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Abstract

In this web-appendix, we provide the following additional results:

S0: Details: OPP implementation

S1: Example: NK model with commitment

S2: General nonlinear OPP framework

S3: General convex loss functions

S4: Details: Constrained OPP

S5: Estimating robust preference parameters

S6: Additional results for the empirical study

References to lemmas, equations, etc..., which start with a “S” are references to this document.

References, which consist of only a number refer to the main text.
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S0 OPP implementation

Section 5 in the main text sketches how to estimate the sufficient statistics in practice, and

then how to implement the OPP policy evaluation framework. This section provides more

details on the construction of the two sufficient statistics and the OPP.

We will pay particular attention to the forecast construction step, which depends on the

specific perspective and the question at hand. In the main text, we took the perspective

that (φ0, ε0t ) was the policy maker’s choice and EtP0
t was known. Here we discuss other

settings that can be of interest. The organization is the same as in the main text; we discuss

forecasting, impulse response estimation, uncertainty assessment and OPP construction. In

addition, we will explicitly discuss how to apply the OPP for policy recommendation (or

improvement).

S0.1 Constructing the baseline forecasts

We start with providing more details on how to construct approximation of EtY0
t and EtP0

t :

the expected paths implied by the baseline policy (φ0, ε0
t ). These oracle forecasts are defined

in Lemma 1 in terms of St = (X′−t,Ξ
′
t)
′, which includes the initial conditions X−t and the

non-policy news shocks Ξt, and the policy news shocks ε0
t . Restated for convenience:

EtY0
t = Γ0

ySt +R0
yε

0
t

EtP0
t = Γ0

pSt +R0
pε

0
t

. (S1)

We will distinguish between three cases: (i) the researcher can directly download both

EtP0
t and EtY0

t (ii) EtP0
t is known but EtY0

t must be approximated or (iii) both EtP0
t and

EtY0
t need to be approximated.

S0.1.1 Downloading forecasts

The simplest yet not always feasible way in which a researcher can obtain a baseline forecast

is to use the forecasts that are provided by the policy maker. Indeed, several macro policy

makers make their forecasts for the policy objectives publicly available and these can then be

directly used to compute the OPP and evaluate/improve the expected policy path EtP0
t of the

policy maker. For instance, in our empirical work we use the inflation and unemployment

forecasts of the Fed to evaluate the Fed’s monetary policy decisions. Alternatively, the

researcher could use professional forecasts, such as those from the Survey of Professional

Forecasters (SPF) or the Blue Chip forecasts.

2



S0.1.2 Approximating EtY0
t with given EtP0

t

In the case where the evaluation of policy is done by the policy maker, or the policy maker’s

staff, we can consider that the expected path EtP0
t is known. This is the case that we

discussed in the main text.

Since the state St is generally not observable, we denote by Zt a (possibly large) vector

of observable variables that can be used to approximate St. The best linear prediction for

Y0
t in terms of EtP0

t and Zt can be recovered from

Y0
t = B0

yzZt + B0
ypEtP0

t + Uy
t , (S2)

where the maps B0
yz and B0

yp include the best linear prediction coefficients and the error Uy
t

is orthogonal to (Zt,EtP0
t ) by construction.

The model contains an equation for each vector of objectives yt+h, for h = 0, 1, . . .. In

practice, the forecast will be truncated at some maximum horizon H and some in sample

period will be used to estimate the coefficients. This implies that the forecasting model that

we consider in practice is given by

Y0
s:s+H = B0,t

yzZs + B0,t
ypEsP0

s:s+H + Uy
s:s+H for s = t0, . . . , t , (S3)

where we have truncated the paths at horizon H, so that Y0
s:s+H ≡ (y′t, y

′
t+1, . . . , y

′
t+H)′.

Based on some prior sampling period —over which the policy rule φ0 was implemented—

we can estimate the model parameters B0,t
yz and B0,t

yp . These parameters can be structured

(e.g. VAR, DFM, DSGE, etc) and they can be estimated using standard regression methods,

possibly allowing for shrinkage and penalization to improve the model fit. The estimated

model parameters are denoted by B̂0,t
yz and B̂0,t

yp .

The resulting forecasts for time period t are given by

Ŷ0
t:t+H = B̂0,t

yzZt + B̂0,t
ypEtP0

t:t+H , (S4)

and the model uncertainty error is given by

Uyt:t+H = Ŷ0
t:t+H − EtY0

t:t+H .

Combining (S1) and (S4) we see that the difference between the oracle forecast and the

forecast of the policy maker comes from (i) imperfectly measuring St and (ii) estimating the

parameters.

Example S1 (Dynamic factor model). Let Xs denote a large panel of disaggregated macroe-

conomic and financial time series for time period s, with s < t. Following Stock and Watson
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(2002b), and many others, we can approximate the information in the high dimensional

vector Xs by a small number of common factors.

Xs = Λfs + ζs ,

where the dimension of the common factors fs is typically small. The factors can be recovered

by principal components (e.g. Bai and Ng, 2002; Stock and Watson, 2002a) or by state space

methods (e.g. Durbin and Koopman, 2012). With the estimated common factors in hand we

can set Zs = f̂s and estimate the regression coefficients in (S3) and construct the forecast

(S4).

Example S2 (Vector Autoregressive model). Another popular way of constructing forecasts

is by using vector autoregressive models, most notably large scale Bayesian VARs have shown

good forecasting performance in macro settings (e.g. Banbura, Giannone and Reichlin, 2010).

In our context, we can consider such models as well by setting Xs = (y0′
s ,EsP0′

s:s+H , w
0′
s )′,

where y0
s are the policy objectives at time s, EsP0

s:s+H is the expected policy path at time s

and w0
s include other possible predictors. The VAR is then given by

Xs = Φ1Xs−1 + . . .+ ΦpXs−p + ηs . (S5)

An important difference with a standard VAR is that we jointly model the entire path EsP0
s:s+H

together with the other observable variables. This is important as we want to allow the ex-

pected policy path, say Esp0
s+h to influence observations prior to s+ h directly.

To make this clear, consider a standard VAR, where the VAR consists of Xs = (y′s, p
′
s, w

′
s)
′

and to construct a forecast at time t we feed in the expected path EtP0
t = Et(p0′

t , p
0′
t+1 . . .)

′.1

Since the standard VAR does not allow the expected future policy path Etp0
t+h to affect con-

temporaneous values, it can only fit the expected path EtP0
t by introducing future shocks in

the forecast, and thus cannot provide a valid approximation for EtY0
t .

Based on (S5) we can iterate the VAR forward to obtain expressions for y0
s , y

0
s+1, . . ..

These can be stacked to obtain a representation like (S3). Moreover, based on (S5) we can

estimate the model parameters using OLS or more advanced shrinkage methods to ultimately

compute the forecast (S4).

S0.1.3 Approximating EtY0
t and EtP0

t

When neither EtY0
t nor EtP0

t is available, we can follow the same recipe as in the main text,

with the distinction that we need to use the observable variables Zt to also infer the expected

1In the VAR literature this route is often referred to as conditional forecasting, see Waggoner and Zha
(1999) and Banbura, Giannone and Lenza (2015) for details.
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policy path EtP0
t . The consequences of not knowing the expected policy path need to be

taken into account. Specifically, policy evaluation here implies evaluating the policy that is

currently implemented, as inferred by the researcher.

Starting from (S1) the researcher seeks variables Zt that best span St —the state of the

economy— and ε0
t —the policy news shocks. For any given approximating vector Zt we can

write the forecasting models for approximating EtP0
t and EtP0

t as

P0
t = B0

pzZt + Up
t and Y0

t = B0
yzZt + Uy

t , (S6)

where the coefficients B0
pz and B0

yz are the best linear prediction coefficients that explain P0
t

and Y0
t in terms of Zt. The error terms include the future errors as well as the approximation

errors from not knowing the exact state of the economy and the policy news shocks.

It is instructive to compare (S6) to the forecasting model used when EtP0
t known, i.e.

equation (S2). The only difference is that EtP0
t is now omitted and the researcher will end

up evaluating the inferred EtP0
t based on the model for P0

t in (S6).

In practice, the forecast will be truncated and some in sample period will be used to

estimate the coefficients. This implies that the forecasting models that we consider in practice

are given by

P0
s:s+H = B0,t

pzZs + Up
s:s+H and Y0

s:s+H = B0,t
yzZs + Uy

s:s+H . (S7)

Based on some prior sampling period, least squares methods can be used to estimate the

model parameters B0,t
pz and B0,t

yz . The estimated model parameters are denoted by B̂0,t
yz and

B̂0,t
yp .

The resulting forecasts for time period t are given by

P0
t:t+H = B̂0,t

pzZt and Y0
t:t+H = B̂0,t

ypZt , (S8)

and the model uncertainty errors are given by

Upt:t+H = P̂0
t:t+H − EtP0

t:t+H and Uyt:t+H = Ŷ0
t:t+H − EtY0

t:t+H .

The dynamic factor and VAR examples above apply easily to this setting.

S0.2 Impulse response estimation

To estimate R0
a we can rely on the large macro-econometric literature that discusses the

estimation of impulse responses to policy shocks. Starting from Lemma 1 we add and
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subtract the realized series from EtY0
t and EtP0

t , to get

Y0
t = R0

a,yεa,t + Vy
a,t and P0

t = R0
a,pεa,t + Vp

a,t , (S9)

where Y0
t = (y0′

t , y
0′
t+1, . . .)

′ and P0
t = (p0′

t , p
0′
t+1, . . .)

′ are the observed policy objectives and

policy instruments, which pertain to the policy regime φ0. The error terms Vy
a,t and Vp

a,t

include all other time t structural shocks εa⊥,t and Ξt, the initial conditions X−t and the

future shocks Y0
t − EtY0

t or P0
t − EtP0

t , respectively. By construction these errors are

orthogonal to the identifiable policy news shocks εa,t.

Equations (S9) can be viewed as local projections (Jordà, 2005) after realizing that

εa,t are time t measurable news shocks. In practice, we only estimate local projections

up to some finite horizon H. The implicit assumption being that the impulse responses are

indistinguishable from zero after this horizon.2 Specifically, let Y0
t:t+H = (y0′

t , y
0′
t+1, . . . , y

0′
t+H)′

and P0
t:t+H = (p0′

t , p
0′
t+1, . . . , p

0′
t+H)′. Since, the error terms of the local projections in (S9)

depend on the same underlying shocks they are correlated and we will estimate them jointly.

Let Y0
t:t+H = (Y0′

t:t+H ,P
0′
t:t+H)′ and consider

Y0
t:t+H = R0

a,Hεa,t + Va,t:t+H ,

where R0
a,H stacks the corresponding blocks of R0

a,y and R0
a,p. Note that εa,t is the subset

of policy news shocks that can be identified and we assume that its finite dimensional with

dimension Ka.

In general, to estimateR0
a, we will assume that we have available the some prior sampling

period over which the rule φ0 was implemented. Let n denote the number of time periods.

Ideally, we should not use observations past time period t to accurately reflect the information

available at time t. That said, in practice it may be necessary to let go of this requirement

as otherwise new policies cannot be evaluated in hindsight. Yet we stress that in such cases

one must acknowledge that the policy maker at time t could not have computed the causal

effect of the possible policy action.

Finally, in practice the policy news shocks are not observed directly, but some identifying

strategy is required. Prominent examples include using zero-, long-run, or inequality restric-

tions (e.g. Sims, 1980; Blanchard and Quah, 1989; Faust, 1998; Uhlig, 2005), or by using

past exogenous variations as instrumental variables (e.g. Mertens and Ravn, 2013; Stock and

Watson, 2018), see Ramey (2016) for a detailed review. It is important to stress that our

sufficient statistics approach can be implemented using any of these methods. In addition,

it can be attractive to impose some smoothness restrictions on the local projections, either

2Alternatively, it could be that the loss function only places weight on the objectives corresponding to
the first H periods.
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directly as in Barnichon and Brownlees (2018), or by rewriting the LP in its vector autore-

gressive form (e.g. Plagborg-Møller and Wolf, 2021). See Li, Plagborg-Mller and Wolf (2022)

for a recent comparison of impulse response estimation methods.

Regardless of the specific approach chosen it is important to stress that each approach

will require specifying a specific reduced form model, i.e. control variables, lag lengths, and

so on need to be specified. In addition, regularity conditions in the form of specific moment

and dependence conditions are needed to ensure that the distribution of the estimators can

be approximated reliably. Finally, the identification assumptions need to hold.

S0.3 Uncertainty assessment

To approximate the distribution of the OPP statistic and the adjustment we need to approx-

imate the distribution of the impulse response estimates URa
t = R0

a−R̂0
a and the distribution

of model uncertainty: Uyt = EtY0
t −Ŷ0

t and possibly Upt = EtP0
t−P̂0

t . Recall that model mis-

specification arises from not being able to perfectly approximate the state of the economy

and parameter estimation uncertainty.

For convenience we distinguish between two scenarios. First, consider the case where we

use a single reduced form model to construct both the impulse responses and the forecasts.

In this case conventional asymptotic theory or Bayesian methods can be used to obtain an

estimate of the joint distribution of (URa
t ,Uyt ,U

p
t ). We denote the approximated distribution

by F̂ .

Second, consider the case where we compute subset OPPs using external forecasts, such

as those obtained from the policy maker, or from other external sources. In such cases we

will typically have to make the additional assumption that URa
t is independent of (Uyt ,U

p
t )

as we will not have any method for recovering the joint distribution. The distribution of the

impulse response estimates can be obtained using standard methods. For the distribution

of model uncertainty, it is sometimes also provided along with the published point forecasts.

Alternatively, we can approximate it with the distribution of the historical forecast errors

{Y0
s − Ŷ0

s ,P
0
s − P̂0

s}ts=t0 over some prior sampling period, along with a normality assump-

tion. That said, this approach will give an upper-bound of the variance of model uncertainty.3

S0.4 Constructing OPPs

After obtaining the approximating distribution of the dynamic causal effects and the oracle

forecasts, we can compute the distribution of any of the OPP statistics using simulation

3The variance of the forecast errors will upper-bound the variance of model uncertainty, because forecast
errors mix two sources of uncertainty: (i) model uncertainty and (ii) future uncertainty.
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methods for a given preference matrix W . Specifically, we simulate dynamic causal effects

and forecast misspecification errors from F̂ and compute

δja,t = −(Rj′

a,yWRj
a,y)
−1Rj′

a,yWŶj
t

where Rj
a,y = R̂0

a,y +URa,y ,j
t and Ŷj

t = Ŷ0
t +Uy,jt with U jt ∼ F̂ . Similarly for the constrained

subset OPP statistic we compute for each draw

δc,ja,t = argmin
δa,t

(Ŷj
t + R̂j

a,yδa,t)
′W(Ŷj

t + R̂j
a,yδa,t)

s.t. C(Ŷj
t +Rj

y,aδa,t, P̂
j
t +Rj

p,aδa,t) ≥ c , (S10)

where P̂j
t = P̂0

t + Up,jt . Note that in the case where EtP0
t is known we replace P̂j

t by the

known path EtP0
t .

For each statistic we sample for a large number of draws j = 1, . . . , Sd, and report the

average statistics and the confidence interval for some α ∈ (0, 1). For instance for the subset

OPP we have

δ̂a,t =
1

Sd

Sd∑
j=1

δja,t and
[
δ

(αSd)
a,t , δ

((1−α)Sd)
a,t

]
, (S11)

where δ
(k)
a,t denotes the (element wise) kth largest draw of {δja,t, j = 1, . . . , Sd}. The same

can be done for the constrained subset statistic. We will conclude that a policy EtP0
t is not

optimal whenever the confidence bands of δ∗a,t or δc∗a,t exclude zero at any desired level of

confidence.

With the distribution of the subset OPP in hand, we can use simulation to compute

the distribution of the best adjustment to policy path, and compute the distribution of

EtP0
t +R0

a,pδa,t and the associated paths of policy objectives (EtY0
t +R0

a,yδa,t).

S0.5 OPP implementation for policy recommendation

An important property of the OPP and its variants is the ability to improve a non-optimal

policy decision. Going forward, a policy maker could be interested in using this property

to set policy with the OPP approach. Specifically, a policy maker could be interested in

repeatedly (i.e., at each decision point) implementing OPP policy recommendations; i.e., in

systematically using the OPP approach to set policy with minimal structural assumptions.

Given the ubiquity of heuristics in macro decision making, this approach could be appealing

to policy makers.

In this section, we discuss how one could operationalize such OPP-based decision making.

Consider a policy maker who initially followed the rule φ0 over some sample period and then
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decide to add the OPP evaluation/improvement step to her decision making process. Since

the OPP adjustment changes the policy rule (eq. (26) in the main text), the policy maker

will see a change a change in her rule, to say φ1. To use the OPP repeatedly over time,

it is important to keep the two sufficient statistics (the forecast and the impulse response)

under the same rule. With impulse responses estimated under φ0, the baseline scenario

must remain under the old rule φ0. Thus, the OPP can be used systematically, provided

that one continues to construct forecasts based on the “old” rule φ0, and that the OPP

recommendation are based on these forecasts.4 The forecasts under φ0 can be constructed

as discussed in section S0.1.

While it may seem surprising to construct forecasts based on an “outdated” rule, recall

that the baseline policy need not be a policy to be evaluated or even implemented. The

baseline policy can also be used as a tool to compute the optimal/improved policy path,

where the baseline forecast serves to capture the characteristics of the time t problem. See

our discussion on econometric-based optimal policy in the main text.

S1 Example: NK model with commitment

In this section we present the details for our sufficient statistics approach when applied to

the optimal policy problem under commitment in the baseline New Keynesian model (e.g.

Gaĺı, 2015, Section 5.1.2). This extends the simple example of Section 2 for the case where

the policy maker cares about future inflation and output deviations. The set-up can be

regarded as a special case of our general framework.

The optimal policy problem under commitment is characterized by a policy maker that

aims to minimize

L0 =
1

2
E0

∞∑
t=0

βt(π2
t + x2

t ) ,

with respect to πt, πt+1, ... and xt, xt+1, ... and subject to the constraints

πt = βEtπt+1 + κxt + ξt ,

xt = Etxt+1 −
1

σ
(it − Etπt+1) ,

where β is the discount factor. Note that we can view this example as case a special case of

our general policy problem (15) when taking Et as E0, i.e. starting at t = 0. Clearly this is

just an arbitrary normalization, i.e. the same would be achieved when starting from Et(·)
4A policy maker operationalizing OPP recommendations will switch from following rule φ0 to rule φ1.

In the class of linear models considered, this information is common knowledge. Studying the problem of
learning (e.g., Bullard and Mitra, 2002) the new policy rule, and more generally extending the sufficient
statistics approach to incorporate learning, is an interesting avenue for future research.
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and indexing the objectives by s for s = t, t+ 1, . . ..

The optimality conditions for this problem are given by

x0 = −κπ0 and xt = xt−1 − κπt , ∀ t = 1, 2, . . . , (S12)

or

xt = −κp̂t ∀ t = 0, 1, 2, . . . ,

where p̂t = pt−p−1 denotes the (log) deviation between the price level and an implicit target

given by the price level prevailing one period before the central bank chooses its optimal plan

(Gaĺı, 2015, page 135).

A possible interest rate rule that (a) implements this optimal allocation and (b) leads to

a unique equilibrium is given by

it = −[φp + (1− δ)(1− κσ)]
t∑

k=0

δkξt−k − (φp/κ)xt

for any φp > 0 (Gaĺı, 2015, page 138). Note that this instrument rule is a special case of the

generic policy rule (18). The coefficients in the rule are given by

δ ≡ 1−
√

1− 4βa2

2aβ
, with a ≡ 1

1 + β + κ2
.

The forecasts under the optimal allocation can be written as

E0π0 = δξ0 E0x0 = −κδξ0 E0πt = (δt+1 − δt)ξ0 E0xt = −κδt+1ξ0 (S13)

for t ≥ 1 (Gaĺı, 2015, page 136).

Next, we rewrite this example in our general notation. Let Y0 = (π0, x0, π1, x1, . . .)
′,

P0 = (i0, i1, . . .)
′, Ξ0 = (ξ0, ξ1, . . .)

′ and denote by ε0 = (ε0, ε1, . . .)
′ the sequence of policy

news shocks, which are equal to zero under the optimal rule (note that Wt does not exist in

this application). The loss function can be written as

Lt =
1

2
E0Y

′
0WY0

where W = diag((β0, β1, . . .)
′ ⊗ (1, 1)′). The general model (16)-(18) becomes

AyyE0Y0 −AypE0P0 = ByξΞ0

E0P0 −ApyE0Y0 = BpξΞ0 + ε0
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where the coefficient maps are given by

Ayy =



1 −κ −β 0 . . . . . .

0 1 −1/σ −1 0 . . .

0 0 1 −κ −β . . .

0 0 0 1 −1/σ
. . .

...
...

. . . . . . . . . . . .


Ayp =



0 0 0 . . .

1/σ 0 0 . . .

0 0 0 . . .

0 1/σ 0 . . .

0 0 0
. . .

0 0 1/σ
. . .

...
...

. . . . . .



Apy =


0 φp/κ 0 0 . . . . . .

0 0 0 φp/κ 0 . . .

0 0 0 0 0 φp/κ
...

...
. . . . . . . . . . . .


and

Byξ =



1 0 0 . . .

0 0 0 . . .

0 1 0 . . .

0 0 0 . . .

0 0 1
. . .

0 0 0
. . .

...
...

. . . . . .


Bpξ =


γ0 0 0 . . .

γ1 γ0 0 . . .

γ2 γ1 γ0
. . .

...
. . . . . . . . .



where γj = −[φp + (1− δ)(1− κσ)]δj. It follows that Ry, after some tedious manipulations,

can be written —under the optimal policy rule— as

Ry =



κ/(σv) κ2/(σ2v2) + κ/σv2 + κ/(σv) . . .

1/(σv) κ/(σ2v2) + 1/(σv2) . . .

0 κ/(σv) . . .

0 1/(σv)

0 0 . . .
...

...
. . .


where v = 1−φp/(κ/σ). Note that we only show the first two columns for ease of exposition.

Given Ry and the forecasts (S13) we can verify the equivalence condition, similar as shown
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in equation (10) for the problem under discretion we have

∂L0(δ0)

∂δ0

∣∣∣∣
δt=0

=R′yWE0Y0

=



κ/(σv) κ2/(σ2v2) + κ/σv2 + κ/(σv) . . .

1/(σv) κ/(σ2v2) + 1/(σv2) . . .

0 κ/(σv) . . .

0 1/(σv)

0 0 . . .
...

...
. . .



′ 

δξ0

−κδξ0

β(δ2 − δ)ξ0

−βκδ2ξ0

...

...


=


0

0
...
...

 .

This mechanically shows that R′yWE0Y0 = 0 must also hold under optimality when consid-

ering the NK optimal policy problem under commitment.

In addition, note that as in the case under discretion, the impulse response matrix Ry

is sufficient to characterize the optimal targeting rule. Working under perfect foresight, the

condition R′yWY0 = 0 corresponds exactly to the optimal targeting rule (S12).

S2 General nonlinear OPP framework

So far we have developed our sufficient statistics approach for policy evaluation in the context

of linear models that can be written as in (16). In this section we explore for which other

classes of models the statistics R0 and EtY0
t are sufficient to evaluate, and possibly improve,

policy decisions. Key examples that we consider are models with state dependence (e.g.

Auerbach and Gorodnichenko, 2013) and models with multiple policy regimes (e.g. Sims

and Zha, 2006).

Recall that the properties of the OPP derive from the equivalence (i.e. Proposition 1)

EtPopt
t = EtP0

t ⇐⇒ ∇δtLt(δt)|δt=0 = R0′

yWEtY0
t = 0 , , (S14)

which we have shown to hold for linear models of the generic form (16).

Here we first provide a high level framework that exactly spells out the necessary condi-

tions on the underlying economy that ensure that our sufficient statistics approach for policy

evaluation applies.

After this we will make two specific points which are useful to place the OPP approach

in the literature. First, as long as the model is linear conditional on time-t predetermined

variables, the equivalence continues to hold and all our previous results hold. This case

notably includes models of state dependent policy effects that are often considered in the
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empirical literature (e.g. Auerbach and Gorodnichenko, 2013). Second, in a model with

multiple regimes conditioned by the policy rule (e.g. Sims and Zha, 2006) as long as the

economy can only be in a finite number of regimes, the equivalence no longer holds, but

a non-zero gradient still implies that the proposed policy choice is non-optimal. In other

words, the two statistics R0 and EtY0
t are still sufficient to evaluate a policy decision, but

adjusting the policy choice with the OPP is no longer guaranteed to yield a superior policy

decision.

B1: Generic nonlinear OPP

Consider an economy that can be represented at time t by the moment equations{
0 = Etf(Yt,Pt,X−t,Ξt, ;φ)

0 = Etφ(Yt,Pt,X−t,Ξt)
, (S15)

where f() and φ() are possibly nonlinear functions. The function f() describes the general

economy and takes as inputs the policy variables Yt, the policy instruments Pt, the initial

conditions X−t and the structural shocks Ξt. The policy equation is characterized by φ,

which takes similar inputs. A key difference with the set up in the main text is that we allow

f to depend directly on the policy rule φ. This generalization directly corresponds to the

generic set-up in Lucas (1976), see equations 16 and 17 in his paper, which allows the policy

rule to alter the function f() in an arbitrary way.

The optimal allocation, for the loss function Lt = EtY′tWYt, in this economy is charac-

terized by

min
Yt,Pt,φ

Lt s.t. (S15)

where the difference is that the optimal allocation now also depends on φ, the choice for the

policy rule that may affect the structure in the economy. The optimal expected policy path

is again denoted by EtPopt
t .

To build up to our sufficient statistics approach consider a policy maker who can introduce

exogenous surprises in the policy rule φ. As before we denote such policy shocks by εt and

we postulate that each element of Pt corresponds to a specific element in εt. The economy

becomes {
0 = Etf(Yt,Pt,X−t,Ξt, ;φ)

0 = Etφ(Yt,Pt,X−t,Ξt, εt)
. (S16)

In this setting a policy choice is determined by the function φ ∈ Φ, where Φ denotes an

arbitrary function class and a sequence of policy shocks εt. Let the proposed policy choice

be denoted by (φ0, ε0
t ), which implicitly characterizes the expected policy path P

e0
t and

allocation EtY0
t .

13



The following high-level assumption exactly determines the class of models for which our

sufficient statistics approach continues to work.

Assumption S1. There exists a non-empty subset Φopt ⊂ Φ such that

1. for all φ ∈ Φopt and φ = φ0 we have a unique and determinate equilibrium given by{
EtYt = hy(X−t,Ξt, εt;φ)

EtPt = hp(X−t,Ξt, εt;φ)
.

where hy() is continuously differentiable with respect to all εt ∈ E, where E is an open

convex subset of R∞.

2. Lt(φ,0) ≤ Lt(φ̃, ε̃t) for all φ ∈ Φopt, φ̃ ∈ Φ\Φopt and ε̃t ∈ E.

The first part of the assumption imposes the existence of a unique equilibrium under

the optimal policy rules φopt and the proposed policy rule φ0. The second part defines the

optimal rules as those that minimize the loss function. The key part in the assumption is

that the loss function is minimized by φopt with εt = 0. That is, under the optimal rule it is

not possible to further lower the loss function by introducing exogenous policy news shocks.

For nonlinear models like (S15) this assumption would need to be verified on a case by

case basis. To better understand Assumption S1, it is helpful to consider our baseline (linear)

framework and discuss how AssumptionS1 is satisfied in this simpler case.

First, for the first part of Assumption S1, note that Assumption 2 in the main text

ensures that a unique equilibrium exists under φ0. In addition, Assumption S1 also require

that a unique equilibrium exists under φopt. The reason is that we need to ensure that the

gradient of Yt with respect to εt exists under the optimal policy. In the linear model this

is not necessary as the optimal policy allocation does not depend on φ, see equation (17).

With f(·) depending on φ however, this is no longer the case and the optimal policy does

depend on φ. In that case, we also need a “well-behaved” optimal rule, i.e., that φopt implies

a unique equilibrium. The second part of Assumption S1 holds in our linear framework as

the optimal allocation EtPopt
t does not depend on εt and can be attained by a rule of form

(18). For instance, we may take App = Apw = Bpx = Bpξ = 0 and Apy = R0′W , to obtain

the optimal targeting rule R0′WEtY0
t = 0.

With assumption S1 in hand we can proceed with our policy evaluation, similar as in the

main text we are interested in evaluating whether EtP0
t = EtPopt

t . As a test statistic we rely

on the generalized OPP statistic given by

δg∗t = −(R0′

yWR0
y)
−1R0′

yWEtY 0
t ,
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where

R0
y =

∂hy(X−t,Ξt, εt;φ)

∂εt

∣∣∣∣
φ=φ0,εt=ε0t

.

Two comments are in order. First, note that for the linear model considered in the main

text we have hy(X−t,Ξt, εt;φ
0) = R0

yε
e
t +Γ0

ySt, see Lemma 1, such that we immediately have

R0
y = R0

y. Second, we do not claim that R0
y can generally be estimated using conventional

econometric methods. Clearly, when the function hy() is unknown this is complicated as

non-parametric methods will need to be used, which given the typically limited time series

observations available may yield uninformative causal effects. The point here is simply to

illustrate the theoretical limit of our approach.

We have the following key result.

Theorem S1. Given model (S16) under assumption S1 if δg∗t exists we have that

δg∗t 6= 0 ⇒ EtP0
t 6= EtPopt

t .

Proof. By Assumption S1 part 1, the loss function Lt is continuously differentiable on

E , thus by Lemma 4.3.1 in Dennis and Schnabel (1996) and Assumption S1 the optimal

policy EtPopt
t = hp(X−t,Ξt,0;φopt) for any φopt ∈ Φopt satisfies the gradient condition

∇εtLt|φ=φopt,εt=0 = 0. Hence, if EtP0
t is optimal we must have that ∇εtLt|φ=φ0,εt=ε0t

=

R0′
yWEtY0

t = 0, with EtY0
t = hy(X−t,Ξt, ε

0
t ;φ

0) , which if δg∗t exists implies that δg∗t must

satisfy δg∗t 6= 0 if EtP0
t 6= EtPopt

t . The existence of δg∗t depends on whether the inverse of

R0′WR0 exists, which can be verified for any given model.

The key purpose for stating Theorem S1 is twofold. First, the key underlying Assumption

(S1) characterizes the class of models for which our sufficient statistics approach can be used

for policy evaluation. Second, Theorem S1 is useful for characterizing optimal policy in

complicated possibly nonlinear models. Indeed while the traditional approach to optimal

policy — as documented in Section 2 for the baseline NK model — may become complex

for nonlinear models, the gradient based approach underlying Theorem S1 may provide a

workable necessary condition for optimal policy. That is determining δg∗t 6= 0 may be easier

then solving the model and computing the optimal policy.

Next, we discuss the details for the specific examples — state dependence and multiple

regimes — as mentioned in the main text.

B1: State dependence

Numerous works have documented evidence for various forms of state dependence in the

effects of fiscal and monetary policy, where the state dependence is governed by some time-
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t pre-determined variable that is independent of the policy decision.5 Our main results

continue to hold in this setting, and the two statistics R0 and EtY0
t are sufficient to detect

and correct non-optimal policy decisions. The only difference is that the statistic R0 needs

to be conditioned on the state of the economy.

As an illustration, consider the specification of Auerbach and Gorodnichenko (2013)

where the economy can be in two states, depending on the value of some state variable

zt. Under such state dependence the generic model for the economy remains conditionally

linear, i.e.{
Ayy(zt)EtYt − Ayw(zt)EtWt −Ayp(zt)EtPt = Byx(zt)X−t + Byξ(zt)Ξt

Aww(zt)EtWt −Awy(zt)EtYt −Awp(zt)EtPt = Bwx(zt)X−t + Bwξ(zt)Ξt

, (S17)

where zt is some predetermined time-t measurable variable and for D = A,B

D..(zt) = F (zt)D..(1) + (1− F (zt))D..(2)

where F (zt) can be interpreted as a measure of probability of being in state 1 at time t based

on some time t predetermined variable zt.
6

The optimal state dependent policy EtPopt
t (zt) can be defined as the solution for Pt to

min
Yt,Wt,Pt

Lt s.t. (S17) . (S18)

The generic policy rule is given by

App(zt)EtPt −Apy(zt)EtYt −Apw(zt)EtWt = Bpx(zt)X−t + Bpξ(zt)Ξt ,

where the definition for the maps A··(zt) and B··(zt) is the same a above. We collect all the

coefficients of the rule in φ(zt). The state dependent OPP under a given rule φ0(zt) is given

by

δ∗t (zt) = −(R0
y(zt)

′WR0
y(zt))

−1R0
y(zt)

′WEtY0
t ,

where R0
y(zt) = F (zt)R0

y,(1) + (1− F (zt))R0
y,(2) captures the causal state dependent effect of

εt on Yt. The following corollary summarizes the properties of the state dependent OPP.

Corollary S1. Given model (S17). Under the assumptions that (1) the optimal policy

EtPopt
t (zt) is unique, and (2) the rule φ0(zt) underlying the proposed policy path EtP0

t (zt)

5See e.g., Auerbach and Gorodnichenko (2012, 2013); Ramey and Zubairy (2018); Barnichon, Debortoli
and Matthes (2021) for studies on whether fiscal policy is more or less effective when the economy is in a high
unemployment state, and Tenreyro and Thwaites (2016); Ascari and Haber (2021); Eichenbaum, Rebelo and
Wong (2022) for studies on whether monetary policy is more or less effective when unemployment is high.

6A popular functional form for F (.) is F (zt) = exp(−γzt)/[1 + exp(−γzt)] with γ a tuning parameter.
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leads to a unique and determinate equilibrium, we have that

1. δ∗t (zt) = 0 ⇐⇒ EtP0
t (zt) = EtPopt

t (zt).

2. EtP0
t +R0

p(zt)δ
∗
t (zt) = EtPopt

t (zt).

Proof of Corollary S1. The proof is identical to the proof of Proposition 1 after changing

the maps A.. and B.. to A..(zt) and B..(zt), respectively.

B2: Multiple policy regimes

Next, we consider an economy with a finite number of policy regimes, where the model

coefficients (equations (16)) can depend on the policy regime. To give a concrete and relevant

example in monetary policy, inflation expectations can be “anchored” —fixed at some value—

or “unanchored”, in that inflation expectations depend the state of the economy (expectation

formation could be e.g., rational or adaptive), and the anchoring of inflation expectations

likely depends on the central bank’s policy rule or objective function (e.g., Bernanke, 2007).

In this type of model, the policy rule can affect the coefficients of the non-policy block

(16). In that case, we can still use the OPP to detect optimization failures, but there is no

longer any guarantee (without additional structural assumption) that an OPP adjustment

would improve policy. In other words, the two statistics R0 and EtY0
t are still sufficient to

evaluate a policy decision, but they may not be sufficient to correct a non-optimal policy

decision.

To formalize this, consider a generalization of (16) with{
Ayy(ϑ)EtYt − Ayw(ϑ)EtWt −Ayp(ϑ)EtPt = Byx(ϑ)X−t + Byξ(ϑ)Ξt

Aww(ϑ)EtWt −Awy(ϑ)EtYt −Awp(ϑ)EtPt = Bwx(ϑ)X−t + Bwξ(ϑ)Ξt

, (S19)

where A..(ϑ) and B..(ϑ) capture describe the economy under the policy regime ϑ.

As in the baseline model, the generic policy rule is

AppPe
t −ApyEtYt −ApwEtWt = BpxX−t + BpξΞt , (S20)

and we collect all the rule parameters in φ = {App,Apy,Apw,Bpx,Bpξ}.
The policy regime ϑ can depend on the policy rule φ, creating a feedback from the policy

rule to the coefficients of the non-policy block. Assume that there exists only a finite number

of regimes. Here we consider the case with two regimes for clarity of exposition and following

our example on anchored/unanchored inflation expectations. The maps D..(ϑ), for D = A,B,

are of the form

D..(ϑ) =

{
D..(ϑ1) if φ ∈ Φ1

D..(ϑ2) if φ ∈ Φ2

, (S21)
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where Φ1 ∪ Φ2 = Φ and Φi ∩ Φj = ∅.
The characterization of the optimal policy choice requires more care. Here we define the

optimal policy as the policy rule (and associated policy regime) that ensures the lowest loss.

We consider

min
Yt,Wt,Pt,φ

Lt s.t. (S19)-(S20) , (S22)

where we note that since the coefficients of the policy equation directly affect the coefficients

that describe the economy, we need to take into account the policy equation when defining the

optimal policy. We denote the solution for Pt to this minimization problem by EtPopt
t (ϑopt)

where ϑopt corresponds to φopt which is the minimizing φ. We will assume that φopt lies in

the interior of some Φi, which rules out boundary solutions.

Given a policy proposal EtP0
t , implied by choices φ0 and ε0, where φ0 implies the regime

ϑ0 ∈ {ϑ1, ϑ2}, the regime specific OPP statistic is

δ∗t (ϑ
0) = −(R0

y(ϑ
0)′WR0

y(ϑ
0))−1R0

y(ϑ
0)′WEtY0

t ,

where EtY0
t is the expected allocation under EtP0

t . Note that computing the regime specific

OPP only requires R0(ϑ0) the causal effects under the proposed policy policy and does not

require knowledge of the causal effects in any of the other regimes.

The following corollary establishes the main property of the regime specific

Corollary S2. Given model (S19)-(S21), under the assumptions that (1) the optimal policy

EtPopt
t (ϑopt) is unique and the underlying rule φopt leads to a unique and determinate equi-

librium, and (2) the rule φ0 underlying the proposed policy path EtP0
t (zt) leads to a unique

and determinate equilibrium, we have that

δ∗t (ϑ
0) 6= 0 ⇒ EtP0

t (ϑ
0) 6= EtPopt

t (ϑopt) .

The corollary implies that if the regime specific OPP is non-zero we have that the policy

choice is non optimal.

Proof of Corollary S2. The Lagrangian for the optimal policy problem (S22) is given by

Lt =Et
{

1

2
Y′tWYt + µ′1(Ayy(ϑ)Yt − Ayw(ϑ)Wt −Ayp(ϑ)Pt − Byx(ϑ)X−t − Byξ(ϑ)Ξt)

+µ′2(Aww(ϑ)Wt −Awy(ϑ)Yt −Awp(ϑ)Pt − Bwx(ϑ)X−t − Bwξ(ϑ)Ξt)

+µ′3(AppPt −ApyYt −ApwWt − BpxX−t − BpξΞt − εt)} ,

where A..(ϑ) and B..(ϑ) capture describe the economy under the policy regime ϑ determined

by the policy rule φ = {App,Apy,Apw,Bpx,Bpξ}
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The first order conditions for Yt,Wt,Pt are given by

0 =WEtYt +A′yy(ϑopt)µ1 −A′wy(ϑopt)µ2 −A
′

pyµ3

0 = −A′yw(ϑopt)µ1 +A′ww(ϑopt)µ2 −A
′

pwµ3

0 = −A′yp(ϑopt)µ1 −A′wp(ϑopt)µ2 +A′

ppµ3

Importantly, with a finite number of regimes if φopt lies in the interior of some Φi, all

the derivatives of the maps A..(ϑ) and B..(ϑ) with respect to the elements of φ are zero.

Intuitively, an infinitely small change in a rule coefficient does not trigger a regime change.

In that case, unless the economy is already perfectly stabilized,7 the first order conditions

with respect to the elements of φ imply that µ3 = 0. To see that, note that optimization

with respect to, for instance, the jth element of the first row of Bpξ gives

µ3,jEξt = 0

where µ3,j is the corresponding element of the µ3 vector. Unless Etξt = 0,8 this implies

µ3,j = 0. We can proceed similarly with the other coefficients of φ to show µ3 = 0.

With µ3 = 0, note that the optimization problem (S22) has the same first order conditions

as the following fictitious problem: given some optimal policy rule φopt the policy maker can

choose Yt, Wt, Pt and a sequence of policy shocks εt to minimize Lt. Indeed, for that

problem the Lagrangian writes

Lft =Et
{

1

2
Y′tWYt + µ′1(Ayy(ϑopt)Yt − Ayw(ϑopt)Wt −Ayp(ϑopt)Pt − Byx(ϑopt)X−t − Byξ(ϑopt)Ξt)

+µ′2(Aww(ϑopt)Wt −Awy(ϑopt)Yt −Awp(ϑopt)Pt − Bwx(ϑopt)X−t − Bwξ(ϑopt)Ξt)

+µ′3(Aopt
pp Pt −Aopt

py Yt −Aopt
pw Wt − Bopt

px X−t − Bopt
pξ Ξt − εt)

}
.

The first-order conditions with respect to εt yield µ3 = 0, which immediately establishes

that the first-order conditions of the fictitious problem are the same as those of problem

(S22). As in the proof of Proposition 1, under the stated assumption that φopt implies a

unique equilibrium, the fictitious problem can also be stated as

min
εt
Lt s.t. EtYt = Ropt

y εet + Copt
x X−t + Copt

ξ Ξt .

7Technically, we exclude that all shocks until time t and all initial conditions are zero, a trivial case we
can discard.

8Technically, the condition is much weaker: we only have to exclude that the economy is perfectly
stabilized when EPt = 0, i.e., that all shocks and all initial conditions are zero. A trivial case we can
discard.
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which leads to the first order condition

Ropt′

y WEtYt = 0 .

This establishes that Ropt′
y WEtYt = 0 is a necessary condition for the original optimization

problem (S22).

Next, consider the second fictitious problem: given the proposed policy rule φ0 the policy

maker can choose Yt, Wt, Pt and a sequence of policy shocks εt to minimize Lt. Using the

exactly the same steps as above, and noting that φ0 leads to a unique equilibrium, it follows

thatR0′
yWEtYt = 0 is a necessary condition for optimality under this rule. This implies that

if we find that R0′
yWEtYt 6= 0, then EtP0

t 6= EtPopt
t as there can only be two cases. First, if

φ0 implies the same regime as φopt it follows immediately as R0′
yWEtYt = Ropt′

y WEtYt = 0

is a necessary condition. Second, if we find that φ0 does not imply the same regime as φopt

the result also follows immediately as φ0 then does not minimize the loss function.

Finally, note that since δ∗t (ϑ
0) is just a rescaling ofR0′

yWEtYt the same conclusion carries

over, and δ∗t (ϑ
0) = 0 is a necessary condition for optimality. Importantly however, unlike in

the linear case, that condition is not sufficient to characterize the optimal policy. With of a

feedback from φ to the maps A..(ϑ) and B..(ϑ), a policy satisfying R0′
yWEtYt = 0 could be a

local minimum, when the regime ϑ0 associated with rule φ0 is not the regime ϑopt associated

with the optimal rule φopt.

S3 General convex loss functions

In the main text we restricted ourselves to quadratic loss functions when testing the opti-

mality of a given policy choice. In this section we show that the main idea – exploiting the

gradient of the loss function to evaluate optimality– continues to apply for essentially any

convex loss function. The only difference is that the evaluation of the gradient will require

the full forecast densities instead of only the mean oracle forecasts.

To show this, let Lt(Yt; θ) denote a loss function which is convex and differentiable with

respect to Yt and may depend on preference parameters denoted by θ. The quadratic loss

function (15) in the main text is a special case where θ includes preference parameters λ

and discount factors β. Using the same generic model (16), we can summarize the policy

maker’s problem by

min
Yt,Wt,Pt

EtLt(Yt; θ) s.t (16)

To evaluate whether a proposed policy choice EtP0
t solves this problem we can follow the

same steps as in the main text. Specifically, using the proof of Proposition 1 it follows

immediately that the equivalence EtP0
t = EtPopt

t ⇐⇒ ∇δtEtLt(Yt(δt); θ)|δt=0 continues to
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hold. However, now the gradient with respect to δt evaluated at δt = 0 (i.e. EtP0
t ) is given

by

∇δtEtLt(Yt(δt); θ)|δt=0 = R0′

y × ∇YtEtLt(Yt(δt); θ)|δt=0 .

Given that Lt(Yt; θ) is convex with respect to Yt and Yt is an affine function of εt in

equilibrium we have that if ∇δtEtLt(Yt(δt); θ)|δt=0 6= 0 the policy choice EtP0
t is not optimal.

To evaluate the gradient we need to compute the derivative ∇YtEtLt(Yt(δt); θ)|δt=0.

Under a quadratic loss 1
2
Y′tWYt, this expression simplifies to ∇YtEtLt(Yt(δt); θ)|δt=0 =

WEtY0
t as in the main text, but for a general convex loss we have

∇YtEtLt(Yt(δt); θ)|δt=0 =

∫
Y0

t

∇YtLt(Y0
t ; θ)p(Y

0
t |Ft)dY0

t , (S23)

where p(Y0
t |Ft) is the forecast density under the proposed policy choice EtP0

t . Thus, provided

the forecast density is available, we can construct the OPP statistic and OPP-based tests

as in the main text. The only difference is that there is no closed form expression for the

gradient, and numerical or Monte Carlo integration methods will be necessary.

S4 Details: constrained OPP

We provide further details for the constrained OPP statistic of Section 4.3. Specifically,

we generalize the set-up in the paper to allow for constraints on any endogenous variable

and provide formal statements for the properties of the constrained OPP and the subset

constrained OPP.

S4.1 General constrained OPP

We consider the general case where the constraints are of the form

C(EtYt,EtWt,EtPt) ≥ c , (S24)

where C(·, ·, ·) is a continuous function that allows to capture a variety of constraints that

the policy maker may face. We give some explicit examples below. The policy maker’s

problem becomes

min
Yt,Wt,Pt

Lt s.t. (16) and C(EtYt,EtWt,EtPt) ≥ c . (S25)

Clearly, with nonlinear constraints there is no closed form expression for the constrained

OPP. Nevertheless, the optimality of a given policy path can be assessed by numerically

21



solving the program

δc∗t = argmin
δt

(EtY0
t +R0

yδt)
′W(EtY0

t +R0
yδt)

s.t. C(EtY0
t +R0

yδt,EtW0
t +R0

wδt,EtP0
t +R0

pδt) ≥ c (S26)

where R0
y, R0

w and R0
p are the dynamic causal effects of εt on Yt, Wt and Pt under φ0. The

problem (S26) is equivalent to a constrained least squares problem and can be easily solved

numerically.

The constrained OPP retains the same properties as its linear counterpart above.

Corollary S3. Given the generic model (16)-(18) and under assumptions that: (i) P
eopt,c
t

is the unique solution to (S25) and (ii) the rule φ0 underlying the proposed policy path EtP0
t

leads to a unique and determinate equilibrium, we have that

1. δc∗t = 0 ⇐⇒ EtP0
t = EtPopt,c

t

2. EtP0
t + δc∗t = EtPopt,c

t ,

where δc∗t is defined in (S26).

S4.2 Subset OPP with nonlinear inequality constraints

Next, we extend our approach to derive a constrained subset-OPP.

Let P
e0
a,t denote the subset or linear combination of the proposed policy path for which

the corresponding policy shocks εe0a,t can be identified. The subsets of the causal effects R0
a,

C0
a,wε and Θ0

a,ε measures the effects of εea,t on Yt, Wt and Pt, respectively. The constraints

that the policy maker faces take the same general form as in (S24).

The subset constrained OPP can be obtained from the program

δc∗a,t = argmin
δa,t

(EtY0
t +R0

a,yδa,t)
′W(EtY0

t +R0
a,yδa,t)

s.t. C(EtY0
t +R0

a,yδa,t,EtW0
t +R0

a,wδa,t,EtP0
t +R0

a,pδa,t) ≥ c (S27)

The constrained subset OPP can also be easily computed using numerical optimization

routines. The only inputs are again the forecasts and the subset dynamic causal effects.

The inequality constrained subset OPP has the following properties.

Corollary S4. Given the generic model (16)-(18) and under assumptions that: (i) EtPopt,c
t

is the unique solution to (S25) and (ii) the rule φ0 underlying the proposed policy path EtP0
t

leads to a unique and determinate equilibrium, we have that

22



1. δc∗a,t 6= 0 =⇒ EtP0
t 6= EtPopt,c

t

2. Lt(δ∗a,t,0) ≤ Lt(0,0), i.e. the adjusted path EtP0
t +R0

a,pδ
c∗
a,t lowers the loss.

The properties are similar to those that were obtained for the unconstrained subset OPP

in the main text.

We now give a few examples for the types of constraints that can be accommodated in

this framework.

Example S3 (Zero lower bound). A well known constraint on the interest rate path of a

central bank is the zero lower bound. We can implement this for Pt = (it, it+1, . . . , it+H)′ by

considering the constraint

CEtPt ≥ c , with C = IH , c = 0 .

This is the specification that we adopt in our empirical work in section 6 for the zero-lower

bound period.

Example S4 (Pre-commitments). A richer example of a policy constraint is the following

announcement by the FOMC after its 09/16/2020 meeting:

‘‘. . . The Committee decided to keep the target range for the federal funds

rate at 0 to 1/4 percent and expects it will be appropriate to maintain this

target range until labor market conditions have reached levels consistent with

the Committee’s assessments of maximum employment and inflation has risen to

2 percent and is on track to moderately exceed 2 percent for some time. . . .’’

To illustrate how to incorporate such pre-commitment we will compute a constrained

OPP, where we impose the constraint that the policy rate remains at the zero lower bound

until inflation is expected to lie at least 0.5 ppt above target for 1 year and unemployment

is less than 0.5 ppt above its long-run level. These thresholds are only chosen as means of

illustration.

Letting Pt = (it, it+1, . . .)
′ be the interest rate path, we can translate this commitment

into a conditional constraint of the form

C(EtYt,EtWt,EtPt) =

{
EtPt = 0 if Etut+h > 4.5 ∀h , Etπt+j < 2.5 j = 1, . . . 4

EtPt else
.

Note that we could also write this expression using an indicator function for the conditioning

event.
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S5 Estimating robust preference parameters

Researchers outside of the policy maker’s research staff may not have access to the policy

maker’s preferences W . For this setting, we outline an approach for conducting preference

robust OPP evaluation. The idea is to exploit a sequence of past policy decisions to find the

preferences that gives the smallest deviations from optimality on average. This approach

can thus be seen as considering a worse-case scenario for “rejecting” optimality.

Specifically, we write ω = β⊗λ, the elements of the preference matrixW , as a function of

the dθ×1, parameter vector θ, i.e., ω = ω(θ), with dθ ≤ K, and we estimate θ by numerically

solving 9

θ̂ = arg min
θ∈Θ

Ŝ(θ) , Ŝ(θ) =

∥∥∥∥∥ 1

n

t∑
s=t0

δ̂a,s(θ)

∥∥∥∥∥
2

, (S28)

where δ̂a,s(θ) corresponds to the mean OPP estimate as a function of θ.

With the estimated θ̂ in hand a researcher can base the optimality assessment on the

simulated distribution of the OPP given θ̂, which ensures that deviations from optimality

are not due to potentially arbitrary choices for the preference parameters.

S6 Additional results for the empirical study

In this section we discuss additional results for our empirical study on testing US monetary

policy decisions. These results are complementary to those presented in Section 6 of the

main text. In particular, the different subsections discuss the following aspects.

1. Impulse responses to policy shocks

2. Sensitivity to the preference parameter λ

3. Alternative dynamic causal effect estimates: SVAR inference

4. Testing the stability of the macro environment

S6.1 Impulse responses to policy shocks

In our empirical study we use shocks to the policy rate and to the slope of the yield curve.

To better understand the policy experiments that we are considering, Figure S1 plots the

full set of impulse responses to (i) innovations to the fed funds rate, and (ii) innovations to

the slope of yield curve. We can see that both policy experiments correspond to somewhat

9To give a specific example, suppose that My = 2 and Mp = 2, then we can take θ = (θ1, θ2)′ and set
ω(θ) = (θ01, θ

1
1, . . .)

′ ⊗ (1, θ2)′ , which implies that β = (θ01, θ
1
1, . . .)

′ and λ = (1, θ2)′.
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persistent changes to the policy instrument, similar to earlier estimates of impulse responses

to monetary shocks (e.g., Eberly, Stock and Wright, 2020). In other words, these experiments

will allow to evaluate the optimality of the short- to medium-end of the policy paths.

S6.2 The preference parameter λ

In the main text we used λ = 1 to compute the OPP-based tests. In this section we compute

the OPPs for different choices of λ between [0.2, 2]. The results for different choices of λ are

shown in Figure S2. We find that the short-rate OPP is not sensitive to the choice for λ.

In fact, all of our main findings hold for all choices of λ and the differences are often small.

For the slope OPP the findings are a bit different. Here low values of λ, say λ = 0.2, move

the slope OPP towards zero. The reason is that the causal effects of inflation are estimated

with greater uncertainty, such that putting more weight on the inflation mandate (a lower

λ) lessens the “power” of our evaluation framework. That said, we stress that the data

indicates that such low values for λ are unlikely, as the worst case λ that we computed using

(S28) was determined at λ = 0.6.

S6.3 Shadow rate results

In this section, we provide an alternative approach to evaluating policy decisions. Instead

of using the fed funds rate as the policy instrument, we use the shadow fed funds rate

constructed by Wu and Xia (2016). The benefit of this approach is that it removes the

non-negativity constraint on the fed funds rate. The impulse responses are estimated as in

the main text, only substituting the fed funds rate with the shadow fed funds rate (Figure

S3)

The policy evaluation results (Figure S4) are similar to the baseline results reported in the

main text (Figure 1), with the (unsurprising) exceptions of the two zero lower bound periods:

2009-2015 and 2020-2021. Unlike the constrained short-rate OPP reported in the main text,

the shadow-rate OPP turns very negative during the Great Recession: the shadow fed funds

rate was about 0.75 percentage point too high over 2009-2013. This finding confirms our

conclusion that unconventional monetary policy should have been used more aggressively

during the great recession. Interestingly, during the COVID crisis, the shadow short rate

OPP also turn substantially negative (-0.5 percentage points), but model uncertainty was

so high at that time that the OPP evaluation is inconclusive. This is to be expected: if

little is known in real time about the transmission of an unusual shock (like COVID) to

the economy, one would expect policy evaluation to be particularly difficult. So while the

shadow short-rate OPP turns negative in 2020, the results are not significantly different from

zero at any reasonable confidence level.
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S6.4 Sequential optimization and time inconsistency

As is well-known, sequential decision making creates the possibility of dynamic inconsistency

in the expected policy paths: An expected policy path that is optimal as of time t may not

be optimal viewed from a time decision problem as of time t + 1 (Kydland and Prescott,

1977).

The OPP statistic —being precisely about the policy maker’s time t decision problem—

naturally inherits the time inconsistency associated with sequential decision making.

However, we saw in the main text that we can isolate the time inconsistent component

and measure its quantitative relevance. Specifically, we can decompose the time t OPP as

δ∗t = δ∗t−1 +
[
0,D0

]
∆EtY0

t−1︸ ︷︷ ︸
Information update

−∆D0︸︷︷︸Et−1Y
0
t−1

Preference shift

(S29)

or after simplifying as

δ∗t = δ∗t−1 + ∆EtY0
t −D0Et−1∆Y0

t

where ∆Et (·) ≡ Et (·) − Et−1 (·) is the information update operator, ∆Y0
t ≡ Y0

t −Y0
t−1 is

the path in first differences and D ≡ −(R0′
yWR0

y)
−1R0′

yW .

Equation (S29) decomposes the time t OPP into three components: (i) the “lagged, i.e.,

time t − 1, OPP —past deviations from optimality that have not been corrected—, (ii)

an information update term —new information revealed at t—, and (iii) a preference shift

term. The preference shift terms captures the dynamic time inconsistency associated with

sequential decision making.

Whether dynamic inconsistency is quantitatively important depends on the policy prob-

lem at hand. In the case of US monetary policy decisions, it appears to be a minor problem.

To see that, Figure S5 reports the result of decomposition (S29) for the (unconstrained) short-

rate OPP over 1990-2022. Notice that preference shift (right-bottom panel) contributes very

little to OPP adjustment between periods. In other words, time inconsistency is quantita-

tively irrelevant for our OPP evaluation: the conclusions are identical whether we assume

that the policy maker follows time consistent policies or not. Instead, we can see that most

of the adjustments to the OPP come from two forces: past deviations from optimality that

have not been corrected —the “lagged” OPP—, and new information. For instance, the

onset of the great recession (in early 2008) led to a large information update that implied

a large negative adjustment to the OPP (red line), followed three years later by a positive

adjustment as the recovery was stronger than expected. Not surprisingly, the COVID crisis

was also marked by large information updates.
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Figure S1: Impulse responses to policy innovations
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Notes: Impulse responses (IRs) of inflation, unemployment and the fed funds rate or the slope of the yield
curve (10year-FFR spread) to a contemporaneous fed funds rate shock (left panel) or to a yield curve slope
shock (right panel). Shaded bands denote the 68 and 90 percent confidence intervals.

Figure S2: OPP for different λ, 1990-2022
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Notes: Top panel: short-rate OPP. The colored lines correspond to the OPP with λ’s between 0.2 and 2.
Bottom panel: slope policy OPP. The colored lines correspond to the OPP with λ’s between 0.2 and 2. The
grey areas capture impulse response and model uncertainty at 60%, 75% and 90% confidence (from darker
to lighter shades) when using λ = 1 as in the main text.
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Figure S3: Impulse responses to policy innovations
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Notes: Impulse responses (IRs) of inflation, unemployment and the shadow fed funds rate (Wu and Xia,
2016) or the slope of the yield curve (10year-FFR spread) to a contemporaneous shadow fed funds rate
shock (left panel) or to a yield curve slope shock (right panel). Shaded bands denote the 68 and 90 percent
confidence intervals.
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Figure S4: A sequence of OPP for shadow fed funds rate policy (1990-2022)
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Notes: Top panel: the shadow fed funds rate (Wu and Xia, 2016). The yellow shaded areas denote the
zero-lower bound (ZLB) periods. Bottom panel: time series for the unconstrained shadow short-rate OPP
(labeled “OPP for contemp. shadow FFR”, left panel) over 1990-2022 for a policy maker with a dual
inflation–unemployment mandate (λ = 1). The grey areas capture impulse response and model uncertainty
at 60%, 75% and 90% confidence (from darker to lighter shades). The case studies are marked as points:
April 2008 (red), April 2010 (blue), March 2021 (green) and November 2021 (yellow).
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Figure S5: A decomposition of the short-rate OPP, 1990-2022
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Notes: Top panel: the median short-rate OPP (black line). Bottom panels: decomposition of the short-
rate OPP (dashed black line) into its three components: (i) the lagged OPP (left panel, blue line), (ii) the
information update term (middle panel, red line), and (iii) the preference shift term (right panel, yellow
line). See equation (S29). The preference shift terms captures the strength of dynamic time inconsistency
coming from a sequential use of the OPP.
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