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Online Appendix A: Stochastic Mechanisms

We provide an example showing that a stochastic mechanism may be more profitable than
the optimal deterministic mechanism. Consider an agent with risk preference represented
by g(z) = 2% and assume that 6 ~ U0, 1]. Suppose that there is a single deterministic
loss level [, and let the agent’s type 6 be the probability that a loss occurs. The optimal
deterministic mechanism consists of full insurance to types 6 > % at a price %l, and no
insurance for lower types. Using this mechanism, the insurer’s profit is él ~ 0.185l.

Consider now a stochastic direct mechanism of the form (¢(0),p(0), 1) such that: type
0 pays a premium ¢(f); in exchange, when a loss occurs, the insurer fully reimburses
the agent’s loss with (conditional) probability 1 — p(€). Note that the above class of
mechanisms includes the optimal deterministic mechanism.

If type 6 reports to be type €' he receives —t(0') — [ with probability p(¢')0 and
receives —t(0') otherwise. Thus, in the proposed mechanism, this type of agent has a
payoff of

U0,0) = —1—t(0") +g(1—p(6)0)1
One can verify that (¢(6),p(6),1) is incentive compatible if and only if p is non-

increasing and

5 [}
0(6) = U(6) 1 / p(2)g (1 - p(2)2) dz,

where we write U(#) = U(6, ) for short. The above conditions imply that

0
6) = ~1=T®)+9(1=p00) 1 +1 | ple)g’ (1= p(2)2) dz.

By using similar arguments to that of Lemma 1, it can be shown that the individual



rationality constraint holds if and only if

U(0) =z —1(1-g(1-06)=0.

From now onward, we only consider mechanism for which U(g) = 0. The insurer’s profit

18

- / {gu—p(e)eﬂw / p<z>g'<1—p<z>z>dz—(1—p<e>>ez] £(0)d0

1— F(6)
f(0)

:z/ﬁwwe—mﬁ—ww—2m+1—ﬂde—L

0
:ll Pﬂ—p@W%ﬂl—M®W+- M@jﬂ—p@ﬁﬂf@ﬂg_l

To obtain the this equality, we used integration by parts:

/ 1= OO} (1~ 0)0) 0 - / "o [ s -] =0

The optimal p is then given by by

1 ife<s
pr)=¢ L ifl<o<?
0 ifo>32

That is, within the above described class of potentially stochastic mechanisms, it is

optimal to offer no insurance to agents with type below %, to offer unconditional full

2, and to offer to reimburse the loss with (conditional)

probability 1 — % to intermediate types in (%, %

an expected profit of 0.188] > 0.185/, and is thus superior to the optimal deterministic

insurance to those with type above

). This mechanism yields, approximately,

mechanism.



Online Appendix B: Finite Number of Losses

Proof of Proposition 3. It holds that

( 1-0 if z <1y
Hy(z) = 1—94—622 1pZ iflp1 <z<lyand k € {2,...,n}
\ 1 if 2> 1,
OHy(z) ( _1k 1 if z <4
and =59~ —1+>p il <z<lyand k€ {2, ..,n}
0 if 2> 1,

\

In any incentive compatible mechanism, the menu of deductibles D(#) is non-increasing
in the probability of accident 6. In particular, D(#) is continuous almost everywhere.
Fix such a non-increasing menu, and let 6, = 6. Denote by 0, = inf{f : D(#) < [;}.
If this set is empty, define 6, = 6, = . Similarly, for i € {2,...,n} define 6; = inf{6 :
D(0) < I;} with 6; := 6,_ if the set is empty.
By the monotonicity of D(6), it holds that § = 6, < 0,_1 < ... <6, < 0y = 0. The

insurer’s profit becomes then
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By definition, in each interval [0, 60, 1], the given deductible D(#) belongs to the
interval [l;_1,l;], where we denote l; = 0. Note that, on each interval [0, 0_4], the

obtained expression for profit is linear in D :

F(6)db.
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Depending on the sign of the integrand, the above expression is maximized with respect
to D at an extreme point of the respective feasible set, i.e., either at D*(0) = l;_; or
at D*(0) = ;. Thus, the profit from the given mechanism can be increased by changing
all deductibles D(#) on the interval [0y, 0)_1] to the value of D*(f) that maximizes the
above expression. The obtained D* is non-increasing by construction, and thus also
implementable. Hence, we have shown that the search for an optimal mechanism can be
confined to menus consisting of at most n + 1 deductibles, where each deductible equals

either zero, or one of the possible losses. m

Proof of Corollary 1. Here

He(z):{ 1—eiiffzz<2zl - 8[—298(2) :{ _oliiffzlez
The insurer’s profit becomes:
I /9 ’ —E[L(0)] + /0 D(a)[g(Hg(z)) — Hy(z) — 1;(—5)(%’(1119(2))81?9(2)]614 f()dd —U(8)
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The above expression is linear in D, and hence the pointwise maximum in the above
expression is attained at an extreme point of the feasible set: it can be either at D = [

or at D = 0, depending on the sign of the virtual value. m

Online Appendix C: Binary Lotteries

In this Appendix we document several instances of well-known, non-expected utility for-
mulations that coincide with Yaari’s dual utility on the class of binary lotteries (e.g., in

an insurance framework with a single, deterministic loss).
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1. Gul’s [1991] disappointment-averse preferences with linear utility over outcomes:!

. (1—a)(1405)
mE[m\x > CE(z)] + 1+ (1-a)B

U(z) = E[z|x < CE(z)]

where CE(x) is a certainty equivalent of lottery € X, « is the probability that the
outcome of the lottery is above its certainty equivalent, and 3 is a parameter. For
binary lotteries, the above functional form is a special case of Yaari’s dual utility

with?
b

g(p):—1+(1_p)5'

2. Versions of the disappointment aversion theories due to Loomes and Sugden [1986],

and Jia et al. [2001] with linear utility over outcomes:
U(z) = E(x) + (e — d)E [max {z — E(z),0}],

where e > 0, d > 0. For binary lotteries, this is a special case of Yaari’s dual utility
with
g(p) =p(l+e—d) +(d—e)p”

Risk aversion (either in the weak or strong sense) is obtained when e < d.

3. The modified Mean-Variance preferences (see Rockafellar et al. [2006]) with linear

utility over outcomes are given by?:
1
U(z) =E(z) - 5rE[| « — E(2) [],

where 7 € [0, 1]. For binary lotteries this is again a special case of Yaari’s preferences

where

g(p) =p—rp(l —p).

IThis is implicit. See also Cereia-Voglio et al. [2020] for an explicit formulation.

2(Weak) risk aversion corresponds then to 3 > % and aversion to mean-preserving spreads corresponds
to 8 > 0.

3The modification relative to the standard mean-variance preferences is needed in order to ensure
consistency with FOSD.
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