

quasi-uniformity property of population quantiles shown in the proof of Lemma SA-3.1. Also, in

view of Lemma SA-3.1, the lower bound on the minimum eigenvalue of Q0 follows from Theorem
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4.41 of Schumaker (2007), by which the minimum eigenvalue of Q0/J (the scaling factor dropped)

is bounded by min1≤j≤J hj up to some universal constant.

Now, we prove the convergence of Q̂. In view of Lemma SA-3.2, it suffices to show the convergence

of Q̂ when s = 0, i.e., ‖En[b̂p,0(xi)b̂p,0(xi)
′]−E[bp,0(xi)bp,0(xi)

′]‖ .P
√
J log J/n. By Lemma SA-

3.1, with probability approaching one, ∆̂ ∈ Π. Let An denote the event on which ∆̂ ∈ Π. Thus,

P(Acn) = o(1). On An,

∥∥∥En[b̂p,0(xi)b̂p,0(xi)
′]− E

∆̂
[b̂p,0(xi)b̂p,0(xi)

′]
∥∥∥

≤ sup
∆∈Π

∥∥∥En[bp,0(xi; ∆)bp,0(xi; ∆)′]− E[bp,0(xi; ∆)bp,0(xi; ∆)′]
∥∥∥.

By the relation between matrix norms, the right-hand-side of the above inequality is further

bounded by sup∆∈Π ‖En[bp,0(xi; ∆)bp,0(xi; ∆)′]−E[bp,0(xi; ∆)bp,0(xi; ∆)′]‖∞. Let akl be a generic

(k, l)th entry of the matrix inside ‖ · ‖∞. Then,

|akl| =
∣∣∣En[bp,0,k(xi; ∆)bp,0,l(xi; ∆)′]− E[bp,0,k(xi; ∆)bp,0,l(xi; ∆)′]

∣∣∣.
If bp,0,k(· ; ∆) and bp,0,l(· ; ∆) are basis functions with different supports, akl is zero. Now, define

the following function class

G =
{
x 7→ bp,0,k(x; ∆)bp,0,l(x; ∆) : 1 ≤ k, l ≤ J(p+ 1),∆ ∈ Π

}
.

For this class of functions, supg∈G |g|∞ . J and supg∈G V[g] ≤ supg∈G E[g2] . J where the second

result follows from the fact that the size of the supports of b0,k(·; ∆) and b0,l(·; ∆) shrinks at the

rate of J−1. In addition, each function in G is simply a dilation and translation of a polynomial

function supported on [0, 1], plus a zero function, and the number of polynomial degree is finite.

Then, by Proposition 3.6.12 of Giné and Nickl (2016), the collection G of such functions is of VC

type, i.e., there exists some constant Cz and z > 6 such that

N(G, L2(Q), ε‖Ḡ‖L2(Q)) ≤
(Cz
ε

)2z
,

for ε small enough where we take Ḡ = CJ for some constant C > 0 large enough. Theorem 6.1 of
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Belloni, Chernozhukov, Chetverikov and Kato (2015),

E
[

sup
g∈G

∣∣∣ n∑
i=1

g(xi)−
n∑
i=1

E[g(xi)]
∣∣∣] .√nJ log J + J log J,

implying that

sup
g∈G

∣∣∣ 1
n

n∑
i=1

g(xi)− E[g(xi)]
∣∣∣ .P

√
J log J/n.

Since any row or column of the matrix n−1/2 · Gn[bp,0(xi; ∆)bp,0(xi; ∆)′] only contains a finite

number of nonzero entries, only depending on p, the above result suffices to show that

∥∥∥En[b̂p,0(xi)b̂p,0(xi)
′]− E

∆̂
[b̂p,0(xi)b̂p,0(xi)

′]
∥∥∥ .P

√
J log J/n.

Next, let αkl be a generic (k, l)th entry of E
∆̂

[b̂p,0(xi)b̂p,0(xi)
′]/J −E[bp,0(xi)bp,0(xi)

′]/J , where

by dividing the matrix by J , we drop the normalizing constant for notation simplicity. By definition,

it is either equal to zero or can be rewritten as

αkl =

∫
B̂j

(x− τ̂j
ĥj

)`
fX(x)dx−

∫
B̂j

(x− τj
hj

)`
fX(x)dx

=ĥj

∫ 1

0
z`fX(zĥj + τ̂j)dz − hj

∫ 1

0
z`fX(zhj + τj)dz

=(ĥj − hj)
∫ 1

0
z`fX(zĥj + τ̂j)dz + hj

∫ 1

0
z`
(
fX(zĥj + τ̂j)− fX(zhj + τj)

)
dz (SA-5.4)

for some 1 ≤ j ≤ J and 0 ≤ ` ≤ 2p. By Assumption SA-DGP and Lemma SA2 of Calonico,

Cattaneo and Titiunik (2015), max1≤j≤J fX(τ̂j) . 1 and max1≤j≤J |ĥj − hj | .P J
−1
√
J log J/n.

Also, Lemma SA2 of Calonico, Cattaneo and Titiunik (2015) implies that

sup
z∈[0,1]

max
1≤j≤J

|τ̂j + zĥj − (τj + zhj)| .P
√
J log J/n.

Since fX(·) is uniformly continuous on X , the second term in (SA-5.4) is also OP(J−1
√
J log J/n).

Again, using the sparsity structure of the matrix E
∆̂

[b̂p,0(xi)b̂p,0(xi)
′]/J − E[bp,0(xi)bp,0(xi)

′]/J ,

the above result suffices to show that ‖E
∆̂

[b̂p,0(xi)b̂p,0(xi)
′]−Q0‖ .P

√
J log J/n.

Given the above fact, it follows that ‖Q̂−1‖ .P 1. Notice that Q̂ and Q0 are banded matrices
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with finite band width. Then the bounds on ‖Q̂‖∞ and ‖Q̂−1 −Q−1
0 ‖∞ hold by Theorem 2.2 of

Demko (1977). This completes the proof.

SA-5.6 Proof of Lemma SA-3.6

Proof. Since E[ε2i |xi = x] is bounded and bounded away from zero uniformly over x ∈ X , we have

Q̂ . Σ̄ . Q̂. Then, by Lemma SA-3.5, 1 .P λmin(Σ̄) . λmax(Σ̄) .P 1. The upper bound on Ω̄(x)

immediately follows by Lemmas SA-3.3 and SA-3.5.

To establish the lower bound, it suffices to show infx∈X ‖b̂(v)
p,s(x)‖ &P J

1/2+v. For s = 0, such

a bound is trivial by construction. For other s > 0, we only need to consider the case in which

∆̂ ∈ Π. Introduce an auxiliary function %(x) = (x − x0)v/hvx0
for any arbitrary point x0 ∈ X ,

and hx0 is the length of Bx0 , the bin containing x0 in any given partition ∆ ∈ Π. Let {ϕj}
Kp,s
j=1 be

the dual basis for B-splines b̆p,s(x) := bp,s(x; ∆)/
√
J , which is constructed as in Theorem 4.41 of

Schumaker (2007). The scaling factor
√
J is dropped temporarily so that the definition of b̆p,s(x)

is consistent with that theorem. Since the B-spline basis reproduces polynomials,

Jv . %(v)(x0) =

Kp,s∑
j=1

(ϕj%)b̆
(v)
p,s,j(x0).

For any x0 ∈ X , there are only a finite number of basis functions in b̆p,s(x) supported on Bx0 . By

Theorem 4.41 of Schumaker (2007), for each b̆p,s,j(x), j = 1, · · · ,Kp,s, we have |ϕj%| . ‖%‖L∞[Ij ]

where Ij denotes the support of b̆p,s,j(x) and ‖ · ‖L∞[Ij ] denotes the sup-norm on Ij . All points

within such Ij should be no greater than (p+1) max1≤j≤J hj(∆) away from x0 where hj(∆) denotes

the length of the jth bin in ∆. Hence, ‖%‖L∞[Ij ] . 1. The desired lower bound follows. The bound

on Ω(x) can be established similarly.

SA-5.7 Proof of Lemma SA-3.7

Proof. By Lemmas SA-3.2, SA-3.3 and SA-3.5, supx∈X ‖b̂
(v)
p,s(x)‖1 .P J

1/2+v, ‖Q̂−1‖∞ .P 1 and

‖T̂s‖∞ .P 1. Define a function class

G =
{

(x1, ε1) 7→ bp,0,l(x1; ∆)ε1 : 1 ≤ l ≤ J(p+ 1),∆ ∈ Π
}
.
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Then, supg∈G |g| .
√
J |ε1|, and hence take an envelop Ḡ = C

√
J |ε1| for some C large enough.

Moreover, supg∈G V[g] . 1 and, as in the proof of Lemma SA-3.5, G is of VC-type. By Proposition

6.1 of Belloni, Chernozhukov, Chetverikov and Kato (2015),

sup
g∈G

∣∣∣ 1
n

n∑
i=1

g(xi, εi)
∣∣∣ .P

√
log J

n
+
J

ν
2(ν−2) log J

n
.

√
log J

n
,

and the desired result follows.

SA-5.8 Proof of Lemma SA-3.8

Proof. Note that b̂
(v)
p,s(x)′Q̂−1En[b̂p,s(xi)r̂0(xi)] = A1(x) + A2(x), with A1(x) := b̂

(v)
p,s(x)′(Q̂−1 −

Q−1
0 )En[b̂p,s(xi)r̂0(xi)] and A2(x) := b̂

(v)
p,s(x)′Q−1

0 En[b̂p,s(xi)r̂0(xi)]. By definition of r̂0(·), we have

E
∆̂

[b̂p,s(xi)r̂0(xi)] = 0. Define the following function class

G :=
{
x 7→ bp,s,l(x; ∆)r0(x; ∆) : 1 ≤ l ≤ Kp,s,∆ ∈ Π

}
.

By Lemma SA-3.4, sup∆∈Π |r0(x; ∆)|∞ . J−p−1. Then, supg∈G |g|∞ . J−p−1+1/2, and supg∈G V[g] .

J−2(p+1). In addition, any function g ∈ G can be rewritten as

g(x) = bp,s,l(x; ∆)
(
µ0(x)−bp,s(x; ∆)′β0(∆)

)
= bp,s,l(x; ∆)µ0(x)−

k+p∑
k=k

bp,s,l(x; ∆)bp,s,k(x; ∆)β0,k(∆)

for some 1 ≤ l, k ≤ Kp,s where β0,k(∆) denotes the k-th element of β0(∆). Here we use the sparsity

property of the partitioning basis: the summand in the second term is nonzero only if bp,s,l(x; ∆)

and bp,s,k(x; ∆) have overlapping supports. For each l, there are at most (p+1) such basis functions

bp,s,k(x; ∆)s. Also, the first term and every summand in the second term are bounded by
√
J up

to some constant. Then, using the same argument given in the proof of Lemma SA-3.5,

N(G, L2(Q), ε‖Ḡ‖L2(Q)) ≤
(J l
ε

)z
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for some finite l and z and the envelop Ḡ = CJ−p−1+1/2 for C > 0 large enough. By Theorem 6.1

of Belloni, Chernozhukov, Chetverikov and Kato (2015),

sup
g∈G

∣∣∣ 1
n

n∑
i=1

g(xi)
∣∣∣ . J−p−1

√
log J

n
+
J−p−1+1/2 log J

n
,

and, by Lemma SA-3.5, ‖Q̂−1−Q−1
0 ‖∞ .P

√
J log J/n. Then, using the bound on the basis given

in Lemma SA-3.3,

sup
x∈X
|A1(x)| .P J

v
√
J

√
J log J

n
J−p−1

√
log J

n
= J−p−1+v J log J

n
, and

sup
x∈X
|A2(x)| .P J

v
√
JJ−p−1

√
log J

n
= J−p−1+v

√
J log J

n
.

These results complete the proof.

SA-5.9 Proof of Lemma SA-3.9

Proof. We first show the convergence of γ̂. We denote the (i, j)th element of MB by Mij . Then,

γ̂ − γ0 =
( 1

n

n∑
i=1

n∑
j=1

Mijwiw
′
j

)−1( 1

n

n∑
i=1

n∑
j=1

wiMij(µ0(xj) + εj)
)
.

Define V = W − E[W|X] and H = E[W|X]. Then,

W′MBW

n
=

V′MBV

n
+

H′MBH

n
+

H′MBV

n
+

V′MBH

n
.

We have

V′MBV

n
=

1

n

n∑
i=1

Miiviv
′
i +

1

n

n∑
i=1

∑
j 6=i

Mijviv
′
j =

1

n

n∑
i=1

MiiE[viv
′
i|X] +OP

( 1

n

)
&P 1,

where the penultimate equality holds by Lemma SA-1 of Cattaneo, Jansson and Newey (2018b)

and the last by 1
n

∑n
i=1Mii =

n−Kp,s
n & 1. Moreover, H′MBH

n ≥ 0, and H′MBV
n has mean zero
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conditional on X and by Lemma SA-1 of Cattaneo, Jansson and Newey (2018b),

∥∥∥∥∥H′MBV

n

∥∥∥∥∥
F

.P
1√
n

(
trace

(H′H

n

))1/2
= oP(1),

where ‖ · ‖F denotes the Frobenius norm for matrices. Therefore, we conclude that W′MBW
n &P 1.

On the other hand, 1
n

∑n
i=1

∑n
j=1 wiMijεj has mean zero with variance of order O(1/n) by Lemma

SA-2 of Cattaneo, Jansson and Newey (2018b). In addition, as in Lemma 2 of Cattaneo, Jansson

and Newey (2018a), let G = (µ0(x1), . . . , µ0(xn))′ and note that

W′MBG

n
=

H′MBG

n
+

V′MBG

n

.

√
trace

(H′MBH

n

)√
trace

(G′MBG′

n

)
+

1√
n

(G′MBG

n

)1/2

.P J
−(ςw∧(p+1))J−p−1 +

J−p−1

√
n

.

Then, the first result follows from the rate restrictions imposed.

To show the second result, by Lemmas SA-3.2, SA-3.3 and SA-3.5, supx∈X ‖b̂
(v)
p,s(x)‖1 .P J

1/2+v,

‖Q̂−1‖∞ .P 1 and ‖T̂s‖∞ .P 1. En[b̂p,0(xi)w
′
i] is a J(p+ 1)× d matrix and can be decomposed as

follows:

En[b̂0(xi)w
′
i] = En

[
b̂0(xi)E[w′i|xi]

]
+ En

[
b̂0(xi)(w

′
i − E[w′i|xi])

]
.

By the argument in the proof of Lemma SA-3.5 and the conditions that supx∈X ‖E[wi|xi = x]‖ . 1

and J log J
n = o(1), ‖En[b̂0(xi)E[w′i|xi]]‖∞ .P J

−1/2. Regarding the second term, note that it is a

mean zero sequence, and for the lth covariate in w, l = 1, . . . , d,

V
[
b̂(v)
p,s(x)′Q̂−1En[b̂s(xi)(wi,l − E[wi,l|xi])]

∣∣∣X]
.

1

n
b̂(v)
p,s(x)′Q̂−1En[b̂s(xi)b̂s(xi)

′V[wi,l|xi]]Q̂−1b̂(v)
p,s(x) .

J1+2v

n
.

Thus the second result follows by Markov’s inequality.

Now suppose J
ν
ν−2 log J

n . 1 also holds. Using the argument given in Lemma SA-3.7 and the

assumption that supx∈X E[|wi,l|ν |xi = x] . 1 for all l, we have ‖En[b̂s(xi)(wi,l − E[wi,l|xi])]‖∞ .P√
log J/n. Thus, the last result follows.
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SA-5.10 Proof of Theorem SA-3.1

Proof. The result follows by Lemmas SA-3.4, SA-3.8 and SA-3.9.

SA-5.11 Proof of Corollary SA-3.1

Proof. The result follows by Theorem SA-3.1 and Lemma SA-3.7.

SA-5.12 Proof of Theorem SA-3.2

Proof. Since ε̂i := yi − b̂p,s(xi)
′β̂ −w′iγ̂ = εi + µ0(xi)− b̂p,s(xi)

′β̂ −w′i(γ̂ − γ0) =: εi + ui, we can

write

En[b̂p,s(xi)b̂p,s(xi)
′ε̂2i ]− E[bp,s(xi)bp,s(xi)

′σ2(xi)]

= En[b̂p,s(xi)b̂p,s(xi)
′u2
i ] + 2En[b̂p,s(xi)b̂p,s(xi)

′uiεi] + En[b̂p,s(xi)b̂p,s(xi)
′(ε2i − σ2(xi))]

+
(
En[b̂p,s(xi)b̂p,s(xi)

′σ2(xi)]− E[bp,s(xi)bp,s(xi)
′σ2(xi)]

)
=:V1 + V2 + V3 + V4.

Now, we bound each term in the following.

Step 1: For V1, we further write ui = (µ0(xi)− b̂p,s(xi)
′β̂)−w′i(γ̂ − γ0) =: ui1 − ui2. Then

V1 = En[b̂p,s(xi)b̂p,s(xi)
′(u2

i1 + u2
i2 − 2ui1ui2)] =: V11 + V12 −V13.

Since ‖2En[b̂p,s(xi)b̂p,s(xi)
′ui1ui2]‖ ≤ ‖En[b̂p,s(xi)b̂p,s(xi)

′(u2
i1 + u2

i2)]‖, it suffices to bound V11

and V12. For V11,

‖V11‖ ≤ max
1≤i≤n

|ui1|2
∥∥∥En[b̂p,s(xi)b̂p,s(xi)

′]
∥∥∥ .P

J log J

n
+ J−2(p+1),

where the last inequality holds by Lemma SA-3.5 and Corollary SA-3.1. On the other hand, let γ̂`

and γ0,` denote the `th entry of γ̂ and γ0. We have

‖V12‖ =
∥∥∥En[b̂p,s(xi)b̂p,s(xi)′( d∑

`=1

w2
i,`(γ̂` − γ0,`)

2 +
∑
`6=`′

wi,`wi,`′(γ̂` − γ0,`)(γ̂`′ − γ0,`′)
)]∥∥∥
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.
∥∥∥En[b̂p,s(xi)b̂p,s(xi)′( d∑

`=1

w2
i,`(γ̂` − γ0,`)

2
)]∥∥∥

by CR-inequality. By Lemma SA-3.9, ‖γ̂ − γ0‖2 = oP(J/n). Then it suffices to show that for

every ` = 1, . . . , d, ‖En[b̂p,s(xi)b̂p,s(xi)
′w2
i,`]‖ .P 1. Under the conditions given in the theorem, this

bound can be established using the argument that will be given in Step 3 and 4 and that in Lemma

SA-3.5.

Step 2: For V2, we have V2 = 2En[b̂p,s(xi)b̂p,s(xi)
′εi(ui1 − ui2)] =: V21 −V22. Then,

‖V21‖ ≤ max
1≤i≤n

|ui1|
(∥∥∥En[b̂p,s(xi)b̂p,s(xi)

′]
∥∥∥+

∥∥∥En[b̂p,s(xi)b̂p,s(xi)
′ε2i ]
∥∥∥) .P

(J log J

n

)1/2
+ J−p−1,

where the last step follows by Lemma SA-3.5 and the result given in Step 3. In addition,

‖V22‖ =
∥∥∥2En[b̂p,s(xi)b̂p,s(xi)

′εi

d∑
`=1

wi,`(γ̂` − γ0,`)]
∥∥∥ .P

1√
n

+ J−p−1−(ςw∧(p+1)).

Since ‖2En[b̂p,s(xi)b̂p,s(xi)
′εiwi,`]‖ ≤ ‖En[b̂p,s(xi)b̂p,s(xi)

′(ε2i +w2
i,`)]‖, this bound on ‖V22‖ can be

established using Lemma SA-3.9 and the strategy given in Step 3 and Step 4 and that in Lemma

SA-3.5.

Step 3: For V3, in view of Lemma SA-3.1 and SA-3.2, it suffices to show that

sup
∆∈Π

∥∥∥En[bp,0(xi; ∆)bp,0(xi; ∆)′(ε2i − σ2(xi))]
∥∥∥ .P

(J log J

n
ν−2
ν

)1/2
.

For notational simplicity, we write ϕi = ε2i − σ2(xi), ϕ
−
i = ϕi1(|ϕi| ≤ M) − E[ϕi1(|ϕi| ≤ M)|xi],

ϕ+
i = ϕi1(|ϕi| > M)−E[ϕi1(|ϕi| > M)|xi] for some M > 0 to be specified later. Since E[ϕi|xi] = 0,

ϕi = ϕ−i + ϕ+
i . Then define a function class

G =
{

(x1, ϕ1) 7→ bp,0,l(x1; ∆)bp,0,k(x1; ∆)ϕ1 : 1 ≤ l ≤ J(p+ 1), 1 ≤ k ≤ J(p+ 1),∆ ∈ Π
}
.

Then for g ∈ G,
∑n

i=1 g(x1, ϕ1) =
∑n

i=1 g(x1, ϕ
+
1 ) +

∑n
i=1 g(x1, ϕ

−
1 ).
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Now, for the truncated piece, we have supg∈G |g(x1, ϕ
−
1 )| . JM , and

sup
g∈G

V[g(x1, ϕ
−
1 )] . sup

x∈X
E[(ϕ−1 )2|x1 = x] sup

∆∈Π
sup

1≤l,k≤J(p+1)
E[b2p,0,l(x1; ∆)b2p,0,k(x1; ∆)]

. JM sup
x∈X

E
[
|ϕ1|

∣∣∣xi = x
]
. JM.

The VC condition holds by the same argument given in the proof of Lemma SA-3.5. Then, by

Proposition 6.1 of Belloni, Chernozhukov, Chetverikov and Kato (2015),

E
[

sup
g∈G

∣∣∣En[g(xi, ϕ
−
i )]
∣∣∣] . (JM log(JM)

n

)1/2
+
JM log(JM)

n
.

Regarding the tail, we apply Theorem 2.14.1 of van der Vaart and Wellner (1996) and obtain

E
[

sup
g∈G

∣∣∣En[g(xi, ϕ
+
i )]
∣∣∣] . 1√

n
JE
[√

En[|ϕ+
i |2]

]
≤ 1√

n
J(E[ max

1≤i≤n
|ϕ+
i |])

1/2(E[En[|ϕ+
i |])

1/2

.
J√
n
· n

1
ν

M (ν−2)/4
,

where the second line follows by Cauchy-Schwarz inequality and the third line uses the fact that

E[ max
1≤i≤n

|ϕ+
i |] . E[ max

1≤i≤n
ε2i ] . n2/ν , and E[En[|ϕ+

i |]] ≤ E[|ϕ1|+|] .
E[|ε1|ν ]

M (ν−2)/2
.

Then the desired result follows simply by setting M = J
2

ν−2 and the sparsity of the basis.

Step 4: For V4, since by Assumption SA-LS, supx∈X E[ε2i |xi = x] . 1. Then, by the same

argument given in the proof of Lemma SA-3.5,

sup
∆∈Π

∥∥∥En[bp,s(xi; ∆)bp,s(xi; ∆)′σ2(xi)]− E
[
bp,s(xi; ∆)bp,s(xi; ∆)′ε2i

]∥∥∥ .P
√
J log J/n, and∥∥∥E∆̂

[
b̂p,s(xi)b̂p,s(xi)

′ε2i

]
− E

[
bp,s(xi)bp,s(xi)

′ε2i

]∥∥∥ .P
√
J log J/n.

Then the proof is complete.
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SA-5.13 Proof of Theorem SA-3.3

Proof. We first show that for each fixed x ∈ X ,

Ω̄(x)−1/2b̂(v)
p,s(x)′Q̂−1Gn[b̂p,s(xi)εi] =: Gn[aiεi]

is asymptotically normal. Conditional on X, it is a mean zero independent sequence over i with

variance equal to 1. Then by Berry-Esseen inequality,

sup
u∈R

∣∣∣P(Gn[aiεi] ≤ u|X)− Φ(u)
∣∣∣ ≤ min

(
1,

∑n
i=1 E[|aiεi|3|X]

n3/2

)
.

Now, using Lemmas SA-3.3, SA-3.5 and SA-3.6,

1

n3/2

n∑
i=1

E
[
|aiεi|3

∣∣∣X] . Ω̄(x)−3/2 1

n3/2

n∑
i=1

E
[
|b̂(v)
p,s(x)′Q̂−1b̂p,s(xi)εi|3

∣∣∣X]
. Ω̄(x)−3/2 1

n3/2

n∑
i=1

|b̂(v)
p,s(x)′Q̂−1b̂p,s(xi)|3

≤ Ω̄(x)−3/2 supx∈X supz∈X |b̂
(v)
p,s(x)′Q̂−1b̂p,s(z)|

n3/2

n∑
i=1

|b̂(v)
p,s(x)′Q̂−1b̂p,s(xi)|2

.P
1

J3/2+3v
· J

1+v

√
n
· J1+2v → 0

since J/n = o(1). By Theorem SA-3.2, the above weak convergence still holds if Ω̄(x) is replaced

by Ω̂(x). Now, the desired result follows by Lemmas SA-3.4, SA-3.8 and SA-3.9.

SA-5.14 Proof of Theorem SA-3.4

Proof. Since Υ̂(x, ŵ) differs from µ̂(x) only when v = 0, we will first focus on the IMSE of µ̂(v)(x).

We rely on the following decomposition:

µ̂(v)(x)− µ(v)
0 (x) = b̂(v)

p,s(x)′Q̂−1En[b̂p,s(xi)εi] + b̂(v)
p,s(x)′Q̂−1En[b̂p,s(xi)r̂0(xi)]+(

b̂(v)
p,s(x)′β̂0 − µ(v)

0 (x)
)
− b̂(v)

p,s(x)′Q̂−1En[b̂p,s(xi)w
′
i](γ̂ − γ0).

(SA-5.5)

The proof is divided into several steps.

Step 1: By Lemma SA-3.9, the variance of the last term is of smaller order, and thus it suffices
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to characterize the conditional variance of A(x) := b̂
(v)
p,s(x)′Q̂−1En[b̂p,sεi]. By Lemma SA-3.5,

∫
X
V[A(x)|X]ω(x)dx =

1

n
trace

(
Q−1

0 Σ0Q
−1
0

∫
X

b̂(v)
p,s(x)b̂(v)

p,s(x)′ω(x)dx
)

+ oP

(J1+2v

n

)
.

In fact, using the argument given in the proof of Lemma SA-3.3, we also have

∥∥∥∥∫
X

b̂(v)
p,s(x)b̂(v)

p,s(x)′ω(x)dx−
∫
X

b(v)
p,s(x)b(v)

p,s(x)′ω(x)dx

∥∥∥∥ = oP(J2v),

and since σ2(x) and ω(x) are bounded and bounded away from zero,

Vn(p, s, v) = J−(1+2v) trace
(
Q−1

0 Σ0Q
−1
0

∫
X

b(v)
p,s(x)b(v)

p,s(x)′ω(x)dx
)
� 1.

Step 2: By decomposition (SA-5.5),

E[µ̂(v)(x)|X,W]− µ(v)
0 (x) = b̂(v)

p,s(x)′Q̂−1En[b̂p,s(xi)r̂0(xi)] +
(
b̂(v)
p,s(x)′β̂0 − µ(v)

0 (x)
)

− b̂(v)
p,s(x)′Q̂−1En[b̂p,s(xi)w

′
i]E[(γ̂ − γ0)|X,W]

=: B1(x) + B2(x) + B3(x).

By Lemma SA-3.8,
∫
X B1(x)2ω(x)dx = oP(J−2p−2+2v). By Lemma SA-3.9,

∫
X B3(x)2ω(x)dx =

oP(J−2p−2+2v). By Lemma SA-3.4,
∫
X B2(x)2ω(x)dx .P J

−2p−2+2v. By Cauchy-Schwarz inequal-

ity, the integrals of those cross-product terms is of higher-order in the IMSE expansion, and the

leading term in the integrated squared bias is

J2p+2−2v

∫
X

(
b̂(v)
p,s(x)′β̂0 − µ(v)

0 (x)
)2
ω(x)dx .P 1.

Then, by Lemma SA-6.1 of Cattaneo, Farrell and Feng (2020), for s = p,

sup
x∈X

∣∣∣∣µ(v)
0 (x)− b̂(v)

p,p(x)′β∞(∆̂)− µ(p+1)(x)

(p+ 1− v)!
ĥp+1−v
x Ep+1−v

(x− τ̂Lx
ĥx

)∣∣∣∣ = oP(J−(p+1−v)), (SA-5.6)

where for each m ∈ Z+, Em(·) is the mth Bernoulli polynomial, τ̂Lx is the start of the (random)

interval in ∆̂ containing x and ĥx denotes its length. When s < p, b̂p,p(x)′β∞ is still an element in

the space spanned by b̂p,s(x). In other words, it provides a valid approximation of µ
(v)
0 (x) in the
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larger space in terms of sup-norm. Then it follows that

b̂(v)
p,s(x)′β̂0 − µ(v)

0 (x)

= b̂(v)
p,s(x)′

(
E

∆̂
[b̂p,s(xi)b̂p,s(xi)

′]
)−1

E
∆̂

[b̂p,s(xi)µ0(xi)]− µ(v)
0 (x)

= b̂(v)
p,s(x)′

(
E

∆̂
[b̂p,s(xi)b̂p,s(xi)

′]
)−1

E
∆̂

[
b̂p,s(xi)

µ
(p+1)
0 (xi)

(p+ 1)!
ĥp+1
xi Ep+1

(xi − τ̂Lxi
ĥxi

)]
− µ

(p+1)
0 (x)

(p+ 1− v)!
ĥp+1−v
x Ep+1−v

(x− τ̂Lx
ĥx

)
+ oP(J−p−1+v)

= J−p−1b̂(v)
p,s(x)′Q−1

0 TsE∆̂

[
b̂p,0(xi)

µ
(p+1)
0 (xi)

(p+ 1)!fX(xi)p+1
Ep+1

(xi − τ̂Lxi
ĥxi

)]
− J−p−1+vµ

(p+1)
0 (x)

(p+ 1− v)!fX(x)p+1−v Ep+1−v

(x− τ̂Lx
ĥx

)
+ oP(J−p−1+v), (SA-5.7)

where the last step uses Lemmas SA-3.1-SA-3.3 and SA-3.5, and oP(·) holds uniformly over x ∈ X .

Taking integral of the squared bias and using Assumption SA-DGP and Lemmas SA-3.1–SA-3.3

and SA-3.5 again, we have three leading terms:

M1(x) :=

∫
X

(
J−p−1+vµ

(p+1)
0 (x)

(p+ 1− v)!fX(x)p+1−v Ep+1−v

(x− τ̂Lx
ĥx

))2

ω(x)dx

=
J−2p−2+2v|E2p+2−2v|

(2p+ 2− 2v)!

∫
X

[ µ
(p+1)
0 (x)

fX(x)p+1−v

]2
ω(x)dx+ oP(J−2p−2+2v),

M2(x) :=J−2p−2

∫
X

(
b̂(v)
p,s(x)′Q−1

0 TsE∆̂

[
b̂p,0(xi)

µ
(p+1)
0 (xi)

(p+ 1)!fX(xi)p+1
Ep+1

(xi − τ̂Lxi
ĥxi

)])2

ω(x)dx

=J−2p−2ξ′0,fT
′
sQ
−1
0

(∫
X

b(v)
s (x)b(v)

s (x)′ω(x)dx
)

Q−1
0 Tsξ0,f + oP(J−2p−2+2v),

M3(x) :=J−2p−2+v

∫
X

{(
b̂(v)
p,s(x)′Q−1

0 TsE∆̂

[
b̂p,0(xi)

µ
(p+1)
0 (xi)

(p+ 1)!fX(xi)p+1
Ep+1

(xi − τ̂Lxi
ĥxi

)])
× µ

(p+1)
0 (x)

(p+ 1− v)!fX(x)p+1−v Ep+1−v

(x− τ̂Lx
ĥx

)}
ω(x)dx

=J−2p−2+vξ′0,fT
′
sQ
−1
0 Tsξv,ω + oP(J−2p−2+2v),

where E2p+2−2v is the (2p + 2 − 2v)th Bernoulli number, and for a weighting function λ(·) (which

can be replaced by fX(·) and ω(·) respectively), we define

ξv,λ =

∫
X

b
(v)
p,0(x)

µ
(p+1)
0 (x)

(p+ 1− v)!fX(x)p+1−v Ep+1−v

(x− τLx
hx

)
λ(x)dx.
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τx and hx are defined the same way as τ̂x and ĥx, but are based on ∆0, the partition using population

quantiles. Therefore, the leading terms now only rely on the non-random partition ∆0 as well as

other deterministic functions, which are simply equivalent to the leading bias if we repeat the above

derivation but set ∆̂ = ∆0.

Step 3: For v = 0, we will have two additional terms ŵ′(γ̂ − γ0) and (ŵ − w)′γ0 in the

decomposition of Υ̂(x, ŵ) − Υ0(x,w). By Assumption, ŵ − w = oP(
√
J/n + J−p−1), and thus

(ŵ−w)′γ0 as a (conditional) bias term is of higher order. The term ŵ′(γ̂−γ0) can be treated the

same way as we analyze b̂p,s(x)′Q̂−1En[b̂p,s(xi)w
′
i](γ̂ − γ0). By Lemma SA-3.9, it is also of higher

order. Then, the proof is complete.

SA-5.15 Proof of Corollary SA-3.2

Proof. The proof is divided into two steps.

Step 1: Consider the special case in which s = 0. Vn(p, 0, v) depends on three matrices: Q0,

Σ0 and
∫
X b

(v)
p,0(x)b

(v)
p,0(x)′ω(x)dx. Importantly, they are block diagonal with finite block sizes, and

the basis functions that form these matrices have local supports. By continuity of ω(x), fX(x) and

σ2(x), these matrices can be further approximated:

Q0 = Q̆Df + oP(1), Σ0 = Q̆Dσ2f + oP(1), and

∫
X

b
(v)
p,0(x)b

(v)
p,0(x)′ω(x)dx = Q̆vDω + oP(J2v),

where

Q̌ =

∫
X

bp,0(x)bp,0(x)′dx, Q̌v =

∫
X

b
(v)
p,0(x)b

(v)
p,0(x)′dx, Df = diag{fX(x̌1), · · · , fX(x̌J(p+1))},

Dσ2f = diag{σ2(x̌1)fX(x̌1), · · · , σ2(x̌J(p+1))fX(x̌J(p+1))}, and Dω = diag{ω(x̌1), . . . , ω(x̌J(p+1))}.

“oP(·)” in the above equations means the operator norm of the remainder is oP(·), and for l =

1, . . . , J(p + 1), each x̌l is an arbitrary point in the support of bp,0,l(x). For simplicity, we choose

these points such that xl = xl′ if bp,0,l(·) and bp,0,l′(·) have the same support. Therefore, we have

∫
X
V[A(x)|X]ω(x)dx =

1

n
trace

(
Dσ2ω/fQ̆

−1Q̆v

)
+ oP

(J1+2v

n

)
,
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where Dσ2ω/f = diag{σ2(x̌1)ω(x̌1)/fX(x̌1), . . . , σ2(x̌J(p+1))ω(x̌J(p+1))/fX(x̌J(p+1))}.

Finally, by change of variables, we can rewrite Q̆−1Q̆v as a block diagonal matrix diag{Q̃1, · · · , Q̃J}

where the lth block Q̃l, l = 1, . . . , j, can be written as

Q̃l = h−2v
l

(∫ 1

0
ϕ(z)ϕ(z)′dz

)−1
∫ 1

0
ϕ(v)(z)ϕ(v)(z)′dz

for ϕ(z) = (1, z, . . . , zp). Employing Lemma SA-3.1 and letting the trace converge to the Riemann

integral, we conclude that

∫
X
V[A(x)|X]ω(x)dx =

J1+2v

n
V (p, 0, v) + oP

(J1+2v

n

)
,

where V (p, 0, v) := trace
{( ∫ 1

0 ϕ(z)ϕ(z)′dz
)−1 ∫ 1

0 ϕ
(v)(z)ϕ(v)(z)′dz

}∫
X σ

2(x)fX(x)2vω(x)dx.

Step 2: Now, consider the special case in which s = 0. By Lemma A.3 of Cattaneo, Farrell and

Feng (2020), we can construct an L∞ approximation error

r(v)
∞ (x; ∆̂) := µ

(v)
0 (x)− b̂

(v)
p,0(x)′β∞(∆̂) =

µ
(p+1)
0 (x)

(p+ 1− v)!
ĥp+1−v
x Bp+1−v

(x− τ̂Lx
ĥx

)
+ oP(J−(p+1−v)),

where for each m ∈ Z+,
(

2m
m

)
Bm(·) is the mth shifted Legendre polynomial on [0, 1], τ̂Lx is the start

of the (random) interval in ∆̂ containing x and ĥx denotes its length. In addition,

max
1≤j≤J(p+1)

|E
∆̂

[̂bp,0,j(x)r∞(x; ∆̂)]|

= max
1≤j≤J(p+1)

∣∣∣ ∫
X
b̂p,0,j(x)r∞(x; ∆̂)fX(x)dx

∣∣∣
= max

1≤j≤J(p+1)

∣∣∣ ∫ τ̂Lx+ĥx

τ̂Lx

b̂p,0,j(x)r∞(x; ∆̂)fX(τ̂Lx)dx
∣∣∣+ oP(J−p−1−1/2)

= max
1≤j≤J(p+1)

∣∣∣fX(τ̂Lx)
µ

(p+1)
0 (x)J−p−1

(p+ 1)!

∫ τ̂Lx+ĥx

τ̂Lx

b̂p,0,j(x)Bp+1

(x− τ̂Lx
ĥx

)
dx
∣∣∣+ oP(J−p−1−1/2)

= oP(J−p−1−1/2),

where the last line follows by change of variables and the orthogonality of Legendre polynomials.
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Thus, r∞(x; ∆̂) is approximately orthogonal to the space spanned by b̂p,0(x). Immediately, we have

‖E
∆̂

[b(x; ∆̂)r∞(x; ∆̂)]‖ = oP(J−p−1).

Since E
∆̂

[b̂p,0(x)r0(x; ∆̂)] = 0,

‖E
∆̂

[b̂p,0(x)(r0(x; ∆̂)− r∞(x; ∆̂))]‖ = ‖E
∆̂

[b̂p,0(x)b̂p,0(x)′(β∞(∆̂)− β0(∆̂))]‖ = oP(J−p−1).

By Lemma SA-3.5, λmin(E
∆̂

[b̂p,0(xi)b̂p,0(xi)]
′) &P 1, and thus ‖β∞(∆̂) − β0(∆̂)‖ = oP(J−p−1).

Then,

∫
X

(
b̂

(v)
p,0(x)′(β0(∆̂)− β∞(∆̂))

)2
ω(x)dx

≤λmax

(∫
X

b̂
(v)
p,0(x)b̂

(v)
p,0(x)′ω(x)dx

)
‖β0(∆̂)− β∞(∆̂)‖2 = oP(J−2p−2+2v).

Therefore, we can represent the leading term in the integrated squared bias by L∞ approximation

error:
∫
X B2(x)2ω(x)dx =

∫
X (µ

(v)
0 (x) − b̂

(v)
p,0(x)′β∞(∆̂))2ω(x)dx + oP(J−2p−2+2v). Finally, using

the results given in Lemma SA-3.1, change of variables and the definition of Riemann integral, we

conclude that

∫
X

(
E[µ̂(v)(x)|X,W]− µ(v)

0 (x)
)2
ω(x)dx = J−2(p+1−v)B(p, 0, v) + oP(J−2p−2+2v)

where

B(p, 0, v) =

∫ 1
0 [Bp+1−v(z)]

2dz

((p+ 1− v)!)2

∫
X

[µ
(p+1)
0 (x)]2

fX(x)2p+2−2v
ω(x)dx.

Then the proof is complete.

SA-5.16 Proof of Theorem SA-3.5

Proof. The proof is divided into several steps.

Step 1: Note that

sup
x∈X

∣∣∣∣ µ̂(v)(x)− µ(v)
0 (x)√

Ω̂(x)/n
− µ̂(v)(x)− µ(v)

0 (x)√
Ω(x)/n

∣∣∣∣
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≤ sup
x∈X

∣∣∣∣ µ̂(v)(x)− µ(v)
0 (x)√

Ω(x)/n

∣∣∣∣ sup
x∈X

∣∣∣∣ Ω̂(x)1/2 − Ω(x)1/2

Ω̂(x)1/2

∣∣∣∣
.P

(√
log J +

√
nJ−p−1−1/2

)(
J−p−1 +

√
J log J

n1− 2
ν

)

where the last step uses Lemma SA-3.6, Corollary SA-3.1 and Theorem SA-3.2. Then, in view of

Lemmas SA-3.4, SA-3.8, SA-3.9 and Theorem SA-3.2 and the rate restriction given in the lemma,

we have

sup
x∈X

∣∣∣∣ µ̂(v)(x)− µ(v)
0 (x)√

Ω̂(x)/n
− b̂

(v)
p,s(x)′Q̂−1√

Ω(x)
Gn[b̂p,s(xi)εi]

∣∣∣∣ = oP(a−1
n ).

Step 2: Let us write K (x, xi) = Ω(x)−1/2b̂
(v)
p,s(x)′Q̂−1bp,s(xi). Now we rearrange {xi}ni=1 as a

sequence of order statistics {x(i)}ni=1, i.e., x(1) ≤ · · · ≤ x(n). Accordingly, {εi}ni=1 and {σ2(xi)}ni=1

are ordered as concomitants {ε[i]}ni=1 and {σ2
[i]}

n
i=1 where σ2

[i] = σ2(x(i)). Clearly, conditional on X,

{ε[i]}ni=1 is still an independent mean zero sequence. Then by Assumptions SA-DGP, SA-LS and

the result of Sakhanenko (1991), there exists a sequence of i.i.d. standard normal random variables

{ζ[i]}ni=1 such that

max
1≤`≤n

|S`| := max
1≤`≤n

∣∣∣ ∑̀
i=1

ε[i] −
∑̀
i=1

σ[i]ζ[i]

∣∣∣ .P n
1
ν .

Then, using summation by parts,

sup
x∈X

∣∣∣∣∣
n∑
i=1

K (x, x(i))(ε[i] − σ[i]ζ[i])

∣∣∣∣∣
= sup

x∈X

∣∣∣∣∣K (x, x(n))Sn −
n−1∑
i=1

Si
(
K (x, x(i+1))−K (x, x(i))

)∣∣∣∣∣
≤ sup

x∈X
max

1≤i≤n
|K (x, xi)||Sn|+ sup

x∈X

∣∣∣∣∣ b̂(v)
p,s(x)′Q̂−1√

Ω(x)

n−1∑
i=1

Si

(
b̂p,s(x(i+1))− b̂p,s(x(i))

)∣∣∣∣∣
≤ sup

x∈X
max

1≤i≤n
|K (x, xi)||Sn|+ sup

x∈X

∥∥∥∥∥Q̂−1b̂
(v)
p,s(x)√

Ω(x)

∥∥∥∥∥
1

∥∥∥∥∥
n−1∑
i=1

Si

(
b̂p,s(x(i+1))− b̂p,s(x(i))

)∥∥∥∥∥
∞

.

By Lemmas SA-3.3, SA-3.5 and SA-3.6, supx∈X supxi∈X |K (x, xi)| .P
√
J , and

sup
x∈X

∥∥∥∥∥Q̂−1b̂
(v)
p,s(x)√

Ω(x)

∥∥∥∥∥
1

.P 1.
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Then, notice that

max
1≤l≤Kp,s

∣∣∣ n−1∑
i=1

(
b̂p,s,l(x(i+1))− b̂p,s,l(x(i))

)
Sl

∣∣∣ ≤ max
1≤l≤Kp,s

n−1∑
i=1

∣∣∣̂bp,s,l(x(i+1))− b̂p,s,l(x(i))
∣∣∣ max

1≤`≤n

∣∣∣S`∣∣∣.
By construction of the ordering, max1≤l≤Kp,s

∑n−1
i=1

∣∣∣̂bp,s,l(x(i+1)) − b̂p,s,l(x(i))
∣∣∣ . √J . Under the

rate restriction in the theorem, this suffices to show that for any ξ > 0,

P
(

sup
x∈X
|Gn[K (x, xi)(εi − σiζi)]| > ξa−1

n

∣∣∣X) = oP(1),

where we recover the original ordering. Since Gn[b̂(xi)ζiσi] =d|X N(0, Σ̄) (=d|X denotes “equal in

distribution conditional on X”), the above steps construct the following approximating process:

Z̄p(x) :=
b̂

(v)
p,s(x)′Q̂−1√

Ω(x)
Σ̄1/2NKp,s .

Then, it remains to show Q̂−1 and Σ̄ can be replaced by their population analogues without

affecting the approximation, which is verified in the next step.

Step 3: Note that

sup
x∈X
|Z̄p(x)− Zp(x)| ≤ sup

x∈X

∣∣∣ b̂(v)
p,s(x)′(Q̂−1 −Q−1

0 )√
Ω(x)

Σ̄1/2NKp,s

∣∣∣
+ sup
x∈X

∣∣∣ b̂(v)
p,s(x)′Q−1

0√
Ω(x)

(
Σ̄1/2 −Σ

1/2
0

)
NKp,s

∣∣∣
+ sup
x∈X

∣∣∣ b̂(v)
p,0(x)′(T̂s −Ts)Q

−1
0√

Ω(x)
Σ

1/2
0 NKp,s

∣∣∣,
where each term on the right-hand side is a mean-zero Gaussian process conditional on X. By

Lemmas SA-3.2 and SA-3.5, ‖Q̂−1 −Q−1
0 ‖ .P

√
J log J/n and ‖T̂s − Ts‖ .P

√
J log J/n. Also,

using the argument in the proof of Lemma SA-3.5 and Theorem X.3.8 of Bhatia (2013), ‖Σ̄1/2 −

Σ
1/2
0 ‖ .P

√
J log J/n. By Gaussian Maximal Inequality (see, e.g., van der Vaart and Wellner,

1996, Corollary 2.2.8),

E
[

sup
x∈X
|Z̄p(x)− Zp(x)|

∣∣∣X] .P
√

log J
(
‖Σ̄1/2 −Σ

1/2
0 ‖+ ‖Q̂−1 −Q−1

0 ‖+ ‖T̂s −Ts‖
)

= oP(a−1
n ),
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where the last line follows from the imposed rate restriction.

As a reminder, if we drop the third term on the right-hand side, we obtain the same strong

approximation result except that the approximating process is

b̂
(v)
p,s(·)′Q−1

0 Σ
1/2
0√

Ω(x)
NKp,s .

Step 4: The above steps have shown the desired result for v > 0 already. For v = 0,

Tp(x) =
Υ̂(x, ŵ)−Υ0(x,w)√

Ω̂(x)/n
=
µ̂(x)− µ0(x)√

Ω̂(x)/n
+

ŵ′γ̂ −w′γ0√
Ω̂(x)/n

,

where

ŵ′γ̂ −w′γ0√
Ω̂(x)/n

=
(ŵ −w)′γ̂√

Ω̂(x)/n
+

w′(γ̂ − γ0)√
Ω̂(x)/n

= oP(a−1
n )

by Lemma SA-3.9, Theorem SA-3.2 and the condition ‖ŵ − w‖ = oP(a−1
n

√
J/n). Therefore,

the desired strong approximation for Υ̂(x, ŵ) follows from the previous steps. Then, the proof is

complete.

SA-5.17 Proof of Theorem SA-3.6

Proof. This conclusion follows from Lemmas SA-3.3 and SA-3.5, Theorem SA-3.2 and Gaussian

Maximal Inequality as applied in Step 3 in the proof of Theorem SA-3.5.

SA-5.18 Proof of Theorem SA-3.7

Proof. We first show that

sup
u∈R

∣∣∣P( sup
x∈X
|Tp(x)| ≤ u

)
− P

(
sup
x∈X
|Zp(x)| ≤ u

)∣∣∣ = o(1).

By Theorem SA-3.5, there exists a sequence of constants ξn such that ξn = o(1) and

P
(∣∣∣ sup

x∈X
|Tp(x)| − sup

x∈X
|Zp(x)|

∣∣∣ > ξn/an

)
= o(1).
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Then,

P
(

sup
x∈X
|Tp(x)| ≤ u

)
≤ P

({
sup
x∈X
|Tp(x)| ≤ u

}
∩
{∣∣∣ sup

x∈X
|Tp(x)| − sup

x∈X
|Zp(x)|

∣∣∣ ≤ ξn/an})+ o(1)

≤ P
(

sup
x∈X
|Zp(x)| ≤ u+ ξn/an

)
+ o(1)

≤ P
(

sup
x∈X
|Zp(x)| ≤ u

)
+ sup
u∈R

E
[
P
(∣∣∣ sup

x∈X
|Zp(x)| − u

∣∣∣ ≤ ξn/an∣∣∣X)]
≤ P

(
sup
x∈X
|Zp(x)| ≤ u

)
+ E

[
sup
u∈R

P
(∣∣∣ sup

x∈X
|Zp(x)| − u

∣∣∣ ≤ ξn/an∣∣∣X)]+ o(1).

Now, apply the Anti-Concentration Inequality conditional on X (see Chernozhukov, Chetverikov

and Kato, 2014b) to the second term:

sup
u∈R

P
(∣∣∣ sup

x∈X
|Zp(x)| − u

∣∣∣ ≤ ξn/an∣∣∣X) ≤ 4ξna
−1
n E

[
sup
x∈X
|Zp(x)|

∣∣∣X]+ o(1)

.P ξna
−1
n

√
log J + o(1)→ 0

where the last step uses Gaussian Maximal Inequality (see van der Vaart and Wellner, 1996, Corol-

lary 2.2.8). By Dominated Convergence Theorem,

E
[

sup
u∈R

P
(∣∣∣ sup

x∈X
|Zp(x)| − u

∣∣∣ ≤ ξn/an∣∣∣X)] = o(1).

The other side of the inequality follows similarly.

By similar argument, using Theorem SA-3.6, we have

sup
u∈R

∣∣∣P( sup
x∈X
|Ẑp(x)| ≤ u

∣∣∣D)− P
(

sup
x∈X
|Zp(x)| ≤ u

∣∣∣X)∣∣∣ = oP(1).

Then it remains to show that

sup
u∈R

∣∣∣P( sup
x∈X
|Zp(x)| ≤ u

)
− P

(
sup
x∈X
|Zp(x)| ≤ u|X

)∣∣∣ = oP(1). (SA-5.8)

Now, we can write

Zp(x) =
b̂

(v)
p,0(x)′√

b̂
(v)
p,0(x)′V0b̂

(v)
p,0(x)

N̆Kp,0
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where V0 = T′sQ
−1
0 Σ0Q

−1
0 Ts and N̆Kp,0 := T′sQ

−1
0 Σ

1/2
0 NKp,s is aKp,0-dimensional normal random

vector. Importantly, by this construction, N̆Kp,0 and V0 do not depend on ∆̂ and x, and they are

only determined by the deterministic partition ∆0.

Now, first consider v = 0. For any two partitions ∆1,∆2 ∈ Π, for any x ∈ X , there exists x̌ ∈ X

such that

b
(0)
p,0(x; ∆1) = b

(0)
p,0(x̌; ∆2),

and vice versa. Therefore, the following two events are equivalent: {ω : supx∈X |Zp(x; ∆1)| ≤ u} =

{ω : supx∈X |Zp(x; ∆2)| ≤ u} for any u. Thus,

E
[
P
(

sup
x∈X
|Zp(x)| ≤ u

∣∣∣X)] = P
(

sup
x∈X
|Zp(x)| ≤ u

∣∣∣X)+ oP(1).

Then for v = 0, the desired result follows.

For v > 0, simply notice that b̂
(v)
p,0(x) = T̂vb̂p,0(x) for some transformation matrix T̂v. Clearly, T̂v

takes a similar structure as T̂s: each row and each column only have a finite number of nonzeros.

Each nonzero element is simply ĥ−vj up to some constants. By Lemma SA-3.1, it can be shown that

‖T̂v − Tv‖ . Jv
√
J log J/n where Tv is the population analogue (ĥj replaced by hj). Repeating

the argument given in, e.g., the proof of Theorems SA-3.5 and SA-3.6, we can replace T̂v in Zp(x)

by Tv without affecting the approximation rate. Then the desired result follows by repeating the

argument given for v = 0 above.

SA-5.19 Proof of Theorem SA-3.8

Proof. Let ξ1,n = o(1), ξ2,n = o(1) and ξ3,n = o(1). Then,

P
[

sup
x∈X
|Tp(x)| ≤ c

]
≤ P

[
sup
x∈X
|Zp(x)| ≤ c + ξ1,n/an

]
+ o(1)

≤ P
[

sup
x∈X
|Zp(x)| ≤ c0(1− α+ ξ3,n) + (ξ1,n + ξ2,n)/an

]
+ o(1)

≤ P
[

sup
x∈X
|Zp(x)| ≤ c0(1− α+ ξ3,n)

]
+ o(1)→ 1− α,

where c0(1 − α + ξ3,n) denotes the (1 − α + ξ3,n)-quantile of supx∈X |Zp(x)| (given the partition),

the first inequality holds by Theorem SA-3.5, the second by Lemma A.1 of Belloni, Chernozhukov,
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Chetverikov and Kato (2015), and the third by Anti-Concentration Inequality in Chernozhukov,

Chetverikov and Kato (2014b). The other side of the bound follows similarly.

SA-5.20 Proof of Theorem SA-3.9

Proof. Throughout this proof, we let ξ1,n = o(1), ξ2,n = o(1) and ξ3,n = o(1) be sequences of

vanishing constants. Moreover, let An be a sequence of diverging constants such that
√

log JAn .√
n

J1+2v . Note that under Ḣ0,

sup
x∈X
|Ṫp(x)| ≤ sup

x∈X

∣∣∣∣Υ̂(v)(x, ŵ)−Υ
(v)
0 (x,w)√

Ω̂(x)/n

∣∣∣∣+ sup
x∈X

∣∣∣∣Υ(v)
0 (x,w)−M (v)(x, ŵ; θ̃, γ̃)√

Ω̂(x)/n

∣∣∣∣.
Therefore,

P
[

sup
x∈X
|Ṫp(x)| > c

]
≤ P

[
sup
x∈X
|Tp(x)| > c− sup

x∈X

∣∣∣∣Υ(v)
0 (x,w)−M (v)(x, ŵ; θ̃, γ̃)√

Ω̂(x)/n

∣∣∣∣]

≤ P
[

sup
x∈X
|Zp(x)| > c− ξ1,n/an − sup

x∈X

∣∣∣∣Υ(v)
0 (x,w)−M (v)(x, ŵ; θ̃, γ̃)√

Ω̂(x)/n

∣∣∣∣]+ o(1)

≤ P
[

sup
x∈X
|Zp(x)| > c0(1− α− ξ3,n)− (ξ1,n + ξ2,n)/an−

sup
x∈X

∣∣∣∣Υ(v)
0 (x,w)−M (v)(x, ŵ; θ̃, γ̃)√

Ω̂(x)/n

∣∣∣∣]+ o(1)

≤ P
[

sup
x∈X
|Zp(x)| > c0(1− α− ξ3,n)

]
+ o(1)

= α+ o(1)

where c0(1 − α − ξ3,n) denotes the (1 − α − ξ3,n)-quantile of supx∈X |Zp(x)| (given the partition),

the second inequality holds by Theorem SA-3.5, the third by Lemma A.1 of Belloni, Chernozhukov,

Chetverikov and Kato (2015), the fourth by the fact that supx∈X
∣∣Υ(v)

0 (x,w)−M(v)(x,ŵ;θ̃,γ̃)√
Ω̂(x)/n

∣∣ = oP( 1√
log J

)

and Anti-Concentration Inequality in Chernozhukov, Chetverikov and Kato (2014b). The other side

of the bound follows similarly.

On the other hand, under ḢA,

P
[

sup
x∈X
|Ṫp(x)| > c

]
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=P
[

sup
x∈X

∣∣∣Tp(x) +
Υ

(v)
0 (x,w)−M (v)(x,w; θ̄, γ̄)√

Ω̂(x)/n
+
M (v)(x,w; θ̄, γ̄)−M (v)(x, ŵ; θ̃, γ̃)√

Ω̂(x)/n

∣∣∣ > c
]

≥P
[

sup
x∈X
|Tp(x)| < sup

x∈X

∣∣∣∣Υ(v)
0 (x,w)−M (v)(x,w; θ̄, γ̄)√

Ω̂(x)/n
+
M (v)(x,w; θ̄, γ̄)−M (v)(x, ŵ; θ̃, γ̃)√

Ω̂(x)/n

∣∣∣∣− c

]

≥P
[

sup
x∈X
|Zp(x)| ≤

√
log JAn − ξ1,n/an

]
− o(1)

≥ 1− o(1).

where the fourth line holds by Lemma SA-3.6, Theorem SA-3.2, Theorem SA-3.5, the condition

that Jv
√
J log J/n = o(1) and the definition of An, and the last by the Talagrand-Samorodnitsky

Concentration Inequality (van der Vaart and Wellner, 1996, Proposition A.2.7).

SA-5.21 Proof of Theorem SA-3.10

Proof. The definitions of An, ξ1,n, ξ2,n and ξ3,n are the same as in the proof of Theorem SA-3.9.

Note that under Ḧ0,

sup
x∈X

T̈p(x) ≤ sup
x∈X

Tp(x) + sup
x∈X

|M (v)(x,w; θ̄, γ̄)−M (v)(x, ŵ; θ̃, γ̃)|√
Ω̂(x)/n

.

Then,

P
[

sup
x∈X

T̈p(x) > c
]
≤ P

[
sup
x∈X

Tp(x) > c− sup
x∈X

|M (v)(x,w; θ̄, γ̄)−M (v)(x, ŵ; θ̃, γ̃)|√
Ω̂(x)/n

]

≤ P
[

sup
x∈X

Zp(x) > c− ξ1,n/an

]
+ o(1)

≤ P
[

sup
x∈X

Zp(x) > c0(1− α− ξ3,n)− (ξ1,n + ξ2,n)/an

]
+ o(1)

≤ P
[

sup
x∈X

Zp(x) > c0(1− α− ξ3,n)
]

+ o(1)

= α+ o(1)

where c0(1−α−ξ3,n) denotes the (1−α−ξ3,n)-quantile of supx∈X Zp(x) (given the partition), the sec-

ond line holds by Theorem SA-3.5, the third by Lemma A.1 of Belloni, Chernozhukov, Chetverikov

and Kato (2015), the fourth by Anti-Concentration Inequality in Chernozhukov, Chetverikov and
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Kato (2014b).

On the other hand, under ḦA,

P
[

sup
x∈X

T̈p(x) > c
]

= P
[

sup
x∈X

(
Tp(x) +

Υ
(v)
0 (x,w)−M (v)(x, ŵ; θ̃, γ̃)√

Ω̂(x)/n
− c
)
> 0

]

≥ P
[

sup
x∈X
|Tp(x)| < sup

x∈X

Υ
(v)
0 (x,w)−M (v)(x, ŵ; θ̃, γ̃)√

Ω̂(x)/n
− c,

sup
x∈X

Υ
(v)
0 (x,w)−M (v)(x, ŵ; θ̃, γ̃)√

Ω̂(x)/n
> c
]

≥ P
[

sup
x∈X
|Tp(x)| < sup

x∈X

Υ
(v)
0 (x,w)−M (v)(x, ŵ; θ̃, γ̃)√

Ω̂(x)/n
− c
]
− o(1)

≥ P
[

sup
x∈X
|Tp(x)| <

√
log JAn

]
− o(1)

≥ P
[

sup
x∈X
|Zp(x)| <

√
log JAn − ξ1,n/an

]
− o(1)

≥ 1− o(1)

where the fourth line holds by Lemma SA-3.6, Theorem SA-3.2, Lemma A.1 of Belloni, Cher-

nozhukov, Chetverikov and Kato (2015), the assumptions that Jv
√
J log J/n = o(1) and supx∈X

|M (v)(x, ŵ; θ̃, γ̃)−M (v)(x,w; θ̄, γ̄)| = oP(1), the fifth by definition of An, and the sixth by Theorem

SA-3.5, and the last by Proposition A.2.7 in van der Vaart and Wellner (1996).
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