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A An Equilibrium when C = D

This appendix is concerned with constructing an equilibrium when the seller’s contract space is restricted to

include only simple and direct contracts. In section A.1, we use a fixed-point argument to define a set of contracts

D∗(µ) parameterised by µ ∈ [0, 1], such that the seller deploys a contract in D∗(µ) when her belief about the buyer

having high valuation is µ. In section A.2, we describe and analyse a class of auxiliary games whose sequential

equilibria map to off-path parts of our equilibrium assessment. Finally in section A.3, we use the results from

sections A.1 and A.2 to build a complete assessment and prove that it constitutes an equilibrium.

A.1 Deployed Contracts

Let vh > vl > 0 and δ ∈ (0, 1). For µ ∈ [0, 1], let J̄(µ) = max{vl, µvh} and

J(µ) =


vl if µ < 1,

vh if µ = 1.

A function J : [0, 1] → R is piece-wise linear if [0, 1] can be partitioned into countably many intervals such that

J is affine on each of these intervals. We denote by J the set of non-decreasing, piece-wise linear and convex

functions J : [0, 1]→ [vl, vh] such that, for all µ ∈ [0, 1], J̄(µ) ≥ J(µ) ≥ J(µ).
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Given J ∈ J , we construct a function AJ ∈ J . We set AJ(0) = vl and AJ(1) = vh. For µ ∈ (0, 1), AJ(µ) is

the value to the maximisation problem described below.

Fix µ ∈ (0, 1). A trading time s is a random time whose distribution 〈s〉 depends on the buyer’s valuation

v ∈ {vl, vh}. We identify 〈s〉 = (qh, ql) ∈ Q×Q, where Q =
{
q ∈ [0, 1]N :

∑
t≥0 qt ≤ 1

}
. For t ≥ 0 and i ∈ {h, l},

qit is interpreted as the probability that trade occurs in period t if the buyer’s valuation in vi. Given 〈s〉 ∈ Q×Q

and t ≥ 0, if P(s ≥ t) = 1−
∑t−1
k=0

(
µqhk + (1− µ)qlk

)
> 0, we define:

µt = P(v = vh|s ≥ t) =
µ
(

1−
∑t−1
k=0 q

h
k

)
µ
(

1−
∑t−1
k=0 q

h
k

)
+ (1− µ)

(
1−

∑t−1
k=0 q

l
k

) .
Define, for 〈s〉 ∈ Q ×Q, the objective function:

Ω
(
〈s〉
∣∣µ) =

∞∑
k=0

δk
(
qhkµvh + qlk(vl − µvh)

)
,

and for t ≥ 1, the constraint mapping:

Gt
(
〈s〉
∣∣µ, J) =


P
(
s ≥ t

)
J(µt)−

∑∞
k=t δ

k−t
(
qhkµvh + qlk(1− µ)vl

)
if P
(
s ≥ t

)
> 0,

0 if P
(
s ≥ t

)
= 0.

Note that Ω(·|µ) is linear and, for each t ≥ 1, Gt(·|µ, J) is convex on the convex set Q×Q. Denoting G
(
〈s〉
∣∣µ, J) =(

Gt
(
〈s〉
∣∣µ, J))

t≥1
, the maximisation problem is given by:

AJ(µ) = max
〈s〉∈Q×Q

Ω
(
〈s〉
∣∣µ)

s.t. G
(
〈s〉
∣∣µ, J) ≤ 0.

(1)

If µ ≤ vl
vh

, an obvious solution is given by s = 0, that is qh0 = ql0 = 1. Thus, in this case, AJ(µ) = vl. Therefore,

we focus on the case µ > vl
vh

. We first prove preliminary results which help describe a candidate solution 〈s∗〉(µ, J)

to (1). Then, we prove that 〈s∗〉(µ, J) indeed solves the maximisation problem, and we verify that AJ indeed

belongs to J .

Lemma 1. For µ̃ ∈ (0, 1), there exists µ̃′ ∈ [0, µ) such that:

δJ(µ̃′) = vh −
1− µ̃′

1− µ̃
(
vh − J(µ̃)

)
,

if and only if µ̃ ≥ (1−δ)vl
vh−δvl ≡ µ̄ ∈ (0, vlvh ). In this case, µ̃′ is unique.
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Proof. Uniqueness is guaranteed by the fact that J is convex, and δJ(µ̃) < J(µ̃). If δJ(0) ≥ vh − vh−J(µ̃)
1−µ̃ , then

a solution exists by the intermediate value theorem. Otherwise, no solution exists, by convexity. Therefore, a

solution exists if and only if:

J(µ̃) ≤ µ̃vh + (1− µ̃)δvl.

This inequality is satisfied if µ̃ ≥ vl
vh

since J(µ̃) ≤ max{µ̃vh, vl}. For µ̃ < vl
vh

, J(µ̃) = vl and the inequality is

equivalent to µ̃ ≥ µ̄.

In view of lemma 1, define on [0, 1) the function µ̃′ such that µ̃′(µ̃) = 0 if µ̃ ≤ µ̄, and:

δJ(µ̃′) = vh −
1− µ̃′

1− µ̃
(
vh − J(µ̃)

)
,

otherwise. Now, given µ1 ∈ (0, 1), we construct the non-increasing sequence (µk)k≥1 such that, for k ≥ 1,

µk+1 = µ̃′(µk).

Lemma 2. There exists T ≥ 1 such that µT < µ̄.

Proof. Otherwise, (µk)k≥1 has a limit µ∞ ∈ [µ̄, 1). Since J is continuous on [0, 1), the limit must satisfy:

δJ(µ∞) = J(µ∞),

which is impossible since J ≥ vl > 0 and δ < 1.

We define T = min{t ≥ 1 : µt < µ̄}. Now, let:

ρJ(µ1) =
vl

vh − vl

T∏
t=1

(
1 +

1− δ
δ

vh
vh − J(µt)− (1− µt)J ′+(µt)

)
∈ (0,∞],

where J ′+ is the right-derivative of J . By convexity and piece-wise linearity of J , ρJ is a non-decreasing and

right-continuous step function, which may take infinite values if vh = J(µ1) + (1− µ1)J ′+(µ1).

Lemma 3. For any µ1 ∈ (0, 1), ρJ(µ1) > µ1

1−µ1
.

Proof. If T = 1, then:

µ1

1− µ1
<

µ̄

1− µ̄
=

(1− δ)vl
vh − vl

=
ρJ(µ1)

1
1−δ + 1

δ
vh

vh−vl
< ρJ(µ1).

If T > 1, note that for t < T , since µt+1 < µt and J is convex:

J ′+(µt) ≥
J(µt)− J(µt+1)

µt − µt+1
.
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As a result:

1 +
1− δ
δ

vh
vh − J(µt)− (1− µt)J ′+(µt)

≥ (µt − µt+1)vh − δ(1− µt+1)J(µt) + δ(1− µt)J(µt+1)

δ
[
(µt − µt+1)vh − (1− µt+1)J(µt) + (1− µt)J(µt+1)

] .
Substitute in the numerator δJ(µt+1) = vh− 1−µt+1

1−µt

(
vh−J(µt)

)
, and in the denominator J(µt) = vh− 1−µt

1−µt+1

(
vh−

δJ(µt+1)
)
, to obtain:

1 +
1− δ
δ

vh
vh − J(µt)− (1− µt)J ′+(µt)

≥ (1− µt+1)J(µt)

δ(1− µt)J(µt+1)
.

As a result:

ρJ(µ1) ≥ 1− µT
δT

vh − δvl
(vh − vl)2

J(µ1)

1− µ1
.

Since J(µ1) = vh − 1−µ1

1−µ2

(
vh − δJ(µ2)

)
, we have:

1− µT

δT
vh − δvl
(vh − vl)2

J(µ1)

1− µ1
− µ1

1− µ1
=

1− µT

δT−1

vh − δvl
(vh − vl)2

J(µ2)

1− µ2
− µ2

1− µ2
+

(
1− µT

δT
vh − δvl
(vh − vl)2

vh − 1

)(
1

1− µ1
− 1

1− µ2

)
.

Now, since µT < µ̄ = (1−δ)vl
vh−δvl :

1− µT
δT

vh − δvl
(vh − vl)2

vh − 1 >
1

δT
vh

vh − vl
− 1 > 0,

and since µ1 > µ2, we obtain:

1− µT
δT

vh − δvl
(vh − vl)2

J(µ1)

1− µ1
− µ1

1− µ1
>

1− µT
δT−1

vh − δvl
(vh − vl)2

J(µ2)

1− µ2
− µ2

1− µ2
.

The same argument applies by induction to establish:

1− µT
δT

vh − δvl
(vh − vl)2

J(µ1)

1− µ1
− µ1

1− µ1
>

1

δ

vh − δvl
(vh − vl)2

vl −
µT

1− µT
>

vl
vh − vl

(1− δ)vh + δ2(vh − vl)
δ(vh − vl)

> 0.

To summarise:

ρJ(µ1) >
1− µT
δT

vh − δvl
(vh − vl)2

J(µ1)

1− µ1
>

µ1

1− µ1
,

which proves the claim.

Now, given the prior µ ∈ ( vlvh , 1), let:

µ∗1 = min
{
µ1 ∈ [0, 1) : ρJ(µ1) >

µ

1− µ

}
.

As above, we iterate on µ̃′ to construct the path (µ∗1, µ
∗
2, ..., µ

∗
T∗), where µ∗T∗ ∈ [0, µ̄). Defining µ∗0 = µ and
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µ∗T∗+1 = 0, the candidate solution 〈s∗〉(µ, J) is characterised by:

∀t ∈ {0, ..., T ∗}, q∗ht =
1− µ
µ

( 1

1− µ∗t
− 1

1− µ∗t+1

)
,

q∗lT∗ = 1− q∗lT∗+1 =
(1− δ)vl − µ∗T∗(vh − δvl)

(1− δ)(1− µ∗T∗)vl
.

Proposition 1. 〈s∗〉(µ, J) solves problem (1).

Proof. To simplify notations, we omit the dependence on µ and J of 〈s∗〉, Ω and G. We first define a sequence of

non-negative Lagrange multipliers (λt)t≥1 as follows.

If:

vl
vh − vl

T∗∏
t=1

(
1 +

1− δ

δ

vh
vh − J(µ∗t )− (1− µ∗t )J

′
−(µ

∗
t )

)
≤ µ

1− µ
<

vl
vh − vl

T∗∏
t=1

(
1 +

1− δ

δ

vh
vh − J(µ∗t )− (1− µ∗t )J

′
+(µ

∗
t )

)
,

where J ′−(0) = 0, then there exists
(
J ′∗(µ

∗
t )
)

1≤t≤T∗ ∈
∏

1≤t≤T∗
[
J ′−(µ∗t ), J

′
+(µ∗t )

]
such that:

µ

1− µ
=

vl
vh − vl

T∗∏
t=1

(
1 +

1− δ
δ

vh
vh − J(µ∗t )− (1− µ∗t )J ′∗(µ∗t )

)
.

Otherwise, it must be that µ∗T∗ = 0, and:

vl
vh − vl

T∗−1∏
t=1

(
1 +

1− δ

δ

vh
vh − J(µ∗t )− (1− µ∗t )J

′
−(µ

∗
t )

)
≤ µ

1− µ
<

vl
vh − vl

T∗∏
t=1

(
1 +

1− δ

δ

vh
vh − J(µ∗t )− (1− µ∗t )J

′
−(µ

∗
t )

)
.

Then, we define J ′∗(µ
∗
t ) = J ′−(µ∗t ) for all t ∈ {1, ..., T ∗}.

In both cases, for t ∈ {1, ..., T ∗}, let:

λt =
1− δ
δ

vh
vh − J(µ∗t )− (1− µ∗t )J ′∗(µ∗t )

t−1∏
k=1

(
1 +

1− δ
δ

vh
vh − J(µ∗k)− (1− µ∗k)J ′∗(µ

∗
k)

)
,

and for t > T ∗, let λt = 0. We also introduce the notation, for t ≥ 0:

Λt =

t∑
k=1

λk = −1 +

min{T∗,t}∏
k=1

(
1 +

1− δ
δ

vh
vh − J(µ∗k)− (1− µ∗k)J ′∗(µ

∗
k)

)
.

With these definitions, we establish below that 〈s∗〉 maximises on Q×Q the Lagrangian:

Ω
(
〈s〉
)
−
∞∑
t=1

δtλtGt
(
〈s〉
)
.
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It follows that 〈s∗〉 solves problem (1), since for any 〈s〉 feasible, G
(
〈s〉
)
≤ 0, so:

Ω
(
〈s〉
)
≤ Ω

(
〈s〉
)
−
∞∑
t=1

δtλtGt
(
〈s〉
)
≤ Ω

(
〈s∗〉

)
−
∞∑
t=1

δtλtGt
(
〈s∗〉

)
= Ω

(
〈s∗〉

)
.

For 〈s〉 ∈ Q ×Q, let:

f〈s〉 : [0, 1]→ R

α 7→ Ω
(
α〈s〉+ (1− α)〈s∗〉

)
−
∞∑
t=1

δtλtGt
(
α〈s〉+ (1− α)〈s∗〉

)
.

The desired result is implied if, for any 〈s〉 ∈ Q × Q, f〈s〉 is maximised at α = 0. Since f〈s〉 is concave, it is

sufficient to show that f〈s〉 is differentiable at α = 0, with f ′〈s〉(0) ≤ 0.

Fix 〈s〉 ∈ Q×Q and denote 〈sα〉 = α〈s〉+ (1−α)〈s∗〉. Ω is linear and λt = 0 when t > T ∗, thus it is sufficient

to show differentiability of the term α 7→ Gt
(
〈sα〉

)
, when t ∈ {1, ..., T ∗}. In this case, if P(s ≥ t) > 0, then:

Gt
(
〈sα〉

)
=P(sα ≥ t)J

(
α

P(s ≥ t)
P(sα ≥ t)

µt + (1− α)
P(s∗ ≥ t)
P(sα ≥ t)

µ∗t

)
− α

(
P(s ≥ t)J(µt)−Gt

(
〈s〉
))

− (1− α)
(
P(s∗ ≥ t)J(µ∗t )−Gt

(
〈s∗〉

))
,

where P(sα ≥ t) = αP(s ≥ t) + (1− α)P(s∗ ≥ t). This expression has a right- and left-derivative at any α, which

coincide if α P(s≥t)
P(sα≥t)µt + (1− α) P(s∗≥t)

P(sα≥t)µ
∗
t is not at a kink of J and write:

∂Gt
(
〈sα〉

)
∂α

=
P(s ≥ t)P(s∗ ≥ t)

P(sα ≥ t)
(µt − µ∗t )J ′

(
α

P(s ≥ t)
P(sα ≥ t)

µt + (1− α)
P(s∗ ≥ t)
P(sα ≥ t)

µ∗t

)

+
(
P(s ≥ t)− P(s∗ ≥ t)

)
J

(
α

P(s ≥ t)
P(sα ≥ t)

µt + (1− α)
P(s∗ ≥ t)
P(sα ≥ t)

µ∗t

)

−

((
P(s ≥ t)J(µt)−Gt

(
〈s〉
))
−
(
P(s∗ ≥ t)J(µ∗t )−Gt

(
〈s∗〉

)))
,

Now, using the fact that Gt
(
〈s〉
)

= P
(
s ≥ t

)
J(µt)−

∑∞
k=t δ

k−t
(
qhkµvh+qlk(1−µ)vl

)
and Gt

(
〈s∗〉

)
= 0, we obtain:

∂Gt
(
〈sα〉

)
∂α

∣∣∣∣
α=0

= P(s ≥ t)
(
J(µ∗t ) + (µt − µ∗t )J ′→µt(µ

∗
t )
)
−
∞∑
k=t

δk−t
(
qhkµvh + qlk(1− µ)vl

)
, (2)
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or equivalently:

∂Gt
(
〈sα〉

)
∂α

∣∣∣∣
α=0

=µ
(

1−
t−1∑
k=0

qhk

)(
J(µ∗t ) + (1− µ∗t )J ′→µt(µ

∗
t )
)

+ (1− µ)
(

1−
t−1∑
k=0

qlk

)(
J(µ∗t )− µ∗tJ ′→µt(µ

∗
t )
)

−
∞∑
k=t

δk−t
(
qhkµvh + qlk(1− µ)vl

)
,

where:

J ′→µt(µ
∗
t ) =


J ′−(µ∗t ) if µt < µ∗t ,

J ′+(µ∗t ) if µt > µ∗t ,

J ′∗(µ
∗
t ) if µt = µ∗t .

This expression is valid if P(s ≥ t) = 0, in which case Gt
(
〈sα〉

)
= (1− α)Gt

(
〈s∗〉

)
= 0, if we extend the definition

J ′→µt(µ
∗
t ) = J ′∗(µ

∗
t ) when P(s ≥ t) = 0. Thus, the derivative at α = 0 of f〈s〉 writes:

f ′〈s〉(0) =− Ω
(
〈s∗〉

)
+

∞∑
k=0

δk
(
qhkµvh + qlk(vl − µvh)

)
−

T∗∑
t=1

δtλt

(
µ
(

1−
t−1∑
k=0

qhk

)(
J(µ∗t ) + (1− µ∗t )J ′→µt(µ

∗
t )
)

+ (1− µ)
(

1−
t−1∑
k=0

qlk

)(
J(µ∗t )− µ∗tJ ′→µt(µ

∗
t )
)
−
∞∑
k=t

δk−t
(
qhkµvh + qlk(1− µ)vl

))
.

Rearranging, we get:

f ′〈s〉(0) =− Ω
(
〈s∗〉

)
+

∞∑
k=0

δk

[
qhkµvh(1 + Λk) + qlk

(
vl − µvh + (1− µ)vlΛk

)]

+

T∗−1∑
k=0

(
µqhk

T∗∑
t=k+1

δtλt

(
J(µ∗t ) + (1− µ∗t )J ′→µt(µ

∗
t )
)

+ (1− µ)qlk

T∗∑
t=k+1

δtλt

(
J(µ∗t )− µ∗tJ ′→µt(µ

∗
t )
))

−
T∗∑
t=1

δtλt

(
J(µ∗t ) + (µ− µ∗t )J ′→µt(µ

∗
t )
)
.

(3)

Using equation (2), note that: f ′〈s〉(0) ≤ H
(
〈s〉
)
, where:

H
(
〈s〉
)

=− Ω
(
〈s∗〉

)
+

∞∑
k=0

δk

[
qhkµvh(1 + Λk) + qlk

(
vl − µvh + (1− µ)vlΛk

)]

+

T∗−1∑
k=0

(
µqhk

T∗∑
t=k+1

δtλt

(
J(µ∗t ) + (1− µ∗t )J ′∗(µ∗t )

)
+ (1− µ)qlk

T∗∑
t=k+1

δtλt

(
J(µ∗t )− µ∗tJ ′∗(µ∗t )

))

−
T∗∑
t=1

δtλt

(
J(µ∗t ) + (µ− µ∗t )J ′∗(µ∗t )

)
.

(4)
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H is linear on Q × Q. Denote, for all t ≥ 0, γht and γlt the terms multiplying qht and qlt respectively. If t ≥ T ∗,

γht = µvhδ
t(1 + ΛT∗) is positive and decreasing in t. If t ∈ {1, ..., T ∗}:

γht = µvhδ
t(1 + Λt) + µ

T∗∑
k=t+1

δkλk

(
J(µ∗k) + (1− µ∗k)J ′∗(µ

∗
k)
)

= γht−1 − (1− δ)µvhδt−1(1 + Λt−1) + µδt
(
vh − J(µ∗t )− (1− µ∗t )J ′∗(µ∗t )

)
λt

= γht−1,

where we have used the fact that:

λt = 1 + Λt − (1 + Λt−1) =
1− δ
δ

vh
vh − J(µ∗t )− (1− µ∗t )J ′(µ∗t )

(1 + Λt−1).

Now, for t ∈ {1, ..., T ∗}:

γlt = δt
(
vl − µvh + (1− µ)vlΛt

)
+ (1− µ)

T∗∑
k=t+1

δkλk

(
J(µ∗k)− µ∗kJ ′∗(µ∗k)

)
= γlt−1 + (1− µ)δtλt

(
vl − J(µ∗t ) + µ∗tJ

′
∗(µ
∗
t )
)

+ (1− δ)δt−1
(
µ(vh − vl)− (1− µ)vl(1 + Λt−1)

)
.

By convexity, vl = J(0) ≥ J(µ∗t )− µ∗tJ ′∗(µ∗t ). In addition:

1 + Λt−1 ≤ 1 + ΛT∗−1 ≤
vh − vl
vl

µ

1− µ
.

It follows that γlt ≥ γlt−1. If t ≥ T ∗, γlt = δt
(
vl − µvh + (1 − µ)vlΛT∗

)
. When µ∗T∗ > 0, 1 + ΛT∗ = vh−vl

vl

µ
1−µ , so

γlt = 0 for all t ≥ T ∗. In any case, 1 + ΛT∗ ≥ vh−vl
vl

µ
1−µ , and γlt is non-negative and non-increasing in t for t ≥ T ∗.

It follows that H is maximised at 〈s∗〉, that is, for any 〈s〉 ∈ Q ×Q:

f ′〈s〉(0) ≤ H
(
〈s〉
)
≤ H

(
〈s∗〉

)
= f ′〈s∗〉(0) = 0,

which proves the desired result.

Remark 1. For each µ and J , we have described a solution 〈s∗〉(µ, J). If there exists µ1 ∈ [0, 1) such that

ρJ(µ1) = µ
1−µ , we can describe an alternative solution 〈ŝ∗〉(µ, J) by setting:

µ̂∗1 = min
{
µ1 ∈ [0, 1) : ρJ(µ1) =

µ

1− µ

}
,

and the continuing path of beliefs as before. All the arguments in the proof of proposition (1) directly apply. Since
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ρJ is a step function, 〈ŝ∗〉(µ, J) is only defined for a discrete set of priors µ.

Remark 2. For each µ and J , there exists a direct and simple contract that implements 〈s∗〉(µ, J). The probabil-

ities of trade for each type of the buyer are given by q∗h and q∗l. For every t ≥ 1, the trading price if the buyer’s

report was vi is pit = vi. In the initial period of deployment, the low-valuation buyer trades at price pl0 = vl, while

the price for the high-valuation buyer is such that:

q∗h0 (vh − ph0 ) = δT
∗(
q∗lT∗ + δ(1− q∗lT∗)

)
(vh − vl).

The same applies to 〈ŝ∗〉(µ, J). We denote D(µ, J) the set of those contracts (which contains either one or two

elements).

Proposition 2. AJ belongs to J .

Proof. For µ ≤ vl
vh

, AJ(µ) = vl. For µ ∈
(
vl
vh
, ρJ (0)

1+ρJ (0)

]
, AJ(µ) = (1−δ)µvh+δvl. Note that AJ is thus continuous

at vl
vh

. Similarly, if µ∗1 is a point of discontinuity of ρJ , and (µ∗1, ..., µ
∗
T∗) the corresponding path of beliefs obtained

by iteration on µ̃′, then for every µ ∈
[

ρJ−(µ∗1)

1+ρJ−(µ∗1)
,

ρJ (µ∗1)
1+ρJ (µ∗1)

]
, where ρJ−(µ∗1) denotes the left limit of ρJ at µ∗1, we

have:

AJ(µ) =

(
(1− δ)

T∗∑
t=1

δt−1

1− µ∗t
+ δT

∗ µ∗T∗

1− µ∗T∗
vh − vl
vl

)
µvh +

(
1− (1− δ)

T∗∑
t=1

δt−1

1− µ∗t
− δT

∗

1− µ∗T∗
vh − vl
vh

)
vh.

Thus AJ is piece-wise linear. In addition, by continuity at the boundaries, AJ is non-decreasing. The term(
(1− δ)

∑T∗

t=1
δt−1

1−µ∗t
+ δT

∗ µ∗T∗
1−µ∗

T∗

vh−vl
vl

)
is increasing in µ∗1, therefore AJ is convex. It is clear that AJ ≥ vl. Now,

for µ > vl
vh

and 〈s〉 ∈ Q ×Q:

µvh − Ω
(
〈s〉
∣∣µ) =

(
1−

∞∑
k=0

δkqhk

)
µvh +

∞∑
k=0

δkqlk(µvh − vl) ≥ 0,

so AJ ≤ J̄ .

Lemma 4. For all J, Ĵ ∈ J , if for all µ ∈ [0, 1], J(µ) ≥ Ĵ(µ), then for all µ ∈ [0, 1], AJ(µ) ≤ AĴ(µ).

Proof. Under the assumption of the lemma, for any 〈s〉 ∈ Q ×Q and µ ∈ [0, 1], G
(
〈s〉
∣∣µ, J) ≥ G

(
〈s〉
∣∣µ, Ĵ). Thus

〈s∗〉(µ, J) is feasible in problem (1) for Ĵ , from which the conclusion follows.

Proposition 3. The operator A : J → J has a unique fixed point J∗.

Proof. By lemma 4, and since J̄ is an upper bound on any element of J , any fixed point J∗ of A must satisfy:

AJ̄ ≤ J∗ ≤ J̄ ,
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and by immediate induction:

∀n ≥ 0, A2n+1J̄ ≤ J∗ ≤ A2nJ̄ .

Therefore, existence and uniqueness of a fixed point are guaranteed if (AnJ̄)n≥0 converges in J . Note that for

all n,m ≥ 0, AnJ̄ and AmJ̄ coincide on [0, µ̂0), where µ̂0 = vl
vh

. Therefore, ρA
nJ̄ and ρA

mJ̄ also coincide on

[0, µ̂0), thus An+1J̄ and Am+1J̄ coincide on [0, µ̂1), where µ̂1 =
ρJ̄−(µ̂0)

1+ρJ̄−(µ̂0)
> µ̂0. By immediate induction, for every

k ≥ 0 and n,m ≥ k, AnJ̄ and AmJ̄ coincide on [0, µ̂k), where the sequence (µ̂k)k≥0 is constructed such that

µ̂k+1 =
ρA

kJ̄
− (µ̂k)

1+ρA
kJ̄
− (µ̂k)

. (µ̂k)k≥0 is an increasing sequence. By lemma 3, its limit must be µ̂∞ = 1. It follows that for

every µ ∈ [0, 1], AnJ̄(µ) remains constant for n sufficiently large (recall that AnJ̄(1) = vh for all n ≥ 0). Denote

J∗(µ) this constant.

By construction, J∗ ∈ J and AJ∗ = J∗.

For µ ∈ [0, 1], we denote D∗(µ) = D(µ, J∗). If a contract d ∈ D∗(µ) is deployed actively and truthfully in every

period, the seller’s payoff is J∗(µ) and the low-valuation buyer’s payoff is always Ul(µ) = 0. The high-valuation

buyer’s payoff depends on the contract, and we denote Uh(µ) the convex-hull of those payoffs. Finally, denote

d∗(µ) ∈ D∗(µ) the contract such that maxUh(µ) is achieved.

A.2 Auxiliary Games

Given a contract d = (xτ , pτ )∞τ=0 ∈ D and belief µ ∈ [0, 1], let Γ(d, µ) be the discontinuous dynamic psychological

game defined as follows. The two players are the seller and the buyer. As in the main text, the buyer has two

types vl or vh, and µ is the seller’s common knowledge belief that the buyer has a high valuation. The game is

played in discrete time. In the initial period, the contract d is deployed with τ = 0. That is, the buyer chooses

among {h, l, r}. If r is chosen, it is observed by the seller and the game proceeds to the next period. If instead

i ∈ {h, l} is selected, trade occurs with probability x0(vi) at price p0(vi), in which case the game ends. If trade

does not occur, the game proceeds to the next period and the index in d is updated to τ = 1. In any following

period, the seller chooses among {C, S}. If S is selected, the game ends. If C is selected, the contract d is deployed

again. That is, the buyer makes a report in {h, l, r} if τ = 0 or in {a, r} if τ ≥ 1. As above, when r is selected, it

is observed by the seller and the game proceeds to the next period. Otherwise, trade may occur or not as specified

by the contract d.

The game ends either when trade occurs or when the seller chooses S. If trade occurs in period t ≥ 0 at price

p, the seller’s payoff is δtp and the buyer’s payoff is δt(v− p), where v ∈ {vh, vl} is his valuation. If the game ends

when the seller chooses S in period t, the payoffs are partially determined and depend on the seller’s belief about

the buyer’s valuation at that information set µ̂. In particular, we use the approach of Simon and Zame (1990)
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and specify payoffs if the seller chooses S in period t with belief µ̂ as
(
δtJ∗(µ̂), δtUl(µ̂), δtUh(µ̂)

)
for the seller,

low-valuation buyer and high-valuation buyer respectively. Since Uh is a correspondence, which element of Uh(µ̂)

actually determines the high-valuation buyer’s payoff is part of the solution concept.

As a result, we define a payoff selection u to be a mapping from terminal nodes following S to the real numbers.

An augmented assessment is a triple (σ, α, u), where σ is a strategy profile, α is the seller’s belief system and u

is a payoff selection for the high-valuation buyer. u is said to be consistent with α if, at every terminal history

h following S, if the seller’s belief that the buyer has a high valuation is µh, then u(h) ∈ Uh(µh). A sequential

equilibrium of Γ(d, µ) is an augmented assessment (σ, α, u) such that (i) α is consistent with σ and the prior µ in

the usual sense, (ii) u is consistent with α and (iii) σ is sequentially rational1 given α and u.

Proposition 4. Suppose that d specifies bounded transfers (pτ )τ≥0. Then Γ(d, µ) has a sequential equilibrium.

Proof. We first consider the truncated version of the game ΓT (d, µ) such that the game coincides with Γ(d, µ)

until period T is reached, and for any period t ≥ T , the seller’s action space is restricted to {C} and the buyer’s

action space is restricted to {r}.

For any ε > 0, there exists a continuous function Uεh : [0, 1]→ [0, vh− vl] such that any point
(
µ̃, Uεh(µ̃)

)
in the

graph of Uεh is at a distance less than ε to the graph of Uh. Let ΓεT (µ, d) be the psychological game corresponding

to ΓT (µ, d) in which the high-valuation buyer’s payoff after the seller chooses S with belief µ̂ is Uεh(µ̂). By Theorem

9 of Battigalli and Dufwenberg (2009), ΓεT (d, µ) has a sequential equilibrium (σε, αε) (where the first component

refers to the strategy profile and the second to the belief system).

Given (σε, αε), let ~µε the vector listing the seller’s beliefs that the buyer has a high valuation at all her informa-

tion sets in ΓεT (d, µ), and Uεh(~µε) the vector of high-valuation payoffs whenever S is chosen. Since
(
σε, αε, Uεh(~µε)

)
ε

lives in a compact set, it possesses an accumulation point (σT , αT , uT ) as ε→ 0.

We claim that (σT , αT , uT ) is a sequential equilibrium of ΓT (d, µ). Indeed, α must be consistent for σ since αε

is consistent for σε for any ε > 0. Moreover, at every terminal node following S, the seller’s belief µ̂ε converges

to µ̂, while the limit of
(
µ̂ε, Uεh(µ̂ε)

)
must belong to the graph of Uh. Thus uT must be a payoff selection for the

high-valuation buyer. Finally, since the terminal payoffs of any player converge together with the assessment, for

any strategy si of any player i, the evaluation of player i’s expected payoff at any of her information sets under

(si, σ
ε
−i) also converges to that under (si, σ−i). Since no profitable deviation exists under σε, the same is true in

the limit under σ.

σT specifies a full profile in Γ(d, µ). We can also extend αT and uT to construct a full assessment and payoff

selection in Γ(d, µ). For the belief system α, take the limit of the belief system induced by a fully mixed buyer

strategy after period T such that both types make a mistake with the same small probability at every decision

1The notion of sequential rationality extends naturally to psychological games. The reader is referred to Battigalli and Dufwenberg
(2009) for details.
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node. Given the completed infinite vector ~µ, whenever the seller chooses S after period T with belief µ̂, select

U∗h(µ̂) = maxUh(µ). Denote
(
σ̄T , ᾱT , ūT

)
the completed assessment and payoff selection in the infinite-horizon

game Γ(d, µ).

Since transfers are bounded, discounting guarantees that
(
σ̄T , ᾱT , ūT

)
is a p̄δT -equilibrium in Γ(d, µ). In

addition, the set of augmented assessments is compact in the topology of Fudenberg and Levine (1983) (note that,

given a belief system, a payoff selection is isomorphic to choosing a mixture between maxUh(µ̂) and minUh(µ̂)

at every information set of the seller, where µ̂ is her belief at that information set). Thus
(
σ̄T , ᾱT , ūT

)
has a

converging subsequence, which must be a sequential equilibrium in Γ(d, µ).

A.3 Equilibrium Assessment

We construct an equilibrium in the version of the game presented in the main text in which the seller’s contract

space is restricted to include only simple and direct contracts, with the additional assumption that all transfers

are bounded. Specifically, we assume that any transfer must be in the set [p, p̄], where p < 0 and p̄ > vh.

The seller’s prior is µ. Throughout we maintain that the seller’s belief does not update following her own

deviations. At the beginning of the game, the seller deploys the contract d∗(µ). Consider a history h at which

the seller’s belief is µh and the seller offers a new contract d. If d ∈ D∗(µh), the buyer accepts the contract

and reports his valuation truthfully. In every following period, as long as trade does not occur, the seller’s belief

updates according to Bayes’ rule, she deploys again d and the buyer accepts. If the buyer ever rejects d, the seller’s

belief does not update and she deploys d again. If d /∈ D∗(µh), the continuing assessment until the game ends or

d is replaced is constructed as follows.

First note that, by the axiom of choice and proposition 4, we can select a sequential equilibrium of the auxiliary

game Γ(d, µh) for any (d, µh). Let (σ, α, u) the chosen equilibrium. Note that, as long as d is deployed, all the

decision nodes of the buyer are identical in Γ(d, µh) and in the original game. Thus, the buyer’s strategy at those

nodes can be taken directly from the profile σ. Now, we translate the seller’s strategy in σ to a strategy in the

original game. We interpret the action C as deploying the contract d again. Note that, as long as d has been

deployed, the seller’s belief at every information set can be taken directly from α. Finally, when the seller chooses

S in the auxiliary game, with belief µ̂, u specifies a payoff selection for the high-valuation buyer û ∈ Uh(µ̂). We

specify that the contract d is replaced by a contract d̂ ∈ D∗(µ̂), which results from the unique mixture across

the contracts in D∗(µ̂) that delivers expected payoff û to the high-valuation buyer (recall that D∗(µ̂) contains at

most two contracts), if d̂ is to be deployed actively and truthfully forever after. Once d is replaced, the continuing

assessment is described in the previous paragraph.

Next, we prove that the above assessment is indeed an equilibrium. By construction, the assessment satisfies
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updating consistency in the sense of Perea (2002). Therefore the one-shot deviation principle applies. It is clear

that the buyer has no incentive to deviate. Next, we establish that the seller has no profitable one-shot deviation

at any information set.

It is sufficient to show that, at any history h with belief µh, the seller’s payoff from deploying a new contract

cannot exceed J∗(µh) given the buyer’s strategy. Then, by construction, it is clear that the seller’s behaviour is

sequentially rational.

Suppose that the seller’s belief is µh and a new contract is offered. This is a one-shot deviation, thus the

continuation path is that specified in the above assessment. In particular, at every subsequent history ĥ, if the

seller’s belief is µĥ, her continuation payoff is at least J∗(µĥ). Let s the random time at which trade occurs induced

by the continuation path. Denoting by V , θh and θl the continuation payoffs for the seller, the high-valuation

buyer and the low-valuation buyer respectively, we can express the total continuation surplus as:

V + µhθh + (1− µh)θl = E0[δs|h]µhvh + E0[δs|l](1− µh)vl.

Since a new contract is deployed, the high-valuation buyer could mimic the low-valuation buyer’s strategy, thus:

θh ≥ θl + E0[δs|l](vh − vl).

In addition, the buyer can guarantee a non-negative payoff by rejecting the contract in every period, thus:

θl ≥ 0.

Together, these inequalities imply that the seller’s continuation payoff satisfies:

V ≤ E0[δs|h]µhvh + E0[δs|l](vl − µhvh).

Finally, since J∗ is convex, in any period, the total continuation surplus must exceed J∗(µt), where µt is the

average belief of the seller across all histories reaching period t. That is:

Et
[
δs|h

]
µtvh + Et

[
δs|l
]
(1− µt)vl ≥ J∗(µt).

In other words, it must be the case that V ≤ AJ∗(µh) = J∗(µh). Thus the seller has no profitable one-shot

deviation, which concludes the proof.
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B Continuous Types

In this appendix we will show how to modify the analysis in the main text to demonstrate that our result is robust

in the case of continuous types. In particular, we first construct an abiding contract which achieves a payoff

strictly bounded above the market clearing profit. This contract resembles the contract of Lemma 2 in the main

text by treating the buyer as if his type was binary. In particular, the contract specifies a cut-off type v̂ ∈ (v, v)

and treats all types v < v̂ as the ‘low type,’ and all types v ≥ v̂ as the ‘high type.’ The allocation probabilities

and prices across ‘high’ and ‘low’ types are structured similarly to the abiding contract in Lemma 2: only ‘high’

types trade in the initial period at a discount. Conditional on no trade in the initial period, all types trade at the

same random time. ‘High’ types trade at the ‘high’ valuation, v̂, while ‘low’ types trade at the ‘low’ valuation, v.

The only significant difference is the abidance constraint. After no trade in the initial period the seller faces

a residual market and we need to guarantee that the optimal monopoly price is the lowest valuation, v. This is

accomplished by choosing the cut-off type, v̂, and the probability of trade in the initial period appropriately, so

that the residual market is sufficiently deteriorated. Moreover, the payoff from continuing with the contract must

exceed v.

Proposition 5 shows that for each δ such an abiding contract can be found which delivers payoff greater than

some π > v. Finally, in Proposition 6 we show that this π is a lower bound to the seller’s best equilibrium profit.

The argument proceeds similarly to the proof of Lemma 1 in the main text.

The Contract

Let F be the cdf of valuations on [v, v], with v > 0. We assume that f(v) > 0, for all v ∈ [v, v] and that the

revenue function R(p) := p · (1− F (p)) satisfies R′(v) > 0. Note that this implies that market clearing is not the

optimal monopoly price, maxpR(p) > v.

We consider the following stationary cut-off mechanism.

• The buyer submits a report v ∈ [v, v].

• If v ≥ v̂, there is trade with probability α in the first period, at price p.

• In any future period trade occurs with probability β at price v̂.

• If v < v̂, there is no trade in the initial period.

• In any future period trade occurs with probability β at price v.

We introduce the notation:
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ψ =
βδ

1− δ + βδ
∈ [0, δ]

for the expected present value of the discount factor at the time of trade.

Incentive Compatibility

First, we note that this contract is IC whenever:

α · (v − p) + (1− α) ·max
{
ψ · (v − v̂), 0

}
≥ ψ · (v − v) ⇐⇒ v ≥ v̂

where the max{·} controls for the buyer’s participation decision in future periods.

Then, the IC is written as:

α · (v − p) + (1− α) · ψ · (v − v̂) ≥ ψ · (v − v) for all v ≥ v̂

and

ψ · (v − v) ≥ α · (v − p) for all v ≤ v̂

The following lemma gives sufficient conditions for incentive compatibility.

Lemma 5. The contract (v̂, α, ψ, p) ∈ (v, v)× [0, 1]× [0, δ]× R+ is IC if:

α · (v̂ − p) = ψ · (v̂ − v) (IC+)

and

α ≥ ψ (IC-)

Proof. Let ∆+(v) = α · (v− p) + (1−α) ·ψ · (v− v̂)−ψ · (v− v). The IC for v ≥ v̂ is satisfied whenever ∆+(v) ≥ 0

for v ≥ v̂. First, note that (IC+) implies that ∆+(v̂) = 0. Hence, it is sufficient to verify that ∆+(v) is increasing

in v. We have:

∆′+(v) = α+ (1− α)ψ − ψ = α · (1− ψ) ≥ 0

Therefore, the IC for v ≥ v̂ is satisfied.

Let ∆−(v) = ψ · (v − v)− α · (v − p), so that the IC for v ≤ v̂ is satisfied if ∆−(v) ≥ 0 for v ≤ v̂. Given (IC+)

we have that the price p must be given by:

α · p = (α− ψ) · v̂ + ψ · v
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and thus:

∆−(v) = (ψ − α) · v − ψv + αp = (α− ψ) · (v̂ − v) ≥ 0

for v ≤ v̂, since α− ψ ≥ 0 by (IC-).

Abidance

Abidance comprises of two features: (i) The monopoly price on the residual market is v (market clearing); and

(ii) the seller’s continuation payoff within the mechanism is greater than v.

First, we compute the seller’s continuation payoff. This is given by:

ψ ·
[
P(v < v̂|¬ trade) · v + P(v ≥ v̂|¬ trade) · v̂

]
Given the trading probabilities specified above, we have:

P(v ≥ v̂|¬ trade) =
(1− α) · (1− F (v̂))

F (v̂) + (1− α) · (1− F (v̂))

The abidance constraint is hence given by:2

ψ · (δ − ψ)

[
v +

(1− α) · (1− F (v̂))

F (v̂) + (1− α) · (1− F (v̂))
· (v̂ − v)

]
≥ (δ − ψ) · v (AC1)

Residual Market

We now compute the residual market conditional on no trade in the initial period. In particular, we are interested

in P(v ≥ p|¬ trade), which is given by:

P(v ≥ p|¬ trade) =

∫ v
p

[
1− α · 1v≥v̂

]
dF (v)∫ v

v

[
1− α · 1v≥v̂

]
dF (v)

Hence, we get the residual market:

2Note that this is equivalent to the constraint in Lemma 2 of the main text. That is, continuing in the mechanism delivers more
than the payoff from running the mechanism for a period more, and clearing immediately conditional on no trade.
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D(p |α, v̂) = P(v ≥ p|¬ trade) =



(1−α)·(1−F (p))
F (v̂)+(1−α)·(1−F (v̂)) , if p ≥ v̂

(1−α)·(1−F (v̂))+F (v̂)−F (p)
F (v̂)+(1−α)·(1−F (v̂)) if p < v̂

Ex-ante payoffs

We now compute the seller’s ex-ante payoff from a contract (v̂, α, ψ, p) ∈ (v, v)× [0, 1]× [0, δ]× R+:

Π(v̂, α, ψ, p) = (1− F (v̂)) · (α · p+ (1− α)ψv̂) + F (v̂) · ψv

We can use (IC+) to eliminate the price, and re-write the problem as:

Π(v̂, α, ψ) = (1− ψ)α ·R(v̂) + ψv

with the following constraints:

α ≥ ψ (IC-)

ψ · (δ − ψ) [F (v̂) · v + (1− α) ·R(v̂)] ≥
[
1− α ·

(
1− F (v̂)

)]
(δ − ψ) · v (AC1)

sup
p

p ·D(p |α, v̂) = v (AC2a)

D(p |α, v̂) =



(1−α)·(1−F (p))
F (v̂)+(1−α)·(1−F (v̂)) , if p ≥ v̂

(1−α)·(1−F (v̂))+F (v̂)−F (p)
F (v̂)+(1−α)·(1−F (v̂)) if p < v̂

(AC2b)

Parameters

We are looking for parameters (v̂, α, ψ) ∈ (v, v)× [0, 1]× [0, δ] satisfying the following conditions:

α ·R(v̂) > v

ψ < 1
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α ≥ ψ

ψ · [F (v̂) · v + (1− α) ·R(v̂)] ≥
[
1− α ·

(
1− F (v̂)

)]
v

sup
p

p ·D(p |α, v̂) = v

The first two conditions guarantee the failure of the Coase Conjecture. The third ensures incentive compatibility

for v ≤ v̂. The fourth is the abidance constraint for the seller. Note that the way this is written implicitly assumes

that we can take ψ < δ. This will turn out to be the case for sufficiently high δ—which is the relevant case.

Finally, the last condition guarantees that market clearing is the monopoly price on the residual market.

Intuitively for all sufficiently low v̂, there is a high enough α which deteriorates the residual market enough

for market clearing to be the monopoly price.

We use this idea to specify for each v̂, the following:

1− ψv̂ = (v̂ − v)2

1− αv̂ = (v̂ − v)2

with the intention of converging as v̂ ↓ v.

With this specification as v̂ converges to v, then v̂ − v converges to 0, slower than α and ψ are converging to

1. Note that αv̂ = ψv̂ so (IC-) is taken care of;3 while for v̂ > v, ψv̂ < 1.

We now consider the remaining conditions.

Lemma 6. There exists ε1 > 0 such that for all v̂ > v with v̂ − v ≤ ε1,

αv̂ ·R(v̂) > v

Proof. Suppose that the inequality fails for all v̂ > v. That is:

αv̂ ·R(v̂) ≤ v

αv̂ ·
[
R(v̂)−R(v)

]
≤ (1− αv̂)v

αv̂ ·
[
R(v̂)−R(v)

]
≤ (v̂ − v)2v

αv̂ ·
R(v̂)−R(v)

(v̂ − v)
≤ (v̂ − v)v

3In particular, this means that p = v.
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where R(v) = v. Taking limits as v̂ ↓ v we arrive at:

R′(v) ≤ 0

which contradicts the hypothesis that R′(v) > 0.

Lemma 7. There exists ε2 > 0 such that for all v̂ > v such that v̂ − v ≤ ε2,

ψv̂ · [F (v̂) · v + (1− αv̂) ·R(v̂)] ≥
[
1− αv̂ ·

(
1− F (v̂)

)]
v

Proof. Re-writing the inequality we have:

1− ψv̂ ≤ (1− αv̂)
(v̂ − v) · (1− F (v̂)

[F (v̂) · v + (1− αv̂) ·R(v̂)]

Suppose the inequality fails for all v̂ > v. We then have:

1− ψv̂ > (1− αv̂)
(v̂ − v) · (1− F (v̂)

[F (v̂) · v + (1− αv̂) ·R(v̂)]
⇒ 1 >

(v̂ − v) · (1− F (v̂))

[F (v̂) · v + (v̂ − v)2 ·R(v̂)]

which can be re-arranged to:

[
F (v̂)

(v̂ − v)
· v + (v̂ − v) ·R(v̂)

]
> (1− F (v̂))⇒

[
f(v) · v +

o((v̂ − v))

(v̂ − v)
+ (v̂ − v) ·R(v̂)

]
> (1− F (v̂))

Taking limits as v̂ ↓ v we arrive at:

f(v) · v ≥ 1

This is a contradiction to R′(v) > 0 since:

R′(x) = 1− F (x)− f(x) · x⇒ R′(v) = 1− f(v) · v > 0
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Lemma 8. There exists ε3 > 0 such that for all v̂ > v such that v̂ − v ≤ ε3,

sup
p

p ·D(p |αv̂, v̂) = v

Proof. First, we have that for any p ≥ v̂,

R(p|v̂) := p ·D(p|αv̂, v̂) ≤ v · (v̂ − v)2 · (1− F (v̂))

F (v̂) + (v̂ − v)2 · (1− F (v̂))

since the RHS is the profit from trading with all v ≥ v̂ at a price p = v. Dividing both the numerator and the

denominator by (v̂ − v) > 0, we have:

v · (v̂ − v) · (1− F (v̂))

F (v̂)/(v̂ − v) + (v̂ − v) · (1− F (v̂))
→ 0

since F (v̂)/(v̂ − v) converges to f(v) > 0. Consequently, profits from prices p ≥ v̂ become arbitrarily small as

v̂ ↓ v, so for sufficiently small (v̂ − v) > 0 the optimal prices must be below v̂.

We now consider prices p < v̂. First note that:

R′(v|v̂) · (v̂ − v) =
v̂ − v

F (v̂) + (v̂ − v)2 · (1− F (v̂))
·
[
(v̂ − v)2 · (1− F (v̂)) + F (v̂)− F (v)− v · f(v)

]
=

1
F (v̂)
v̂−v + (v̂ − v) · (1− F (v̂))

·
[
(v̂ − v)2 · (1− F (v̂)) + F (v̂)− F (v)− v · f(v)

]
→ 1

f(v)
·
[
− v · f(v)

]
= −v as v̂ ↓ v

Moreover, for v < p < v̂, we have:

R(p|v̂)−R(v|v̂) = R′(v|v̂) · (p− v) + o(p− v)

< R′(v|v̂) · (v̂ − v) + o(p− v)

Since the RHS converges to a strictly negative limit as v̂ ↓ v, we can find ε3 > 0, such that for all v̂ > v with

v̂ − v ≤ ε3,

R(p|v̂)−R(v|v̂) < 0, for all v < p < v̂

The claim follows since R(v|v̂) = v.
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We now put lemmata 6-8 together to prove the failure of the Coase Conjecture:

Lemma 9. There exists δ̄ < 1 such that for all δ ≥ δ̄, we can pick a single abiding contract (v̂∗, α∗, ψ∗, p∗) ∈

(v, v)× [0, 1]× [0, δ]× R+ with Π(v̂∗, α∗, ψ∗, p∗) > v.

Proof. We pick v̂∗ such that 0 < (v̂∗ − v) < min{ε1, ε2, ε3} and set α∗ = 1− (v̂∗ − v)2 = ψ∗, and p∗ = v given by

(IC+). Lemma 3 and Lemma 4 imply that the contract is abiding. Lemma 2 delivers Π(v̂∗, α∗, ψ∗, p∗) > v.

Finally, setting δ̄ = 1− (v̂∗ − v)2 the feasibility constraint ψ∗ ≤ δ, is satisfied for all δ ≥ δ̄.

Finally, we prove the analogue of Lemma 2 in the main text:

Proposition 5. For each δ ∈ (0, 1), there exists a δ-abiding contract dδ ∈ D such that v(dδ, δ) > π > v.

Proof. If δ ≥ δ̄ where δ̄ the cut-off in Lemma 9 we use the contract (v̂∗, α∗, ψ∗, p∗). If δ < δ̄, we consider the

contract (v̂, α, ψ, p) = (v̂∗, 1, δ, p̃), with p̃ = v̂ − δ · (v̂ − v). This is abiding and delivers payoff:

(1− δ)R(v̂) + δv > v

The payoff from the contract (v̂∗, 1, δ, p̃) is strictly decreasing in δ so the payoff it generates for δ < δ̄ is at least

as large as Π(v̂∗, 1, δ̄, p̃).

We set π = min{Π(v̂∗, 1, δ̄, p̃),Π(v̂∗, α∗, ψ∗, p∗)} > v. Consequently, for each δ we can construct an abiding

contract dδ such that v(dδ, δ) ≥ π > v.

Lower bound

We now prove that the best equilibrium payoff to the seller is bounded below by π. To prove this we need to

strengthen the equilibrium concept. In particular, an assessment is an equilibrium if it is a Weak PBE, and in

addition, after any initial contract offer the continuation assessment forms a Weak PBE.4 We will assume that for

any prior distribution of types G ∈ ∆([v, v]) such an equilibrium exists.

4Note that this is equivalent to a subgame-perfect Weak PBE assessment in a game-tree where Nature draws the type after every
contract offer—at which point a well-specified subgame starts.
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Proposition 6. We have π(C, δ) ≥ π.

Proof. Suppose in anticipation of a contradiction that π(C, δ) < π. The argument follows exactly the same steps

of Lemma 1 in the main text, apart from what happens along a history where only dδ has been offered.

Note that dδ is abiding so no matter what payoffs the seller gets from deviating to c 6= dδ, as long as they are

consistent with sequential rationality, they cannot exceed market clearing which is the commitment payoff. So

the best deviation payoff consistent with equilibrium in the continuation game is v. Consequently, it is enough to

show that some equilibrium assessment can be defined after any offer of contract c 6= dδ when the seller’s belief

(residual demand) is given by D(p |α∗, v̂∗).

The continuation game where c 6= dδ is offered after τ periods of deployment of dδ, is clearly isomorphic to

the one arising from an initial offer of c, in a game where the prior is D(p |α∗, v̂∗). By assumption, an assessment

exists in such a game which induces a Weak PBE after the contract offer c 6= dδ. We can therefore specify the

corresponding assessment to complete the proof.
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