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Appendix A Additional Information on the Estimation Sample

In this section, we describe the sample selection process moving from the full ALSPAC

sample to the estimation sample. We discuss the imputation of parental genotype and the

representativeness of the sample.

Because we rely on specific information about the child and the parents, we select a

subsample of individuals for whom this information is available. The sample selection process

is illustrated in Table A1. Our ALSPAC data set includes 14,062 children. We have genetic

information on 8,804 of them. Parental genotypes are often missing, especially for fathers,

but using the approach described in Section 3.2, we are able to impute parental genotypes

for 6,905 children. We drop individuals with missing information on sex. To ensure that the

polygenic indexes are valid, we further exclude non-European individuals and individuals

who are outliers because they have extreme values (above 3.5 or below -3.5) on the first

three principal components of the genetic matrix. This leaves us with 6,519 individuals who

may be analyzed in terms of the genetics of the mother and the child. Finally, we exclude

individuals with many missing responses for the measures of skills and investments. We

allow up to ten such missing values to be imputed for each summary measure, producing a

final sample size of 4,510 for the main analysis. Had we not imputed the parental genotypes,

we would have had a reduced sample size of only 1,267 individuals

As we need to select our sample on the above criteria to make a valid inference, our results

should be interpreted for this subsample of ALSPAC individuals. Excluding non-Europeans

and principal component outliers is necessary for the polygenic indexes to be valid. This

causes the sample to be somewhat positively selected, as shown in Table A2. However, we

also see that the selection is much less pronounced than if we had not imputed missing

parental genotypes. In that case, we would have to rely on a reduced sample consisting

only of individuals with both parents genotyped. At a minimum, both parents would then

have to be present in the household, and this induces a much stronger positive selection,

especially in terms of the father’s polygenic index. Hence, imputing missing genotypes has

the additional advantage that it increases the representativeness of the sample. In Tables

A3 and A4, we show how the reduced form results differ depending on whether we use the

imputed or non-imputed polygenic indexes, and whether we use the main or the reduced

0



sample. This shows that we would have reached the same preliminary conclusions from

the reduced form analysis if we had only used the individuals for whom we observe both

parental genotypes. Using the imputed genotypes in the main analysis is thus preferable, as

it increases the precision of the estimates by substantially increasing the sample size.

A major difference between these reduced form results and the main analysis is that skills

and investments also enter as independent variables that cause variation in next-period skills

and investments. This makes correcting for measurement error crucial. In Tables A5 and

A6, we report the signal to variance ratios for each measure used to capture latent skills and

investments, as explained in Section 4.1.3. It is evident from the tables that the degree of

measurement error differs substantially, both across measures and across time for a given

measure. In Table A7, we similarly report the signal to variance ratios for the different PGIs

as explained in Section 4.2.1. Again, we see significant differences in measurement error

across the PGIs. However, each PGI has approximately the same signal to variance ratio for

the child, the mother, and the father.

Table A1: Sample Selection Procedure

Sample criteria Observations
Full ALSPAC sample of children 14,062
With information on child genotypes 8,804
With imputed genotypes for child and parents 6,905
Excluding individuals with missing information on sex 6,902
Excluding individuals of non-European descent 6,580
Excluding outliers on the first three principal components 6,519
With no more than ten missing measures of skills or investments 4,510
With non-imputed parental genotypes (reduced sample) 1,267

Notes: This table shows the criteria for selecting the main sample and the associated number of
individual observations.
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Table A2: Summary statistics

Full sample Main sample Dropped individuals Reduced sample
Child’s PGS -0.076 0.000 -0.219 0.130

(1.012) (1.000) (1.019) (1.000)

Mother’s PGS -0.074 0.000 -0.214 0.114
(1.018) (1.000) (1.037) (1.012)

Father’s PGS -0.064 0.000 -0.186 0.203
(0.972) (1.000) (0.906) (1.300)

Female 0.496 0.490 0.507 0.468
(0.500) (0.500) (0.500) (0.499)

Birth order 1.793 1.747 1.897 1.686
(0.914) (0.869) (1.000) (0.851)

N 6902 4510 2392 1267

Notes: This table reports means and standard deviations for the full sample and for the main
sample, as well as a reduced sample for whom we observe genotypes of both parents.
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Table A3: EA PGI and Skills by Age

Ages: [0-2[ [2-3[ [3-4[ [4-5[ [5-6[ [6-7[ [Pooled]

Panel A:

Child’s PGS 0.043 -0.003 0.023 0.075 0.093 0.036 0.045
(0.043) (0.041) (0.043) (0.042) (0.041) (0.042) (0.031)

Mother’s PGS 0.042 0.028 0.047 0.073 0.049 0.050 0.048
(0.035) (0.034) (0.035) (0.034) (0.034) (0.034) (0.025)

Father’s PGS -0.038 0.036 0.085 0.060 0.046 0.034 0.037
(0.035) (0.034) (0.035) (0.034) (0.033) (0.034) (0.023)

R2 0.010 0.082 0.066 0.053 0.045 0.025 0.044
N 1267 1267 1267 1267 1267 1267 7602

Panel B:

Child’s PGS (imputed) 0.026 -0.025 -0.001 0.045 0.076 0.036 0.026
(0.042) (0.040) (0.042) (0.041) (0.040) (0.041) (0.029)

Mother’s PGS (imputed) 0.008 0.020 0.043 0.065 0.057 0.032 0.038
(0.035) (0.033) (0.035) (0.034) (0.033) (0.034) (0.024)

Father’s PGS (imputed) -0.007 0.019 0.065 0.041 0.035 0.036 0.031
(0.027) (0.026) (0.027) (0.026) (0.026) (0.026) (0.018)

R2 0.006 0.080 0.060 0.039 0.040 0.024 0.039
N 1267 1267 1267 1267 1267 1267 7602

Panel C:

Child’s PGS 0.015 0.007 -0.013 0.071 0.076 0.050 0.034
(0.028) (0.027) (0.027) (0.027) (0.027) (0.028) (0.018)

Mother’s PGS 0.032 0.037 0.069 0.055 0.057 0.041 0.049
(0.020) (0.020) (0.020) (0.020) (0.020) (0.020) (0.013)

Father’s PGS -0.006 0.019 0.061 0.028 0.034 0.027 0.027
(0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.015)

R2 0.006 0.066 0.047 0.039 0.035 0.019 0.032
N 4510 4510 4510 4510 4510 4510 27060

Notes: This table reports parameter estimates from regressions used to link the polygenic index
for educational attainment to children’s skills across childhood. To test the effect of the EA PGI,
we regress at each age the skill measure on the polygenic index, controlling for sex and the first
15 principal components of the genetic matrix. In Panel A, we use only the non-imputed indexes
(and hence, the reduced sample), while Panel B and C use the imputed indexes in the reduced
and the main sample, respectively. Skills have been standardized as described in the data section,
with missing values set equal to the median for that measure, allowing for a maximum of ten
such imputations per summary index. The polygenic indexes were constructed using the summary
statistics in Lee et al. (2018) without the 23andMe information. Standard errors are reported in
parenthesis. In the pooled specification, standard errors are clustered at the individual level.
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Table A4: EA PGI and Investments by Age

Ages: [0-2[ [2-3[ [3-4[ [4-5[ [5-6[ [6-7[ [Pooled]

Panel A:

Child’s PGS 0.020 0.024 0.000 -0.054 0.002 0.064 0.009
(0.041) (0.041) (0.039) (0.040) (0.041) (0.040) (0.032)

Mother’s PGS 0.067 0.156 0.110 0.162 0.126 0.110 0.122
(0.034) (0.034) (0.032) (0.033) (0.034) (0.032) (0.027)

Father’s PGS 0.056 0.047 0.080 0.116 0.118 0.081 0.083
(0.034) (0.033) (0.031) (0.032) (0.033) (0.032) (0.025)

R2 0.016 0.034 0.027 0.058 0.052 0.043 0.042
N 1267 1267 1267 1267 1267 1267 7602

Panel B:

Child’s PGS 0.036 0.033 0.020 -0.030 -0.028 0.040 0.012
(0.041) (0.040) (0.038) (0.039) (0.040) (0.039) (0.030)

Mother’s PGS 0.042 0.106 0.064 0.132 0.104 0.070 0.086
(0.034) (0.033) (0.031) (0.033) (0.033) (0.032) (0.025)

Father’s PGS 0.020 0.023 0.034 0.072 0.100 0.072 0.054
(0.026) (0.026) (0.024) (0.025) (0.026) (0.025) (0.019)

R2 0.009 0.015 0.011 0.045 0.039 0.023 0.028
N 1267 1267 1267 1267 1267 1267 7602

Panel C:

Child’s PGS 0.063 0.043 0.051 0.008 0.003 0.024 0.032
(0.028) (0.027) (0.028) (0.027) (0.027) (0.027) (0.021)

Mother’s PGS 0.056 0.130 0.069 0.132 0.104 0.133 0.104
(0.020) (0.020) (0.020) (0.020) (0.020) (0.020) (0.016)

Father’s PGS 0.038 0.059 0.058 0.094 0.116 0.093 0.076
(0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.017)

R2 0.021 0.039 0.019 0.043 0.039 0.041 0.034
N 4510 4510 4510 4510 4510 4510 27060

Notes: This table reports parameter estimates from regressions used to link the polygenic index
for educational attainment to investments across childhood. To test the effect of the EA PGI, we
regress at each age the investments measure on the polygenic index, controlling for sex and the first
15 principal components of the genetic matrix. In Panel A, we use only the non-imputed indexes
(and hence, the reduced sample), while Panel B and C use the imputed indexes in the reduced
and the main sample, respectively. Investments have been standardized as described in the data
section, with missing values set equal to the median for that measure, allowing for a maximum
of ten such imputations per summary index. The polygenic indexes were constructed using the
summary statistics in Lee et al. (2018) without the 23andMe information. Standard errors are
reported in parenthesis. In the pooled specification, standard errors are clustered at the individual
level.
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Table A5: Signal to Variance Ratio: Measures of Child Skills

Period 0 1 2 3 4 5
Measure Age 0-2 2-3 3-4 4-5 5-6 6-7

1 Can build tower of 8 bricks 6.71 3.55 2.06
2 Plays cards (or board games) 5.51 19.72 37.67 69.34 55.82
3 Plays peek-a-boo 9.07
4 Can focus eyes on small object 11.09
5 Can build tower of 4 bricks 7.06
6 Freq. names things 8.34
7 Combines two different words 33.13
8 Can copy vertical line with pencil 12.08
9 Can copy and draw a circle 14.88 14.52
10 Uses plurals 41.67 34.81
11 Uses possessives 40.87 26.65
12 Adds -ing to words 46.13 34.48
13 Adds -ed to words 30.69 34.89
14 Can copy and draw a plus sign / cross 18.19
15 Can copy and draw a square 15.56 16.85
16 Can write their name 32.54
17 Can write any numbers 38.93
18 Knows at least 10 letters 26.01
19 Can read simple words 40.28
20 Can read a story with <10 words per page 36.57
21 Can count up to 20 23.86
22 Can read a story with >10 words per page 21.59 21.99 19.90
23 Can count up to 100 16.97 28.96 31.61
24 Can play any board games 13.10 31.01 23.71

Notes: This table reports the individual measures of child skills. The signal-to-variance ratios
indicate how much information relative to measurement error is contained in each of the measures.
It is defined formally in Equation 22. A signal-to-variance ratio indicates that the measure is
available in that period and is used in the estimation.
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Table A6: Signal to Variance Ratio: Measures of Investments

Period 0 1 2 3 4
Measure Age 0-2 2-3 3-4 4-5 5-6

1 Freq. goes to places of interest 16.30 20.87 10.83 16.96 13.26
2 Freq. goes to library 3.32 11.61 4.71 10.90 6.49
3 Freq. mum reads to child 20.68 26.23 9.88 5.72 3.71
4 Freq. partner sings to child 16.45 11.99 20.20 9.30 9.62
5 Freq. child taken to park 17.63 16.92 8.48
6 Freq. mum shows child picture books 21.89 12.38
7 Freq. partner shows child picture books 22.02 47.75
8 Freq. partner plays with toys with child 14.36 30.22
9 Freq. partner reads to child 36.54 34.13 11.04 11.61
10 Freq. goes to swimming pool or sports area 26.41 21.17
11 Freq. goes to special classes or clubs 8.37 7.85

Notes: This table reports the individual measures of child investments. The signal-to-variance
ratios indicate how much information relative to measurement error is contained in each of the
measures. It is defined formally in Equation 22. A signal-to-variance ratio indicates that the
measure is available in that period and is used in the estimation.

Table A7: Signal to Variance Ratio: Measures of Genetic Factor

Measure Child Mother Factor
EA PGI (w.o. 23andMe) 91.94 92.96 89.38
EA PGI (23andMe) 46.56 45.95 46.84
Cog PGI (w.o. 23andMe) 34.52 32.77 32.55

Notes: This table reports the individual measures of the genetic factor. The signal-to-variance
ratios indicate how much information relative to measurement error is contained in each of the
measures. It is defined formally in Equation 22.
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Appendix B Polygenic Indexes and Related Literature

The importance of genetics in explaining socio-economic outcomes has been well established

in the behavioral genetics literature (Polderman et al., 2015; Plomin and von Stumm, 2018;

Sacerdote, 2007; Silventoinen et al., 2020; Cesarini and Visscher, 2017; Branigan, McCallum,

and Freese, 2013). The fraction of the variance of educational attainment that is explained

by genes (also called heritability) has been estimated at around 40% in twin studies (Pold-

erman et al., 2015). These estimates are consistent across a variety of kinship relationships

(Cesarini and Visscher, 2017).1 While useful, kinship studies tend to rely on a variety of

strong assumptions about the familial relationship, which have been noted by several critics

to be unappealing (for some early and recent criticisms, see, e.g., Taubman, 1976; Gold-

berger, 1979; Behrman and Taubman, 1989; Björklund, Jantti, and Solon, 2005; Manski,

2011; Durlauf, Kourtellos, and Tan, 2020).

Recent advances in molecular genetics have brought a dramatic reduction in the costs of

measuring genetic variation at the molecular level in humans. This has triggered a renewed

interest in the role of genes in human capital formation. A new and already vast research

program relies on polygenic indexes (PGI) measured at the individual level to study how

genotypic variation explains behavioral and educational outcomes. These genetic factors are

outcome-specific, combine information on a large number of genetic variants, and capture a

large fraction of the genetic variation explaining a variety of socio-economic outcomes.

Formally, a PGI for a particular outcome, w (pgiwi ), is a linear combination of the SNP

count variables weighted by the strength of association between each SNP and the outcome

of interest:

pgiwi =
S∑

s=1

βw
j gis (1)

where the weights {βw
j }, are obtained from a genome-wide association study (GWAS).

A GWAS follows an atheoretical approach to test the relationship between the outcome

of interest and each SNP individually. In a GWAS, the outcome of interest is regressed on

each SNP, one by one, along with a set of controls for population stratification. In contrast to

earlier literature that relied on single genetic variants, the so-called candidate genes approach

that has faced a severe replication crisis (see, e.g., Chabris et al., 2012; Charney and English,

2012; Hewitt, 2012), the GWAS approach has generated a series of robust findings. In the

1However, individual estimates of heritability also vary substantially, e.g. across countries (Branigan,
McCallum, and Freese, 2013). Potentially, such differences could be explained by the nurture of nature
effect that we find. Indeed, the extent to which genetic inequalities are reinforced by family investments will
depend on the existence of egalitarian policies that provide more equal investments in children.

7



present paper, we use the results from the latest GWAS for educational attainment (Lee

et al., 2018) to construct polygenic indexes for educational attainment and cognitive skills

(EA PGI and Cog PGI for short) for the individuals in our sample as described in Section

3.2. Based on these, we can identify the underlying genetic factor, as we show in Section

4.2.

Polygenic indexes for educational attainment have been widely used in economics and

other social science fields. We now know that these indexes are highly predictive of education

as well as many related outcomes, see e.g., Plomin and von Stumm (2018); Lee et al. (2018).

Hence, the EA PGI predicts the accumulation of early childhood skills (Belsky et al., 2016),

achievement in school (Ward et al., 2014), educational attainment (Rietveld et al., 2013;

Domingue et al., 2015; Okbay et al., 2016; Lee et al., 2018; Ronda et al., 2020), as well as

earnings, socioeconomic mobility, and wealth, over and above the direct effect of education

(Papageorge and Thom, 2019; Belsky et al., 2018; Barth, Papageorge, and Thom, 2020).

In particular, using data from the Health and Retirement Study, Papageorge and Thom

(2019) show that the EA PGI predicts college graduation and, moreover, that this relation

has an interaction with childhood socio-economic status (SES) in the sense that the relation-

ship is considerably stronger for children growing up in higher SES families. They also show

that the EA PGI explains labor earnings even after controlling for educational attainment.

Barth, Papageorge, and Thom (2020) use the same data set to show that the EA PGI also

predicts wealth at the time of retirement, even after controlling for educational attainment

and labor income. Investigating potential mechanisms, they point to a better understanding

of complex financial decision-making as one such channel.

It is important to note, however, that, while these indexes are highly predictive of edu-

cational attainment, and are pre-determined, they are not exogenous in most models. This

point has been established in two seminal papers. Using a newly developed technique for

studying heritability (relatedness disequilibrium regression – RDR), Young et al. (2018) show

that neglect of parental genetic influences leads to an overestimation of the importance of

the child’s genes.2 Using genetic information on the child and both of its parents, Kong

et al. (2018) demonstrate how an EA PGI of parents’ non-transmitted genes affect their

children’s educational attainment; they call this ’genetic nurture.’ This corresponds to the

’family genetic associations’ described in the paper. They document that the size of the

family genetic associations is about one-third of the direct effect of the child’s own genes on

2They estimate SNP heritability of educational attainment to be 17%, about 75% of the conventional
estimates of around 22% (Rietveld et al., 2013; Okbay et al., 2016). The difference between SNP heritability
and the 40 % heritability estimated in twin studies (Branigan, McCallum, and Freese, 2013; Cesarini and
Visscher, 2017) is known as the missing heritability problem (Plomin and von Stumm, 2018). Recent research
shows that for many phenotypes, this missing heritability is due to rare variants (Wainschtein et al., 2021).
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educational attainment, implying moreover that the latter is overestimated in most studies

due to the confounding nature of parental genes.

One solution to this endogeneity problem is to exploit genetic variation between siblings.

The idea is that siblings’ genetic make-ups are random draws from the same parental geno-

types. Thus, any genetic differences across siblings should be independent of any confounder

(see the discussion in Conley and Fletcher, 2017). Sibling analyses are thus becoming more

common in the literature. For example, Ronda et al. (2020) exploit genetic variation in sib-

lings to document that the effect of genes on education is lower in low-SES families. Hence,

they point to an unexploited genetic potential in particular among boys growing up in low-

SES families. In comparisons of within- and between-family analyses, sibling analyses have

also documented a decline in the direct effect of the child’s genes once the family genetic

associations are removed (see, e.g., Selzam et al. (2019) and Ronda et al. (2020)). Also, us-

ing siblings, Sanz-de Galdeano and Terskaya (2019) study how parental investment decisions

depend on the child’s EA PGI.

Sibling analyses, however, do not allow for the estimation of family genetic associations.

Directly controlling for the parental genes is preferred since it solves the endogeneity problem

while allowing for the estimation of the family genetic associations. One example of the value

of observing the parental genes in combination with the child’s genes is Wertz et al. (2020).

They use the British E-Risk cohort study to investigate how the child’s and mother’s EA PGI

affect parenting investments (parenting style) as well as educational achievement at age 18

years. They first find evidence that both the child’s and the mother’s genes affect parenting

investments. Hence, the parents react to the child’s genetic learning potential (the nurture

of nature effect). They also confirm the presence of a family genetic association, as in Kong

et al. (2018), by demonstrating that the mother’s EA PGI affects the child’s educational

attainment after controlling for the child’s own EA PGI.

The studies by Young et al. (2018), Kong et al. (2018), Ronda et al. (2020), and, to some

extent, Wertz et al. (2020) highlight the importance of controlling for parental genetic influ-

ences, either directly (by incorporating the parents’ EA PGI into the analyses) or indirectly

(by using, e.g., sibling fixed effects designs) for identifying an effect of the child’s own genes.

Many earlier studies in the field did not have this possibility (and acknowledge it) due to

a lack of appropriate data. While the emerging socio-genomic literature is thus beginning

to reveal certain partial associations, parental genetic influences, and to some extent inter-

actions of (own and parental) genes with the environment, our understanding of whether

and how genetic endowments interact with family resources in the process of human capital

formation is still lacking in the deeper theoretical sense outlined above. E.g., do parental

investments depend on the child’s genetic endowments or are they primarily determined by
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the parents’ genetic endowments? Do parental genetic endowments affect the child in other

ways and, if so, what are the channels and mechanisms?

10



Appendix C Consistency of IV Estimates

This section extends the proof of consistency in Young et al. (2020) to an IV setting. The

key observation that makes the imputation also work in our setting is that both the instru-

ment (imputed paternal PGI 1) and the instrumental variable (imputed paternal PGI 2) are

imputed using the same information set (child and maternal genotypes).

Let X represent a polygenic index (PGI), which is a linear combination of genotypes and

weights from a GWAS (denoted by A):

X =
J∑

j=1

βA
j gj

Similarly, let X̂ denote the PGI from the same GWAS but derived from imputed geno-

types ĝj, where ĝj = E[gj|g1,g2, A] and g1,g2 are the observed genotypes of two relatives

(i.e., two children or a child and a co-parent) and A is a statistic, say the genetic correlation

or IBD (identical by descent) segments shared between the different relatives.

Lemma 1: Young et al. (2020) show that:

Cov(X, X̂) = V ar(X̂) (2)

Cov(Xn, X̂) = Cov(Xn, X) (3)

where Xn is the PGI of one of the two relatives, so n ∈ 1, 2.

Using these two results, Young et al. (2020) show that OLS regression using imputed

genotypes is consistent and unbiased (see Theorem 2 in their paper).

Now, we want to show that the consistency extends to a setting where one PGI (Ẑ) based

on imputed genotypes is used as an instrument for the other PGI (X̂) based on the same

imputed genotypes but weights from a different GWAS, i.e., X̂ is defined as before and

Ẑ =
J∑

j=1

βB
j ĝj

Let X = [X,X1, X2] and Z = [Z,Z1, Z2] be the matrix of PGIs and X̂ = E[X|g1,g2, A]

and Ẑ = E[Z|g1,g2, A] be the two different imputed PGIs. There are two things worth

pointing out. First, X̂n = Xn for n ∈ 1, 2, since E[Xn|g1,g2, A] = Xn. Second, while the

two imputed PGIs (X̂ and Ẑ) are constructed using different weights (BA
j and BB

j ), they are

constructed using the same imputed genotypes and information set (ĝj = E[gj|g1,g2, A]).
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This latter point is important for the proof below.

Theorem: Let Y = Xθ + ε and X = Zλ + µ, where ε, µ ⊥ Z. Then θ̂ = (ẐT X̂)−1ẐTY

is a consistent estimator of θ provided that Cov(Ẑ, X̂) is invertible.

Proof : First note that:

Cov(Ẑ, Y ) = Cov(Ẑ, θX) (4)

= θ(E[ẐXT ]− E[Ẑ]E[X]T ) (5)

= θ(E[E[ẐXT |g1,g2, A]]− E[Ẑ]E[E[X|g1, g2, A]]T ) (6)

= θ(E[ẐX̂T ]− E[Ẑ]E[X̂]T ) (7)

= θCov(Ẑ, X̂) (8)

These follow from the Law of Conditional Expectations and from the fact thatE[Ẑ|g1, g2, A] =

Ẑ.

This result implies that:

lim
n→inf

θ̂ = Cov(Ẑ, X̂)−1Cov(Ẑ, Y )

= θCov(Ẑ, X̂)−1Cov(Ẑ, X̂)

= θ
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Appendix D Alternative Specification of Empirical Model

Here, we present additional estimates of the empirical model parameters. We consider four

different alternative specifications. In our benchmark specification, we correct for measure-

ment error in the genetic factor using a combination of three different polygenic indexes. In

Appendix D.1, we report results without this measurement error correction. In Appendix

D.2, we report estimates using a translog specification that allows for interactions between

all model parameters. Then, in Appendix D.3, we show what happens to the estimates when

we gradually add a range of family controls to the model. Finally, Appendix D.4 reports

estimates from a skill formation model without the genetic factors.

Appendix D.1 No Measurement Error

Table D8 compares the baseline estimates of the technology of skill formation with estimates

using the raw EA PGI (without performing the measurement error correction), while Table

D9 performs the same comparison for the investment function. Compared to the baseline

specification, these estimates overall appear similar. This suggests that the decision regarding

measurement error does not alter the overall implications of our results. Nevertheless, there

are some smaller deviations between the results, in particular regarding the direct effect of the

child’s genes on skill formation. This is made more clear in Figure D1, which compares the

relationship between the genetic factors and child latent skills at ages 2-3 and ages 6-7, using

the baseline model and the raw EA PGI. As illustrated in Panel B1(a), not correcting for

measurement error in the child’s genetic factor causes one to underestimate the accumulated

effect of child genes on skills at ages 6-7. This shows the importance of performing the

measurement error correction.
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Table D8: Measurement Error Correction: Technology of Skill Formation

Ages 0-2 Ages 2-3 Ages 3-4 Ages 4-5 Ages 5-6 Ages 6-7
(1) (2) (3 (4) (5) (6)

Panel A: Baseline
Gi 0.002 0.001 0.001 0.030 0.022 0.008

[ -0.015, 0.019 ] [ -0.008, 0.008 ] [ -0.016, 0.017 ] [ 0.014, 0.046 ] [ 0.008, 0.036 ] [ -0.001, 0.017 ]
Gm

i 0.012 0.003 0.005 0.011 0.011 0.001
[ -0.001, 0.024 ] [ -0.002, 0.009 ] [ -0.005, 0.017 ] [ -0.000, 0.023 ] [ 0.001, 0.021 ] [ -0.005, 0.008 ]

Gf
i 0.004 0.004 0.015 0.003 0.006 0.003

[ -0.010, 0.019 ] [ -0.002, 0.011 ] [ 0.003, 0.029 ] [ -0.009, 0.016 ] [ -0.006, 0.018 ] [ -0.004, 0.011 ]
ln θit 0.224 1.844 0.583 1.009 1.988

[ 0.088, 0.351 ] [ 1.214, 2.724 ] [ 0.340, 0.829 ] [ 0.565, 1.486 ] [ 1.175, 2.819 ]
ln Iit 0.098 0.696 0.329 0.931 2.122

[ 0.051, 0.140 ] [ 0.386, 1.100 ] [ 0.127, 0.542 ] [ 0.390, 1.525 ] [ 1.107, 3.233 ]
ln θit × ln Iit -0.005 -0.216 -0.056 -0.184 -0.552

[ -0.031, 0.024 ] [ -0.366, -0.101 ] [ -0.122, 0.010 ] [ -0.345, -0.028 ] [ -0.855, -0.263 ]
lnA 1.409 1.818 -2.375 0.936 -0.808 -3.939

[ 1.391, 1.428 ] [ 1.604, 2.038 ] [ -4.855, -0.652 ] [ 0.187, 1.706 ] [ -2.525, 0.736 ] [ -7.011, -1.051 ]

Panel B: Model w. EA PGI
Gi 0.006 -0.001 -0.000 0.025 0.019 0.004

[ -0.011, 0.023 ] [ -0.009, 0.007 ] [ -0.016, 0.014 ] [ 0.011, 0.040 ] [ 0.006, 0.033 ] [ -0.004, 0.012 ]
Gm

i 0.011 0.003 0.009 0.010 0.009 0.003
[ -0.000, 0.023 ] [ -0.002, 0.009 ] [ -0.001, 0.020 ] [ -0.001, 0.021 ] [ 0.000, 0.020 ] [ -0.002, 0.010 ]

Gf
i -0.001 0.003 0.014 0.002 0.006 0.002

[ -0.015, 0.012 ] [ -0.003, 0.010 ] [ 0.003, 0.027 ] [ -0.010, 0.013 ] [ -0.005, 0.017 ] [ -0.004, 0.010 ]
ln θit 0.225 1.850 0.585 1.014 1.991

[ 0.089, 0.353 ] [ 1.223, 2.727 ] [ 0.342, 0.828 ] [ 0.572, 1.488 ] [ 1.179, 2.828 ]
ln Iit 0.099 0.698 0.331 0.933 2.124

[ 0.052, 0.141 ] [ 0.389, 1.100 ] [ 0.128, 0.545 ] [ 0.396, 1.528 ] [ 1.107, 3.239 ]
ln θit × ln Iit -0.005 -0.217 -0.057 -0.185 -0.553

[ -0.031, 0.024 ] [ -0.370, -0.103 ] [ -0.123, 0.010 ] [ -0.346, -0.029 ] [ -0.854, -0.263 ]
lnA 1.409 1.815 -2.384 0.929 -0.814 -3.949

[ 1.391, 1.428 ] [ 1.602, 2.036 ] [ -4.838, -0.657 ] [ 0.174, 1.697 ] [ -2.529, 0.717 ] [ -7.020, -1.065 ]

Notes: This table compares the parameter estimates for the technology of skill formation in our
baseline model to the model where we do not control for measurement error in the genetic factor.
That is, we use the raw EA PGI constructed with the GWAS weights from Lee et al. (2018) without
the 23andMe data. 95% bootstrap confidence intervals in brackets.
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Table D9: Measurement Error Correction: Investment Policy function

Ages 0-2 Ages 2-3 Ages 3-4 Ages 4-5 Ages 5-6
(1) (2) (3 (4) (5)

Panel A: Baseline
Gi 0.026 0.022 0.012 -0.002 -0.001

[ 0.006, 0.045 ] [ -0.005, 0.049 ] [ -0.002, 0.026 ] [ -0.008, 0.005 ] [ -0.007, 0.005 ]
Gm

i 0.038 0.079 0.030 0.019 0.013
[ 0.023, 0.054 ] [ 0.058, 0.100 ] [ 0.020, 0.041 ] [ 0.013, 0.025 ] [ 0.008, 0.018 ]

Gf
i 0.022 0.036 0.019 0.015 0.016

[ 0.004, 0.039 ] [ 0.013, 0.058 ] [ 0.007, 0.031 ] [ 0.009, 0.021 ] [ 0.009, 0.021 ]
ln θit 0.339 0.719 0.182 0.091 0.107

[ 0.268, 0.405 ] [ 0.597, 0.862 ] [ 0.134, 0.230 ] [ 0.067, 0.115 ] [ 0.076, 0.133 ]
Constant 4.144 2.650 3.005 2.493 2.416

[ 4.047, 4.248 ] [ 2.269, 2.976 ] [ 2.846, 3.159 ] [ 2.402, 2.582 ] [ 2.314, 2.537 ]

Panel B: Model w. EA PGI
Gi 0.027 0.025 0.015 -0.000 -0.000

[ 0.007, 0.047 ] [ -0.001, 0.051 ] [ 0.000, 0.028 ] [ -0.006, 0.006 ] [ -0.006, 0.006 ]
Gm

i 0.033 0.073 0.025 0.019 0.012
[ 0.019, 0.047 ] [ 0.053, 0.094 ] [ 0.015, 0.036 ] [ 0.013, 0.024 ] [ 0.007, 0.017 ]

Gf
i 0.019 0.032 0.016 0.013 0.014

[ 0.002, 0.036 ] [ 0.010, 0.054 ] [ 0.004, 0.027 ] [ 0.007, 0.019 ] [ 0.008, 0.019 ]
ln θit 0.338 0.717 0.181 0.091 0.106

[ 0.267, 0.405 ] [ 0.595, 0.859 ] [ 0.134, 0.229 ] [ 0.067, 0.114 ] [ 0.075, 0.133 ]
Constant 4.145 2.655 3.008 2.495 2.418

[ 4.047, 4.249 ] [ 2.281, 2.982 ] [ 2.849, 3.161 ] [ 2.404, 2.582 ] [ 2.315, 2.537 ]

Notes: This table compares the parameter estimates for the investment policy function in our
baseline model to the model where we do not control for measurement error in the genetic factor.
That is, we use the raw EA PGI constructed with the GWAS weights from Lee et al. (2018) without
the 23andMe data. 95% bootstrap confidence intervals in brackets.
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Figure D1: Associations between EA PGI and Latent Skills Across Child
Development: These figures plot the relationship between the child’s and its parents’
genetic factor and the child’s latent skill at ages 2-3 and 6-7. It compares the estimated
relationship between genetic factors and latent skills before and after correcting for mea-
surement error in the genetic factors. Using the estimated model parameters, we simulate
the expected latent skill at different ages when we separately increase the child’s, the
mother’s, and the father’s genetic factors while keeping the others constant.
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Appendix D.2 Translog

Table D10 displays the estimates of the technology of skill formation if we allow all model

parameters to interact. In general, the interaction terms involving either of the genetic factors

mostly turn up insignificant in this model. To get a better sense of whether this specification

changes our results, we plot the simulated latent skills over time by each of the genetic factors

in Figure D2. This shows that the skill development implied by the translog specification is

very similar to that implied by the baseline model (illustrated in Figure 3), both in regards to

the child’s and each of her parents’ genetic factors. Furthermore, the relative contributions

of the direct genetic effect, the nurture of nature effect, and the family genetic associations

are also very similar in both specifications, as evident by comparing Table D11 to Table 7.

For this reason, we prefer the simpler baseline specification to illustrate our findings.
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Table D10: Technology of Skill Formation

Ages 0-2 Ages 2-3 Ages 3-4 Ages 4-5 Ages 5-6 Ages 6-7
(1) (2) (3 (4) (5) (6)

Gi 0.002 -0.089 0.067 0.299 0.074 0.154
[ -0.015, 0.019 ] [ -0.175, -0.004 ] [ -0.238, 0.373 ] [ 0.101, 0.519 ] [ -0.264, 0.386 ] [ -0.176, 0.517 ]

Gm
i 0.012 0.059 0.030 -0.018 0.187 0.126

[ -0.001, 0.024 ] [ 0.000, 0.117 ] [ -0.173, 0.240 ] [ -0.171, 0.132 ] [ -0.047, 0.437 ] [ -0.116, 0.371 ]

Gf
i 0.004 0.099 0.036 -0.178 -0.073 -0.097

[ -0.010, 0.019 ] [ 0.029, 0.170 ] [ -0.205, 0.276 ] [ -0.346, -0.004 ] [ -0.344, 0.202 ] [ -0.381, 0.176 ]
ln θit 0.232 1.819 0.549 0.893 1.894

[ 0.098, 0.363 ] [ 1.168, 2.684 ] [ 0.301, 0.792 ] [ 0.439, 1.383 ] [ 1.083, 2.770 ]
ln Iit 0.100 0.681 0.298 0.796 2.005

[ 0.055, 0.143 ] [ 0.367, 1.085 ] [ 0.089, 0.505 ] [ 0.254, 1.397 ] [ 0.973, 3.111 ]
ln θit × ln Iit -0.006 -0.211 -0.047 -0.143 -0.519

[ -0.033, 0.023 ] [ -0.357, -0.096 ] [ -0.113, 0.020 ] [ -0.310, 0.016 ] [ -0.817, -0.228 ]
Gi × ln θit 0.013 0.014 -0.057 -0.020 -0.022

[ -0.012, 0.040 ] [ -0.079, 0.111 ] [ -0.101, -0.015 ] [ -0.065, 0.021 ] [ -0.080, 0.034 ]
Gi × ln Iit 0.015 -0.022 -0.027 0.005 -0.026

[ -0.001, 0.032 ] [ -0.063, 0.021 ] [ -0.078, 0.018 ] [ -0.105, 0.115 ] [ -0.132, 0.064 ]
Gm

i × ln θit -0.005 -0.007 0.010 -0.025 0.012
[ -0.024, 0.014 ] [ -0.070, 0.056 ] [ -0.023, 0.039 ] [ -0.053, 0.005 ] [ -0.033, 0.052 ]

Gm
i × ln Iit -0.010 -0.001 -0.000 -0.034 -0.060

[ -0.021, 0.001 ] [ -0.033, 0.028 ] [ -0.034, 0.035 ] [ -0.117, 0.043 ] [ -0.141, 0.016 ]

Gf
i × ln θit 0.000 -0.011 0.039 0.005 -0.001

[ -0.020, 0.021 ] [ -0.085, 0.064 ] [ 0.005, 0.073 ] [ -0.028, 0.042 ] [ -0.046, 0.041 ]

Gf
i × ln Iit -0.020 0.002 0.018 0.023 0.037

[ -0.034, -0.006 ] [ -0.035, 0.035 ] [ -0.023, 0.058 ] [ -0.072, 0.111 ] [ -0.045, 0.126 ]
Gi ×Gm

i 0.003 -0.000 0.005 0.004 -0.003
[ -0.002, 0.008 ] [ -0.011, 0.010 ] [ -0.005, 0.015 ] [ -0.005, 0.013 ] [ -0.010, 0.003 ]

Gi ×Gf
i 0.000 -0.003 -0.004 -0.005 -0.003

[ -0.004, 0.004 ] [ -0.012, 0.006 ] [ -0.012, 0.005 ] [ -0.014, 0.002 ] [ -0.009, 0.002 ]

Gm
i ×G

f
i 0.002 0.005 0.001 -0.005 0.001

[ -0.004, 0.009 ] [ -0.008, 0.018 ] [ -0.013, 0.013 ] [ -0.018, 0.006 ] [ -0.007, 0.009 ]
lnA 1.409 1.805 -2.304 1.042 -0.418 -3.607

[ 1.391, 1.428 ] [ 1.591, 2.020 ] [ -4.763, -0.521 ] [ 0.306, 1.813 ] [ -2.161, 1.145 ] [ -6.781, -0.667 ]

Notes: The parameter estimates for the initial skill function are reported in the first column and for
the extended technology of skill formation that allows for interactions between the genetic factors
in columns 2-6. 95% bootstrap confidence intervals in brackets.

18



-3 -2 -1 0 1 2 3

Child`s Genetic Factor (Gi)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

S
ta

nd
ar

di
ze

d 
La

te
nt

 S
ki

ll

Ages 0-2
Ages 2-3
Ages 3-4
Ages 4-5
Ages 5-6
Ages 6-7

(a) Child’s Genetic Factor (Gi)

-3 -2 -1 0 1 2 3

Mother`s Genetic Factor (Gi
m)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

S
ta

nd
ar

di
ze

d 
La

te
nt

 S
ki

ll

Ages 0-2
Ages 2-3
Ages 3-4
Ages 4-5
Ages 5-6
Ages 6-7

(b) Mother’s Genetic Factor (Gm
i )

-3 -2 -1 0 1 2 3

Father`s Genetic Factor (Gi
f)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

S
ta

nd
ar

di
ze

d 
La

te
nt

 S
ki

ll

Ages 0-2
Ages 2-3
Ages 3-4
Ages 4-5
Ages 5-6
Ages 6-7

(c) Father’s Genetic Factor (Gf
i )

Figure D2: Associations between EA PGI and Latent Skills Across Child
Development: These figures plot the relationship between the child’s and its parents’ EA
PGI and the child’s latent skill at different ages. Using the estimated model parameters,
we simulate the expected latent skill at different ages when we separately increase the
child’s, the mother’s, and the father’s genetic factors while keeping the others constant.
This figure highlights how the associations between skills and both parental and child
genes increase over time.
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Table D11: Mechanisms Decomposition by Age

Ages 0-2 Ages 2-3 Ages 3-4 Ages 4-5 Ages 5-6 Ages 6-7

Panel A: Child’s Skills

Direct Effects 18.09% 4.34% 3.29% 49.82% 54.87% 54.10%
Nature of Nurture 0.00% 17.75% 12.60% 7.28% 2.87% 2.89%
Family Genetic Associations 81.91% 77.91% 84.10% 42.90% 42.26% 43.01%

Panel B: Parental Investments

Nurture of Nature 42.86% 28.25% 37.04% 9.81% 18.54%
Family Genetic Associations 57.14% 71.75% 62.96% 90.19% 81.46%

Notes: This table decomposes the association between the child’s polygenic index for educational
attainment and child’s skills (in Panel A) and parental investments (in Panel B) by the three
mechanisms for the different developmental periods.
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Appendix D.3 Parental Controls - Estimates

Table D12 displays the main parameter estimates (the genetic factors) in the technology of

skill formation. Panel A shows the baseline estimates. In Panels B through E, we gradually

add a set of parental controls to see how this changes the estimates. We should not expect

the estimates on the child’s genetic factor to change significantly, as any variation in the

child’s genetic factor should be random conditional on parental genes. Hence, this serves as

a validation check of our estimation strategy. On the other hand, the estimates of the family

genetic associations may change if any of the parental controls mediates the relationship

between parental genes and child skill formation.

First, adding birth order (Panel B) has little effect on any of the estimates. On the other

hand, adding maternal education (Panel C) pushes the coefficients on the mother’s genetic

factor toward zero. The estimates on the father’s genetic factor are also reduced somewhat,

though this becomes more clear once we also control for paternal education (Panel D). Adding

additional family controls (Panel E) does little to change the estimates further. Importantly,

the estimates on the child’s genetic factor (the direct genetic effect) are virtually the same

in Panel A and Panel E.

In Table D13, we do the same exercise for the investment policy function. We see the

same pattern, though much more clearly. The parental genetic factors have a strong as-

sociation with investments (the family genetic associations). However, after controlling for

parental education, the coefficient basically goes to zero. This suggests that the family ge-

netic influences are completely mediated by maternal and paternal educational attainment.

Importantly, the estimates on the child’s genetic factor (the nurture of nature effect) are

again virtually unaffected.
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Table D12: Technology of Skill Formation - Parental Controls

Ages 0-2 Ages 2-3 Ages 3-4 Ages 4-5 Ages 5-6 Ages 6-7
(1) (2) (3 (4) (5) (6)

Panel A: Baseline
Gi -0.002 0.000 0.004 0.030 0.021 0.008

[ -0.021, 0.020 ] [ -0.009, 0.010 ] [ -0.014, 0.018 ] [ 0.016, 0.046 ] [ 0.007, 0.035 ] [ -0.002, 0.020 ]
Gm

i 0.015 0.004 0.004 0.011 0.011 0.001
[ 0.000, 0.029 ] [ -0.002, 0.011 ] [ -0.009, 0.016 ] [ 0.002, 0.023 ] [ 0.002, 0.021 ] [ -0.005, 0.009 ]

Gf
i 0.009 0.005 0.016 0.001 0.006 0.003

[ -0.009, 0.024 ] [ -0.002, 0.013 ] [ 0.003, 0.030 ] [ -0.011, 0.014 ] [ -0.004, 0.018 ] [ -0.006, 0.010 ]

Panel B: + Birth Order
Gi -0.000 0.000 0.005 0.031 0.021 0.009

[ -0.019, 0.013 ] [ -0.008, 0.008 ] [ -0.010, 0.022 ] [ 0.013, 0.048 ] [ 0.007, 0.038 ] [ -0.000, 0.017 ]
Gm

i 0.013 0.004 0.004 0.011 0.011 0.001
[ 0.003, 0.026 ] [ -0.000, 0.010 ] [ -0.006, 0.016 ] [ 0.001, 0.024 ] [ 0.001, 0.020 ] [ -0.004, 0.010 ]

Gf
i 0.007 0.005 0.016 0.000 0.006 0.002

[ -0.007, 0.022 ] [ -0.003, 0.012 ] [ 0.002, 0.027 ] [ -0.012, 0.013 ] [ -0.006, 0.018 ] [ -0.003, 0.010 ]

Panel C: + Maternal Education
Gi -0.001 -0.000 0.004 0.030 0.021 0.009

[ -0.020, 0.012 ] [ -0.008, 0.007 ] [ -0.012, 0.020 ] [ 0.012, 0.045 ] [ 0.006, 0.035 ] [ -0.001, 0.018 ]
Gm

i 0.006 0.000 -0.003 0.001 0.006 -0.002
[ -0.004, 0.019 ] [ -0.006, 0.008 ] [ -0.014, 0.009 ] [ -0.010, 0.014 ] [ -0.004, 0.018 ] [ -0.008, 0.006 ]

Gf
i 0.004 0.004 0.013 -0.003 0.004 0.002

[ -0.009, 0.020 ] [ -0.003, 0.012 ] [ 0.000, 0.026 ] [ -0.013, 0.012 ] [ -0.006, 0.016 ] [ -0.007, 0.011 ]

Panel D: + Paternal Education
Gi -0.001 0.000 0.004 0.031 0.022 0.009

[ -0.017, 0.018 ] [ -0.009, 0.009 ] [ -0.010, 0.020 ] [ 0.016, 0.049 ] [ 0.007, 0.040 ] [ -0.002, 0.021 ]
Gm

i 0.005 -0.000 -0.003 -0.001 0.004 -0.002
[ -0.008, 0.022 ] [ -0.007, 0.006 ] [ -0.014, 0.006 ] [ -0.014, 0.010 ] [ -0.006, 0.014 ] [ -0.010, 0.005 ]

Gf
i 0.001 0.001 0.010 -0.009 0.000 -0.000

[ -0.014, 0.014 ] [ -0.006, 0.007 ] [ -0.001, 0.022 ] [ -0.020, 0.002 ] [ -0.010, 0.013 ] [ -0.008, 0.008 ]

Panel E: + Additional Family Controls
Gi -0.001 0.000 0.004 0.031 0.022 0.009

[ -0.018, 0.016 ] [ -0.008, 0.008 ] [ -0.011, 0.018 ] [ 0.016, 0.049 ] [ 0.008, 0.037 ] [ -0.000, 0.019 ]
Gm

i 0.006 -0.001 -0.004 -0.002 0.003 -0.003
[ -0.008, 0.019 ] [ -0.007, 0.006 ] [ -0.015, 0.007 ] [ -0.013, 0.009 ] [ -0.007, 0.013 ] [ -0.010, 0.004 ]

Gf
i -0.000 0.001 0.008 -0.013 -0.002 -0.001

[ -0.016, 0.014 ] [ -0.006, 0.007 ] [ -0.004, 0.021 ] [ -0.026, -0.000 ] [ -0.013, 0.010 ] [ -0.009, 0.006 ]

Notes: This table compares the parameter estimates for the genetic factors in the technology of
skill formation equations as we change the set of control variables Xit. The set of controls in Panel
A includes only a sex dummy. In Panel B, we also control for birth order. Panels C and D extend
the set of controls to include maternal and paternal education dummies. Panel E reports estimates
with the full set of controls, which include a sex dummy, information on birth order, maternal
and paternal education, maternal and paternal occupation, and family financial difficulties. 95%
bootstrap confidence intervals in brackets.
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Table D13: Investment Policy function - Parental Controls

Ages 0-2 Ages 2-3 Ages 3-4 Ages 4-5 Ages 5-6
(1) (2) (3 (4) (5)

Panel A: Baseline
Gi 0.024 0.015 0.009 -0.002 -0.002

[ 0.002, 0.047 ] [ -0.016, 0.042 ] [ -0.003, 0.026 ] [ -0.008, 0.004 ] [ -0.008, 0.005 ]
Gm

i 0.038 0.083 0.034 0.019 0.013
[ 0.025, 0.053 ] [ 0.065, 0.103 ] [ 0.024, 0.043 ] [ 0.014, 0.024 ] [ 0.008, 0.018 ]

Gf
i 0.023 0.038 0.021 0.016 0.016

[ 0.005, 0.041 ] [ 0.012, 0.061 ] [ 0.008, 0.032 ] [ 0.008, 0.020 ] [ 0.009, 0.022 ]

Panel B: + Birth Order
Gi 0.028 0.019 0.012 -0.001 -0.000

[ 0.007, 0.049 ] [ -0.017, 0.043 ] [ -0.004, 0.024 ] [ -0.008, 0.005 ] [ -0.007, 0.004 ]
Gm

i 0.035 0.081 0.032 0.019 0.013
[ 0.019, 0.052 ] [ 0.059, 0.102 ] [ 0.021, 0.045 ] [ 0.013, 0.025 ] [ 0.007, 0.017 ]

Gf
i 0.020 0.035 0.020 0.015 0.016

[ 0.002, 0.036 ] [ 0.015, 0.057 ] [ 0.009, 0.034 ] [ 0.010, 0.020 ] [ 0.008, 0.021 ]

Panel C: + Maternal Education
Gi 0.022 0.011 0.008 -0.003 -0.002

[ 0.003, 0.041 ] [ -0.014, 0.035 ] [ -0.006, 0.023 ] [ -0.008, 0.005 ] [ -0.007, 0.006 ]
Gm

i -0.000 0.034 0.008 0.008 0.003
[ -0.016, 0.014 ] [ 0.015, 0.054 ] [ -0.001, 0.017 ] [ 0.003, 0.013 ] [ -0.002, 0.008 ]

Gf
i 0.005 0.015 0.010 0.010 0.011

[ -0.014, 0.020 ] [ -0.010, 0.040 ] [ -0.002, 0.022 ] [ 0.003, 0.016 ] [ 0.003, 0.017 ]

Panel D: + Paternal Education
Gi 0.024 0.015 0.010 -0.001 -0.000

[ 0.003, 0.042 ] [ -0.014, 0.039 ] [ -0.005, 0.028 ] [ -0.007, 0.005 ] [ -0.006, 0.006 ]
Gm

i -0.004 0.029 0.005 0.007 0.002
[ -0.019, 0.013 ] [ 0.011, 0.049 ] [ -0.006, 0.016 ] [ 0.002, 0.012 ] [ -0.004, 0.007 ]

Gf
i -0.006 0.000 0.001 0.006 0.008

[ -0.020, 0.010 ] [ -0.017, 0.025 ] [ -0.012, 0.014 ] [ -0.000, 0.012 ] [ 0.002, 0.012 ]

Panel E: + Additional Family Controls
Gi 0.023 0.014 0.009 -0.001 -0.000

[ 0.003, 0.044 ] [ -0.014, 0.038 ] [ -0.005, 0.023 ] [ -0.007, 0.005 ] [ -0.007, 0.006 ]
Gm

i -0.004 0.029 0.005 0.006 0.002
[ -0.019, 0.012 ] [ 0.009, 0.048 ] [ -0.005, 0.016 ] [ 0.001, 0.011 ] [ -0.003, 0.006 ]

Gf
i -0.008 -0.003 -0.001 0.004 0.007

[ -0.026, 0.009 ] [ -0.024, 0.020 ] [ -0.013, 0.011 ] [ -0.002, 0.010 ] [ 0.000, 0.011 ]

Notes: This table compares the parameter estimates for the genetic factors in the investment policy
function equations as we change the set of control variables Xit. The set of controls in Panel A
includes only a sex dummy. In Panel B, we also control for birth order. Panels C and D extend
the set of controls to include maternal and paternal education dummies. Panel E reports estimates
with the full set of controls, which include a sex dummy, information on birth order, maternal
and paternal education, maternal and paternal occupation, and family financial difficulties. 95%
bootstrap confidence intervals in brackets.
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Appendix D.4 No Genes

Finally, we estimate a traditional skill formation model that does not include the genetic

factors. These estimates are compared to our baseline estimates in Tables D14 and D15

and to the estimates with the full set of parental controls in Tables D16 and D17. First,

comparing the estimates for the technology of skill formation shows that the estimates of

the self-productivity of skills and the complementarity between skills and investments are

similar in both models. However, the returns to investments are somewhat overestimated

in the model without genes, regardless of whether the parental controls are included or not.

Comparing the estimates for the investment policy function shows that the baseline model

without genes also overestimates the extent to which investments depend on previous skills

(the reinforcing behavior) because it does not capture that parental genes are an influence

on both skills and investments. However, including the full set of controls makes these

parameters very similar.
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Table D14: Technology of Skill Formation - No Genes

Ages 0-2 Ages 2-3 Ages 3-4 Ages 4-5 Ages 5-6 Ages 6-7
(1) (2) (3) (4) (5) (6)

Panel A: Baseline
Gi 0.002 0.001 0.001 0.030 0.022 0.008

[ -0.015, 0.019 ] [ -0.008, 0.008 ] [ -0.016, 0.017 ] [ 0.014, 0.046 ] [ 0.008, 0.036 ] [ -0.001, 0.017 ]
Gm

i 0.012 0.003 0.005 0.011 0.011 0.001
[ -0.001, 0.024 ] [ -0.002, 0.009 ] [ -0.005, 0.017 ] [ -0.000, 0.023 ] [ 0.001, 0.021 ] [ -0.005, 0.008 ]

Gf
i 0.004 0.004 0.015 0.003 0.006 0.003

[ -0.010, 0.019 ] [ -0.002, 0.011 ] [ 0.003, 0.029 ] [ -0.009, 0.016 ] [ -0.006, 0.018 ] [ -0.004, 0.011 ]
ln θit 0.224 1.844 0.583 1.009 1.988

[ 0.088, 0.351 ] [ 1.214, 2.724 ] [ 0.340, 0.829 ] [ 0.565, 1.486 ] [ 1.175, 2.819 ]
ln Iit 0.098 0.696 0.329 0.931 2.122

[ 0.051, 0.140 ] [ 0.386, 1.100 ] [ 0.127, 0.542 ] [ 0.390, 1.525 ] [ 1.107, 3.233 ]
ln θit × ln Iit -0.005 -0.216 -0.056 -0.184 -0.552

[ -0.031, 0.024 ] [ -0.366, -0.101 ] [ -0.122, 0.010 ] [ -0.345, -0.028 ] [ -0.855, -0.263 ]
lnA 1.409 1.818 -2.375 0.936 -0.808 -3.939

[ 1.391, 1.428 ] [ 1.604, 2.038 ] [ -4.855, -0.652 ] [ 0.187, 1.706 ] [ -2.525, 0.736 ] [ -7.011, -1.051 ]

Panel B: Model w.o. Genes
ln θit 0.225 1.821 0.591 1.027 1.972

[ 0.091, 0.338 ] [ 1.139, 2.682 ] [ 0.347, 0.833 ] [ 0.585, 1.479 ] [ 1.137, 2.859 ]
ln Iit 0.100 0.689 0.345 0.973 2.109

[ 0.054, 0.137 ] [ 0.339, 1.066 ] [ 0.153, 0.553 ] [ 0.442, 1.570 ] [ 1.029, 3.261 ]
ln θit × ln Iit -0.005 -0.211 -0.057 -0.188 -0.545

[ -0.029, 0.025 ] [ -0.350, -0.083 ] [ -0.119, 0.007 ] [ -0.344, -0.033 ] [ -0.857, -0.239 ]
lnA 1.409 1.811 -2.345 0.863 -0.950 -3.916

[ 1.389, 1.428 ] [ 1.622, 2.037 ] [ -4.709, -0.425 ] [ 0.069, 1.602 ] [ -2.655, 0.548 ] [ -7.134, -0.987 ]

Notes: This table compares the parameter estimates for the technology of skill formation in our
baseline model to the model where genetic factors are excluded. 95% bootstrap confidence intervals
in brackets.
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Table D15: Investment Policy function - No Genes

Ages 0-2 Ages 2-3 Ages 3-4 Ages 4-5 Ages 5-6
(1) (2) (3) (4) (5)

Panel A: Baseline
Gi 0.026 0.022 0.012 -0.002 -0.001

[ 0.006, 0.045 ] [ -0.005, 0.049 ] [ -0.002, 0.026 ] [ -0.008, 0.005 ] [ -0.007, 0.005 ]
Gm

i 0.038 0.079 0.030 0.019 0.013
[ 0.023, 0.054 ] [ 0.058, 0.100 ] [ 0.020, 0.041 ] [ 0.013, 0.025 ] [ 0.008, 0.018 ]

Gf
i 0.022 0.036 0.019 0.015 0.016

[ 0.004, 0.039 ] [ 0.013, 0.058 ] [ 0.007, 0.031 ] [ 0.009, 0.021 ] [ 0.009, 0.021 ]
ln θit 0.339 0.719 0.182 0.091 0.107

[ 0.268, 0.405 ] [ 0.597, 0.862 ] [ 0.134, 0.230 ] [ 0.067, 0.115 ] [ 0.076, 0.133 ]
Constant 4.144 2.650 3.005 2.493 2.416

[ 4.047, 4.248 ] [ 2.269, 2.976 ] [ 2.846, 3.159 ] [ 2.402, 2.582 ] [ 2.314, 2.537 ]

Panel B: Model w.o. Genes
ln θit 0.345 0.746 0.190 0.097 0.115

[ 0.275, 0.409 ] [ 0.628, 0.902 ] [ 0.145, 0.243 ] [ 0.074, 0.120 ] [ 0.083, 0.142 ]
Constant 4.135 2.581 2.979 2.473 2.388

[ 4.038, 4.239 ] [ 2.167, 2.891 ] [ 2.803, 3.124 ] [ 2.385, 2.560 ] [ 2.281, 2.506 ]

Notes: This table compares the parameter estimates for the investment policy function in our
baseline model to the model where genetic factors are excluded. 95% bootstrap confidence intervals
in brackets.
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Table D16: Technology of Skill Formation - No Genes - All Controls

Ages 0-2 Ages 2-3 Ages 3-4 Ages 4-5 Ages 5-6 Ages 6-7
(1) (2) (3) (4) (5) (6)

Panel A: Baseline
Gi -0.001 0.000 0.004 0.031 0.022 0.009

[ -0.018, 0.016 ] [ -0.008, 0.008 ] [ -0.011, 0.018 ] [ 0.016, 0.049 ] [ 0.008, 0.037 ] [ -0.000, 0.019 ]
Gm

i 0.006 -0.001 -0.004 -0.002 0.003 -0.003
[ -0.008, 0.019 ] [ -0.007, 0.006 ] [ -0.015, 0.007 ] [ -0.013, 0.009 ] [ -0.007, 0.013 ] [ -0.010, 0.004 ]

Gf
i -0.000 0.001 0.008 -0.013 -0.002 -0.001

[ -0.016, 0.014 ] [ -0.006, 0.007 ] [ -0.004, 0.021 ] [ -0.026, -0.000 ] [ -0.013, 0.010 ] [ -0.009, 0.006 ]
ln θit 0.271 1.846 0.577 0.952 2.025

[ 0.130, 0.393 ] [ 1.175, 2.737 ] [ 0.310, 0.849 ] [ 0.518, 1.448 ] [ 1.082, 3.056 ]
ln Iit 0.102 0.696 0.254 0.789 2.099

[ 0.056, 0.142 ] [ 0.368, 1.099 ] [ 0.026, 0.483 ] [ 0.260, 1.397 ] [ 0.936, 3.363 ]
ln θit × ln Iit -0.015 -0.235 -0.055 -0.173 -0.566

[ -0.042, 0.015 ] [ -0.382, -0.109 ] [ -0.127, 0.020 ] [ -0.346, -0.021 ] [ -0.929, -0.236 ]
lnA 1.414 1.774 -2.198 1.128 -0.363 -3.867

[ 1.363, 1.465 ] [ 1.580, 1.996 ] [ -4.639, -0.365 ] [ 0.245, 1.966 ] [ -2.153, 1.150 ] [ -7.485, -0.609 ]

Panel B: Model w.o. Genes
ln θit 0.271 1.841 0.585 0.966 2.022

[ 0.062, 0.090 ] [ 0.029, 0.065 ] [ 0.045, 0.081 ] [ 0.036, 0.068 ] [ 0.008, 0.028 ]
ln Iit 0.102 0.693 0.263 0.806 2.096

[ -0.007, 0.003 ] [ -0.035, -0.011 ] [ -0.028, -0.008 ] [ -0.020, -0.001 ] [ -0.018, -0.005 ]
ln θit × ln Iit -0.015 -0.234 -0.057 -0.177 -0.564

[ -0.020, 0.020 ] [ -0.058, 0.021 ] [ 0.020, 0.102 ] [ -0.037, 0.046 ] [ -0.027, 0.028 ]
lnA 1.412 1.774 -2.186 1.093 -0.426 -3.863

[ 1.363, 1.463 ] [ -0.042, 0.014 ] [ -0.382, -0.109 ] [ -0.130, 0.017 ] [ -0.351, -0.024 ] [ -0.928, -0.235 ]

Notes: This table compares the parameter estimates for the technology of skill formation in our
baseline model with the full set of parental controls to the model where genetic factors are excluded.
95% bootstrap confidence intervals in brackets.
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Table D17: Investment Policy function - No Genes - All Controls

Ages 0-2 Ages 2-3 Ages 3-4 Ages 4-5 Ages 5-6
(1) (2) (3) (4) (5)

Panel A: Baseline
Gi 0.023 0.014 0.009 -0.001 -0.000

[ 0.003, 0.044 ] [ -0.014, 0.038 ] [ -0.005, 0.023 ] [ -0.007, 0.005 ] [ -0.007, 0.006 ]
Gm

i -0.004 0.029 0.005 0.006 0.002
[ -0.019, 0.012 ] [ 0.009, 0.048 ] [ -0.005, 0.016 ] [ 0.001, 0.011 ] [ -0.003, 0.006 ]

Gf
i -0.008 -0.003 -0.001 0.004 0.007

[ -0.026, 0.009 ] [ -0.024, 0.020 ] [ -0.013, 0.011 ] [ -0.002, 0.010 ] [ 0.000, 0.011 ]
ln θit 0.272 0.540 0.122 0.061 0.074

[ 0.210, 0.324 ] [ 0.447, 0.650 ] [ 0.088, 0.156 ] [ 0.045, 0.076 ] [ 0.051, 0.095 ]
Constant 4.136 2.937 3.112 2.565 2.494

[ 4.035, 4.243 ] [ 2.615, 3.193 ] [ 2.988, 3.238 ] [ 2.503, 2.629 ] [ 2.411, 2.587 ]

Panel B: Model w.o. Genes
ln θit 0.272 0.541 0.123 0.061 0.075

[ -0.062, 0.036 ] [ -0.076, 0.069 ] [ -0.043, 0.033 ] [ -0.009, 0.027 ] [ -0.003, 0.030 ]
Constant 4.132 2.923 3.108 2.562 2.490

[ -0.094, -0.063 ] [ -0.078, -0.042 ] [ -0.069, -0.043 ] [ -0.023, -0.013 ] [ -0.025, -0.014 ]

Notes: This table compares the parameter estimates for the investment policy function in our
baseline model with the full set of parental controls to the model where genetic factors are excluded.
95% bootstrap confidence intervals in brackets.
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