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B Additional Results and Proofs

B.1 Bayesian optimal behavior

Proposition B.1. The Bayesian DM takes action ℓ if pt ≤ pBℓ , takes action r if pt ≥ pBr , and

experiments if pt ∈ (pBℓ , p
B
r ), where the threshold pBℓ > 0 maximizes the value (3) and pBr ∈ [pBℓ , 1)

equalizes the two terms in (4). The experimentation region is non-empty, i.e. pBℓ < pBr , if c < c,

where c is defined in Section I.

Proof. In order to describe the Bayesian optimal stopping rule, consider the DM’s value from

experimentation under the assumption that she takes action r if a breakthrough occurs:

ϕ(p) = λpuR
r dt+ (1− λpdt)ϕ(p+ dp)− cdt+ o(dt).

Taking the limit dt→ 0, we obtain the following ODE

c = λp(uR
r − ϕ(p)) + ϕ′(p)η(p). (1)

Let ϕ(p; q,Φ0) denote the solution with boundary value (p′,Φ0), given by

ϕ(p ; p′,Φ0) =
p− p′

1− p′
uR
r +

1− p

1− p′
Φ0 −

[
p− p′

1− p′
+ (1− p) log

(
p

1− p

1− p′

p′

)]
c

λ
.
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Conditional on taking action ℓ after stopping, the value of this stopping problem for a Bayesian

DM is

Φ(p) := max
p′∈[0,p]

ϕ(p; p′, Uℓ(p
′)).

We know that at p = pBℓ , we have ϕ′(p; p, Uℓ(p)) = U ′
ℓ(p) = δℓ. Solving this condition for p

delivers

pBℓ =
1

uR
r − uR

ℓ

c

λ
.

The DM optimally follows the derived stopping rule as long as it delivers a higher payoff than

taking action r. The right boundary pBr is thus determined by the indifference condition Φ(pBr ) =

Ur(p
B
r ). The Bayesian value function is

Φ∗(p) = max{Φ(p), Ur(p)}.

Experimentation is optimal for some p ∈ (0, 1) if the left boundary pBℓ is smaller than the belief

at which the stopping payoffs Uℓ(·) and Ur(·) cross, given by

p̂ =
uL
ℓ − uL

r

δℓ + δr
.

Substituting for pBℓ and p̂ and solving for c, the inequality pBℓ < p̂ can be written as

c < c := λ
(uR

r − uR
ℓ )(u

L
ℓ − uL

r )

(uR
r − uR

ℓ ) + (uL
ℓ − uL

r )
.

B.2 Maxmin Commitment Solution

Proposition B.2. The maxmin value for the DM with a commitment ability is

min
p∈P0

Φ∗(p).

• If p∗ < pBr or pBr ̸∈ P0, the DM’s maxmin strategy coincides with her Bayesian optimal

strategy, as described in Proposition B.1, for prior belief pmin ∈ argminp∈P0 Φ
∗(p).
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• If p∗ = pBr ∈ P0, then the DM randomizes as follows:

– c < c: the DM randomizes between action r and acquiring information using the

Bayesian optimal stopping rule for pBr with probabilities ξ and 1 − ξ, respectively,

where ξ is such that

ξU ′
r + (1− ξ)Φ′(pBr ) = 0; (2)

– c ≥ c: the DM randomizes between actions r and ℓ with probabilities ρ̂ and 1 − ρ̂,

respectively, where ρ̂ is specified by (6).

Proof. We consider a zero-sum game between the DM and adversarial nature seeking to minimize

the DM’s expected payoff. In this game, the DM chooses a distribution over stopping times and

a distribution over {ℓ, r} conditional on stopping, while nature chooses p ∈ P0. We want

to show that the DM’s strategy described in Proposition B.2, together with nature choosing

pmin ∈ minp∈P0 Φ
∗(p), forms a saddle point. As is well-known, if a saddle point exists, then the

DM’s strategy in the saddle point is maxmin-optimal.1

Since the DM’s strategy is Bayesian optimal against nature’s choice pmin,
2 it suffices to show

is that pmin minimizes the DM’s expected payoff from the strategy described in Proposition B.2.

To this end, we first examine the value V0(p) of the DM’s strategy specified in the Proposition

1 To see this, let u(s1, s2) be player 1’s payoff when she chooses s1 ∈ S1 in a zero-sum game against player
2 who chooses s2, where S1 and S2 are arbitrary (nonempty) sets. Suppose there exists a saddle point (s∗1, s

∗
2)

such that

u(s∗1, s2) ≥ u(s∗1, s
∗
2) ≥ u(s1, s

∗
2),∀(s1, s2) ∈ S1 × S2. (*)

Then,

inf
s2∈S2

u(s∗1, s2) ≥ u(s∗1, s
∗
2) = sup

s1∈S1

u(s1, s
∗
2) ≥ inf

s2∈S2

sup
s1∈S1

u(s1, s2) ≥ sup
s1∈S1

inf
s2∈S2

u(s1, s2),

where the first inequality follows from the first inequality of (*) and the last inequality follows from the min-max
inequality. The above inequalities prove that

s∗1 ∈ arg max
s1∈S1

inf
s2∈S2

u(s1, s2).

Symmetrically, one can show that s∗2 ∈ argmins2∈S2 sups1∈S1
u(s1, s2). Conversely, it can be proven that if s∗1 is

maxmin optimal and s∗2 is minmax optimal, then (s∗1, s
∗
2) is a saddle point.

2Note that the Bayesian DM with belief pBr is indifferent between taking action r and taking action ℓ if c ≥ c
or acquiring information using the Bayesian optimal stopping rule for pBr if c < c.
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as a function of nature’s choice p ∈ [0, 1]:

V0(p) =



Φ∗(pmin) + (p− pmin)Φ
∗′(pmin) if pmin ̸= pBr

Ur(p) if pmin = pBr > p∗

ξUr(p) + (1− ξ)(Φ(p∗) + (p− p∗)Φ
′
(p∗)) if pmin = pBr = p∗ and c < c

ρ̂Ur(p) + (1− ρ̂)Uℓ(p) if pmin = pBr = p∗ and c ≥ c.

This function is obtained by means of several observations. First, note that V0(p) is a convex

combination of the expected payoff from the DM’s strategy in state R and in state L with weight

p. Hence, V0(p) is linear in p. Second, the value of any strategy, including the one in question,

is no higher than that of the Bayesian optimal strategy. Hence, we have V0(p) ≤ Φ∗(p) for all

p ∈ [0, 1]. Third, recall that the DM’s strategy is Bayesian optimal for the minimizing belief

pmin, so V0(pmin) = Φ∗(pmin). These three observations imply that V0(·) is tangent to Φ∗(·) at
(pmin,Φ

∗(pmin)). Recalling that Φ∗ is differentiable everywhere except possibly at pBr pins down

the above value function.

We are now in a position to prove that pmin ∈ argminp∈P0 V0(p). Note first that since Φ∗(·)
is a convex function, we have pmin = maxP0 if maxP0 < p∗, pmin = minP0 if p∗ < minP0, and

pmin = p∗ otherwise. Hence, it suffices to show that V ′
0(·) ≤ 0 if pmin = maxP0 < p∗, V

′
0(·) ≥ 0

if pmin = minP0 > p∗ and V ′
0(·) = 0 if pmin = p∗.

Suppose first pmin ̸= pBr . In this case, V ′
0(·) = Φ∗′(pmin), which is negative if pmin < p∗,

positive if pmin > p∗, and zero if pmin = p∗, as desired. Suppose next pmin = pBr > p∗. Then,

V ′
0(·) = U ′

r(·) > 0, so nature’s optimality condition is again satisfied. Finally, if pmin = pBr = p∗,

then, by definition of ξ and ρ̂, V0(p) is constant in p. Hence, nature is indifferent between all

values of p ∈ P0.

B.3 Stopping-time formulation of strategies

The strategy the DM chooses can be formulated as a stopping time adapted to the filtration

generated by the underlying state and the Poisson signal. In the current setting, the DM

faces a nontrivial decision only when no information is revealed; once breakthrough news is

received, the DM stops immediately and chooses r. Taking this as given, we can describe the

DM’s strategy simply by the contingent stopping times—a family of CDFs {Ft}t∈[0,∞), where
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Ft : [0,∞]→ [0, 1], for each t ≥ 0,3 and Ft(τ) denotes the probability of stopping by time t+ τ

starting at time t, conditional on the breakthrough news not being received by then. The reason

we consider a family of stopping times instead of a single stopping time is that the strategy must

specify actions off (as well as on) the path. For example, the original strategy may prescribe

stopping by time t with probability one, but if the DM deviates from the original plan and has

not stopped by t, the strategy must prescribe her stropping plan from then on.

We require a couple of technical assumptions:

(1) (Admissibility) Ft is nondecreasing and right-differentiable.

(2) (Consistency) For any s < s′ ≤ t,

Fs′(t− s′) =
Fs(t− s)− Fs(s

′ − s)

(1− Fs(s′ − s))
,

whenever Fs(s
′ − s) < 1.

Admissibility requires the distribution functions to be sufficiently well-behaved. Note also

that a monotonic function has countably many points of discontinuities, which will be invoked

later. Consistency means that the stopping time distribution starting at s′ must form a consistent

conditional stopping distribution starting at s < s′ according to Bayes formula, as long as the

latter distribution does not prescribe stopping before s with probability one. Let F be the set

of all families of distributions satisfying these two requirements. Let ρ̃ : [0,∞) → [0, 1] be the

choice strategy specifying the probability of choosing r when stopping at time t. Then, the

strategy for the DM consists of a pair ({Ft}, ρ̃) such that {Ft} ∈ F .
As an intermediate step, we next define the following notion of strategy. A time-indexed

strategy is a function σ̃ : [0,∞) → [0,∞) × [0, 1] × [0, 1], σ̃t = (ν̃t, m̃t, ρ̃t), where ν̃t is the

stopping rate and m̃t is the instantaneous stopping probability used at time t if no R-signal has

been received up until time t. ρt is the probability of action r conditional on stopping at time t

without receiving an R-signal. We require the following admissibility conditions on σ̃:

(a) any connected set of t’s in which mt = 1 contains its infimum,

(b) the set {t ≥ 0|mt ∈ (0, 1)} is countable.
3We let the stopping time be ∞ if the DM never stops.
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Condition (a) follows from the right continuity of Ft’s, which in turn follows from its right

differentiability (assumed in (1)). Condition (b) follows from the fact that each Ft has countably

many points of discontinuities. Let Σ̃ denote the set of all admissible time-indexed strategies.

We now prove the equivalence between the two notions of strategies.

Lemma B.1. Each ({Ft}, ρ̃), {Ft} ∈ F induces an outcome-equivalent admissible strategy σ̃ ∈
Σ̃. Conversely, any admissible strategy σ̃ ∈ Σ̃ induces an outcome-equivalent ({Ft}, ρ), {Ft} ∈ F .

Proof. For both statements, ρ̃ is fixed to be the same, so we can focus on the specification of

stopping times.

Fix any {Ft} ∈ F . For each t ≥ 0, we define:

ν̃t := F ′
t(0),

where F ′
t(·) is the right-derivative, which is well-defined by Admissibility (requirement (1)

above), and

m̃t := Ft(0).

Then, (ν̃t, m̃t)t≥0 is outcome-equivalent to {Ft}t∈[0,∞). To see this, fix any s < t. If 1−Fs(t−s) <
1, then by Consistency (requirement (2) above),

F ′
s(t− s)

1− Fs(t− s)
= F ′

t(0) = ν̃t

and
Fs(t− s)− F−

s (t− s)

1− Fs(t− s)
= Ft(0) = m̃t,

where F−
s is the left limit, which is well defined. Hence, for any s < t,

Pr{stopping by t under σ̃| starting at s}

=1− e−
∫ t
s ν̃s′ds

′ ∏
s′∈[s,t]

(1− m̃s′)

=Fs(t− s).

Finally, the right-continuity and monotonicity of each Fs(·) imply that the admissibility of σ̃

is satisfied. In particular, m̃t > 0 for countably many t. We thus conclude (ν̃, m̃, ρ̃) ∈ Σ̃.
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Conversely, fix any σ̃ ∈ Σ̃. Then, for any s ≤ t, define

Fs(t− s) := 1− e−
∫ t
s ν̃s′ds

′ ∏
s′∈[s,t]

(1− m̃s′).

Again, the admissibility implies that {Ft} satisfies (1). Requirement (2) follows from the con-

struction. Hence, {Ft} ∈ F .

B.4 Proof of Lemma 1

Since we are considering the left limit of the state p, a possible mass point at state p does not

appear in W σ
ϵ (p, p−). Specifically, we can write

Wϵ(πϵ, p−) =W σϵ
ϵ (πϵ, p−)

=− πϵ

∫ p

pϵ
e−

∫ τ(p,p′)
0 (λ+νϵ(pτ ))dτ

(
−c+ λuR

r + νϵ(p
′)uR

ℓ

) 1

η(p′)
dp′

− (1− πϵ)

∫ p

pϵ
e−

∫ τ(p,p′)
0 νϵ(pτ )dτ

(
−c+ νϵ(p

′)uL
ℓ

) 1

η(p′)
dp′

+
(
πϵe

−
∫ τ(p,pϵ)
0 (λ+νϵ(pτ ))dτ + (1− πϵ)e

−
∫ τ(p,pϵ)
0 νϵ(pτ )dτ

)
V σ∗

(πϵ
ϵ, p

ϵ).

Note as ϵ→ 0, pϵ → p and τ(p, pϵ)→ 0. Hence, as ϵ→ 0, Wϵ(πϵ, p−)→ V σ∗
(π∗, p−).

Next, consider

∂Wϵ(πϵ, p−)

∂p
=−

∫ p

pϵ
e−

∫ τ(p,p′)
0 (λ+νϵ(pτ ))dτ

(
−c+ λuR

r + νϵ(p
′)uR

ℓ

) 1

η(p′)
dp′

+

∫ p

pϵ
e−

∫ τ(p,p′)
0 νϵ(pτ )dτ

(
−c+ νϵ(p

′)uL
ℓ

) 1

η(p′)
dp′

+
(
e−

∫ τ(p,pϵ)
0 (λ+νϵ(pτ ))dτ − e−

∫ τ(p,pϵ)
0 νϵ(pτ )dτ

)
V σ∗

(πϵ, pϵ)

+
(
πϵe

−
∫ τ(p,pϵ)
0 (λ+νϵ(pτ ))dτ + (1− πϵ)e

−
∫ τ(p,pϵ)
0 νϵ(pτ )dτ

)
V σ∗

p (πϵ, pϵ)
η(πϵ

ϵ)

η(πϵ)

→ V σ∗

p (π∗, p−) as ϵ→ 0,

since πϵ → π∗, pϵ → p, and τ(p, pϵ) → 0, as ϵ → 0, provided that V σ∗
p (·, ·) is continuous at

(π∗, p−).
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Finally, consider

∂Wϵ(πϵ, p−)

∂p

=− c+ νϵ(Uρ(πϵ)−W σϵ
ϵ (πϵ, p)) + πϵλ(u

R
r −W σϵ

ϵ (πϵ, p)) +
∂W σϵ

ϵ (πϵ, p)

∂p
η(p) +

∂W σϵ
ϵ (πϵ, p)

∂p
η(p)

+
(
πϵe

−
∫ τ(p,pϵ)
0 (λ+νϵ(pτ ))dτ + (1− πϵ)e

−
∫ τ(p,pϵ)
0 νϵ(pτ )dτ

)
V σ∗

p (πϵ, pϵ)
η(pϵ)

η(p)

=
(
πϵe

−
∫ τ(p,pϵ)
0 (λ+νϵ(pτ ))dτ + (1− πϵ)e

−
∫ τ(p,pϵ)
0 νϵ(pτ )dτ

)
V σ∗

p (πϵ, pϵ)
η(pϵ)

η(p)

→V σ∗

p (π∗, p−) as ϵ→ 0,

where the second line holds because of the HJB for ϵ-commitment solution, i.e., by (A7).

B.5 Proof of Theorem 1

For our purpose, we first establish a preliminary result about the Bayesian value function. Recall

the solution ϕ to the ODE (2). Then, the following lemma holds.

Lemma B.2. For any p > pBℓ , ϕ
′(p; p, Uℓ(p))− U ′

ℓ(p) > 0 whenever ϕ(p; p, Uℓ(p)) = Uℓ(p).

Proof. Define δω := |δωr − δωℓ |, ω = L,R. It follows from (2) that

λp(1− p)(ϕ′(p; p, Uℓ(p))− U ′
ℓ(p)) = λp(uR

r − ϕ(p; p, Uℓ(p)))− c+ λ(1− p)(uL
ℓ − Uℓ(p))

= λ
(
puR

r + (1− p)uL
ℓ − Uℓ(p)

)
− c

= λpδR − c,

where the second equality uses the fact that ϕ(p; p, Uℓ(p))) = Uℓ(p). Since the last line is strictly

increasing in p and equals 0 when p = pBℓ , the above claim is proven.

For the proof, for each region of p’s, we will specify the strategy profile (σ, π) and the

associated value V σ(p, p) that are not fully specified in Theorem 1. We will then verify the value

function together with the strategy profile (σ, π) satisfies the equilibrium conditions.

For ease of presentation, we shall mainly focus on Case 1. Further, we will assume that either

c < c or c ∈ (c, c] but ∆ < ∆c, where ∆c will be specified later (in Region 3 in Section B.5.1).
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We call this case main case. We will first treat the main case in Section B.5.1. The remaining

cases will be treated in Section B.5.2 and Section B.6.

B.5.1 Main Case

Region 1: p ∈ [0, p1], where p1 := pBℓ .

Computation of equilibrium value. Recall that the strategy σ calls for an immediate choice of

ℓ for all state p ≤ pBℓ = p1. It thus immediately follows that the value associated with that

strategy is:

V σ(p, p) := Uℓ(p), for all p ∈ [0, p1].

Verification of equilibrium conditions. With V σ(p, p) = Uℓ(p), m(p) = 1 and ρ(p) = 0 imply

that π(p) = p is a minimizer in (13). Since U ′
ℓ(p) < 0 by assumption, π(p) = p is the unique

minimizer in (7). Substituting V σ(p, p) = Uℓ(p), V
σ
p (p, p) = U ′

ℓ(p), V
σ
p (p, p) = 0, and π(p) = p,

(11) simplifies to

max
m,ν,ρ

m [Uρ(p)− Uℓ(p)] + (1−m)
[
−c+ ν(Uρ(p)− Uℓ(p)) + pλ(uR

r − Uℓ(p)) + U ′
ℓ(p)η(p)

]
= 0.

With m = 1 and ρ = 0, the LHS is zero. Moreover, for any ρ, ν, simple algebra shows that

the coefficient of (1 − m) is non-positive for all p ≤ p1. Hence σ = (1, 0, 0) is a maximizer

and both (11) and (12) are satisfied for V σ(p, p) = Uℓ(p). Setting m(p) = 1 and ρ(p) = 0, the

objective in (13) is independent of p and π(p) = p is a minimizer. Hence we have shown that for

the posited strategy profile (σ, π) satisfy the equilibrium conditions, (7)–(13) for all p ∈ [0, p1].

Region 2: p ∈ (p1, p2], where p2 := p∗.

Computation of equilibrium value. Recall that the strategy σ calls on the DM to experiment

until p drifts to p1 = pBℓ . Fix any state p in this region. To compute the associated value V σ(·, p),
it is useful to ask: for which belief p ∈ P(p) is the continuation strategy σp Bayesian optimal?

The answer is p = p, since the strategy is exactly what a Bayesian DM with belief p will do—

experimenting until p reaches the Bayesian optimal stopping belief pBℓ = p1. Consequently, we

must have

V σ(p, p) = Φ(p).
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Since the strategy needs not be optimal for any DM with belief p ̸= p (including p outside P(p)),
we must have

V σ(p, p) ≤ Φ(p),∀p ∈ [0, 1].

Finally, since V σ(p, p)—the valuation of a fixed action path—must be linear in p, the preceding

observations must imply:

V σ(p, p) := Φ(p) + (p− p)Φ′(p), for all p ∈ (p1, p2]. (3)

Verification of equilibrium conditions. Since Φ′(p) ≤ 0 for all p ∈ (p1, p2], V
σ
p (p, p) ≤ 0 and

therefore π(p) = p is a minimizer in (7). With π(p) = p we have

V σ(π(p), p) = Φ(p), V σ
p (π(p), p) = Φ′(p), V σ

p (π(p), p) = 0.

Therefore (11) simplifies to

max
m,ν,ρ

m [Uρ(p)− Φ(p)] + (1−m)
[
−c+ ν(Uρ(p)− Φ(p)) + pλ(uR

r − Φ(p)) + Φ′(p)η(p)
]
= 0.

Since Φ(p) ≥ U(p) for any p, ν = 0 is optimal. Moreover, m = 0 is optimal since we have from

(2)

−c+ pλ(uR
r − Φ(p)) + Φ′(p)η(p) = 0

for the Bayesian value function. Therefore (11) and (12) are satisfied for all p ∈ (p1, p2]. Con-

dition (13) holds since m(p) = ν(p) = 0 implies that the objective in (13) is given by

− c+ pλ
(
uR
r − (Φ(p) + (p− p)Φ′(p))

)
− λp(1− p)Φ′(p)− λp(1− p)(p− p)Φ′′(p)

=− c+ pλ
(
uR
r − (Φ(p) + (1− p)Φ′(p))

)
− λp(1− p)(p− p)Φ′′(p).

Differentiating this with respect to p yields

λ
(
uR
r − (Φ(p) + (1− p)Φ′(p))

)
− λp(1− p)Φ′′(p).

Differentiating the ODE for the Bayesian Value function (see (2)) with respect to p we obtain

that this expression is equal to zero. Hence π(p) is a minimizer in (13).

To summarize, we have shown that for the posited profile (σ, π), together with the value
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function V σ, satisfy (7)–(13) for all p ∈ (p1, p2].

Region 3: p ∈ (p2, p3].

This region exists only when the ambiguity is sufficiently large so that V σ(p(p2), p2) < Uℓ(p(p2)).

If this inequality is reversed, then we set p3 = p2, and Region 3 is empty. Assuming the in-

equality, we will specify the upper bound p3, the critical cost c, and ambiguity level ∆c referred

to in the statement of the theorem. Finally, we will specify ν(p) and π(p) fully for p in this region.

Specification of ν and π and equilibrium value. The strategy σ for this region involves ran-

domization between experimentation and stopping for ℓ, with the latter done at a Poisson rate

ν(p). Meanwhile, nature chooses belief π(p) ∈ P(p). Here, we specify (ν, π) precisely, together

with the value V σ(p, p) associated with the strategy. We first construct a value function V (p, p)

that satisfies the equilibrium conditions, (7)-(13), given the candidate strategy σ. We will then

establish that the constructed function V (p, p) indeed coincides with the value of σ.

To begin, fix any p > p2. First, the fact that the DM randomizes between experimentation

and action ℓ means that the coefficient of ν in (12) must vanish, which implies (14). For the

required belief π(p) to be nature’s choice satisfying (7), it is sufficient, and will be seen also

necessary, to have Vp(p, p) = 0. Namely,

V (p, p) = V̂ (p), ∀p. (4)

Substituting this into (14), we get (15). The randomization by DM in turn implies that the

derivative of the objective in (12) with respect to p must vanish. This fact, together with (4)

yields (16).

It now remains to specify the function V̂ (p). To this end, we use (15),(16) and (4) to simplify

(11) and obtain the differential equation (ÔDE). Together with the boundary condition that

V̂ (p2) = Φ(p2), (ÔDE) admits a unique solution:4

V̂ (p) :=
C(

1−p
p

)u2−u1
δℓ + C

u1 +

(
1−p
p

)u2−u1
δℓ(

1−p
p

)u2−u1
δℓ + C

u2, (5)

4The derivation of the solution appears in Section B.5.3.
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where

C :=
u2 − Φ(p2)

Φ(p2)− u1

(
1− p2
p2

)u2−u1
δℓ

, (6)

and u1 and u2 are lower and higher roots of a quadratic equation; namely,

u1,2 :=
uR
r + uL

ℓ

2
±

√(
uR
r − uL

ℓ

2

)2

+
c

λ
δℓ. (7)

It is instructive to visualize how nature’s feasible “set of values” evolves on the equilibrium

path as p drifts down in this region. Our construction so far indicates that at each state the

feasible set forms a flat segment {(p, V̂ (p)) : p ∈ [p(p), p]}, and the belief at which the segment

crosses ℓ-payoff function Uℓ(p) is precisely nature’s choice π(p). As p falls in this region, the

segment shifts left. The starting state of Region 3, or its right-most boundary, p3, is the state

such that its associated value segment just meets or “touches” the ℓ-payoff function Uℓ(p) at the

former’s left-most end. Formally, p3 is defined by:

V̂ (p3) = Uℓ(p(p3)). (8)

Let û := minp∈[0,1] U(p). The following observations are useful to establish:

Lemma B.3. (i) V̂ (·) is strictly decreasing, and V̂ (p) ∈ (u1, u2) for all p > p2.

(ii) If V σ(p(p2), p2) < Uℓ(p(p2)) (i.e., the condition for Region 3 to exist holds) and u1 > uR
ℓ ,

then there exists a unique solution p3 ∈ (p2, 1).

(iii) If c ≤ c, then u1 ≥ û, so V σ(·, p2) > û for all p ≥ p2. If c ∈ [c, c), there exists ∆c > 0 such

that V σ(·, p3) = V̂ (p3) ≥ û if and only if ∆ < ∆c.

Proof. We first prove (i). To show V̂ (p) ∈ (u1, u2), it suffices to show that C > 0 since in

this case V̂ σ(p) is a convex combination of u1 and u2. We show that Φ(p2) ∈ (u1, u2) which

implies that C > 0. To see that Φ(p2) > u1, note that by part (a) of this Lemma, u1 is

the value of a feasible strategy for the DM that differs from the Bayesian strategy. Therefore,

the Bayesian value for any belief must strictly exceed u1. To see that Φ(p2) < u2, note that

u2 ≥ 1
2

(
uR
r + uL

ℓ

)
+ 1

2

∣∣uR
r − uL

ℓ

∣∣ = uR
r ∨ uL

ℓ > Φ(p2). Since u1 < u2, the term
(

1−p
p

)u2−u1
δℓ is

12



decreasing in p and therefore V̂ σ′(p) < 0.

We next prove (ii). By the assumption, we have V σ(p(p2), p2) < Uℓ(p(p2)). As p→ 1, V̂ (p)→
u1, whereas Uℓ(p(p)) → uR

ℓ , which by assumption is less than u1.
5 Hence, by the intermediate

value theorem, there exists p3 ∈ (p2, 1) such that V σ(p(p3), p3) = V̂ (p3) = Uℓ(p(p3)). The fact

that such a p3 is unique follows from the fact that V̂ (·) can only cross Uℓ(p(·)) from below:

d(V̂ σ(p)−Uℓ(p(p)))
dp

∣∣∣∣
Uℓ(p(p))=V̂ (p)

=
(uR

r −puR
ℓ −(1−p)uL

ℓ )(uL
ℓ −puR

ℓ −(1−p)uL
ℓ )

uL
ℓ −uR

ℓ
− c

λ
−
(
uR
ℓ − uL

ℓ

)
p(1− p) > 0

⇐⇒
(
uR
r − puR

ℓ − (1− p)uL
ℓ

)
p− c

λ
−
(
uR
ℓ − uL

ℓ

)
p(1− p) > 0

⇐⇒
(
uR
r − uR

ℓ

)
p− c

λ
> 0

⇐⇒ p > pBℓ ,

where we have used the shorthand p = p(p). Note that Uℓ(p(p)) = V̂ (p) implies that p > pBℓ
since Uℓ(p

B
ℓ ) = Φ(pBℓ ) > Φ(p2) = V̂ (p2) > V̂ (p) = Uℓ(p) and since Uℓ(·) is decreasing.

Finally, we prove (iii). Simple algebra shows that u1 > û if and only if c < c:

u1 > û ⇐⇒ uR
r +uL

ℓ

2
−
√(

uR
r −uL

ℓ

2

)2
+ c

λ
δℓ >

uR
r uL

ℓ −uL
r u

R
ℓ

δr+δℓ

⇐⇒ δRδr+δLδℓ
2(δr+δℓ)

>

√(
uR
r −uL

ℓ

2

)2
+ c

λ
δℓ

⇐⇒
(

δRδr+δLδℓ
2(δr+δℓ)

)2
>
(

uR
r −uL

ℓ

2

)2
+ c

λ
δℓ

⇐⇒ c < λ
δℓ

(
δRδr+δLδℓ
2(δr+δℓ)

+
uR
r −uL

ℓ

2

)(
δRδr+δLδℓ
2(δr−δℓ)

+
uR
r −uL

ℓ

2

)
⇐⇒ c < λ δRδLδr

(δr+δℓ)2
= δr

δr+δℓ
c = c.

For the last statement, fix any c ∈ (c, c). Then, u1 < û, as shown above. Rewrite (8)

V̂ (p3(∆)) = Uℓ(p(p3(∆)))

so that the dependence of p3 is made explicit. Note first that neither V̂ (·) nor Uℓ(·) depends on
the size of ambiguity ∆. The only source of dependence arises from the dependence of p(·) on

5This follows from the fact that limp→1

(
1−p
p

)u2−u1
δℓ = 0. Note that p(p)→ 1 as p→ 1.
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∆. Clearly p(p) is strictly decreasing in ∆ for each p. Since V̂ (·) can only cross Uℓ(p(·)) from
below (as was shown above), it follows that p3(∆) is strictly increasing in ∆. Further, as ∆

becomes sufficiently small, p3(∆) → p2 and as ∆ becomes sufficiently large, then p3(∆) → 1.

Note that V̂ (p2) = Φ(p2) > max{Ur(p2), Uℓ(p2)} ≥ û since c < c and that limp→1 V̂ (p) = u1 < û

since c < c. We thus conclude that there exists a unique ∆c that satisfies

V̂ (p3(∆c)) = û.

Since V̂ (·) is strictly decreasing and p3(·) is strictly increasing, it follows that V σ(·, p3) = V̂ (p3) ≥
û if and only if ∆ < ∆c.

Lemma B.3-(i) implies that the value segment shifts up (as well as shifts left) as p drifts

down.6 Next, Lemma B.3-(ii) implies that p3 is well defined and above p2 whenever the region

exists. Last, Lemma B.3-(iii) ensures that the value segment remains above û for all p ∈ (p2, p3],

if either c ≤ c or if c ∈ [c, c) but ∆ < ∆c, for some ∆c > 0. Our verification below will use this

fact, assuming the sufficient condition.

So far, our value function V (p, p) is constructed from HJB equations along with (7). We

now claim the value function indeed represents the value of the candidate strategy σ:

Lemma B.4. For all p ∈ (p2, p3), V (p, p) = V σ(p, p).

Proof. The value of strategy σ is given by:

V σ(p, p) =p

∫ p

p2

e−
∫ τ(p,p′)
0 (λ+ν(pτ ))dτ

(
−c+ λuR

r + ν(p′)uR
ℓ

) 1

λp′(1− p′)
dp′

+ (1− p)

∫ p

p2

e−
∫ τ(p,p′)
0 ν(pτ )dτ

(
−c+ ν(p′)uL

ℓ

) 1

λp′(1− p′)
dp′

+
(
pe−

∫ τ(p,p2)
0 (λ+ν(pτ ))dτ + (1− p)e−

∫ τ(p,p2)
0 ν(pτ )dτ

)
V σ(pτ(p,p2)(p), p2).

Using the change of variables τ = τ(p, p′′) and hence pτ = p′′ and dτ = − 1
λp′′(1−p′′)

dp′′ we can

rewrite this as follows:7

6One can also see that V σ is continuous, including at the boundary. This follows from the fact that V̂ (p2) =
Φ(p2), and that p2 = p∗ and Φ′(p∗) = 0.

7Remember that pt =
p0

p0+(1−p0)e
λt . Setting p0 = p and pt = p′ we get

τ(p, p′) =
1

λ

(
log

p

(1− p)
− log

p′

1− p′

)
.
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V σ(p, p) =p

∫ p

p2

e
−

∫ p

p′ (λ+ν(p′′)) dp′′
λp′′(1−p′′)

(
−c+ λuR

r + ν(p′)uR
ℓ

) 1

λp′(1− p′)
dp′

+ (1− p)

∫ p

p2

e
−

∫ p

p′ ν(p
′′) dp′′

λp′′(1−p′′)
(
−c+ ν(p′)uL

ℓ

) 1

λp′(1− p′)
dp′

+

(
pe

−
∫ p
p2

(λ+ν(p′′)) dp′′
λp′′(1−p′′) + (1− p)e

−
∫ p
p2

ν(p′′) dp′′
λp′′(1−p′′)

)
V σ(pτ(p,p2)(p), p2).

We wish to show that V (p, p) defined in Region 3 coincides with V σ(p, p) above. To this end,

note first that V (·, p2) = V̂ (p2) = V σ(·, p2), by the definition of V̂ (p) at p = p2. Recall that we

defined V (p, p) in Region 3 so that Vp(p, p) = 0 and that

c = λp
(
uR
r − V (p, p)

)
+ ν(p) (Uℓ(p)− V (p, p)) + η(p)Vp(p, p) + η(p)Vp(p, p) (9)

for all p ∈ [0, 1] and p ∈ (p2, p3].

To show that V (p, p) = V σ(p, p), substitute p = 0 and p = 1 in (9) to obtain two ODEs:

Vp(0, p) =
c− ν(p)uL

ℓ

η(p)
+

ν(p)

η(p)
V (0, p);

Vp(1, p) =
c− λuR

r − ν(p)uR
ℓ

η(p)
+

λ+ ν(p)

η(p)
V (1, p).

Integrating these with the boundary condition given by V (·, p2) = V σ(·, p2) we get

V (0, p) = e
∫ p
p2

ν(x)
η(x)

dx
V σ(0, p2) + e

∫ p
p2

ν(x)
η(x)

dx

∫ p

p2

e
−

∫ p′
p2

ν(x)
η(x)

dx c− ν(p′)uR
ℓ

η(p′)
dp′

= e
∫ p
p2

ν(x)
η(x)

dx
V σ(0, p2) +

∫ p

p2

e
∫ p

p′
ν(x)
η(x)

dx c− ν(p′)uR
ℓ

η(p′)
dp′

= V σ(0, p),

Hence,
dτ(p, p′)

dp
=

1

λp(1− p)
and

dτ(p, p′)

dp′
= − 1

λp(1− p)
.
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and

V (1, p) = e
∫ p
p2

λ+ν(x)
η(x)

dx
V σ(1, p2) + e

∫ p
p2

λ+ν(x)
η(x)

dx

∫ p

p2

e
−

∫ p′
p2

λ+ν(x)
η(x)

dx c− λuR
r − ν(p′)uR

ℓ

η(p′)
dp′

= e
∫ p
p2

λ+ν(x)
η(x)

dx
V σ(1, p2) +

∫ p

p2

e
∫ p

p′
λ+ν(x)
η(x)

dx c− λuR
r − ν(p′)uR

ℓ

η(p′)
dp′

= V σ(1, p).

Since V (p, p) = pV (1, p)+ (1− p)V (0, p) and V σ(p, p) = pV σ(1, p)+ (1− p)V σ(0, p), we have

proven that V (p, p) = V σ(p, p).

Verification of equilibrium conditions. To verify (11)–(12), note that the definition of π(p) in

(15) implies that Uℓ(π(p)) − V σ(π(p), p) = 0. We have already observed from Lemma B.3-(iii)

that V σ(·, p) ≥ û for all p ∈ (p2, p3]. This further implies that π(p) ≤ p̂ for p ∈ (p2, p3]. Therefore

ρ(p) = 0 is a maximizer in (11)–(12). By (14), ν(p) as defined in (16) is a maximizer as well. It

remains to show that m(p) = 0 is a maximizer and the RHS in (11)–(12) is equal to zero, both

of which would follow if the coefficient of (1−m) in the objective in (11)–(12) is equal to zero.

We can use (14) and (4) to simplify the coefficient of (1−m) to:

−c+ π(p)λ(uR
r − V̂ (p))− λp(1− p)V̂ (p), (10)

which vanishes precisely because V̂ solves (ÔDE). We thus conclude thatm(p) = 0 is a minimizer

in (12). We have thus verified (5) and (12).

To verify (13) note that, with m(p) = ρ(p) = 0 and ν(p) defined in (16), the derivative of

the objective in (13) with respect to p simplifies to:

ν(p)
(
uR
ℓ − uL

ℓ

)
+ λ(uR

r − V (π(p), p)) = ν(p)
(
uR
ℓ − uL

ℓ

)
+ λ

(
uR
r − V̂ (p)

)
= 0,

where we have used Vp(π(p), p) = Vpp(π(p), p) = 0. Hence, we conclude that π(p) satisfies (13).

It also satisfies (7) since V σ(p, p) is constant in p.

Region 4: p ∈ (p3, p4].

Here, p4 will be defined as part of the analysis.
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Computation of equilibrium value. Recall that the strategy σ calls on the DM to experiment

fully at each state p > p3 until state p3 is reached. To compute the associated value V σ(p, p),

it is useful to consider a (hypothetical) Bayesian DM who would find such a strategy optimal.

To this end, we represent the DM’s problem as a stopping problem where the stopping payoff

is the continuation value v∗∗ := V̂ (p3):
8

Auxiliary Problem: Imagine a hypothetical Bayesian DM with any belief p ≥ p(p3)

who at each instant may experiment or stops. She may experiment until either

breakthrough occurs or her belief reaches p(p3). If she stops at any point, she collects

the payoff V̂ (p3) (independent of p). The optimal value of this stopping problem is:

Ψ(p) = max
p′∈[p(p3),p]

ϕ(p; p′, v∗∗). (11)

Let p∗∗ denote the optimal stopping belief. We note that Ψ(p∗∗) = v∗∗ and Ψ′(p∗∗) ≥
0, with equality holding whenever p∗∗ > p(p3) (a consequence of smooth pasting).

We can easily see that p∗∗ ∈ [p(p3), p3).
9

Fix any state p > p3. We ask: for what belief p is the continuation strategy σp optimal

over Region 3? Recall σp prescribes: “experiment for the duration of τ(p, p3) and, absent

breakthrough by the end of the experimentation, stop and collect V̂ (p3),” where τ(p, p′) denotes

the time it takes for a belief to drift from p to p′. Since, by definition, p∗∗ is the optimal stopping

belief, the answer to the above question is precisely the belief, q(p), such that

τ(p, p3) = τ(q(p), p∗∗). (12)

In words, it is the belief that would be updated to p∗∗ after the prescribed duration τ(p, p3) of

experimentation.10 Since p∗∗ is the optimal stopping belief in the above Auxiliary Problem, a

8Recall that if Region 3 does not exist, then p3 = p2 = p∗, so V̂ (p3) = V̂ (p2) = Φ(p2), as defined before. All
subsequent results hold since Vp(p, p2) = Φ′(p2) = Φ′(p∗) = 0.

9To see that p∗∗ < p3, it suffices to show that p∗∗ < p∗ since p∗ ≤ p3. To show p∗∗ < p∗, suppose otherwise.
Then,

λp∗∗(1− p∗∗)Ψ
′(p∗∗) = λp∗∗(u

R
r −Ψ(p∗∗))− c = λp∗∗(u

R
r − v∗∗)− c > λp∗(u

R
r − Φ(p∗))− c = Ψ′(p∗) ≥ 0,

where the first and second last equalities follow from the fact that both Ψ and Φ solve (2), the strict inequality
from v∗∗ < Φ(p) for all p, and the last inequality holds since p3 ≥ p∗.

10Obviously, q(p3) = p∗∗.
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DM with belief q(p) finds the prescribed strategy optimal at state p and thus will realize the

value of Ψ(q(p)). Consequently,

V σ(q(p), p) = Ψ(q(p)).

What about a DM with belief p ̸= q(p)? Her value is weakly below Ψ(q(p)) and as noted before

linear in p. This pins down the value function for belief p at state p:

V σ(p, p) := Ψ(q(p)) + (p− q(p))Ψ′(q(p)). (13)

We define p4 to be such that

V σ(p(p4), p4) = Ur(p(p4)). (14)

Verification of equilibrium conditions. We first claim that π(p) = p(p) is a worst-case belief

satisfying (7). This follows from the fact, for any p ∈ P(p), p ≥ p3,

V σ
p (p, p) = Ψ′(q(p)) ≥ 0,

where the equality follows from (13) and the inequality from the convexity of Ψ(·) and Ψ′(p∗∗) ≥
0.

We next verify (12). First, we show that ν(p) = 0. To this end, we first observe:

Lemma B.5. For all p > p3, V
σ(p(p), p) ≥ Uℓ(p(p)).

Proof. Note V σ(p(p3), p3) = V̂ (p3) ≥ Uℓ(p(p3)).
11 Next, note that p(p3) > pB

r
and V σ(p(p3), p3) =

ϕ(p(p3); p(p3), Uℓ(p(p3))). Since, by Lemma B.2, ϕ(p; p, Uℓ(p)) can only cross Uℓ(p) from below,

we have
dV σ(p(p), p)

dp

∣∣∣∣
p=p3

≥ U ′
ℓ(p(p3)).

Observe further V σ(p(p), p) = ϕ(p(p); p(p3), Uℓ(p(p3))) is convex in p(p) whereas Uℓ(p(p)) is

linear in p(p). Combining the two facts leads to the desired conclusion.

Next, we observe that Uℓ(p(p3)) = V̂ (p3) > û. This means that

V σ(p(p3), p3) = Uℓ(p(p3)) > Ur(p(p3)).

11If V σ(p(p2), p2) < Uℓ(p(p2)), then the inequality holds with equality by definition. If V σ(p(p2), p2) ≥
Uℓ(p(p2)), then the inequality follows from the fact that p3 = p2.
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By definition of p4, we have V σ(p(p), p) > Ur(p(p)) for all p ∈ (p3, p4). Combining this with

Lemma B.5, we conclude that ν(p) = 0.

Next, we prove m(p) = 0. Substituting ν(p) = 0 and π(p) = p(p), the objective in (12)

becomes

m
[
Uρ(p)− V (p, p−)

]
+ (1−m)

[
−c+ λp(uR

r − V (p, p−)) + Vp(p, p−)η(p) + Vp(p, p−)η(p)
]
,

where we suppress the argument of p(p) for notational ease. Note that the coefficient of m is

negative (by the same argument as for ν = 0). The coefficient of (1−m) can be written

− c+ λp(uR
r − V (p, p−)) + Vp(p, p−)η(p) + Vp(p, p−)η(p)

=− c+ λp
(
uR
r −Ψ(q(p))− (p− q(p))Ψ′(q(p))

)
+ η(p)Ψ′(q(p)) + η(p)

[
(p− q(p))Ψ′′(q(p))q′(p)

]
=− c+ λq(p)

(
uR
r −Ψ(q(p))

)
+ η(q(p))Ψ′(q(p))

+ λ(p− q(p))
[
uR
r −Ψ(q(p))− (1− q(p))Ψ′(q(p))− q(p)(1− q(p))Ψ′′(q(p))

]
=0,

where we have used (13) for the first equality and q′(p) = η(q(p))/η(p) for the second equality.12

The last equality follows since Ψ satisfies (2) and its derivative vanishes. We have shown that

the coefficient of m in the objective in (11) and (12) is negative and the coefficient of (1 −m)

is zero. Therefore, m = 0 is a maximizer and (11) holds.

It remains to verify (13). Substituting m(p) = ν(p) = 0, the objective becomes the same

as the coefficient of 1−m above, except that p is replaced by p. Differentiating the expression

with respect to p yields:

λ
(
uR
r −Ψ(q(p))− (1− q(p))Ψ′(q(p))

)
− λq(p)(1− q(p))Ψ′′(q(p)) = 0,

where the equality follows from the fact that Ψ satisfies (2), so its derivative, which coincides

12This holds since τ(q(p), q(p3)) = τ(p, p3) implies that ln(q(p)/(1− q(p)))− ln(p∗/(1− p∗)) = ln(p/(1− p))−
ln(p3/(1− p3)). Hence the difference in log-likelihood ratios of q(p) and p is constant

ln
q(p)

1− q(p)
− ln

p

1− p
= K,

for some K. Differentiating this with respect to p, we obtain q′(p) = η(q(p))/η(p).
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with the LHS of the above equation, must vanish.

We have thus shown that the objective in (13) is independent of p and hence the requirement

that p = p(p) is a minimizer in (13) is satisfied.

Region 5: p ∈ [p4, 1].

Computation of equilibrium value. Recall that the strategy σ calls for an immediate choice of r

for all states p ∈ [p4, 1]. It thus immediately follows that the value associated with that strategy

is:

V σ(p, p) := Ur(p), for all p ∈ [p4, 1].

Verification of equilibrium conditions. Since Ur(·) is increasing, π(p) = p(p) satisfies (7); given

m(p) = ρ(p) = 1, the coefficient of p in the objective of (13) vanishes, so π(p) = p(p) is also a

minimizer in (13).

Substituting π(p) = p(p) = p and V σ(p, p) = Ur(p) in (11)–(12) we get the following expres-

sion for p > p4

m
[
Uρ(p)− Ur(p)

]
+ (1−m)

[
−c+ λp

(
uR
r − Ur(p)

)
− λp(1− p)U ′

r(p)
]

=m
[
Uρ(p)− Ur(p)

]
+ (1−m)

[
−c+ λp

(
Ur(1)− Ur(p)− (1− p)U ′

r(p)
)]

=m
[
Uρ(p)− Ur(p)

]
+ (1−m)(−c),

where the last line follows since Ur(p) is linear. Recall that Uℓ(p(p4)) ≤ V σ(p(p4), p4) =

Ur(p(p4)), so we note that Uℓ(p) ≤ Ur(p) for p ≤ p4. Therefore, m(p) = ρ(p) = 1 satisfies

(12). Substituting these, we also have (11).

B.5.2 Case 1 (Φ′(p∗) = 0) with c ≥ c and ∆ > ∆c

In this case, Region 4, as well as its boundaries p3 and p4, need to be modified. Theorem 1

specifies

(m(p), ν(p), ρ(p)) =
(
1, 0, δℓ

δr+δℓ

)
, (15)

and π(p) = p̂, for p ∈ [p3, p4), where p3 is now set at p′3, which satisfies V̂ (p′3) = û. We note that

this new p′3 is smaller than the original p3 and is still larger than p2.
13 p4 is now set at p′4, which

13Recall V̂ (·) is strictly decreasing. Since V̂ (p3) < û when c ∈ (c, c) and ∆ > ∆c, we have p′3 < p3. We also
have p′3 > p2 since V̂ (p2) = Φ(p2) > max{Uℓ(p2), Ur(p2)} ≥ û.
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uniquely satisfies p(p′4) = p̂. One can see that p′4 > p′3. Given σ(p) for this region, the value of

the strategy is given by V σ(p, p) = û.

It is straightforward to verify that V σ(p, p) = û together with π(p) = p̂ and (15) satisfy

(7)–(13) for p ∈ (p3, p4). Indeed, inserting π(p) = p̂ and V σ(p, p) = û as well as V σ
p (p, p) = 0

and V σ
p (p, p) = 0, the objective in (11) becomes −(1 −m)c. Hence m = 1 is optimal and (11)

holds. Since the objective is independent of ν and ρ, (12) also holds. At p = p3, we have

V σ(p, p−) = V̂ σ(p3) = û and V σ
p (p, p−) = 0, and V σ

p (p, p−) < 0, but we can employ the same

argument as in Region 3 to show that the coefficients of m and (1−m), in the objective is zero

and hence m = 1 is optimal.

Finally, we verify (13). Inserting (15), and V σ(p, p−) = V σ(p, p) = û in the objective in

(13), we see that the objective is equal to zero and hence π(p) = p̂ is a minimizer. Finally,

V σ
p (p, p) = 0 implies that (7) holds.

B.5.3 Solution to (ÔDE)

With the boundary condition V̂ σ(p2) = Φ(p2) we obtain a candidate value function V̂ σ(p).

p(1− p)V̂ σ′(p)−

(
uR
r − V̂ σ(p)

)(
uL
ℓ − V̂ σ(p)

)
δℓ

+
c

λ
= 0

p(1− p)V̂ σ′(p)−
uR
r u

L
ℓ −

(
uR
r + uL

ℓ

)
V̂ σ(p) +

(
V̂ σ(p)

)2
δℓ

+
c

λ
= 0

p(1− p)V̂ σ′(p) +
uR
r + uL

ℓ

δℓ
V̂ σ(p)− 1

δℓ

(
V̂ σ(p)

)2
+

c

λ
− uR

r u
L
ℓ

δℓ
= 0.

Letting ξ := ln p
1−p

and Ṽ (ξ) = V̂ σ(p) we have p(1− p)V̂ σ′(p) = Ṽ ′(ξ) so that the ODE can be

written as

Ṽ ′(ξ) +
uR
r + uL

ℓ

δℓ
Ṽ (ξ)− 1

δℓ

(
Ṽ (ξ)

)2
+

c

λ
− uR

r u
L
ℓ

δℓ
= 0

Ṽ ′(ξ) =
uR
r u

L
ℓ

δℓ
− c

λ
− uR

r + uL
ℓ

δℓ
Ṽ (ξ) +

1

δℓ

(
Ṽ (ξ)

)2
.

Let t(ξ) = Ṽ (ξ)/δℓ. Then we have

t′(ξ) =
Ṽ ′(ξ)

δℓ
=

uR
r u

L
ℓ

δ2ℓ
− c

λδℓ
− uR

r + uL
ℓ

δ2ℓ
Ṽ (ξ) +

(
Ṽ (ξ)

δℓ

)2
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=
uR
r u

L
ℓ

δ2ℓ
− c

λδℓ
− uR

r + uL
ℓ

δℓ
t(ξ) + (t(ξ))2

t′(ξ)− (t(ξ))2 =
uR
r u

L
ℓ

δ2ℓ
− c

λδℓ
− uR

r + uL
ℓ

δℓ
t(ξ)

. Next suppose there is a function φ(ξ) such that

t(ξ) = −φ′(ξ)

φ(ξ)
.

Then

t′(ξ) = −φ′′(ξ)φ(ξ)− (φ′(ξ))2

(φ(ξ))2
= −φ′′(ξ)

φ(ξ)
+ (t(ξ))2 .

Hence

−φ′′(ξ)

φ(ξ)
=

uR
r u

L
ℓ

δ2ℓ
− c

λδℓ
+

uR
r + uL

ℓ

δℓ

φ′(ξ)

φ(ξ)

φ′′(ξ) +
uR
r + uL

ℓ

δℓ
φ′(ξ) +

(
uR
r u

L
ℓ

δ2ℓ
− c

λδℓ

)
φ(ξ) = 0

. The roots of a2 +
uR
r +uL

ℓ

δℓ
a+

(
uR
r uL

ℓ

δ2ℓ
− c

λδℓ

)
are

a1,2 = −
uR
r + uL

ℓ

2δℓ
±

√(
uR
r + uL

ℓ

2δℓ

)2

− uR
r u

L
ℓ

δ2ℓ
+

c

λδℓ

= −uR
r + uL

ℓ

2δℓ
±

√(
uR
r − uL

ℓ

2δℓ

)2

+
c

λδℓ
.

Note that this implies a1 = −u2/δℓ and a2 = −u1/δℓ where we use the subscript 1 for the lower

root in both ai and ui. Given that the roots are real we have a general solution

φ(ξ) = C1e
a1ξ + C2e

a2ξ,
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where C1, C2 are constants of integration. Setting C = C2/C1 we get the general solution for

t(ξ), Ṽ (ξ), and V̂ σ(p):

t(ξ) = −C1a1e
a1ξ + C2a2e

a2ξ

C1ea1ξ + C2ea2ξ
= −a1e

a1ξ + Ca2e
a2ξ

ea1ξ + Cea2ξ
= −a1e

(a1−a2)ξ + Ca2
e(a1−a2)ξ + C

Ṽ (ξ) = −δℓ
a1e

(a1−a2)ξ + Ca2
e(a1−a2)ξ + C

V̂ σ(p) = −δℓ
a1

(
p

1−p

)a1−a2
+ Ca2(

p
1−p

)a1−a2
+ C

,

where

a1 − a2 = −
1

δℓ

√
(uR

r − uL
ℓ )

2
+ 4

c

λ
δℓ < 0.

We note that

lim
p→1

V̂ σ(p) = −δℓa2 = u1.

Boundary condition:

V̂ σ(p2) = Φ(p2)

⇐⇒ −δℓ
a1

(
p

1−p

)a1−a2
+ Ca2(

p
1−p

)a1−a2
+ C

= Φ(p2)

⇐⇒ −δℓ

(
a1

(
p

1− p

)a1−a2

+ Ca2

)
= Φ(p2)

((
p

1− p

)a1−a2

+ C

)

⇐⇒ (Φ(p2) + δℓa2)C = − (Φ(p2) + δℓa1)

(
p

1− p

)a1−a2

C = −Φ(p2) + δℓa1
Φ(p2) + δℓa2

(
p2

1− p2

)a1−a2

=
u2 − Φ(p2)

Φ(p2)− u1

(
p2

1− p2

)a1−a2

.
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B.6 Case 2: Φ′(p∗) < 0

Theorem B.1. Suppose c < c and Φ′(p∗) < 0. For each c ∈ (0, c) there is a threshold ∆c ∈
(0,+∞] with ∆c = +∞ if and only if c ≤ c such that the intrapersonal equilibrium is described

by:

(a) If ∆ ≤ ∆c, there exist cutoffs 0 < p1 < p2 ≤ p3 < p4 < 1 with p1 = pBℓ and p2 = p∗ such

that

(m(p), ν(p), ρ(p)) =



(1, 0, 0)

(0, 0, ·)

(m(p2), 0, 1)

(0, ν∗(p), 0)

(0, 0, ·)

(1, 0, 1)

π(p) =



p if p ∈ [0, p1]

p if p ∈ (p1, p2)

p if p = p2

π∗(p) if p ∈ (p2, p3)

p(p) if p ∈ [p3, p4)

p(p) if p ∈ [p4, 1]

with m(p2) ∈ (0, 1), ν∗(p) > 0 and π∗(p) ∈ (p(p), p), for p ∈ (p2, p3), and p2 < p3 if and

only if Φ(p∗) < Uℓ(p(p
∗)).

(b) If ∆ > ∆c, the equilibrium has the same structure as in (a) except that for p ∈ [p3, p4),

where

(m(p), ν(p), ρ(p)) = (1, 0, ρ̂) and π(p) = p̂.

In this case, the characterization remains the same except at one state p = p2. In the main

case, recall that p2 was part of Region 2. When Φ′(p∗) < 0, Region 2 strategy and verification

apply only for p ∈ (p1, p2). (The strategies and verification for all other regions remain valid.)

The case of p = p2 will change as follows.

When Φ′(p∗) < 0, we have p2 = p∗ = pBr , where recall pBr is the stopping boundary for the

Bayesian DM. Therefore, Φ(p2) = Ur(p2). The strategy σ(p2) specifies ν(p2) = 0 and ρ(p2) = 1.

We now specify m(p2) below. Given ν(p2) = 0 and ρ(p2) = 1, we have

V σ(p, p2) = Ur(p2) + (p− p2)
[
m(p2)U

′
r(p2) + (1−m(p2))V

σ
p (p, p

2
−)
]

= Ur(p2) + (p− p2) [m(p2)U
′
r(p2) + (1−m(p2))Φ

′(p2)] .

To understand the first line, note that conditional on stopping, the DM gets a payoff of Ur(p) =
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Ur(p2) + (p− p2)U
′
r(p2), and conditional on not stopping, she gets V σ(p, p2−) = V σ(p2−, p2−) +

(p− p2)V
σ
p (p, p2−) = Ur(p2) + (p− p2)Φ

′(p2).
14

We set m(p2) so that the term in the square brackets vanishes:

m(p2) =
−Φ′(p2)

U ′
r(p2)− Φ′(p2)

∈ (0, 1),

where m(p2) ∈ (0, 1) holds since Φ′(p2) < 0. With this definition of m(p2), we have V
σ
p (p, p2) = 0

so that π(p2) = p2 is a minimizer in (7).

To verify (11) at p2, we substitute π(p2) = p2, V (π(p2), p2−) = Φ(p2) = Ur(p2), V
σ
p (π(p2), p2−) =

Φ′(p2), and V σ
p (π(p2), p2−) = 0. Since p2 > p̂ if Φ(p2) = Ur(p2), ρ = 1 is optimal, and hence the

objective is independent of ν, we obtain the following simplified version of (11):

max
m

(1−m)
[
−c+ pλ(uR

r − Φ(p2)) + Φ′(p2)η(p2)
]
= 0.

The terms inside the square brackets are equal to zero (from (1)), so (11) holds, and σ(p2) =

(m(p2), 0, 1) is a maximizer of (12). Finally, note that the objective in (13) is

m(p2)
(
Ur(p)− V σ(p, p2−)

)
+ (1−m(p2))

[
−c+ pλ

(
uR
r − V σ(p, p2−)

)
+ V σ

p (p, p2−)η(p) + V σ
p (p, p2−)η(p2)

]
=m(p2) (Ur(p)− (Φ(p2) + (p− p2)Φ

′(p2)))− (1−m(p2))c

+ (1−m(p2))

[
pλ
(
uR
r − (Φ(p2) + (p− p2)Φ

′(p2))
)
− λp(1− p)Φ′(p2)

−λp2(1− p2)(p− p2)Φ
′′(p2)

]
=m(p2) (Ur(p)− (Φ(p2) + (p− p2)Φ

′(p2)))− (1−m(p2))c

+ (1−m(p2))
[
pλ
(
uR
r − Φ(p2)

)
+ pλ(1− p2)Φ

′(p2)− λp2(1− p2)(p− p2)Φ
′′(p2)

]
,

where we have used (3) to obtain the second line. Differentiating this with respect to p yields

m(p2) (U
′
r(p)− Φ′(p2))

+ (1−m(p2))
[
λ
(
uR
r − (Φ(p2) + (1− p2)Φ

′(p2))
)
− λp2(1− p2)Φ

′′(p2)
]

=− Φ′(p2) + (1−m(p2))
[
λ
(
uR
r − Φ(p2)

)
+ λ(1− p2)Φ

′(p2)− λp2(1− p2)Φ
′′(p2)

]
,

14Here we have to distinguish carefully between V σ(p, p2−), V
σ
p (p, p2−) and V σ(p, p2), V

σ
p (p, p2).
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where we have used the definition of m(p2) to obtain the second line. Since the derivative of (2)

vanishes, the terms inside the brackets vanish. Given Φ′(p2) < 0, π(p) = p is thus the unique

maximizer in (13).

To summarize, we have shown that for the posited σ, (7)–(13) hold for p = p2.

B.7 Uniqueness

Here we prove the intrapersonal equilibrium, σ = (ν, µ, ρ), together with nature’s choice π,

described in Theorem 1 and Theorem B.1, is unique for the case c < c and c ≥ c. Towards a

contradiction, suppose there is a different equilibrium σ̃ = (ν̃, m̃, ρ̃), with π̃ describing nature’s

choice. Let

p̃ := inf{p ∈ (0, 1) : σ̃(p) ̸= σ(p)}.

Assuming c < c, we will start with Case 1 and move through the different parameter regions,

excluding each of them.

1. p̃ ∈ [0, p1): Recall m(p) = 1 and ρ(p) = 0 for all p ∈ [0, p1). Assuming p̃ < p1, the

admissibility of σ̃ means that there must exist an open interval (p̃, p̃ + ε) ⊂ [0, p1] such

that m̃(p) = 0 for all p ∈ (p̃, p̃+ε).15 Consider p ∈ (p̃, p̃+ε). Since V σ̃(p, p) < Φ∗(p) for all

p ∈ [p(p), p] and since Φ∗(p) ≤ Uℓ(p) for all p ≤ p1 = pBr , we have V σ̃(p, p) < Uℓ(p),∀p ∈
[p(p), p] and hence V σ̃(π̃(p), p) < Uℓ(π̃(p)), which violates condition (8) of Definition 1.

2. p̃ ∈ [p1, p2): Recall m(p) = ν(p) = 0 for all p ∈ (p1, p2).

(a) Suppose there is some ε > 0 such that m̃(p) = 0 for all p ∈ [p̃, p̃ + ε). We then

have V σ̃(p, p̃) = V σ(p, p̃) for all p, with the value V σ̃(p, p) being continuous in p

at p = p̃. Since V σ
p (p, p) < 0, it follows V σ̃

p (p, p) < 0 and hence π̃(p) = p for

p ≥ p̃ sufficiently close to p̃. Next, since V σ(p, p) > Uρ(p) for all p ∈ (p1, p2) and

all ρ ∈ [0, 1], the same property holds under strategy σ̃ for p ≥ p̃ sufficiently close

to p̃, that is, V σ̃(p, p) > Uρ(p) for all ρ ∈ [0, 1]. Condition (9) of Definition 1 then

implies ν̃(p) = ν(p) = 0 for all p belonging to a right neighborhood of p̃, which is a

contradiction.

15Our admissibility restrictions rule out the possibilities ofm(p) < 1 on an isolated point as well asm(p) ∈ (0, 1)
for all p belonging to an interval of states.
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(b) Suppose next that for every ε > 0 there is some p ∈ [p̃, p̃ + ε) such that m̃(p) > 0.

Since p̃ < p2 = p∗ < p̂, we have p < p̂ for all p ≥ p̃ sufficiently close to p̃. Hence,

by condition (10), if m̃(p) > 0 for such values of p, then ρ̃(p) = 0. We start by

considering the DM’s strategy at state p̃. With probability m̃(p̃) the DM stops and

collects payoff Uℓ(p) for some p ∈ P(p̃); and with the complementary probability she

obtains the continuation payoff of strategy σ. Her value at state p̃ is thus

V σ̃(p, p̃) = m̃(p̃)Uρ̃(p̃)(p) + (1− m̃(p̃))V σ(p, p̃), (16)

with Uρ̃(p̃)(p) = Uℓ(p). Since both Uℓ(p) and V σ(p, p̃) are strictly decreasing in p, we

have π̃(p̃) = p̃ by condition (7). Since Uℓ(p̃) < V σ(p̃, p̃) = Φ(p̃), V σ̃(π̃(p̃), p̃) is strictly

decreasing in m̃(p̃) and hence m̃(p̃) = 0. Since we assumed that for every ε > 0

there exists some p ∈ (p̃, p̃ + ε) such that m̃(p) > 0 and since we just showed that

m̃(p̃) = 0, the remaining possibility is to have an interval to the right of p̃ on which

m̃(p) = 1 (and ρ̃(p) = 0). For all states p belonging to this interval, we thus have

V σ̃
p (p, p) = U ′

ℓ(p) < 0 and hence π̃(p) = p. The HJB functional then simplifies to

G(m, ν, 0, π̃(p), p, V σ̃, dV σ̃) = (1−m)
(
−c+ pλδR

)
.

Since p > pBℓ = c
λδR

, the functional is strictly decreasing m. Condition (12) thus

requires m̃(p) = 0 for all p ≥ p̃ sufficiently close to p̃, which yields a contradiction.

3. p̃ ∈ [p2, p3): Recall m(p) = 0, ν(p) > 0 and ρ(p) = 0 for all states p in Region 3.

(a) Suppose again there is some ε > 0 such that m̃(p) = 0 for all p ∈ [p̃, p̃ + ε). For

every ε′ ∈ (0, ε), we can then find some p ∈ [p̃, p̃ + ε′) such that ν̃(p) ̸= ν(p).16 As

before, we have V σ̃(p, p̃) = V σ(p, p̃), with V σ̃(p, p) being continuous in p at p = p̃. If

ν̃(p) > 0 on a right neighborhood of p̃, the same HJB conditions pinning down ν(p)

must hold. Uniqueness of the solution of these conditions then implies ν̃(p) = ν(p)

for all p belonging to this neighborhood. We are left with the following possibility:

for every ε′ ∈ (0, ε), we can find some p ∈ [p̃, p̃ + ε′) such that ν̃(p) = 0. As ε′ → 0,

the probability that R-evidence arrives within time τ(p, p̃) vanishes, so both V σ̃
p (p, p)

16The possibility where there is an ε′ ∈ (0, ε) such that ν̃(p) = ν(p) for all p ∈ [p̃, p̃ + ε′), but then ρ̃(p) ̸=
ρ(p) = 0 for p close or equal to p̃ would clearly violate the HJB conditions.
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and V σ̃
pp(p, p) vanish (recall that at p = p̃, the value segment {V σ(p, p̃)}p∈P(p̃) is flat.)

Hence, for ε′ sufficiently small, the right-hand side of the HJB functional is strictly

increasing in p for all p such that ν̃(p) = 0. Nature thus chooses π̃(p) = p(p). Since

however Uℓ(p(p)) > V σ̃(p(p), p) for p sufficiently close to p̃, this violates condition

(9).

(b) Consider next the case where for every ε > 0 there is some p ∈ [p̃, p̃ + ε) such that

m̃(p) > 0. As before, we start by showing m̃(p̃) = 0. At state p̃ the DM’s value is

described by (16).

• Suppose π̃(p̃) > π(p̃). Then, since V σ(π̃(p̃), p̃) > U(π̃(p̃)), V σ̃(p, p̃) strictly de-

creases in m̃(p̃), which implies m̃(p̃) = 0.

• Suppose π̃(p̃) ≤ π(p̃). Since π(p̃) < p̂, condition (10) implies ρ̃(p̃) = 0.17 For

nature to optimally choose π̃(p̃) < p̃, the DM’s value V σ̃(p, p̃) must be weakly

increasing in p, that is, V σ̃
p (p, p) ≥ 0. However, V σ

p (p, p̃) = 0 and U ′
ℓ(p) < 0, so

V σ̃
p (p, p) ≥ 0 requires m̃(p̃) = 0, as can be seen from (16).

Having shown m̃(p̃) = 0, this leaves the possibility that there is an interval (p̃, p̃ +

ε], ε > 0, such that m̃(p) = 1 for all p ∈ (p̃, p̃ + ε]. If p ≤ p̂ for all p in that

interval, then (10) implies ρ̃(p) = 0, in which case we have V σ̃(p, p) = Uℓ(p) and

hence π̃(p) = p. We can then follow the same argument as in point 2(b) to show

that m̃(p) = 1 violates the HJB condition (12). Suppose instead p̃ ≥ p̂. Given

p(p̃) < p(p3) < p̂, the saddle point conditions (7) and (10) of Definition 1 imply

ρ̃(p) = ρ̂ and π̃(p) = p̂ for all p > p̃ sufficiently close to p̃ such that m̃(p) = 1, with

V σ̃(p, p) = û for all p ∈ P(p) as the DM’s value. Substituting for nature’s choice and

V σ̃,18 the HJB functional simplifies to

G(m, ν, 0, π̃(p), p, V σ̃, dV σ̃) = (1−m)
(
−c+ p̂λ(uR

r − û)
)
.

The coefficient of (1−m) is strictly positive if

p̂ >
c

λ(uR
r − û)

⇐⇒ δL

δR + δL
>

c

λ
(
uR
r −

uR
r uL

ℓ −uL
r u

R
ℓ

δR+δL

)
17Unless m̃(p̃) = ν̃(p̃) = 0, in which case ρ̃(p̃) can take an arbitrary value.
18Note that, given V σ̃(p, p) = û, we have V σ̃

p (p, p) = V σ̃
p (p, p) = 0.
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⇐⇒ c < λ
δL

δR + δL
uR
r (δ

R + δL)− uR
r u

L
ℓ + uL

r u
R
ℓ

δR + δL

⇐⇒ c < λ
δL

δR + δL
δRδr
δr + δℓ

= c

Since the latter inequality is satisfied by assumption, we ruled out the possibility

m̃(p) = 1 on an interval (p̃, p̃ + ε). Taken together, this shows that p̃ cannot belong

to [p2, p3).

4. p̃ ∈ [p3, p4): Recall m(p) = ν(p) = 0 for all p ∈ [p3, p4). The argument is analogous to that

in Point 2. In the current case, Uρ̃(p̃)(p) < V σ(p) for all p ∈ P(p̃) if ρ̃(p̃) ≤ ρ̂. If instead

ρ̃(p̃) > ρ̂, then π̃(p̃) = p(p̃) and the argument follows from Uρ̃(p̃)(p(p̃)) < V σ(p(p̃), p̃).

5. p̃ ∈ [p4, 1]: Recall m(p) = 1 and ρ(p) = 1 for all p ∈ [p4, 1]. For every p ≥ p4, we have

p(p) > p̂ and hence Uρ(p) < Ur(p) for all ρ < 1 and all p ∈ P(p). Condition (12) thus

requires ρ̃(p) = 1 for all p ≥ p̃. At p = p4, Ur(p(p)) = V σ(p(p), p), so any m̃(p4) ∈ [0, 1]

solves the DM’s optimization problem. Leaving aside this point of indifference, we want

to show that for any p > p4, m̃(p) = m(p) = 1 must hold. Assuming this property fails,

we must have an open interval (p̃, p̃+ ε), ε > 0 such that m̃(p) = 0 for all p ∈ (p̃, p̃+ ε).19

If p̃ > p4, then the DM always ends up choosing r, whether a breakthrough occurs or

not. This strategy is thus dominated by an immediate stopping with action r. Suppose

instead p̃ = p4 and m̃(p) = 0 for all p ∈ (p4, p4 + ε) and some ε > 0. If ν̃(p) = 0 on a right

neighborhood of p̃, the DM’s value on that neighborhood is described by

V σ̃(p, p) = Ψ(q(p)) + (p− q(p))Ψ′(q(p)),

with Ψ and q as defined in (11) and (12). But, by definition of p4 in (14), V σ̃(p, p) < Ur(p)

holds for all p > p4 = p̃ and p ∈ P(p), so the strategy violates condition (9). For

interior stopping rates ν̃(p) > 0 on a right neighborhood of p̃, (12) requires V σ̃(p(p), p) =

Ur(p(p)) for all p belonging to that neighborhood, which in turn requires m̃(p) = 1 on that

neighborhood, a contradiction.

Case 2. Case 2 is distinguished from Case 1 only by the DM’s strategy at state p∗ (the boundary

between Regions 2 and 3), where the DM mixes instantaneously between experimentation and

19See Footnote 15.
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action r. The arguments above clearly apply to Regions 1 and 2. They also apply to Regions

3-5 if we can show σ̃(p∗) = σ(p∗), so that the DM’s value at the left boundary of Region 3 has

the same properties as in Case 1. To this end, we distinguish two possibilities based on whether

the value segment is upward sloping or downward sloping at p∗.

1. Suppose m̃(p∗) and ρ̃(p∗) are such that V σ̃
p (p, p∗) < 0. Then π̃(p∗) = p∗. Since p̂ < p∗

in Case 2, we have Uρ(p∗) < Ur(p∗) for all ρ < 1 and hence ρ̃(p∗) = 1. Consider a

right neighborhood of p∗ and suppose m̃(p) = 0 for all p belonging to the neighborhood.

Under this assumption the value V σ̃(p, p) is right-continuous in p at p = p∗.
20 For p > p∗

sufficiently close to p∗ we thus have π̃(p) = p. Since stopping and taking action r is

strictly Bayesian optimal for all p > p∗, we then have Ur(π̃(p)) > V σ̃(π̃(p), p) for all p > p∗

sufficiently close to p∗, thus violating (9) of Definition 1. Suppose next m̃(p) = 1 for all p

belonging to an interval (p∗, p∗ + ε), ε > 0. We distinguish two cases. If p(p∗) ≥ p̂, then

(10) implies ρ̃(p) = 1 for all p ∈ (p∗, p∗ + ε) and thus V σ̃
p (p, p∗) > 0, a contradiction. If

p(p∗) < p̂, then there exists an ε > 0 such that ρ̃(p) = ρ̂ and π̃(p) = p̂ for all p ∈ (p∗, p∗+ε).

This possibility is ruled out by the argument in point 3(b) above.

2. Suppose m̃(p∗) and ρ̃(p∗) are such that V σ̃
p (p, p∗) > 0. Nature’s choice thus satisfies

π̃(p∗) = p(p∗). If π̃(p∗) = p(p∗) ≤ pBℓ , then, given nature’s choice, it is Bayesian optimal to

stop and take action ℓ, so we have m̃(p∗) = 1 and ρ̃(p∗) = 0. This implies V σ̃(p, p∗) = Uℓ(p)

and thus V σ̃
p (p, p∗) < 0, a contradiction. Suppose instead π̃(p∗) = p(p∗) > pBℓ . The DM’s

value at p∗ under strategy σ̃ is now described by

V σ̃(π̃(p∗), p∗) = m̃(p∗)Uρ̃(p∗)(π̃(p∗)) + (1− m̃(p∗))Φ(π̃(p∗)).

Since Uρ̃(p∗)(π̃(p∗)) < Φ(π̃(p∗)) for all ρ̃(p∗) ∈ [0, 1], this value is strictly decreasing in

m̃(p∗). We thus have m̃(p∗) = 0, which in turn implies V σ̃(p, p∗) = Φ(p) and thus

V σ̃
p (p, p∗) < 0, again a contradiction.

Taken together, we have shown that σ̃ must be such that

V σ̃
p (p, p∗) = m̃(p∗)U

′
ρ̃(p∗)(p) + (1− m̃(p∗))Φ

′(p) = 0. (17)

20As we approach p∗ from the right, the probability of stopping before p∗ vanishes.
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Since Φ′(p) < 0 for all p ∈ P(p∗), this equality requires ρ̃(p∗) ∈ [ρ̂, 1] and m̃(p∗) ∈ [m(p∗), 1].
21

For the DM to optimally choose m̃(p∗) ≥ m(p∗), it must further hold Uρ̃(p∗)(π̃(p∗)) = Φ(π̃(p∗)).

Since for all p ∈ P(p∗) and all ρ̃(p∗) ≥ ρ̂, we have Uρ̃(p∗)(p) ≤ max{û, Ur(p)} ≤ Φ(p), with

the second equality being strict unless p = p∗ and the first inequality being strict at p = p∗

unless ρ̃(p∗) = 1. Hence, Uρ̃(p∗)(π̃(p∗)) = Φ(π̃(p∗)) holds if and only if ρ̃(p∗) = ρ(p∗) = 1 and

π̃(p∗) = π(p∗) = p∗. The stopping probability m̃(p∗) is then pinned down by (17) and equal to

m(p∗). We thus have σ̃(p∗) = σ(p∗). Given this property, the arguments used to prove unique-

ness in Case 1, in particular those regarding Region 3, apply to the current case.

High experimentation costs. When c ≥ c, uniqueness of the intrapersonal equilibrium follows

from the argument in the main text following Theorem 1, namely the facts that the commitment

solution involves no experimentation and that implementing this solution requires no commit-

ment. Combining these properties with the fact that the commitment solution is unique (see

Section B.2) implies that under any alternatively strategy there must be a state at which the

DM can profitably deviate to the commitment solution.

B.8 Proof of Proposition 1

Consider first c < c. The candidate strategy profile has stationary actions σ̃ = (0, ν̃, 0) and

π = p̃ :=
uL
ℓ −ũ

uL
ℓ −uR

ℓ
, where ũ is defined in the statement. The associated value of the stationary

strategy is V σ̃(p) = ũ for all p.22 We observe that ũ > Ur(p̂) and p̃ < p̂ if and only if c < c.

Hence, for c < c, we have Uℓ(p̃) = ũ ≥ Ur(p̃). It then follows

(0, ν̃, 0) ∈ argmax(m,ν,ρ) m(Uρ(p̃)− ũ) + (1−m)
[
−c+ ν(Uρ(p̃)− ũ) + λp̃(uR

r − ũ)
]
,

which proves that both (11) and (12) are satisfied. Next, given ν̃, the derivative of

ν̃(Uρ(p)− ũ) + λp(uR
r − ũ)

21Recall that m(p∗) is determined by

m(p∗)U
′
r(p∗) + (1−m(p∗))Φ

′(p∗) = 0.

22That this is the correct value of σ̃ can be seen by confirming that ũ =
ν̃Uℓ(p̃)+p̃λuR

r

ν̃+p̃λ .
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with respect to p vanishes, so

p̃ ∈ argminp m̃(Uρ̃(p)− ũ) + (1− m̃)
[
−c+ ν̃(Uρ̃(p)− ũ) + λp(uR

r − ũ)
]
,

where (m̃, ρ̃) = (0, 0). We have thus verified (13).

Consider next c ≥ c. As noted above, we have ũ ≤ û in this case. The proof is then identical

to that of Section B.5.2, which applies here since ∆ =∞ if [p
0
, p0] = [0, 1].

To see that the equilibrium is the limit of the equilibrium strategies as (p
0
, p0) → (0, 1),

note that for c < c and (p
0
, p0) sufficiently close to (0, 1), p0 falls into Region 3. Indeed, as

(p
0
, p0)→ (0, 1), p3 rises to 1 faster than p0 does. To see this, suppose (p

0
, p0) is sufficiently close

to (0, 1) so that p0 > p∗ = p2 and p
0
< pBℓ . Recall p3 is given by V σ(p(p3), p) = Uℓ(p(p3)), that

is, as the value of p for which the left end of the value segment touches Uℓ. Since V σ(p(p3), p3)

lies below the Bayesian value function, we clearly have p(p3) ≥ pBℓ . Since p
0
= p(p0) < pBℓ , p0 is

strictly smaller than p3 (and of course strictly greater than p∗). Given that p0 falls into Region

3, it is then routine to check that (ν(p0), π(p0)) → (ν̃, p̃) as p0 → 1. Similarly, when c ≥ c, the

same conclusion follows since the condition for Section B.5.2 is satisfied for p0 sufficiently close

to 1.

B.9 Proof of Proposition 2

In the symmetric case, the Bayesian value function can be written as

Φ(p) = δ − c

λ
− (1− p) ln

(
p

1− p

δ − c/λ

c/λ

)
c

λ

with derivative

Φ′(p) =

(
ln

(
p

1− p

δ − c/λ

c/λ
− 1

p

))
c

λ
.

It is easy to see that limp↑1Φ
′(p) = +∞. For all states p ∈ (pBℓ , p∗] experimentation until

the Bayesian update of p reaches the Bayesian stopping boundary pBℓ (or R-evidence arrives)

is clearly optimal: by the assumption c < c, the worst-case payoff associated to this strategy,

Φ(p), is strictly greater than the worst-case payoff for action ℓ, given by Uℓ(p(p)) and strictly

greater than the worst-case payoff for action r, given by Ur(p).

Fixing this part of the strategy and moving backwards in time from p = p∗, the value segment

becomes upward sloping and the experimentation strategy is evaluated at the left-most belief.
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The DM’s value at this belief lies on the tangency line of Φ touching at p, given by

l(p; p) = Φ(p) + Φ′(p)(p− p).

Convexity of Φ implies that the value l(0, p) is strictly decreasing in p with limp↑1 l(0; p) =

−∞ < Uℓ(p) for all p. Given l(0, p∗) = Φ(p∗) > Uℓ(p∗), the difference Uℓ(p) − l(0; p) as a

function of p must then have an intersection with zero. Notice next that for any given value of

p, we can find a ∆ sufficiently large such that p(p) is arbitrarily close to zero. Together with

the previous property, this implies that for ∆ sufficiently large, there is a state p > p∗ such that

l(p(p); p) = Uℓ(p). Let ps denote the smallest of such states. For all p ∈ (πB
ℓ , ps), the DM will

then experiment, whereas at p = ps she stops to take action ℓ. 23

What remains to be shown is that there is an ε > 0 sufficiently small such that the DM prefers

experimentation over stopping at all states p ∈ (ps, ps + ε). The payoff from experimentation at

p > ps evaluated at belief p is24

p
(
1− e−λτ(p,ps)

)
δ + (1− p)δ − cτ(p, ps).

As p ↓ ps, this payoff converges to (1 − p)δ. Hence, for p sufficiently close to ps, the worst-

case belief is p. According to belief p experimentation for time τ(p, ps) followed by action ℓ is

preferred to taking action ℓ immediately if and only if

p
(
1− e−λτ(p,ps)

)
δ − cτ(p, ps) > 0, (18)

where

τ(p, ps) =
1

λ
ln

(
p

1− p

1− ps
ps

)
.

It can be easily verified that the left-hand side of (18) approaches zero from above as p ↓ ps if

and only if ps > pBℓ , which is satisfied since ps > p∗ > pBℓ .

23For p(ps) sufficiently close to zero, we must have Uℓ(ps) ≥ Ur(p(ps)), so action ℓ is indeed optimal.
24Recall that τ(p, ps) denotes the time is takes for belief p > ps to be updated to ps in the absence of a

breakthrough.
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B.10 Proof of Proposition 3

It is useful to characterize the learning time through the following recursion equation.25

λθ(1− θ)T ′
∆(θ) = 1− T∆(θ)(θλ+ ν∆(θ)),

where ν∆(θ) is the stopping rate for ambiguity level ∆ when the state p is such that ln
(

p
1−p

)
=

ln
(

θ
1−θ

)
+ ∆

2
. Using the corresponding equation for ∆′ > ∆, one can write:

λθ(1− θ)[T ′
∆(θ)− T ′

∆′(θ)] = T∆′(θ)(θλ+ ν∆′(θ))− T∆(θ)(θλ+ ν∆(θ)).

For any θ such that ln
(

θ
1−θ

)
+ ∆′

2
≤ p∗, we have ν∆′(θ) = ν∆(θ) = 0, and T∆′(θ) ≥ T∆(θ), with

the inequality being strict whenever T∆′(θ) > 0. This proves that there exists a θ̂ such that

T∆′(θ) ≥ T∆(θ) if θ < θ̂. The above equation implies that for such θ, we have T ′
∆′(θ) ≤ T ′

∆(θ).

To see the only if part, observe first that ν∆(θ) ≤ ν∆′(θ) for all θ, which follows from the

fact that ln
(

θ
1−θ

)
+ ∆′

2
> ln

(
θ

1−θ

)
+ ∆

2
and from the equation determining ν in Region 3. This

means that whenever T∆′(θ) = T∆(θ), T
′
∆(θ) ≥ T ′

∆′(θ); namely, T∆′ crosses T∆ at most once and

from above.

B.11 Proof of Proposition 4

We indicate by pn and qn for n = 1, ..., 4 the boundaries of the different regions when the initial

sets of priors are, respectively, P and Q. Let t̄P denote the supremum of Supp(FP), i.e., the

latest time the DM stops.

Since FP(t) = 1 for all t > t̄P , the property FQ(t) ≤ FP(t) for all t > t̄P is trivially satisfied.

What remains to be shown is thus FQ(t) ≥ FP(t) for all t < t̄P . Clearly, if P is such that the

DM stops deterministically, this property is satisfied, as FP(t) = 0 for all t < t̄P . We thus focus

on the case where the DM randomizes under P = [p
0
, p0], which requires p0 ∈ (p∗, p4) as well as

Φ(p∗) < Uℓ(p̂(τ(p0, p∗), p0)).

25This equation is derived as follows. Take a short length dt > 0 of time, then

T (θ; ∆) = (λθ + ν∆(θ))dt · dt+ (1− (λθ + ν∆(θ))dt)(dt+ T (θdt)) + o(dt)

= (λθ + ν∆(θ))dt · dt+ (1− (λθ + ν∆(θ))dt)(dt+ T (θ; ∆) + T ′(θ; ∆)θ̇dt) + o(dt).

Collecting terms, and letting dt→ 0 while using θ̇ = −λθ(1− θ), we obtain the equation.
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We show first τ(p0, p3) ≥ τ(q0, q3). Towards a contradiction, suppose τ(p0, p3) < τ(q0, q3),

so the intrapersonal; equilibrium under P prescribes randomization at time τ(q0, q3). By

Lemma B.3, V̂ (p) is strictly decreasing in p in Region 3. Recalling that pδ denotes the δ

update of p,26 we have

Uℓ(p
τ(q0,q3)

0
) ≥ V̂ (p

τ(q0,q3)
0 ) > V̂ (p

τ(p0,p3)
0 ) > V̂ (q

τ(q0,q3)
0 ) = Uℓ(q

τ(q0,q3)

0
).

The first inequality follows from the optimality of randomization at time τ(q0, q3), the second in-

equality is due to τ(p0, p3) < τ(q0, q3), and the third inequality follows from V̂ (p3) > V̂ (q3) (since

p3 < q3). Since, however, Uℓ(·) is strictly decreasing and p
0
≥ q0, Uℓ(p

τ(q0,q3)
0

) ≤ Uℓ(q
τ(q0,q3)
0

)

must hold, which yields a contractions. Hence, τ(p0, p3) ≥ τ(q0, q3).

Next, we prove that for each t < t̄P , the DM stops at a smaller rate when her initial set of

priors is P than when it is Q. For each t ≥ 0, denote by ν̂(t;P) := ν(pt;P) the DM’s stopping

rate as a function of time. We want to show for all t ≤ t̄P ,

ν̂(t;P) ≤ ν̂(t;Q). (19)

When t < τ(p0, p3) or t ∈ (τ(p0, p∗), t̄P ], ν̂(t;P) = 0, so (19) trivially holds. Considering

t ∈ [τ(p0, p3), τ(p0, p∗)], we have

ν̂ ′(t;Q) = ν ′(p̂(t,Q))dp̂(t, q0)
dt

< 0, (20)

since for all p belonging to Region 3, ν ′(p) = λV̂ ′(p)/δℓ < 0 (see (16)). (20) directly implies

ν̂(t;P) = ν(p̂(t, p0)) = ν(p̂(t+ τ(q0, p0), q0)) = ν̂(t+ τ(q0, p0);Q) ≤ ν̂(t;Q)

and thus (19). Since (19) holds for all t < t̄P , it follows

FP(t) = 1− e−
∫ t
0 ν̂(u;P)du ≤ 1− e−

∫ t
0 ν̂(u;Q)du = FQ(t)

for all t < t̄P , as desired.

26That is, pδ = pe−λδ

pe−λδ+1−p
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C General Poisson Learning

In this extension, we consider a general Poisson model introduced by Che and Mierendorff

(2019): at each instant, the DM may seek either R-evidence (as before) or L-evidence. One

interpretation is that there are two news sources emitting the two types of evidence. The DM

may then allocate a share α ∈ [0, 1] of her attention to the R-evidence news source and a share

1 − α to the L-evidence news source, and receive the evidence proportionately at rates αλ in

state R and at rates (1 − α)λ in state L. For instance, a theorist may try either to “prove” a

theorem (R-evidence), to find a “counter-example” disproving it (L-evidence), or to divide effort

between the two endeavors. We assume throughout that the stopping payoffs are symmetric:

uR
r = uL

ℓ = δ > 0 and uR
ℓ = uL

r = 0.

C.1 Bayesian optimal strategy.

Consider the Bayesian optimal strategy, assuming c < c = λδ
2

so that experimentation is opti-

mal for some beliefs.27 The optimal strategy, characterized in Che and Mierendorff (2019), is

succinctly described in Figure 1 for two different ranges of learning costs. Suppose first the cost

is intermediate; i.e., c ∈ [c∗, c), where c∗ := λδ
1+e2

. Then, the DM seeks contradictory evidence;

namely she chooses α = 0 if p ∈ (1/2, pBr ) and α = 1 if p ∈ (pBℓ , 1/2). See panel (a) of Figure 1.

p=

|
0

——————–︸ ︷︷ ︸
action ℓ

pBℓ ←−←−←−←−←−︸ ︷︷ ︸
α=1

p̌−→−→−→−→−→︸ ︷︷ ︸
α=0

pBr ——————–︸ ︷︷ ︸
action r

|
1

(a) intermediate cost: c ∈ [c∗, c), where c∗ := λδ
1+e2 .

p=

|
0

—————︸ ︷︷ ︸
action ℓ

pBℓ ←−←−←−︸ ︷︷ ︸
α=1

pBL−→−→︸ ︷︷ ︸
α=0

p∗︸︷︷︸
α= 1

2

←−←−︸ ︷︷ ︸
α=1

pBR−→−→−→︸ ︷︷ ︸
α=0

pBr —————︸ ︷︷ ︸
action r

|
1

(b) low cost: c < c∗.

Figure 1: Bayesian optimal strategy.

For a low cost c < c∗, the contradictory-evidence seeking is still optimal near the stopping

boundaries, as before, but a new learning strategy emerges in the middle region. In that region,

the DM seeks confirmatory evidence, L-evidence for p ∈ (pBL , 1/2) and R-evidence for p ∈
(1/2, pBR); see panel (b) of Figure 1. When such evidence does not arrive, the DM’s belief

27Otherwise, the DM simply chooses action a = r, ℓ that maximizes U(p).
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drifts inwardly toward p∗ = 1/2. Once p∗ = 1/2 is reached, the DM splits her attention

between the two news sources with α = 1/2; her belief then never moves, and learning continues

indefinitely until either evidence is obtained. Intuitively, at that belief, the DM finds both

types of experimentation equally tempting and acts like a “Buridan’s donkey,” unable to drift

away from the belief that causes the dilemma. The value of this split-attention learning can be

computed:

u∗ =
1

2
uR
r +

1

2
uL
ℓ −

2c

λ
= δ − 2c

λ
.

With a little abuse of notation, let Φ∗(p) denote the value of the Bayesian optimal strategy

for belief p. Given the symmetry of payoffs, Φ∗ is symmetric around, and attains its minimum

at, 1/2. One implication of the above characterization is that Φ∗(1/2) = u∗ for c ≤ c∗ and

Φ∗(1/2) > u∗ for c > c∗, which explains why splitting attention is part of Bayesian optimal

strategy if and only if c < c∗.

C.2 Ambiguity aversion.

Suppose now the DM is ambiguity averse, endowed with an interval of priors. How would the

presence of the additional news source affect her behavior? Will see that the solution exhibits

several patterns of behavior established from the baseline model as well as some additional fea-

tures that are linked to the DM’s imformation choice in the generalized model.

Low cost or small ambiguity. Consider first the case in which either the cost is low with c < c∗

or the ambiguity is small. As before, a “small” ambiguity means that Φ∗(1
2
) ≥ Uℓ(p(

1
2
)), where

we recall that p(p) denotes the lowest possible belief when the state is p. Below, we suppress the

dependence of p on p when no confusion arises. The equilibrium for this case is characterized

as follows.

Theorem C.1. Suppose the cost is low or the ambiguity is small. The intrapersonal equilibrium

of the ambiguity-averse DM is as follows.

• If p ≤ 1/2, the DM employs the Bayesian optimal strategy of type p, with the worst-case

belief π(p) = p.

• If p ≥ 1/2, the DM employs the Bayesian optimal strategy of type p, with the worst-case

belief π(p) = p.
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Figure 2: The case of intermediate cost and small ambiguity.

• If p < 1/2 < p, then the DM employs the split-attention learning strategy or a hedged

action, whichever gives a higher payoff, with the worst-case belief π(p) = 1/2.

Proof. The proof is completely analogous to the baseline case for either p < p∗ = 1/2 or p > p∗.

Specifically, consider the former case. With π(p) = p, the DM’s HJB coincides with that of the

Bayesian DM for belief p, so the result follows from Che and Mierendorff (2019). For nature’s

optimality, since the Bayesian value function is decreasing, clearly π(p) = p is optimal. For

nature’s HJB, its first-order condition with respect to p reduces to the second derivative of the

Bayesian HJB, which of course is zero, so the condition holds.

Next, consider the case in which p < 1/2 < p. Nature chooses π(p) = 1/2. If u∗ <

max{Uℓ(1/2), Ur(1/2)}, then randomizing between r and ℓ with equal probabilities satisfies the

HJB conditions. Given this, the value function V (p, p) = û = 1
2
δ for all p, so nature does not

wish to deviate from π(p) = 1/2. If u∗ ≥ max{Uℓ(1/2), Ur(1/2)}, the HJB conditions hold with

ν = 0 and α = 1/2, so split-attention learning is optimal. Given this choice, since V (p, p) = u∗

for all p, nature does not wish to deviate from π(p) = 1/2.

To explain, suppose first the highest belief p is less than 1/2. Then, as before, the worst-case

belief is the right-most belief p, and the DM adopts the Bayesian optimal strategy for that

belief. See the left panel of Figure 2. In case c ∈ [c∗, c), the worst-case belief p drifts leftward,

and the experimentation lasts until the belief reaches the left stopping boundary. In other

words, Theorem 1 applies precisely in this case with the same implication—including prolonged

learning—as before. In case c < c∗, the belief p, actually drifts rightward when p > pBL . Once it

reaches p∗ = 1/2, split-attention learning begins, and it lasts until the state is learned.

The case where the lowest belief p is greater than 1/2 is the mirror image of the preceding
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case. The worst-case belief is now the left-most belief p, and the DM adopts the Bayesian

optimal belief. Equilibrium is precisely the same as above, except that the type of evidence the

DM seeks is the opposite to the above case.

Finally, suppose p < 1/2 < p. In this case, the Bayesian optimal strategy for p ̸= 1/2 cannot

occur. To see this, suppose the worst-case belief is π > 1/2. Then, the value of the Bayesian

optimal strategy for belief π—i.e., the value segment tangent to Φ∗(·) at p = π—is increasing

in the belief, so the worst-case belief is p, which, however, is strictly less than 1/2. The worst-

case belief cannot be p either, since, if so, the value of the Bayesian optimal strategy for p is

decreasing in the belief, suggesting that the worst-case belief is p, which now exceeds 1/2.

This dilemma is resolved by a form of hedging. If u∗ > û, then split-attention learning

serves that purpose, with the worst-case belief π = 1/2. As can be seen in the right panel of

Figure 2, the value segment touches the Baysian value function associated with confirmatory

evidence seeking (orange curve) and is flat, justifying the interior choice of the worst-case belief.

Note that the belief is absorbing since no updating from p = 1/2 can occur; in short, once the

ambiguity set of beliefs P contains 1/2, the set never moves, and the DM is destined forever to

split her attention between two news sources.

If the cost is low, then the split-attention learning is Bayesian optimal at belief p = 1/2, so

the strategy is relatively cheap; this is why it prevails as the dominant form of hedging no matter

how large the ambiguity is. If the cost is intermediate with c ∈ [c∗, c), then the split-attention

payoff u∗ is strictly below the Bayesian value function, so hedging in this way is relatively costly.

In fact, the Bayesian DM would never adopt split-attention learning in this case (see Figure 1-

(a)). This explains the discontinuity in the right panel of Figure 2.

Intermediate cost and large ambiguity. Suppose next that the cost is intermediate, namely

c ∈ [c∗, c), and the ambiguity is large in the sense that Uℓ(p(
1
2
)) > Φ∗(1

2
). Recall the value V̂ (p)

defined in Theorem 1 for the randomized stopping region (Region 3). This value solves (ÔDE)

with the boundary condition (p2,Φ
∗(p2)) = (1

2
,Φ∗(1

2
)) and is explicitly expressed in (5) (with

p2 =
1
2
). Let p+ := V̂ −1(u∗ ∨ û) and p− := 1− p+. We note that 0 < p− < 1/2 < p+ < 1. The

intra-personal equilibrium is then characterized as follows.

Theorem C.2. Suppose the cost is intermediate, and the ambiguity is large. Then, the following

is an equilibrium.

• For any p ≤ 1/2, the DM employs the Bayesian optimal strategy for belief π(p) = p.
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• For any p ≥ 1/2, the DM employs the Bayesian optimal strategy for belief π(p) = p.

• Suppose [p, p] ⊃ [p−, p+]. Then, the DM hedges either by employing the split-attention

learning or by mixing between r and ℓ, with the worst-case belief π(p) = 1/2.

• Suppose p < 1/2 and p ∈ (1/2, p+]. Then, the DM randomizes between ℓ and R-evidence

seeking. Namely, she stops according to a Poisson rate or else she seeks R-evidence, as

characterized in Theorem 1 and Section B.5.

• Suppose p ∈ [p−, 1/2) and p > 1/2. Then, the DM randomizes between r and L-evidence

seeking. Namely, she stops according to a Poisson rate or else she seeks L-evidence, as

characterized in Theorem 1 and Section B.5.28

Proof. The proof for all cases, except for the last two are the same as above. Of the latter two,

since the case of p ∈ [p−, 1/2) is an exact mirror image of the case p ∈ (1/2, p+], we simply

focus on that case. This case in turn corresponds precisely to Region 3 of Theorem 1. The

construction of (ν(p), π(p), V̂ (p)) follows exactly without any modification. The verification of

HJB is also the same except that α(p) = 1 needs to be verified now; namely, we additionally

need to show that the DM wishes to experiment by confirming state R (rather than state L).

To this end, we take the derivative of G with respect to α:

∂G

∂α

∣∣∣∣
α=1

= π(uR
r − V̂ (p))− (1− π)(uL

ℓ − V̂ (p))− 2V̂ ′(p)p(1− p).

It suffices to show that this derivative is nonnegative when evaluated at (ν(p), π(p), V̂ (p)). In-

deed, when substituting (ν(p), π(p), V̂ (p)) from (16), (15), and (ÔDE), this expression is non-

negative if and only if

V̂ (p) ≥ u∗,

which holds since p ≤ p+.

If p ≤ 1/2 or p ≥ 1/2, then just as before, the DM employs the Bayesian optimal strategy

for the inner-most belief, which is to seek contradictory evidence until the most skeptical belief

reaches a stopping boundary.

28Given the symmetric payoffs, the characterization is a mirror image of the preceding case. More precisely,
with the state now indexed by p, the stopping rate is ν∗(1− p) and the worst-case belief is π∗(1− p), where ν∗

and π∗ are defined respectively in (16) and (15), respectively.
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Figure 3: The case of intermediate c and large ∆.

If p < 1/2 < p, the DM employs a hedging strategy. If [p, p] ⊃ [p−, p+] the DM either adopts

split attention learning (if u∗ > û) or randomizes between ℓ and r (if u∗ ≤ û). As mentioned

above, since the cost is intermediate, split-attention learning involves a strict welfare loss, so

the Bayesian DM would never adopt that strategy. See the right panel of Figure 3. If instead

p ∈ (1/2, p+], the DM randomizes between R-evidence seeking and immediate action ℓ. Namely,

she stops according to a Poisson rate or else she seeks R-evidence, as characterized in Theorem 1.

See the left panel of Figure 3. Symmetrically if p ∈ [p−, 1/2), then the DM adopts randomized

stopping, now, between L-evidence seeking and action r.

In sum, the equilibrium exhibits the behavioral patterns observed in the baseline model, such

as excessive learning and premature stopping, but it also features a new strategy, namely split

attention.
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