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Appendix for Online Publication

A.1. IV Validity

A.1.1. Exclusion Restriction

Under the standard assumptions for IV validity in Imbens and Angrist (1994), ambulance companies

would be subject to the exclusion restriction, in Condition 1(ii), that they only affect outcomes by

whether they transport patients to the VA and not by other treatments that they may administer or by

their choice of non-VA hospitals. Following Kolesar et al. (2015), we relax this assumption to allow

for differences in potential treatments and non-VA hospital choices across ambulance companies but

require that such differences that may affect outcomes are not systematically related to ambulance

propensity to transport to the VA.

Specifically, we include controls C𝑖 that are related to actions by the ambulance after pickup in

the first-stage and reduced-form relationships:

𝐷𝑖 = 𝜋1𝑍𝑖 +X0
𝑖 𝛿1 +C𝑖𝜂1 + 𝜁1,ℓ (𝑖) + 𝜀1,𝑖;

𝑌𝑖 = 𝜋2𝑍𝑖 +X0
𝑖 𝛿2 +C𝑖𝜂2 + 𝜁2,ℓ (𝑖) + 𝜀2,𝑖 .

Under each set of ambulance-related controls, we examine the stability of 𝛽𝐼𝑉 = 𝜋̂2/𝜋̂1.

We consider four sets of controls in C𝑖 . First, we control for splines of ambulance charges re-

flected in their Medicare claims. Consistent with the health economics literature on productivity and

the returns to spending (Doyle et al. 2015; Chandra et al. 2016), we consider charges incurred by the

ambulance company as a sufficient statistic for the intensity of treatment during the ride.51 Second,

we control for splines of the mileage of the ride. Third, we control for indicators of the number of

non-VA hospitals to which the ambulance company transports patients from a zip code.

Fourth, we control for average measures of non-VA hospitals to which the ambulance company

delivers its patients. For each non-VA hospital ℎ, we measure average mortality and spending out-

comes 𝑌 ℎ, among veterans outside of our benchmark analytic sample who only have non-VA prior

utilization (Panel B of Appendix Table A.14). We also measure the share, 𝑤 𝑗ℎ, that each ambulance

company 𝑗 delivers patients to each non-VA hospital ℎ, also among veterans with non-VA-only prior

utilization. For each ride 𝑖, we then control for average non-VA hospital measures of mortality and

spending, calculated as
∑

ℎ𝑤 𝑗 (𝑖) ,ℎ𝑌 ℎ, weighted by the hospital-specific shares of the assigned am-

bulance 𝑗 (𝑖). As in Section IV.B, we use information on Medicare claims to infer non-VA hospital

spending.

Appendix Table A.4 shows estimates of the VA effect on mortality and on spending, using the

51. In principle, we also observe detailed CPT procedure codes for services rendered during the ambulance ride (e.g.,
supplemental oxygen, medications, or intravenous fluids). However, in 2002, Medicare changed to a simple payment
arrangement that depended only on a few characteristics of the ride, such as ALS vs. BLS level, mileage, and the use of
lights and sirens (Centers for Medicare & Medicaid Services 2002). Consistent with this payment policy, detailed CPT
codes for extra services are usually missing in the claims data.
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same baseline controls as in our benchmark analyses in Section II with the addition of various

ambulance-related controls. We find that results are highly robust to the addition of these controls.

A.1.2. Monotonicity

We test the monotonicity condition in Condition 1(iii) by tests standard in the judges-design literature

that demonstrate a positive first-stage relationship across subgroups of observations (Arnold, Dobbie,

and Yang 2018; Bhuller et al. 2020). We define eight pairs of subsamples based on several important

patient characteristics: (i) age ≤ 80 years vs. age > 80 years; (ii) white vs. non-white race; (iii)

comorbidity count above vs. below median; (iv) either vs. neither mental illness or substance abuse

present; (v) VA visits in the prior year above vs. below median; (vi) Advanced Life Support vs. Basic

Life Support; (vii) prediction of VA user above vs. below median; and (viii) prediction of mortality

above vs. below median.

Under monotonicity, we expect that an ambulance with a higher propensity to transport veterans

to the VA should weakly increase the probability of transport to the VA for any set of veterans. Specif-

ically, using the set of observations I𝑚 for each subsample𝑚, we estimate a first-stage regression with

respect to our baseline instrument, 𝑍𝑖 , from equation (1):

(A.1) 𝐷𝑖 = 𝜋
𝑚
1 𝑍𝑖 +X0

𝑖 𝛿
𝑚
1 + 𝜁𝑚1,ℓ (𝑖) + 𝜀

𝑚
1,𝑖 ,

and we assess whether 𝜋̂𝑚1 ≥ 0.

We further assess monotonicity in each subsample 𝑚 by constructing a “reverse-sample” instru-

ment that only uses observations in the analytical sample (Step 6 in Appendix Table A.1) that are not

in I𝑚:

(A.2) 𝑍̃−𝑚
𝑖 =

1
𝐾̃−𝑚

𝑗 (𝑖)

∑︁
𝑖′∈Ĩ𝑗 (𝑖) \I𝑚

1 (𝑘 (𝑖′) ≠ 𝑘 (𝑖))𝐷𝑖′

𝑁̃𝑘 (𝑖′ ) , 𝑗 (𝑖)
.

Within the analytical sample, Ĩ𝑗 denotes the set of rides assigned to 𝑗 , 𝐾̃−𝑚
𝑗

is the number of patients

assigned to ambulance 𝑗 without characteristic 𝑚, and 𝑁̃𝑘, 𝑗 is the number of rides by patient 𝑘 with

ambulance 𝑗 .52 In each subsample 𝑚, we also perform first-stage regressions of the form in equation

(A.1) that use 𝑍̃−𝑚
𝑖

instead of 𝑍𝑖 as the instrument.

Recall that the baseline instrument, 𝑍𝑖 , is computed in the much larger sample of dually eligible

veterans (Step 1 in Appendix Table A.1). Since the reverse-sample instruments are based on much

smaller patient populations, they may be weaker predictors of underlying ambulance propensities to

transport to the VA.

In Appendix Table A.5, we demonstrate a positive and statistically significant first-stage coeffi-

cient in every subsample and for both the baseline and reverse-sample instruments. Coefficient sizes

52. We use the analytical sample to construct the reverse-sample instruments, so that the samples used to construct
instruments are roughly the same between pairs of characteristics (e.g., subsamples for comorbidity count above vs. below
median).
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are generally smaller for the reverse-sample instruments. In Appendix Table A.6, we show first-stage

relationships using two other instruments based on the smaller analytical sample. Specifically, we

construct a “baseline” instrument, 𝑍̃𝑖 , and an “in-sample” instrument, 𝑍̃𝑚
𝑖

, from the analytical sam-

ple:

𝑍̃𝑖 =
1

𝐾̃ 𝑗 (𝑖) −1

∑︁
𝑖′∈Ĩ𝑗 (𝑖)

1 (𝑘 (𝑖′) ≠ 𝑘 (𝑖))𝐷𝑖′

𝑁̃𝑘 (𝑖′ ) , 𝑗 (𝑖)
, and(A.3)

𝑍̃𝑚
𝑖 =

1
𝐾̃𝑚

𝑗 (𝑖) −1

∑︁
𝑖′∈Ĩ𝑗 (𝑖)∩I𝑚

1 (𝑘 (𝑖′) ≠ 𝑘 (𝑖))𝐷𝑖′

𝑁̃𝑘 (𝑖′ ) , 𝑗 (𝑖)
.(A.4)

First-stage coefficients for these instruments are also all positive and statistically significant. They

are similar in magnitude to the coefficients for the reverse-sample instruments, which suggests that

lower signal-to-noise ratios due to smaller sample sizes explain much of the decrease in coefficient

magnitude for the reverse-sample instruments compared to the baseline (overall-sample) instrument.

A.2. Statistical Tests of Hazard Functions

A.2.1. Potential Survival Rates and Hazard Rates

Following the notation in Section III, let 𝑠𝐼𝑉 (𝑡;𝑑) ≡ 𝐸 [ 𝑆𝑖 (𝑡;𝑑) | 𝑖 ∈ C] denote the IV estimands of the

potential survival rates among compliers, where 𝑑 ∈ {0,1} indicates outcomes under VA care (𝑑 = 1)
or non-VA care (𝑑 = 0), for each week 𝑡 ∈ {0,1, . . . ,52}. We then define the corresponding estimands

of the potential mortality hazards as follows:

ℎ𝐼𝑉 (𝑡;𝑑) ≡ 𝑠𝐼𝑉 (𝑡 −1;𝑑) − 𝑠𝐼𝑉 (𝑡;𝑑)
𝑠𝐼𝑉 (𝑡 −1;𝑑) .

We use two-stage least squares to construct estimates of the potential survivor fractions at each time

horizon, 𝑠𝐼𝑉 (𝑡;𝑑) and then construct the corresponding potential hazard functions, ℎ̂𝐼𝑉 (𝑡;𝑑). We also

construct a set of 250 block bootstrap samples (selecting samples by zip code, with replacement), and

for replication sample 𝑟 ∈ {1, . . . , 𝑅}, we construct 𝑠𝑟
𝐼𝑉

(𝑡;𝑑) and ℎ̂𝑟
𝐼𝑉

(𝑡;𝑑). Using these samples we

construct the mean estimated potential hazard for each week across the replications:

(A.5) ℎ
𝐵

𝐼𝑉 (𝑡;𝑑) = 1
𝑅

∑︁
𝑟

ℎ̂𝑟𝐼𝑉 (𝑡;𝑑) .

We also construct the standard deviation of the bootstrap-estimated potential hazard for each week:

(A.6) 𝜎̂𝐵
𝐼𝑉 (𝑡;𝑑) =

√︄
1

𝑅−1

∑︁
𝑟

[
ℎ̂𝑟
𝐼𝑉

(𝑡;𝑑) − ℎ𝐵𝐼𝑉 (𝑡;𝑑)
]2
.

We construct similar objects for potential survival and hazard rates under OLS: 𝑠𝑂𝐿𝑆 (𝑡;𝑑) and

ℎ̂𝑂𝐿𝑆 (𝑡;𝑑), respectively. Using the same set of block bootstrap samples, we compute 𝑠𝑟
𝑂𝐿𝑆

(𝑡;𝑑) and
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ℎ̂𝑟
𝑂𝐿𝑆

(𝑡;𝑑) in each bootstrap replication sample 𝑟 .

A.2.2. Test of Mortality Displacement

To detect “mortality displacement” (Schwartz 2000), in which deaths of VA patients are only delayed,

we test the joint null hypothesis that ℎ𝐼𝑉 (𝑡;1) ≤ ℎ𝐼𝑉 (𝑡;0) for all 𝑡 ≥ 1. This null hypothesis states

that the mortality hazard under the VA never overtakes the mortality hazard under non-VA hospitals,

even in later periods, and it is consistent with no mortality displacement.

Restating the null hypothesis as

(A.7) 𝐻0,1 : ℎ𝐼𝑉 (𝑡;0) − ℎ𝐼𝑉 (𝑡;1) ≥ 0, for all 𝑡 ≥ 1,

we use estimates ℎ̂𝐼𝑉 (𝑡;0) − ℎ̂𝐼𝑉 (𝑡;1) and consider the following test statistic of the null, based on

Wolak (1987):

(A.8) 𝑄1 ≡
52∑︁
𝑡=1
𝑤1,𝑡1

(
ℎ̂𝐼𝑉 (𝑡;0) − ℎ̂𝐼𝑉 (𝑡;1) < 0

) (
ℎ̂𝐼𝑉 (𝑡;0) − ℎ̂𝐼𝑉 (𝑡;1) (𝑡)

)2
,

where 𝑤1,𝑡 is a strictly positive weight. This test statistic penalizes only negative differences ℎ̂𝐼𝑉 (𝑡;0)−
ℎ̂𝐼𝑉 (𝑡;1) < 0 that can be consistent with the null hypothesis that ℎ̂𝐼𝑉 (𝑡;0)− ℎ̂𝐼𝑉 (𝑡;1) ≥ 0, for all 𝑡 ≥ 1,

only by statistical noise.

To derive a critical value for𝑄1, we use our bootstrap sample to form a set of recentered bootstrap

estimates of the potential hazards at each week:

ℎ̃𝑟𝐼𝑉 (𝑡;0) = ℎ̂𝑟𝐼𝑉 (𝑡;0) − ℎ𝐵𝐼𝑉 (𝑡;0) ;

ℎ̃𝑟𝐼𝑉 (𝑡;1) = ℎ̂𝑟𝐼𝑉 (𝑡;1) − ℎ𝐵𝐼𝑉 (𝑡;1) .

We then construct the empirical distribution of the test statistic, in equation (A.8), under the recentered

bootstrap deviations:

(A.9) 𝑄𝑟
1 ≡

52∑︁
𝑡=1
𝑤1,𝑡1

(
ℎ̃𝑟𝐼𝑉 (𝑡;0) − ℎ̃𝑟𝐼𝑉 (𝑡;1) < 0

) (
ℎ̃𝑟𝐼𝑉 (𝑡;0) − ℎ̃𝑟𝐼𝑉 (𝑡;1)

)2
.

We take the 95th percentile of this distribution as the critical value above which our test statistic 𝑄1

can reject the null hypothesis 𝐻0,1, in equation (A.7).

Following Wolak (1987), this distribution is formed under the data generating process implied

by the “least favorable null” for testing joint inequality constraints (Perlman 1969). Specifically, we

consider the least favorable data generating process that satisfies the null hypothesis 𝐻0, in equation

(A.7), which is

(A.10) 𝐻0,1 : ℎ𝐼𝑉 (𝑡;0) − ℎ𝐼𝑉 (𝑡;1) = 0, for all 𝑡 ≥ 1.
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If we obtain a test statistic 𝑄1 with improbable negative deviations that reject the least favorable null

hypothesis 𝐻0,1 in equation (A.10), then we can also reject the null hypothesis 𝐻0,1 in equation (A.7).

We use the same weights 𝑤1,𝑡 in equations (A.8) and (A.9) and set them as the inverse of the

estimated sampling variance of the recentered deviations:

(A.11) 𝑤−1
1,𝑡 =

1
𝑅−1

∑︁
𝑟

(
ℎ̃𝑟𝐼𝑉 (𝑡;0) − ℎ̃𝑟𝐼𝑉 (𝑡;1)

)2
.

These weights standardize the statistical distribution of ℎ̂𝐼𝑉 (𝑡;0) − ℎ̂𝐼𝑉 (𝑡;1), so that the test statistic

distribution can be considered as chi-squared. Although we use critical values derived from the boot-

strap distribution, we find the scale of our test statistic to be more intuitive with this normalization.53

We show results in Panel A of Appendix Figure A.5. We find that 𝑄1 is within the distribution of

bootstrapped values of 𝑄𝑟
1. Therefore, we cannot reject the null of no mortality displacement.

A.2.3. Extended Test of IV Validity

In addition to standard tests of IV validity that are based on observable characteristics—including tests

of balance in Section II.B and monotonicity in Appendix A.1.2—we develop a tractable extended

test of IV validity using the insights in Balke and Pearl (1997) and Heckman and Vytlacil (2005,

Proposition A.5) that are based on potential outcomes.

Kitagawa (2015) summarizes these insights as follows for a binary instrument 𝑍 ∈ {0,1}, a binary

treatment 𝐷 ∈ {0,1} (increasing in probability with 𝑍), and an outcome 𝑌 ∈ Y. For any Borel set 𝐵

in Y, IV validity in Condition 1 implies that

Pr (𝑌 ∈ 𝐵,𝐷 = 1| 𝑍 = 1) −Pr (𝑌 ∈ 𝐵,𝐷 = 1| 𝑍 = 0) ≥ 0;(A.12)

Pr (𝑌 ∈ 𝐵,𝐷 = 0| 𝑍 = 0) −Pr (𝑌 ∈ 𝐵,𝐷 = 0| 𝑍 = 1) ≥ 0.(A.13)

Kitagawa (2015, Proposition 1.1) further states that tests of equations (A.12) and (A.13) constitute

the strongest possible tests of IV validity in the sense that no other feature of the data can contribute

further to screening out invalid instruments.54

We note that, given the approach in Abadie (2002), testing equations (A.12) and (A.13) is alge-

53. Wolak (1987) proposes to use an optimal minimum distance test statistic that would use the full covariance matrix of
𝛿 (𝑡). We avoid this formulation due to finite-sample issues that would cause this covariance matrix to be poorly estimated
by the full covariance matrix of 𝛿𝑟(𝑡), noted by Altonji and Segal (1996). Results are qualitatively similar when we choose
a weight of 𝑤𝑡 = 1 for all 𝑡, but we find that using 𝑤𝑡 from equation (A.11)—i.e., normalizing each 𝛿 (𝑡) by its bootstrapped
standard error—affords greater power in rejecting the null. This approach is equivalent to our best estimate of a diagonal
covariance matrix in place of the full covariance matrix.

54. Chan, Gentzkow, and Yu (2019) provide an applied example, in the setting of radiologists. In this paper, standard
monotonicity tests in Appendix A.1.2 are satisfied, but a simple version of this extended test of validity is strongly rejected.
They find that radiologists who diagnose more cases with pneumonia do so in a wide range of subgroups of patients defined
by observable characteristics (i.e., standard tests of monotonicity) but that the same radiologists who diagnose more cases
with pneumonia are more likely to miss cases of pneumonia (i.e., Pr (𝑌 ∈ 𝐵,𝐷 = 0| 𝑍 = 0) −Pr (𝑌 ∈ 𝐵,𝐷 = 0| 𝑍 = 1) < 0).
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braically equivalent to testing, for all 𝐵 ⊂ Y,

Pr (𝑌𝑖 (0) ∈ 𝐵| 𝑖 ∈ C) ≥ 0;(A.14)

Pr (𝑌𝑖 (1) ∈ 𝐵| 𝑖 ∈ C) ≥ 0.(A.15)

Thus, we use the Abadie (2002) approach to define a partition of mortality outcomes Y in terms

of weekly hazard rates by the date of death (if any) following the ambulance ride. Such a partition

implies that potential hazard rates among compliers, ℎ𝐼𝑉 (𝑡;𝑑), are non-negative in every week 𝑡 ∈
{1, . . . ,52} under both VA assignment (𝑑 = 1) and non-VA assignment (𝑑 = 0).

That is, our extended test of IV validity amounts to testing the following joint null hypothesis of

inequality constraints:

(A.16) 𝐻0,2 : ℎ𝐼𝑉 (𝑡;𝑑) ≥ 0, for all 𝑡 ≥ 1, 𝑑 ∈ {0,1} .

Following a similar approach as for mortality displacement in Appendix A.2.2, our test statistic is

𝑄2 ≡
1∑︁

𝑑=0

52∑︁
𝑡=1
𝑤2,𝑡1

(
ℎ̂𝐼𝑉 (𝑡;𝑑) < 0

) (
ℎ̂𝐼𝑉 (𝑡;𝑑)

)2
,

where 𝑤−1
2,𝑡 =

(
𝜎̂𝐵
𝐼𝑉

(𝑡;𝑑)
)2. We obtain the critical value for our test statistic by the distribution of

recentered bootstrapped estimates, defined above. For the 𝑟th bootstrap replication, the test statistic

is

𝑄𝑟
2 ≡

1∑︁
𝑑=0

52∑︁
𝑡=1
𝑤2,𝑡1

(
ℎ̃𝑟𝐼𝑉 (𝑡;𝑑) < 0

) (
ℎ̃𝑟𝐼𝑉 (𝑡;𝑑)

)2
.

We take the 95th percentile of the distribution of 𝑄𝑟
2 across replications 𝑟 ∈ {1, . . . , 𝑅} as the criti-

cal value for 𝑄2. As above, this test of inequality constraints is based upon a least favorable null

hypothesis. In this case, the least favorable null hypothesis is

(A.17) 𝐻0,2 : ℎ𝐼𝑉 (𝑡;𝑑) = 0, for all 𝑡 ≥ 1, 𝑑 ∈ {0,1} .

We show results in Panel B of Appendix Figure A.5. We find that 𝑄2 is lower than any boot-

strapped value of 𝑄𝑟
2. This suggests that we cannot reject the null hypothesis 𝐻0,2 in equation (A.16)

and that the realized data are significantly more favorable than the least favorable null hypothesis

𝐻0,2 in equation (A.17). In other words we can strongly reject the null that ℎ𝐼𝑉 (𝑡;𝑑) = 0, for all

𝑡 ≥ 1, 𝑑 ∈ {0,1}, which means that ℎ𝐼𝑉 (𝑡;𝑑) > 0 for at least some 𝑡 ≥ 1, 𝑑 ∈ {0,1}.

A.2.4. Tests of Hazard Rate Equality

We finally perform tests of the equality of hazard rates after the first week after the ambulance ride.

Comparing hazard rates across different groups of veterans, we aim to shed light on heterogeneity in

longer-term mortality risk across these groups. To define these tests generally, consider two sets of
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hazard rates, ℎ1 (𝑡) and ℎ2 (𝑡), for 𝑡 ≥ 2. We consider two types of null hypotheses.

First, we assess mean differences in hazard rates between {ℎ1 (𝑡)}𝑡 and {ℎ2 (𝑡)}𝑡 , for 𝑡 ≥ 1, under

the null hypothesis that the mean hazard rate is the same between the two sets:

(A.18) 𝐻0,3 :
1
51

52∑︁
𝑡=2

(ℎ1 (𝑡) − ℎ2 (𝑡)) = 0.

We test this null hypothesis by comparing 1
51
∑52

𝑡=2

(
ℎ̂1 (𝑡) − ℎ̂2 (𝑡)

)
against the bootstrapped distri-

bution of recentered differences. Specifically, for replication 𝑟 ∈ {1, . . . , 𝑅}, denote the bootstrap-

estimate hazard rates of (ℎ1 (𝑡) , ℎ2 (𝑡)) as
(
ℎ̂𝑟1 (𝑡) , ℎ̂

𝑟
2 (𝑡)

)
. Define the recentered bootstrap hazard rate

as

ℎ̃𝑟1 (𝑡) ≡ ℎ̂𝑟1 (𝑡) − ℎ
𝐵

1 (𝑡) and

ℎ̃𝑟2 (𝑡) ≡ ℎ̂𝑟2 (𝑡) − ℎ
𝐵

2 (𝑡) ,

where ℎ
𝐵

1 (𝑡) ≡ 1
𝑅

∑
𝑟 ℎ1 (𝑡) and ℎ

𝐵

2 (𝑡) ≡ 1
𝑅

∑
𝑟 ℎ2 (𝑡). The distribution of

{ 1
51
∑52

𝑡=2
(
ℎ̃𝑟1 (𝑡) − ℎ̃

𝑟
2 (𝑡)

)}
𝑟

determines the two-sided critical values for the mean hazard difference. By construction, this distri-

bution will have mean 0.

Second, we consider the joint null hypothesis that the difference between each pair of hazards is

equal to 0:

(A.19) 𝐻0,4 : ℎ1 (𝑡) − ℎ2 (𝑡) = 0, for all 𝑡 ≥ 1.

Using estimates ℎ̂1 (𝑡) − ℎ̂2 (𝑡), we construct the following test statistic:

𝑄4 (ℎ1 (·) , ℎ2 (·)) ≡
52∑︁
𝑡=2
𝑤4,𝑡

(
ℎ̂1 (𝑡) − ℎ̂2 (𝑡)

)2
.

We compute the empirical distribution of𝑄4 under the null hypothesis by using recentered differences

ℎ̃𝑟1 (𝑡) − ℎ̃
𝑟
2 (𝑡). Each bootstrap replication 𝑟 yields

𝑄𝑟
4 (ℎ1 (·) , ℎ2 (·)) ≡

52∑︁
𝑡=2
𝑤4,𝑡

(
ℎ̃𝑟1 (𝑡) − ℎ̃

𝑟
2 (𝑡)

)2
.

We take the 95th percentile of the distribution of 𝑄𝑟
4 across replications 𝑟 ∈ {1, . . . , 𝑅} as the critical

value for 𝑄4. We set 𝑤−1
4,𝑡 =

1
𝑅−1

∑
𝑟

(
ℎ̃𝑟1 (𝑡) − ℎ̃

𝑟
2 (𝑡)

)2
to standardize the distribution of ℎ̂1 (𝑡) − ℎ̂2 (𝑡).

In Appendix Figures A.6 and A.7, we consider five comparisons of hazard rates, for 𝑡 ≥ 1, under

the null hypotheses of equations (A.18) and (A.19), respectively. First, we test the null hypothesis that

ℎ𝐼𝑉 (𝑡;1) − ℎ𝐼𝑉 (𝑡;0) = 0, for all 𝑡 ≥ 1. Under quasi-experimental assignment of compliers (Condition

1), we expect not to reject this null if longer-term hazard rates reflect underlying health. Second, we

test the null hypothesis that ℎ𝑂𝐿𝑆 (𝑡;1) − ℎ𝑂𝐿𝑆 (𝑡;0) = 0, for all 𝑡 ≥ 1. While we show the stability
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of OLS results in Figure 2, this test may reveal differences in underlying health between veterans

assigned to the VA and those assigned to a non-VA hospital that are not captured by observable

patient characteristics.

Third, we test the null hypothesis that ℎ𝐼𝑉 (𝑡;1) − ℎ𝑂𝐿𝑆 (𝑡;1) = 0, for all 𝑡 ≥ 1. This reveals differ-

ences in underlying health between compliers and VA-assigned veterans, which includes compliers

and always-takers. Fourth, we similarly test the null hypothesis that ℎ𝐼𝑉 (𝑡;0) −ℎ𝑂𝐿𝑆 (𝑡;0) = 0, for all

𝑡 ≥ 1. This reveals differences in underlying health between compliers and non-VA-assigned veterans,

which includes compliers and never-takers.

A.3. Non-Complier Characteristics

In this appendix, we describe a simple approach to calculate characteristics of non-compliers, follow-

ing Dahl, Kostol, and Mogstad (2014), and we discuss results. In our approach, we first residualize

the leave-out ambulance propensity to transport to the VA, 𝑍𝑖 , by our key controls,
(
ℓ (𝑖) ,X0

𝑖

)
. Denote

this residual as 𝑍∗
𝑖
. We categorize always-takers as rides with 𝑍∗

𝑖
below the 20th percentile that still

went to the VA (𝐷𝑖 = 1). We categorize never-takers as rides with 𝑍∗
𝑖

above the 80th percentile that

still did not go to the VA (𝐷𝑖 = 0).
Among each group of always-takers and never-takers, we compute characteristics along the same

dimensions as those in our compliers analysis in Table 5. Specifically, for each characteristic, we

compute mean values among the group of always-takers and among the group of never-takers, and

we compare these means with the overall mean by a ratio. We compute standard errors of these

means by drawing bootstrapped samples, blocked by zip code, and repeating this procedure with

each bootstrapped sample.

As shown in Appendix Table A.7, we mostly find results that are consistent with our earlier

results of complier characteristics and the fact that the majority of non-compliers are never-takers:

For many characteristics, those that are more common among compliers tend to be more common

among always-takers and less common among never-takers. Compared to the overall population,

always-takers are more likely to be Black and have lower income. Always-takers are more likely to

have a mental illness, and they have a slightly higher rate of substance abuse, though the latter is

not statistically significant. Always-takers are more likely to have prior VA ED visits and less likely

to have prior non-VA ED visits. However, both always-takers and never-takers, as defined by this

methodology, have slightly higher predicted mortality.

A.4. Marginal and Average Treatment Effects

Consider the probability of going to the VA as a function of our instrument 𝑍𝑖 and key controls(
ℓ (𝑖) ,X0

𝑖

)
: 𝑃 (𝑍𝑖), where we have omitted the key controls for brevity. Following Heckman and
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Vytlacil (2005), we can state the treatment rule as

(A.20) 𝐷𝑖 = 1 (𝑃 (𝑍𝑖) ≥ 𝑈𝑖) ,

where 𝑈𝑖 is uniformly distributed in the interval (0,1). Individuals with low 𝑈𝑖 relative to 𝑝 ≡
argmin𝑖 𝑃 (𝑍𝑖) are always-takers, while individuals with high 𝑈𝑖 relative to 𝑝 ≡ argmax𝑖 𝑃 (𝑍𝑖) are

never-takers.

In this appendix, we estimate two objects relative to selection, as defined by 𝑈𝑖 ∼𝑈 (0,1). The

marginal treatment effect (MTE) for rides with𝑈𝑖 = 𝑢 is

𝑀𝑇𝐸 (𝑢) ≡ 𝐸 [𝑌𝑖 (1) −𝑌𝑖 (0) |𝑈𝑖 = 𝑢] .

The average treatment effect (ATE) is

𝐴𝑇𝐸 =

∫ 1

0
𝑀𝑇𝐸 (𝑢) 𝑑𝑢.

We estimate 𝑀𝑇𝐸 (𝑢), for 𝑢 ∈
[
𝑝, 𝑝

]
, using variation in the propensity of ambulances to transport to

the VA. We estimate the ATE by extrapolating 𝑀𝑇𝐸 (𝑢) to 𝑢 ∈ [0,1] with a control function approach.

A.4.1. Marginal Treatment Effects

We first estimate marginal treatment effects using a local instrumental variables approach that exploits

outcomes along the distribution of ambulance propensity to transport to the VA. The intuition for this

approach is that 𝑀𝑇𝐸 (𝑢) can be stated as

𝑀𝑇𝐸 (𝑢) = 𝜕

𝜕𝑝
𝐸 [𝑌𝑖 |𝑃 (𝑍𝑖) = 𝑢] .

That is, if mortality decreases linearly with ambulance propensity to transport to the VA, then the

data would be consistent with constant treatment effects. On the other hand, if mortality decreases at

a faster rate for lower 𝑃 (𝑍𝑖), then the data would suggest “selection on gains,” in which veterans who

are more likely to benefit from VA care are also more likely to be transported to the VA given a set of

ambulances. The visual IV relationship in Appendix Figure A.2 suggests a slightly convex shape in

the relationship between mortality and 𝑃 (𝑍𝑖), which implies selection on gains.

We proceed with estimating a flexible relationship between 𝑌𝑖 and 𝑃 (𝑍𝑖) as follows. We compute

𝑃 (𝑍𝑖) = 𝐷̂𝑖 from the first-stage equation (3). We then residualize 𝐷̂𝑖 by baseline controls, defined in

Appendix Table A.2, and denote the residual as 𝐷̂∗
𝑖
. We similarly residualize 𝑌𝑖 by baseline controls

and denote the residual as 𝑌 ∗
𝑖

. For interpretation, we set 𝑌 ∗
𝑖

and 𝐷̂∗
𝑖

to have the same respective means

as 𝑌𝑖 and 𝐷𝑖 . A regression of 𝑌 ∗
𝑖

on 𝐷̂∗
𝑖

yields a point estimate that is numerically identical to the IV

estimate 𝛽𝐼𝑉 .55

55. This regression corresponds to the indirect least squares version of IV and is numerically identical to the visual IV
coefficient corresponding to the two-stage least squares version of IV.
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Rather than fitting a straight line through points
(
𝐷̂∗

𝑖
,𝑌 ∗

𝑖

)
, we fit a flexible function with Gaussian

basis splines with four knots (𝑘1, 𝑘2, 𝑘3, 𝑘4) corresponding to the 5th, 35th, 65th, and 95th percentiles

of 𝐷̂∗
𝑖
. Specifically, for each ride 𝑖, we form five basis functions

𝑓𝑛 (𝑝) = exp
(
− (𝑘𝑛 − 𝑘𝑛−1) (𝑝− 𝑐𝑛)2

)
,

where 𝑐𝑛 = 1
2 (𝑘𝑛−1 + 𝑘𝑛), 𝑘0 = min 𝐷̂∗

𝑖
, and 𝑘5 = max 𝐷̂∗

𝑖
. We regress

𝑌 ∗
𝑖 =

5∑︁
𝑛=1

𝛾𝑛 𝑓𝑛
(
𝐷̂∗

𝑖

)
+ 𝜀𝑖

and form a flexible prediction 𝑌 ∗ (𝑝) =∑5
𝑛=1 𝛾̂𝑛 𝑓𝑛 (𝑝).

This prediction yields a convenient analytical derivative for the MTE

�𝑀𝑇𝐸 (𝑢) =
5∑︁

𝑛=1
𝛾̂𝑛 𝑓

′
𝑛 (𝑢) = −

5∑︁
𝑛=1

2 (𝑘𝑛 − 𝑘𝑛−1)2 (𝑢− 𝑐𝑛) 𝛾̂𝑛 𝑓𝑛 (𝑢) .

For each 𝑝 ∈ [0.05,0.20], corresponding to the range of 𝐷̂∗
𝑖
, we compute 95% confidence in-

tervals of 𝑌 ∗ (𝑝) by taking the standard deviations of 𝑌 ∗ (𝑝) across 50 bootstrapped iterations (with

samples drawn by zip code, with replacement). Similarly, for each 𝑢 ∈ [0.05,0.20], we compute 95%

confidence intervals of �𝑀𝑇𝐸 (𝑢) by taking the standard deviations of �𝑀𝑇𝐸 (𝑢) across these same

bootstrapped iterations. We display both 𝑌 ∗ (𝑝) and �𝑀𝑇𝐸 (𝑢) in Appendix Figure A.8.

A.4.2. Average Treatment Effect

In order to estimate the ATE, we adopt a control function model in order to extrapolate treatment

effects to non-compliers. Specifically, we model potential outcomes as

(A.21) 𝐸 [𝑌𝑖 (𝑑) |𝑈𝑖 = 𝑢] = 𝛼𝑑 +𝛾𝑑 (𝐽 (𝑢) − 𝜇𝐽 ) +X0
𝑖 𝛿+ 𝜁ℓ (𝑖) ,

where 𝑑 ∈ {0,1} and 𝑢 ∈ (0,1). 𝐽 (𝑢) is a strictly increasing, continuous function that maps selection

to potential outcomes, and 𝜇𝐽 ≡ 𝐸 [𝐽 (𝑈𝑖)]. Since 𝐸 [𝐽 (𝑢) − 𝜇𝐽 ] = 0, we can interpret 𝛼1 −𝛼0 as the

ATE. Kline and Walters (2019) show that the control function model in equations (A.20) and (A.21)

can also rationalize the Imbens and Angrist (1994) LATE that we estimate in Section II, regardless of

the choice of 𝐽 (𝑢).56

For our baseline specification, we adopt the linear selection function of 𝐽 (𝑢) = 𝑢 from Olsen

(1980), which we use with equation (A.21) to state the following expectation, conditional on the

56. Kline and Walters (2019) show algebraic equivalence between the control function LATE implied by equation (A.21),
𝑝, and 𝑝, under a binary instrument and no controls. They also generalize their result for multivalued instruments. With
controls, the equivalence may not hold in the standard regression approach in which controls are treated as additively
separable but will hold under a propensity score approach.
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first-stage error 𝜀1,𝑖 from equation (3):57

𝐸
[
𝑌𝑖 |𝐷𝑖 = 𝑑, 𝜀1,𝑖 = 𝜀

]
= 𝛼𝑑 +𝛾𝑑𝐸

[
𝐽 (𝑢) − 𝜇𝐽 |𝐷𝑖 = 𝑑, 𝜀1,𝑖 = 𝜀

]
+X0

𝑖 𝛿+ 𝜁ℓ (𝑖)
= 𝛼𝑑 −𝛾𝑑

𝜀

2
+X∗

𝑖 𝛿+ 𝜁ℓ (𝑖) .(A.22)

This expectation corresponds to the following regression:

(A.23) 𝑌𝑖 = 𝛼Δ𝐷𝑖 +𝛾0

(
−
𝜀1,𝑖

2

)
+𝛾Δ

(
−
𝜀1,𝑖

2

)
𝐷𝑖 +X0

𝑖 𝛿+ 𝜁ℓ (𝑖) + 𝑣𝑖 ,

plugging in the estimated first-stage residual 𝜀1,𝑖 from equation (3). We can compute the ATE from

this equation as 𝛼Δ = 𝛼1 −𝛼0. We estimate equation (A.23) by OLS to yield 𝛼̂Δ = −0.037 , slightly

smaller in magnitude than the LATE estimate of −0.041 from Section II. For inference on the differ-

ence between the ATE and the LATE, we recover a numerically equivalent LATE with the following

control function regression:58

(A.24) 𝑌𝑖 = 𝛽𝐶𝐹𝐷𝑖 +𝛾𝜀1,𝑖 +X0
𝑖 𝛿0 + 𝜁0,ℓ (𝑖) + 𝑣𝑖 ,

where 𝛽𝐶𝐹 is estimated by OLS and is numerically equivalent to 𝛽𝐼𝑉 estimated by two-stage least

squares. For each bootstrapped replication, we estimate both the ATE, 𝛼̂1− 𝛼̂0, and its difference with

the LATE, 𝛽𝐶𝐹 , in order to obtain standard errors on both the ATE and the difference.

We also examine semiparametric specifications that allow for flexible relationships between the

first-stage residual and the structural error term. These alternative specifications allow nonlinear

relationships of 𝑔𝑑 (𝜀) ≡ 𝐸
[
𝜀0,𝑖

��𝐷𝑖 = 𝑑, 𝜀1,𝑖 = 𝜀
]
, where 𝜀0,𝑖 is the structural error term in equation

(2). Specifically, we estimate regressions of the following form:

(A.25) 𝑌𝑖 = 𝛼Δ𝐷𝑖 +𝑔0
(
𝜀1,𝑖

)
(1−𝐷𝑖) +𝑔1

(
𝜀1,𝑖

)
𝐷𝑖 +X0

𝑖 𝛿+ 𝜁ℓ (𝑖) + 𝑣𝑖 ,

where 𝑔𝑑
(
𝜀1,𝑖

)
, 𝑑 ∈ {0,1}, are flexible functions of the first-stage residual that are non-zero when

𝐷𝑖 = 0 and 𝐷𝑖 = 1, respectively. To estimate 𝑔𝑑
(
𝜀1,𝑖

)
, 𝑑 ∈ {0,1}, we use a vector of restricted cubic

spline functions or Gaussian basis functions, with three or five knots. Ensuring that 𝐸
[
𝑔𝑑

(
𝜀1,𝑖

) ]
= 0

by demeaning each spline or basis function, we can interpret 𝛼Δ as the ATE.

In Appendix Table A.8, we show estimates of the ATE. ATE estimates are all smaller in magnitude

than the LATE estimate from Section II. We compute standard errors on this difference with 50

bootstrapped iterations (selecting samples by zip code, with replacement).

57. To see this, assume that the first stage regression in equation (3) estimates a well-behaved 𝑃 (𝑍𝑖) ∈ (0,1) such that
𝐷𝑖 = 𝑃 (𝑍𝑖) + 𝜀1,𝑖 . Define 𝜆𝑑 (𝑝) ≡ 𝐸 [ 𝐽 (𝑈𝑖) − 𝜇𝐽 |𝐷𝑖 = 𝑑, 𝑃 (𝑍𝑖) = 𝑝]. We have 𝜆1 (𝑝) = 𝑝

2 − 1
2 =

𝑝−1
2 , and 𝜆0 (𝑝) =

𝑝+1
2 − 1

2 =
𝑝
2 . Note that 𝜆𝑑 (𝑝) = 𝑝−𝑑

2 = −𝜀
2 , where 𝜀 ≡ 𝑑 − 𝑝. This implies that 𝜀1,𝑖 = 𝐷𝑖 −𝑃 (𝑍𝑖) is a sufficient statistic

for (𝐷𝑖 , 𝑃 (𝑍𝑖)), and we can state the expectation 𝐽 (𝑈𝑖) − 𝜇𝐽 conditional on 𝜀1,𝑖 : 𝐸
[
𝐽 (𝑈𝑖) − 𝜇𝐽 | 𝜀1,𝑖 = 𝜀

]
= − 𝜀

2 .
58. Blundell and Matzkin (2014) attribute the first proof of this equivalence between control function and two-stage least

squares approaches to estimating the LATE to Telser (1964).
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A.5. Hospital Characteristics

This appendix provides further details on hospital characteristics that we use in our heterogeneity

analyses in Section IV.A. These characteristics are listed in Table 6 and Appendix Tables A.10 to

A.12. For each zip code and year, we use characteristics of the closest VA hospital and a weighted

average of the characteristics of associated non-VA hospitals. Weights for each non-VA hospital are

proportional to the number of ambulance rides originating from a given zip code to the hospital in

that year. Unless otherwise noted, characteristics are observed at the hospital-year level.

We use the American Hospital Association (AHA) Annual Survey to collect the following VA

and non-VA hospital characteristics at the hospital-year level: (i) number of ED visits; (ii) number of

facility admissions; (iii) number of available hospital beds; (iv) teaching hospital status; (v) trauma

center status; (vi) number of privileged ED staff, which we use to construct ED staff per 100 ED

visits given (i); (vii) number of full-time registered nurses, which we use to construct nurses per 100

admissions given (ii); (viii) number of privileged hospitalists, which we use to construct hospitalists

per 100 admissions; and (ix) number of privileged intensivists, which we use to construct intensivists

per 100 admissions given (ii).

We construct a measure of advanced cardiac care, which we define as either the capability to

perform interventional cardiac catheterization or cardiac surgery as measured by the AHA Annual

Survey (at the hospital-year level) or listing as an ST-Elevation Myocardial Infarction (STEMI) center

by the American Heart Association (at the hospital level). We record whether each hospital is certified

as a Primary Stroke Center according to the Joint Commission, the American Heart Association, and

the American Stroke Association (at the hospital level).

For VA hospitals, we form measures of relative spending from the average cost of an inpatient-

day, available from the VA Health Economics Resource Center (HERC). For non-VA hospitals, we use

data from Data.Medicare.gov on Medicare spending per beneficiary at the hospital level. Relative

spending is therefore not comparable between VA and non-VA hospitals. The AHA average of relative

spending for VA hospitals is not 1 because not all VA hospitals are found in the AHA Annual Survey.

Similarly, we obtain mortality and readmission rates from Data.Medicare.gov for non-VA hospitals

and from the VA’s Strategic Analytics for Improvement and Learning (SAIL). For each hospital’s

mortality rate, we take the mean of all available 30-day mortality rates, including disease-specific

rates such as heart attack and pneumonia; we form similar means for each hospital’s readmission rate

based on available 30-day readmission rates, including disease-specific rates. Because some years are

missing mortality or readmission rates, we first form averages across years at the hospital level.

For measures of non-VA hospital organization, we use AHA Annual Survey measures of network

status, hospital system status, and health maintenance organization (HMO) affiliation. We also ob-

tain whether the hospital participates in an Affordable Care Organization (ACO) from the Medicare

Shared Savings Program (MSSP) ACO provider-level dataset. We measure health IT adoption for

each hospital and year from any electronic health record certified products on the Certified Health

IT Product List (CHPL) reported on healthIT.gov. Additional characteristics in Table 6 are also

obtained from the AHA Annual Survey: (i) average daily census, (ii) urban location (i.e., the hospital
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is not classified as either “micro” or rural), (iii) capitated lives covered, and (iv) Preferred Provider

Organization (PPO) affiliation.

A.6. Heterogeneity by Observable Characteristics

This appendix describes our analytical approach to estimating treatment effect heterogeneity by ob-

servable hospital or patient characteristics. As described in Section IV.A, we have three categories

of characteristics: (i) characteristics of non-VA hospitals serving a given zip code, weighting the hos-

pitals by volume of rides from the zip code; (ii) characteristics of the VA hospital serving a given

zip code; and (iii) patient characteristics. Hospital characteristics are described in further detail in

Appendix A.5.

For each characteristic 𝑥, we construct a binary indicator variable, 𝐼𝑥,𝑖 ∈ {0,1}. For example, for

the non-VA hospital characteristic of the number of staffed beds, we create a binary indicator variable

for whether the volume-weighted average number of staffed beds across non-VA hospitals in a zip

code is above or below the median. We include a demeaned 𝐼𝑥,𝑖 ≡ 𝐼𝑥,𝑖 − 𝐸̂𝑖

[
𝐼𝑥,𝑖

]
in the following

linear control function regression:

(A.26) 𝑌𝑖 = 𝛽𝑥𝐷𝑖 + 𝜌𝑥𝐷𝑖 𝐼𝑥,𝑖 + 𝜋𝑥 𝐼𝑥,𝑖 +𝛾𝑥𝜀1,𝑖 +X0
𝑖 𝛿𝑥 + 𝜁𝑥,ℓ (𝑖) + 𝜖𝑥,𝑖 ,

where 𝜀1,𝑖 is the first-stage error from equation (3). Controlling for the endogeneity of selection, this

approach yields estimates of binary heterogeneous treatment effects along several dimensions. This

approach enables greater statistical power than performing separate IV regressions in subsamples

defined by 𝐼𝑥,𝑖 ∈ {0,1}. For a discussion of this general approach, see Wooldridge (2015), Section

III. Since 𝐼𝑥,𝑖 has a mean of 0, we can interpret 𝛽𝑥 as the LATE, controlling for 𝐼𝑥,𝑖; 𝜌𝑥 is the

difference in the VA effect on mortality between 𝐼𝑥,𝑖 = 1 and 𝐼𝑥,𝑖 = 0. We calculate standard errors by

bootstrap, drawing blocks of data by zip code.

A.7. OLS Heterogeneity in Station-Specific VA Advantage

In analyses described in this appendix, we estimate OLS heterogeneity in the station-specific VA

advantage and validate this heterogeneity with our quasi-experiment. As in our heterogeneity analyses

in Section IV.A, we assign each zip code ℓ to a VA station 𝑠 (ℓ) based on the station that the most

veterans living in that zip code use. This assignment of zip codes to VA stations matches station

catchment areas for 92% of zip codes.

In separate OLS regressions, we estimate the VA advantage for each station 𝑠 as 𝛽𝑠 in

(A.27) 𝑌𝑖 = 𝛽
𝑠
𝑂𝐿𝑆𝐷𝑖 +X0

𝑖 𝛿
𝑠 + 𝜁 𝑠

ℓ (𝑖) + 𝜀𝑖 ,

using ambulance rides 𝑖 such that the zip code ℓ (𝑖) maps to station 𝑠 (i.e., 𝑠 (𝑖) ≡ 𝑠 (ℓ (𝑖)) = 𝑠). The
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ride-weighted variance of 𝛽𝑠
𝑂𝐿𝑆

is 3.4×10−4, while the ride-weighted variance of the sampling error

for each 𝛽𝑠
𝑂𝐿𝑆

is 2.1×10−4. This implies a sampling-error-adjusted, ride-weighted variance of 𝛽𝑠
𝑂𝐿𝑆

of 𝐴 = (3.4−2.1) ×10−4 = 1.4×10−4, or a standard deviation of 𝛽𝑠
𝑂𝐿𝑆

of
√
𝐴 = 0.012.

In Appendix Figure A.9, we plot the distribution of 𝛽𝑠
𝑂𝐿𝑆

for 32 stations with at least 5,000 rides,

forming a smple of 276,483 rides. We also plot the empirical Bayes posteriors for all stations, which

we calculate as follows:

(A.28) 𝛽𝑠𝑂𝐿𝑆 = (1−𝐵ℓ) 𝛽𝑠𝑂𝐿𝑆 +𝐵𝑠𝛽𝑂𝐿𝑆 ,

where 𝐵𝑠 =
𝑉𝑠

𝑠+𝐴 is the shrinkage factor based on 𝑉𝑠, which is the variance of the sampling error for

station 𝑠, and 𝐴, which is the variance of the prior distribution of 𝛽𝑠
𝑂𝐿𝑆

. 𝛽𝑂𝐿𝑆 = −0.024 is the overall

OLS estimate reported in Section II.C. This figure shows that essentially all stations exhibit a VA

advantage, at least when estimated by OLS.

We evaluate whether differences in 𝛽𝑠
𝑂𝐿𝑆

imply differences in the treatment effects identified by

our quasi-experiment. As a first analysis, we divide stations into two groups depending on whether

𝛽𝑠
𝑂𝐿𝑆

is above- or below-median. We estimate by two-stage least squares 𝛽𝐼𝑉 , based on equations

(3) and (4), separate IV estimates for ambulance rides belonging to each of these two groups. 𝛽𝐼𝑉
estimated for stations with below-median (i.e., larger in magnitude) 𝛽𝑠

𝑂𝐿𝑆
is 0.030 larger in magnitude

than the same estimate for stations with above-median (i.e., smaller in magnitude) 𝛽𝑠
𝑂𝐿𝑆

. However,

the difference is imprecise, with a bootstrapped standard error of 0.051.

For a more systematic validation of 𝛽𝑠
𝑂𝐿𝑆

, in the spirit of Angrist et al. (2017), we conduct a

pooled analysis by indirect least squares. Specifically, denoting demeaned 𝛽𝑠
𝑂𝐿𝑆

as 𝛽𝑠∗
𝑂𝐿𝑆

, we estimate

𝑌𝑖 = 𝛽𝐷𝑖 +𝛾𝐷𝑖 × 𝛽𝑠 (𝑖)∗𝑂𝐿𝑆
+X0

𝑖 𝛿+ 𝜁ℓ (𝑖) + 𝜀𝑖 ,

where we instrument 𝐷𝑖 and 𝐷𝑖 × 𝛽𝑠 (𝑖)∗𝑂𝐿𝑆
by 𝑍𝑖 and 𝑍𝑖 × 𝛽𝑠 (𝑖)∗𝑂𝐿𝑆

. This regression reveals an imprecise

and wrong-signed result of 𝛾̂ = −0.790 (s.e., 1.351). The overall imprecision of these results suggests

that there is little signal of heterogeneity across station-specific OLS measures of the VA advantage.

The more precise results in Section IV.A also suggest little meaningful heterogeneity along binary

characteristics of VA and non-VA hospitals in a given zip code.

A.8. Reported Utilization Patterns

This appendix details comparisons of reported utilization patterns between VA and non-VA hospitals.

Our analyses are based on utilization from the VA and Medicare data corresponding to any patient

in the baseline sample in the 28 days following his or her ambulance ride. Each item of utilization

corresponds to a service defined by its Current Procedural Terminology (CPT) code.

Our first set of analyses examine the share of utilization originating from the VA across different

CPT codes. Specifically, we define this share as the proportion of utilization for a CPT code originat-

ing from VA records out of the total utilization for that CPT code reported by both VA and non-VA
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(i.e., Medicare) providers. Figure 6 shows VA shares for the top 25 (out of 5,167) CPT codes in the

Medicare Physician Fee Schedule (MPFS), ranked by total utilization.

We find a wide range of VA shares even within this set of common CPT codes. At one extreme,

only 4.1% of utilization for CPT code 99223, one of the codes for evaluation and management (E/M)

performed in initial hospital care, originate from the VA. Also with a VA share of 4.1%, CPT code

99239 reports E/M care lasting more than 30 minutes on the discharge day of a hospitalization. For

this code to be reported, the physician must report spending more than 30 minutes with the patient. In

contrast, the complementary E/M CPT code that reports spending 30 or fewer minutes on discharge

day (99238) is more than four times likelier (17.1%) to originate from the VA. Non-VA hospitals have

a clear financial incentive to report the code 99239 over 99238 (the former reimburses close to 50%

more), but differentiating between the two services has no clinical value. At the other extreme, 90.5%

of utilization for CPT code 99211, which reports a simple outpatient E/M service not requiring the

presence of a physician, originate from the VA. Strikingly, all of the reported utilization of CPT code

98966, for short calls made by a non-physician, occur in the VA.

Appendix Figure A.11 shows similar VA shares for the top 25 (out of 115) groups of Category

I CPT codes, ranked by total utilization. This figure shows similar patterns, albeit for much larger

aggregations of utilization. Non-VA providers much more commonly report hospital inpatient E/M

services. The VA much more commonly reports physical therapy, rehabilitation, psychiatric services,

and telephone (i.e., non-face-to-face) services provided by non-physicians. Pulmonary services—

the vast majority of which comprise low-reimbursed services such as measuring oxygen levels and

providing inhalation treatment—are also much more commonly reported in the VA.

We examine the relationship between reimbursement and the share of a CPT code’s utilization

coming from the VA. We measure reimbursement among CPT codes on the MPFS, multiplying year-

specific relative value units (RVUs) with the year-specific dollar conversion factor. In Figure 7, we

show a strong negative relationship between the median reimbursement (across years) for a given CPT

code and its VA share. Importantly, reimbursement by Medicare for physician services is determined

by the resource-based relative value scale (RBRVS), a system entirely based on the costliness of

procedures and not on the benefit of procedures (American Medical Association 2015). Thus, services

with high potential value relative to their costs (e.g., telephone calls) are reimbursed little and much

less likely reported in the fee-for-service system outside the VA.

We finally focus on evaluation and management (E/M) CPT codes, which allow for reporting

of complexity. E/M codes are among the most common CPT codes and reflect an integral part of

clinical care, particularly for emergency patients. Reimbursement may vary widely across E/M codes

reporting different levels of complexity. For example, the set of CPT codes 99201-99205, collectively

for “office or other outpatient encounters for new patients,” may range almost fivefold in reimburse-

ment. The complexity allowed for an E/M code reported for an encounter depends on documentation,

but much of the documentation is ultimately unverifiable. For these reasons, Fang and Gong (2017)

devote much of their analysis to detecting potential overbilling to E/M codes.

In Appendix Figure A.12, we show the odds of reporting the highest level of complexity within
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a type of E/M code relative to reporting the lowest level of complexity with that type among non-VA

vs. VA providers. We display the odds ratio (i.e., the non-VA odds divided by the VA odds) on the

x-axis for seven broad categories of E/M codes. We show that the odds of reporting the highest level

of complexity are much higher among non-VA providers. In only one category (i.e., critical care) is

the odds ratio close to one. The (volume-weighted) average odds ratio is 5.1.

A.9. Modal-Hospital Mechanisms

This appendix details analyses in Section IV.C, where we describe indirect evidence for the role of

health IT and integrated care. We perform analyses on a sample of veterans who only use non-VA care

in the year prior to their ambulance rides. Since no veteran in this sample has prior VA utilization,

the sample is disjoint from our benchmark sample (Appendix Table A.1). We only include zip codes

with at least two non-VA hospitals within 20 miles, but we make no requirement on proximity to a

VA hospital. The probability of transport to a VA hospital in this sample is 0% (as opposed to 33% in

the benchmark sample), but rates of weekend transport and 28-day mortality are remarkably similar.

We detail the sample selection process for this analysis in Appendix Table A.14 and present patient

and ride characteristics in Appendix Table A.15.

Quasi-Experimental Design. As an analog to our benchmark VA instrument in equation (1), we

construct an instrument that reflects a given ambulance company’s leave-out propensity to deliver

patients to the index patient’s modal non-VA hospital. Let ℎ (𝑖) denote the hospital that ambulance

ride 𝑖 is transported to, and let ℎ𝑚 (𝑖) represent the modal non-VA hospital used by patient 𝑘 (𝑖) in

ride 𝑖. Our treatment of interest is 𝐷𝑚
𝑖
≡ 1 (ℎ (𝑖) = ℎ𝑚 (𝑖)), which indicates whether ambulance ride 𝑖

transports its patient 𝑘 (𝑖) to his or her modal hospital. Our instrumental variable for this treatment is

𝑍𝑚
𝑖 =

1
𝐾 𝑗 (𝑖) ,𝑧 (𝑖) −1

∑︁
𝑖′∈I𝑗 (𝑖) ,𝑧 (𝑖)

1 (𝑘 (𝑖′) ≠ 𝑘 (𝑖))𝐷𝑚
𝑖′

𝑁𝑘 (𝑖′ ) ,𝑧 (𝑖′ ) , 𝑗 (𝑖′ )
.(A.29)

where 𝐾 𝑗 ,𝑧 is the number of patients transported by company 𝑗 from zip code 𝑧, 𝑁𝑘,𝑧, 𝑗 is the number

of rides taken by patient 𝑘 originating in zip code 𝑧 with company 𝑗 , and I𝑗 ,𝑧 is the set of rides

transported by ambulance company 𝑗 from zip code 𝑧. This is the leave-out probability that ambulance

company 𝑗 (𝑖) transports other patients from the same zip code to the modal hospital ℎ𝑚 (𝑖) of patient

𝑘 (𝑖).59 We use the following first-stage and reduced-form equations, similar to equations (3) and (4):

𝐷𝑚
𝑖 = 𝜋𝑚1 𝑍

𝑚
𝑖 +𝛾𝑚1 𝑍

𝑚

𝑖 +X0
𝑖 𝛿

𝑚
1 + 𝜁𝑚1,ℓ (𝑖) + 𝜀

𝑚
1,𝑖;(A.30)

𝑌𝑖 = 𝜋𝑚2 𝑍
𝑚
𝑖 +𝛾𝑚2 𝑍

𝑚

𝑖 +X0
𝑖 𝛿

𝑚
2 + 𝜁𝑚2,ℓ (𝑖) + 𝜀

𝑚
2,𝑖 .(A.31)

59. As with the benchmark instrument, we construct this instrument from data in the overall sample of ambulance rides
with dually eligible veterans (Column 1, Table 1 and Appendix Table A.15). For patients with multiple hospitals that tie for
highest utilization in the prior year, we designate the set of these highest-use hospitals as the “modal hospital.”
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We include in these equations an additional control variable:

𝑍
𝑚

𝑖 =
1

𝐾𝑧 (𝑖) −1

∑︁
𝑖′∈I𝑧 (𝑖)

1 (𝑘 (𝑖′) ≠ 𝑘 (𝑖))𝐷𝑚
𝑖′

𝑁𝑘 (𝑖′ ) ,𝑧 (𝑖′ )
,

where 𝐾𝑧 is the number of patients from zip code 𝑧, 𝑁𝑘,𝑧 is the number of rides taken by patient 𝑘

originating in zip code 𝑧, and I𝑧 is the set of rides originating in zip code 𝑧. This is the leave-out

probability that patients from the same zip code ℓ (𝑖) are transported to hospital ℎ𝑚 (𝑖), unconditional

on the ambulance company. The modal-hospital effect may also capture hospital quality or hospital-

patient match effects. We further assess the modal hospital effect both (i) while including hospital

fixed effects in equations (A.30) and (A.31) and (ii) while splitting rides 𝑖 into samples based on

whether the ride was before or after hospital ℎ (𝑖) adopted health IT or joined an ACO.

In the sample of veterans with only non-VA prior utilization (Panel B of Appendix Table A.14),

we demonstrate in Appendix Figure A.14 a well-behaved first-stage relationship between 𝐷𝑚
𝑖

and 𝑍𝑚
𝑖

and balance between predicted mortality, 𝑌𝑖 , and 𝑍𝑚
𝑖

, conditional on
(
𝑍
𝑚

𝑖 ,X0
𝑖
, ℓ (𝑖)

)
.60

Results. The IV estimate of the modal-hospital effect on mortality is −0.006 (s.e. 0.004), which is

less than 20% of the VA effect on mortality. The visual IV graph in Appendix Figure A.15 shows

that the overall relationship between the reduced form and first stage is not particularly striking.61

However, computing this IV estimate separately by years, we show in Figure 8 a stronger modal-

hospital effect emerges after the passage of the HITECH Act of 2009, which led to a rapid rise in

electronic medical record systems. The modal-hospital effect is close to 0 and stable prior to 2009.

Following 2009, the modal-hospital effect grows to about half the size of the VA effect on mortality.

To extend this analysis, we use hospital-specific dates of hospital health IT adoption or ACO

participation (described in Appendix A.5). During our sample period, a sizable proportion of hospitals

adopted health IT and, to a much lesser extent, participated in an ACO. We construct four subsamples

defined by whether or not each veteran’s modal hospital had adopted health IT at the time of his or her

ambulance ride and similarly by whether or not each veteran’s modal hospital had joined an ACO. In

each subsample, we performed the same IV regression of the effect of transport to a veteran’s modal

hospital. Results are shown in Appendix Table A.16, Columns 1, 2, 4, and 5. We obtain all of these

results after adding hospital fixed effects in the first-stage and reduced-form regressions in equations

(A.30) and (A.31), respectively. Results are qualitatively unchanged regardless of their inclusion.

In Columns 3 and 6 of Appendix Table A.16, we also perform regressions in the overall sample

(described in Panel B of Appendix Table A.14). We maintain all of the interactions implicit in our

subsample results except that we allow hospital group fixed effects to remain constant before and after

adoption of health IT or an ACO. We do so with the following control function approach. First, we

60. Analogously to Figure 1, this figure presents binned scatter plots of the first-stage regression in equation (A.30), the
reduced-form regression in equation (A.31), and a balance regression with predicted mortality as the outcome variable and
the same design matrix.

61. Analogously to Figure 2 and Appendix Figure A.3 in the benchmark analysis, Appendix Figure A.16 shows stability
in OLS and two-stage least squares estimates with increasing controls, and Appendix Figure A.17 shows the robustness of
two-stage least squares estimates under an exhaustive set of control combinations.
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estimate a first-stage regression that interacts everything with adoption status, except for fixed effects

for hospital groups, 𝑔 (ℎ (𝑖)), defined by whether a hospital ever adopts health IT or an ACO:

(A.32) 𝐷𝑚
𝑖 =

∑︁
𝑎∈{0,1}

1
(
Adopted𝑖 = 𝑎

) (
𝜋𝑚1,𝑎𝑍

𝑚
𝑖 +𝛾𝑚1,𝑎𝑍

𝑚

𝑖 +X0
𝑖 𝛿

𝑚
1,𝑎 + 𝜁

𝑚
1,ℓ (𝑖) ,𝑎

)
+ 𝜉𝑚1,𝑔 (ℎ (𝑖) ) + 𝜀

𝑚
1,𝑖 .

We then take estimated first-stage residuals 𝜀𝑚1,𝑖 and include them in an interacted control-function

model:

(A.33) 𝑌𝑖 =
∑︁

𝑎∈{0,1}
1
(
Adopted𝑖 = 𝑎

) (
𝛽𝑎𝐷

𝑚
𝑖 +𝛾𝑎𝜀𝑚1,𝑖 +X0

𝑖 𝛿𝑎 + 𝜁ℓ (𝑖) ,𝑎
)
+ 𝜉𝑔 (ℎ (𝑖) ) + 𝜖𝑖 .

As with our other control-function regressions, we compute standard errors by 50 bootstrapped itera-

tions, drawing samples by zip code blocks, with replacement. While estimates control for hospital or

hospital group fixed effects, we find that results are essentially unchanged regardless of their inclu-

sion.
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Figure A.1: Balance Coefficient in Simulated Data
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Note: This figure plots the balance coefficient in the baseline sample and in simulated data in which we per-
fectly sort a percent of ambulance rides and randomly assign the rest of the ambulance rides. The y-axis shows
the balance coefficient, and the x-axis shows the percent of perfectly sorted observations in the simulated data,
or 𝜄 ∈ {0,1, . . . ,100}. The dashed horizontal line indicates the balance coefficient in the baseline sample, also
shown in Panel B of 1. Each simulated dataset comprises observations of residuals of predicted mortality 𝑌𝑖
and residuals of 𝑍𝑖 , formed by regressions of each object on baseline controls. We form the simulated dataset
by perfectly sorting 𝜄 percent (in expectation) of 𝑌𝑖 residuals according to ambulances that are sorted by their
mean 𝑍𝑖 residual and randomly assigning the remaining 1− 𝜄 percent (in expectation). We assign rides only
within their original zip code, also holding the number of rides assigned to each ambulance company within
the zip code fixed. The regression of reassigned residual 𝑌𝑖 on residual 𝑍𝑖 gives the balance coefficient in each
simulated dataset, shown in the solid black line. The shaded gray region indicates the 95% confidence inter-
val, which we obtain by 20 bootstrapped replications drawn by zip code blocks with replacement. The upper
confidence limit intersects with the actual balance coefficient between 𝜄 = 2 and 𝜄 = 3.
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Figure A.2: Visual IV
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Note: This figure shows the visual IV plot corresponding to our baseline IV regression of the effect of the VA
on 28-day mortality. For each bin of the instrument, which is the ambulance leave-out propensity to arrive at a
VA hospital, we plot the mean 28-day mortality on the y-axis and the probability that the index patient arrives
at a VA hospital on the x-axis. VA arrival predictions correspond to a first-stage regression in equation (3), and
mortality predictions correspond to a reduced-form regression in equation (4). The best-fit line in the visual
IV plot replicates the IV estimate of the effect of the VA on 28-day mortality, which we perform to obtain
the standard error (in parentheses). This IV regression uses 401,319 observations and 1,217 combinations of
ambulance company identifiers and Dartmouth Atlas Hospital Referral Regions (HRRs). The baseline sample
selection is given in Appendix Table A.1. Controls include patient zip code dummies, ALS/BLS dummies,
source of the ambulance ride, time categories, and patient prior utilization, detailed in Appendix Table A.2.
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Figure A.3: Combinations of Controls
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Note: This figure shows IV estimates of the VA effect on 28-day mortality on the y-axis, from equation (2),
varying the number of controls included in the IV regression. Numbered incremental controls correspond to
categories or subcategories of variables presented in order in Appendix Tables A.2 and A.3. All specifications
include the five baseline controls. Therefore, the figure represents 5+

(
27 −1

)
= 132 specifications. For each

number of controls 𝑛 for 𝑛 > 5, we consider “7 choose 𝑛− 5” specifications. The mean IV estimate is shown
with a dashed line; the minimum and maximum IV estimates are shown with a short dashed line. We use our
baseline sample, described in Appendix Table A.1.
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Figure A.4: Treatment Effects by Time and Sample

A: OLS
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B: IV
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Note: This figure shows mortality treatment effects over varying days since the ambulance ride and in varying
samples dropping patients with prior rides. “Days” indicate one-week intervals from the ambulance ride. Panel
A shows OLS results corresponding to equation (6). Panel B shows IV results corresponding to equation (5).
The vertical dashed line indicates treatment effects on 28-day mortality, our baseline outcome.
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Figure A.5: Joint Inequality Constraints

A: No Mortality Displacement
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B: No Negative Hazard Rate
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Note: This figure shows the test statistic for joint inequality constraints and bootstrapped-generated distribu-
tions of the test statistic under the least favorable version of the null hypothesis. Panel A shows the joint
inequality test of no mortality displacement, as defined by the null hypothesis in equation (A.7). Panel B shows
the joint inequality test of no negative hazard rates, as defined by the null hypothesis in equation (A.16). The
test statistic for both tests is shown as a solid vertical line. The one-sided critical value, or 95th percentile of the
bootstrapped distribution of the test statistic under the least favorable version of the null hypothesis, is shown
as a dashed vertical line. The test statistic and the bootstrap procedure for Panels A and B are described further
in Appendices A.2.2 and A.2.3, respectively.
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Figure A.6: Mean Hazard Differences

A: VA vs. Non-VA Compliers B: VA vs. Non-VA Users
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Note: This figure shows tests of equality of mean hazard rates for different sets of hazard rates, as defined
by the null hypothesis in equation (A.18). Each panel corresponds to a comparison between sets of hazards
corresponding to VA or non-VA compliers or users. Details of the statistical procedure are given in Appendix
A.2.4. Hazard rates for compliers are estimated by two-stage least squares and denoted in the appendix by
ℎ̂𝐼𝑉 (𝑡;𝑑), where 𝑑 = 1 for compliers assigned to the VA and 𝑑 = 0 for compliers assigned to a non-VA hospital.
Hazard rates for users are estimated by OLS and denoted by ℎ̂𝑂𝐿𝑆 (𝑡;𝑑), where 𝑑 similarly denotes VA users
(𝑑 = 1) vs. non-VA users (𝑑 = 0). The solid black line shows the test statistic, and the histogram shows the
distribution of bootstrapped test statistics under the null hypothesis. Bootstrapped standard errors are given in
the caption.
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Figure A.7: Joint Equality Constraints

A: VA vs. Non-VA Compliers B: VA vs. Non-VA Users
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Note: This figure shows tests of joint equality of hazard rates for different sets of hazard rates, as defined
by the null hypothesis in equation (A.19). Each panel corresponds to a comparison between sets of hazards
corresponding to VA or non-VA compliers or users. Details of the statistical procedure are given in Appendix
A.2.4. Hazard rates for compliers are estimated by two-stage least squares and denoted in the appendix by
ℎ̂𝐼𝑉 (𝑡;𝑑), where 𝑑 = 1 for compliers assigned to the VA and 𝑑 = 0 for compliers assigned to a non-VA hospital.
Hazard rates for users are estimated by OLS and denoted by ℎ̂𝑂𝐿𝑆 (𝑡;𝑑), where 𝑑 similarly denotes VA users
(𝑑 = 1) vs. non-VA users (𝑑 = 0). The solid line shows the test statistic. The histogram shows the distribution
of bootstrapped test statistics under the null hypothesis. The dashed line shows the one-sided 95th percentile
critical value.
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Figure A.8: Marginal Treatment Effects

A: Flexible Visual IV
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B: Marginal Treatment Effects
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Note: This figure shows a flexible fit of the IV relationship between 28-day mortality and the ambulance
propensity to transport to a VA hospital. Panel A shows the visual IV relationship with residual 28-day mortality
on the y-axis and residual probability of being transported to a VA hospital on the x-axis. Both objects are
residualized by baseline controls, described in Appendix Table A.2. The probability of being transported to a
VA hospital is calculated from the first-stage relationship in equation (3). The data underlying the fit in Panel
A are similar to those in the linear visual IV plot in Appendix Figure A.2. The fit is based on five Gaussian
basis splines. Panel B shows the implied marginal treatment effects, which are the analytical derivatives at each
point on the fit in Panel A. 95% confidence intervals are calculated by 50 bootstrapped interations (drawn by
zip codes, with replacement). Details are given in Appendix A.4.
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Figure A.9: Station-Specific OLS Estimates of VA Advantage
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Note: Panel A of this figure shows the kernel density distribution of station-specific OLS estimates of the
VA advantage, or 𝛽𝑠

𝑂𝐿𝑆
estimated from equation (A.27) for rides corresponding to each station. We include

estimates from 32 stations with at least 5,000 rides, comprising a sample of 276,483 rides. Panel B of this
figure shows the kernel density distribution of empirical Bayes posteriors of the station-specific OLS estimates
of the VA advantage. These posteriors are given by 𝛽𝑠

𝑂𝐿𝑆
in equation (A.28). The figure displays posteriors

from all 94 stations in our baseline sample in Appendix Table A.1, comprising 401,319 rides.
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Figure A.10: Complier Spending, Fixed Prices

A: Cumulative Spending
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B: Conditional Spending Rate
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Note: This figure shows potential spending outcomes for ambulance compliers who arrive at a VA hospital
and those who arrive at a non-VA hospital. Panel A shows cumulative spending per patient as a function of
days from the ambulance ride. Panel B presents implied weekly spending rates for compliers, conditional on
survival. Instead of actual spending by the government, insurers, and patients, as shown in Figure 5, this figure
considers imputed spending with fixed prices based on methodology in Gottlieb et al. (2010) and Finkelstein,
Gentzkow, and Williams (2016). Specifically, we impute spending for physician services based on Relative
Value Units (RVUs) for service procedures with CPT codes, for other outpatient procedures based on aver-
age reimbursements for (non-CPT) HCPCS codes, and for inpatient stays based on Diagnosis-Related Group
(DRG) weights. We scale prices by a constant so that imputed total Medicare spending equals actual total
Medicare spending. The note for Figure 5 provides further details.
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Figure A.11: VA Shares Within Top Reported Procedure Groups
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Note: This figure shows the VA share of reported utilization in each of the top 25 groups of procedures, defined
by Current Procedural Terminology (CPT) codes. We form groups based on the list of 115 groups of Category
I CPT codes at https://en.wikipedia.org/wiki/Current Procedural Terminology, which in turn is
based on the organization of CPT codes by the American Medical Association (2017). We include utilization
for any patient in our baseline sample in the 28 days following his or her ambulance ride. The area of each
circle indicates the relative utilization volume of each CPT code group. For scale, the largest circle represents
a service utilization of 4.159 times per ambulance ride; the smallest circle represents a service utilization of
0.095 times per ambulance ride. The top 25 groups of procedures represent 65.1% of the total utilization of all
Category I CPT codes on the MPFS. The gray vertical line indicates the overall VA share of utilization of any
CPT code on the MPFS.
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Figure A.12: High-Complexity E/M Utilization in Non-VA vs. VA Providers
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Note: This figure shows the odds ratio of high-complexity evaluation and management (E/M) Current Procedu-
ral Terminology (CPT) codes billed by non-VA vs. VA providers. We include utilization for any patient in our
baseline sample in the 28 days following his or her ambulance ride. Within each type of E/M code, defined by
the setting and the type of patient (e.g., “office or other outpatient visit for the evaluation and management of
an established patient” for CPT codes 99211 to 99215), E/M codes are distinguished by “level” of complexity.
We calculate the odds of highest to lowest complexity for non-VA providers and for VA providers and present
the odds ratio on the x-axis. An odds ratio of one indicates that non-VA and VA providers are equally likely
to bill the highest- vs. the lowest-complexity E/M code within the type. An odds ratio greater than one indi-
cates that non-VA providers are more likely to do so. We present results within seven categories of E/M-code
types defined by setting. The area of each circle is proportional to the total utilization volume in each of these
categories.
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Figure A.14: Modal Hospital First Stage, Balance, and Reduced Form

A: First Stage
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B: Balance and Reduced Form
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Note: Panel A shows a binned scatter plot of arrival at the veteran’s modal hospital against the ambulance
leave-out propensity to arrive at that hospital on the x-axis. The figure is a graphical representation of the
first-stage regression in equation (A.30). Panel B shows binned scatter plots of 28-day mortality and predicted
28-day mortality on the y-axis against the ambulance leave-out propensity to arrive at the veteran’s modal
hospital on the x-axis. Mortality bin means are shown in solid circles, while predicted mortality bin means
are shown in hollow circles. The figure represents the reduced-form regression in equation (A.31) and the
corresponding balance regression replacing mortality with predicted mortality. The sample includes 1,414,217
ambulance rides and 5,716 combinations of ambulance company identifiers and Dartmouth Atlas Hospital
Referral Regions (HRRs). The sample includes patients who have some utilization affiliated with a non-VA
hospital and no utilization at the VA in the prior year. The selection details of this sample are given in Appendix
Table A.14. Controls include patient zip code dummies, ALS/BLS dummies, source of the ambulance ride, time
categories, and patient prior utilization, detailed in Appendix Table A.2.
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Figure A.15: Modal Hospital Visual IV
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Note: This figure shows the visual IV plot corresponding to the IV regression of the effect of arrival at a
patient’s modal hospital on 28-day mortality. For each bin of the instrument, which is the ambulance leave-
out propensity to arrive at the patient’s modal hospital, we plot the mean 28-day mortality on the y-axis and
the probability that the index patient arrives at his or her modal hospital on the x-axis. Modal hospital arrival
predictions correspond to a first-stage regression in equation (A.30), and mortality predictions correspond to a
reduced-form regression in equation (A.31). The best-fit line in the visual IV plot replicates the IV estimate of
the effect of arrival at a patient’s modal hospital on 28-day mortality, which we perform to obtain the standard
error (in parentheses). This IV regression uses 1,414,217 observations and 5,716 combinations of ambulance
company identifiers and Dartmouth Atlas Hospital Referral Regions (HRRs). We use the sample of non-VA-
only utilizers, given in Appendix Table A.14. Controls include patient zip code dummies, ALS/BLS dummies,
source of the ambulance ride, time categories, and patient prior utilization, detailed in Appendix Table A.2.
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Figure A.16: Modal Hospital OLS and IV Specifications
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Note: This figure shows the effect of arrival at a patient’s modal hospital on 28-day mortality estimated from
OLS and IV specifications, with progressive sets of controls. Numbered incremental controls correspond to
categories or subcategories of variables presented in order in Appendix Tables A.2 and A.3. Control sets are
as follows: (1) zip code; (2) pickup source; (3) ambulance service; (4) time categories; (5) prior utilization; (6)
demographics; (7) socioeconomic status, combat history, and eligibility; (8) extended prior utilization; (9) prior
diagnoses; (10) 3-digit ambulance diagnosis codes; (11) co-rider baseline controls; and (12) co-rider hold-out
controls. Estimates are shown along solid lines, while 95% confidence intervals are shown in dashed lines. All
specifications control for hospital identities and use the sample of non-VA-only utilizers, given in Appendix
Table A.14.
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Figure A.17: Modal Hospital Combinations of Controls
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Note: This figure shows IV estimates of the effect of arrival at a patient’s modal hospital on mortality on the
y-axis, with first-stage and reduced-form equations (A.30) and (A.31), varying the number of controls included
in the IV regression. Control variables are detailed in Appendix Tables A.2 and A.3. All specifications include
the five baseline controls. Therefore, the figure represents 5+

(
27 −1

)
= 132 specifications. For each number

of controls 𝑛 for 𝑛 > 5, we consider “7 choose 𝑛− 5” specifications. The mean IV estimate is shown with a
dashed line; the minimum and maximum IV estimates are shown with a short dashed line. We use the sample
of non-VA-only utilizers, given in Appendix Table A.14.
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Table A.2: Baseline Control Variables

Category Subcategory Variables
Location
(1,633 indicators)

Zip code
(1,630 indicators)

Zip code indicators (1,630 indicators)

Pickup source
(3 indicators)

Indicators for whether pickup is from residence,
residential (including domiciliary, custodial
facility), skilled nursing facility, or scene of
accident (omitted category)

Ambulance service
(3 indicators)

Indicators for whether ambulance is ALS special
(CPT codes A0427, A0330, A0370), ALS
non-special (CPT codes Q3019, A0368, A0328),
ALS level 2 (CPT code A0433), or BLS (omitted
category; CPT codes A0429, A0362, A0322)

Time categories
(173 indicators)

Day of the week (6 indicators);
Month-year interactions (167 indicators)

Prior utilization
(6 indicators)

Indicators for utilization in prior year of Medicare
primary care, VA primary care utilization,
Medicare ED, VA ED, Medicare inpatient, and
VA inpatient services

Note: This table describes baseline control variables, denoted as
(
𝑧 (𝑖) ,X0

𝑖

)
in Condition 1 and throughout the

text. We consider our quasi-experiment to be conditional on these variables, and we include these variables as
controls in all of our analyses. Numbers of non-collinear indicators are given in parentheses.
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Table A.3: Hold-Out Control Variables

Category Subcategory Variables
Patient background
(60 variables)

Demographics
(30 indicators)

Age: 5-year age bins from 20-64 years, 2-year
age bins from 65-100 years (26 indicators);
Male gender;
Race: indicators for white, Black, Hispanic, and
Asian/other (omitted category)

Socioeconomic
status, combat
history, and
eligibility
(22 indicators)

Terciles of income and net worth (4 indicators);
Period of combat: WWII, Korean, Vietnam, other
(omitted category) (3 indicators);
Indicator for aid and attendance for in-home care;
Priority group indicators (7 indicators);
Service connection: service connected, not
service connected, or non-veteran/other (omitted
category) (2 indicators);
6 missing indicators for each of the above
characteristics

Extended prior
utilization
(8 variables)

Counts of VA primary care visits, outpatient
visits, ED visits, and inpatient visits in prior year;
Analogous counts of Medicare visits in prior year

Prior diagnoses
(93 indicators)

31 Elixhauser indicators (dividing hypertension
indicator into 2 indicators for complicated and
uncomplicated hypertension), in four categories:
present in VA data only, present in Medicare data
only, and present in both VA and Medicare data
(31×3 = 93 indicators)

3-digit ambulance
diagnosis codes
(641 indicators)

3-digit ambulance diagnosis (ICD-9) codes (641
indicators)

Co-rider
characteristics
(33 variables)

Co-rider baseline
controls
(12 variables)

Co-rider pickup source proportions (3 variables);
Co-rider ambulance service proportions (3
variables);
Co-rider prior utilization proportions (6 variables)

Co-rider hold-out
controls
(21 variables)

Co-rider average continuous age;
Co-rider proportion male gender;
Co-rider race proportions (3 variables);
Co-rider 1-digit ambulance code proportions (15
variables);
Co-rider average predicted mortality

Note: This table describes hold-out control variables. These variables are used to test robustness of our findings,
particularly in Figure 2 and Appendix Figures A.3, A.16, and A.17. Numbers of non-collinear indicators or
variables are given in parentheses.
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Table A.5: Monotonicity Tests

Instrument

First stage sample Observations VA share Baseline
Reverse-
sample

Age ≤ 80 239,611 0.347 0.931 0.497
(0.038) (0.022)

Age > 80 161,707 0.305 0.789 0.456
(0.041) (0.022)

White 314,064 0.304 0.821 0.221
(0.037) (0.016)

Non-white 87,176 0.426 0.992 0.596
(0.068) (0.041)

Comorbidity count (high) 167,332 0.292 0.758 0.427
(0.041) (0.019)

Comorbidity count (low) 233,987 0.358 0.938 0.553
(0.039) (0.027)

Mental illness or substance abuse 188,961 0.354 0.931 0.514
(0.040) (0.024)

No mental illness or substance abuse 212,358 0.309 0.815 0.456
(0.037) (0.020)

VA visits in prior year (high) 183,087 0.508 1.038 0.710
(0.050) (0.035)

VA visits in prior year (low) 218,232 0.181 0.718 0.284
(0.031) (0.014)

Advanced Life Support 274,690 0.301 0.836 0.249
(0.036) (0.018)

No Advanced Life Support 126,616 0.393 0.840 0.301
(0.048) (0.032)

Predicted VA user (high) 200,659 0.543 1.113 0.865
(0.054) (0.055)

Predicted VA user (low) 200,660 0.117 0.559 0.218
(0.030) (0.011)

Predicted mortality (high) 200,659 0.328 0.835 0.368
(0.036) (0.019)

Predicted mortality (low) 200,660 0.333 0.898 0.502
(0.046) (0.024)

Instrument sample
Dual

eligibles
Analytical

sample

Note: This table presents first-stage coefficients on different subsamples of patients. For each subsample, we
present results for two different instruments: (i) the baseline leave-out instrument, 𝑍𝑖 , given in equation (1)
and calculated from observations among dually eligible veterans (Step 1 of Appendix Table A.1), and (ii) a
reverse-sample instrument, 𝑍̃−𝑚

𝑖
, given in equation (A.2) and calculated from observations in the analytical

sample (Step 6 of Appendix Table A.1) that are outside of the regression subsample. Each regression uses
baseline controls defined in Appendix Table A.2. Further details are given in Appendix A.1.2.
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Table A.6: Monotonicity Tests (Continued)

Instrument
First stage sample Observations VA share Baseline In-sample
Age ≤ 80 239,611 0.347 0.586 0.525

(0.021) (0.020)
Age > 80 161,707 0.305 0.494 0.394

(0.023) (0.022)
White 314,064 0.304 0.504 0.513

(0.019) (0.020)
Non-white 87,176 0.426 0.676 0.440

(0.032) (0.033)
Comorbidity count (high) 167,332 0.292 0.493 0.438

(0.020) (0.021)
Comorbidity count (low) 233,987 0.358 0.583 0.504

(0.022) (0.020)
Mental illness or substance abuse 188,961 0.354 0.592 0.518

(0.021) (0.020)
No mental illness or substance abuse 212,358 0.309 0.501 0.426

(0.020) (0.020)
VA visits in prior year (high) 183,087 0.508 0.691 0.572

(0.026) (0.021)
VA visits in prior year (low) 218,232 0.181 0.421 0.445

(0.018) (0.021)
Advanced Life Support 274,690 0.301 0.523 0.518

(0.020) (0.021)
No Advanced Life Support 126,616 0.393 0.531 0.433

(0.025) (0.024)
Predicted VA user (high) 200,659 0.543 0.743 0.619

(0.028) (0.021)
Predicted VA user (low) 200,660 0.117 0.331 0.423

(0.016) (0.027)
Predicted mortality (high) 200,659 0.328 0.513 0.458

(0.020) (0.019)
Predicted mortality (low) 200,660 0.333 0.570 0.479

(0.023) (0.021)

Instrument sample
Analytical

sample
Analytical

sample

Note: This table presents first-stage coefficients on different subsamples of patients. For each subsample, we
present results for two different instruments: (i) the baseline leave-out instrument, 𝑍̃𝑖 , given in equation (1),
and (ii) an in-sample instrument, 𝑍̃𝑚

𝑖
, given in equation (A.2) and calculated from leave-out observations in the

same regression subsample. Both instruments are calculated using observations in the analytical sample (Step 6
of Appendix Table A.1). Each regression uses baseline controls defined in Appendix Table A.2. Further details
are given in Appendix A.1.2.
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Table A.7: Always-Taker and Never-Taker Characteristics

Always-takers Never-takers
Mean Ratio Mean Ratio

Male 0.961 1.00 0.965 1.00
(0.002) [0.99 - 1.00] (0.001) [1.00 - 1.00]

Age 75.6 0.99 76.3 1.00
(0.158) [0.99 - 1.00] (0.153) [1.00 - 1.01]

Black 0.222 1.14 0.184 0.95
(0.012) [1.02 - 1.26] (0.010) [0.85 - 1.05]

Income $18,039 0.86 $22,397 1.07
($200) [0.84 - 0.88] ($232) [1.05 - 1.09]

Rural zip code 0.064 1.27 0.053 1.04
(0.015) [0.67 - 1.87] (0.011) [0.62 - 1.46]

Residential source 0.685 0.97 0.667 0.95
(0.011) [0.94 - 1.00] (0.009) [0.92 - 0.97]

Comorbidity count 5.85 0.95 6.44 1.05
(0.046) [0.94 - 0.97] (0.032) [1.04 - 1.06]

Mental illness 0.469 1.10 0.420 0.98
(0.006) [1.07 - 1.13] (0.004) [0.97 - 1.00]

Substance abuse 0.150 1.04 0.137 0.95
(0.005) [0.97 - 1.10] (0.004) [0.90 - 1.00]

Prior VA ED visit only 0.593 2.02 0.145 0.49
(0.007) [1.97 - 2.06] (0.003) [0.47 - 0.52]

Prior non-VA ED visit only 0.032 0.13 0.376 1.52
(0.002) [0.12 - 0.14] (0.005) [1.48 - 1.56]

Prior VA and non-VA ED visit 0.230 0.98 0.237 1.01
(0.006) [0.93 - 1.03] (0.004) [0.98 - 1.05]

Ambulance rides in prior year 2.212 1.03 2.210 1.03
(0.030) [1.00 - 1.05] (0.025) [1.00 - 1.05]

Advanced Life Support 0.576 0.84 0.707 1.03
(0.013) [0.81 - 0.88] (0.010) [1.01 - 1.06]

Predicted VA user 0.969 1.14 0.778 0.92
(0.001) [1.14 - 1.15] (0.002) [0.91 - 0.92]

Predicted mortality 0.103 1.07 0.100 1.03
(0.002) [1.03 - 1.10] (0.001) [1.01 - 1.05]

Note: This table presents average characteristics for always-takers and never-takers. Always-takers are defined
as patients who present to the VA even when they receive a residualized instrument below the 20th percentile;
never-takers are defined as patients who present to a non-VA hospital even when they receive a residualized
instrument above the 80th percentile. To form these residualized instruments, we residualize the baseline in-
strument, 𝑍𝑖 , given in equation (1), by baseline controls, described in Appendix Table A.2. Observations are
drawn from the baseline sample described in Appendix Table A.1. For each row corresponding to a characteris-
tic, the table presents average characteristics and the ratio between this average and the overall sample average.
Overall sample means are given in Table 5. Standard errors are calculated by bootstrap, blocking observations
by zip codes, and are shown in parentheses. Corresponding 95% confidence intervals of the ratio are presented
in brackets. Further details are given in Appendix A.3.
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Table A.9: Heterogeneity by Patient Characteristics

Regression estimates Characteristic means
VA VA × 𝐼𝑥,𝑖 𝐼𝑥,𝑖 = 0 𝐼𝑥,𝑖 = 1

Older than 80 -0.047 0.004 0.00 1.00
(0.017) (0.003)

Black -0.043 -0.002 0.00 1.00
(0.017) (0.003)

Hispanic -0.045 -0.008 0.00 1.00
(0.017) (0.008)

Income -0.044 0.003 $10,651 $31,159
(0.017) (0.002)

Comorbidity count -0.044 -0.014 3.90 9.28
(0.016) (0.002)

Mental illness or substance abuse -0.045 -0.005 0.00 1.00
(0.017) (0.002)

VA visits in prior year -0.044 -0.004 2.15 11.88
(0.017) (0.002)

Ambulance rides in prior year -0.043 -0.008 1.00 3.55
(0.017) (0.002)

Advanced Life Support -0.046 -0.013 0.00 1.00
(0.017) (0.002)

Predicted VA user -0.044 -0.005 0.70 1.00
(0.017) (0.003)

Predicted mortality -0.045 -0.018 0.04 0.15
(0.016) (0.002)

Note: This table presents regression results investigating heterogeneous treatment effects along patient charac-
teristics. For each VA hospital characteristic 𝑥, we divide observations 𝑖, based on whether 𝑥 is below vs. above
the median, denoted by 𝐼𝑥,𝑖 = 0 and 𝐼𝑥,𝑖 = 1, respectively. Regression results correspond to equation (A.26).
The coefficient on VA represents the LATE of going to the VA, and the coefficient on VA× 𝐼𝑥,𝑖 represents the
difference in the LATE between observations with 𝐼𝑥,𝑖 = 1 and observations with 𝐼𝑥,𝑖 = 0.
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Table A.10: Heterogeneity by Non-VA Hospital Characteristics

Regression estimates Characteristic means
VA VA × 𝐼𝑥,𝑖 𝐼𝑥,𝑖 = 0 𝐼𝑥,𝑖 = 1

Volume, Size, and Capabilities
ED visits -0.046 -0.002 28,082 53,849

(0.016) (0.002)
Admissions -0.046 -0.003 9,664 17,859

(0.017) (0.002)
Total staffed beds -0.046 -0.004 199 375

(0.017) (0.002)
Teaching hospital -0.045 -0.000 0.02 0.51

(0.017) (0.002)
Trauma center -0.045 0.004 0.28 0.93

(0.016) (0.002)
Advanced cardiac care -0.046 -0.000 0.64 1.00

(0.017) (0.002)
Stroke center -0.045 0.001 0.03 0.65

(0.017) (0.002)

Staffing
ED staff per 1,000 ED visits -0.045 -0.001 0.30 0.75

(0.017) (0.002)
Nurses per 1,000 patient-days -0.046 0.006 4.13 6.58

(0.016) (0.002)
Physicians per 1,000 patient-days -0.045 0.002 4.36 10.79

(0.017) (0.002)
Hospitalists per 1,000 patient-days -0.045 0.003 0.12 0.39

(0.017) (0.002)
Intensivists per 1,000 patient-days -0.045 0.003 0.05 0.23

(0.017) (0.002)

Note: This table presents regression results investigating heterogeneous treatment effects along binary indi-
cators of average non-VA hospital characteristics associated with each zip code. For each zip code, hospital
characteristics are averaged with weights proportional to the number of rides going to each non-VA hospital
from the zip code. We then divide observations 𝑖, based on whether their zip codes 𝑧 (𝑖) have below- vs. above-
median averages, denoted by 𝐼𝑥,𝑖 = 0 and 𝐼𝑥,𝑖 = 1, respectively. Regression results correspond to equation
(A.26). The coefficient on VA represents the LATE of going to the VA, and the coefficient on VA× 𝐼𝑥,𝑖 repre-
sents the difference in the LATE between observations with 𝐼𝑥,𝑖 = 1 and observations with 𝐼𝑥,𝑖 = 0. Appendix
Table A.11 presents results for additional characteristics. Appendix A.5 provides further details on the hospital
characteristics.
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Table A.11: Heterogeneity by Non-VA Hospital Characteristics (Continued)

Regression estimates Characteristic means
VA VA × 𝐼𝑥,𝑖 𝐼𝑥,𝑖 = 0 𝐼𝑥,𝑖 = 1

Spending and Outcomes
Relative spending -0.045 -0.002 0.97 1.04

(0.017) (0.002)
Mortality rate -0.045 -0.003 11.62 12.89

(0.017) (0.002)
Readmission rate -0.045 -0.002 17.30 18.90

(0.017) (0.002)

Organization and IT
Network or hospital system -0.045 -0.002 0.65 1.00

(0.017) (0.002)
HMO or ACO -0.045 -0.002 0.00 0.47

(0.017) (0.002)
Health IT -0.046 -0.002 0.00 0.80

(0.016) (0.002)
Share of non-VA rides (max.) -0.045 0.002 0.42 0.73

(0.017) (0.002)

Note: This table presents regression results investigating heterogeneous treatment effects along binary indi-
cators based on non-VA hospital characteristics associated with each zip code. For “Share of non-VA rides
(max.)”, we take the maximum non-VA hospital share of non-VA rides as the zip code characteristic. Hospital
characteristics are averaged within each zip code for the remaining characteristics with weights proportional
to the number of rides going to each non-VA hospital from the zip code. We then divide observations 𝑖, based
on whether their zip codes 𝑧 (𝑖) have below- vs. above-median statistics, denoted by 𝐼𝑥,𝑖 = 0 and 𝐼𝑥,𝑖 = 1, re-
spectively. Regression results correspond to equation (A.26). The coefficient on VA represents the LATE of
going to the VA, and the coefficient on VA× 𝐼𝑥,𝑖 represents the difference in the LATE between observations
with 𝐼𝑥,𝑖 = 1 and observations with 𝐼𝑥,𝑖 = 0. Appendix Table A.10 presents results for additional characteristics.
Appendix A.5 provides further details on the hospital characteristics.
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Table A.12: Heterogeneity by VA Hospital Characteristics

Regression estimates Characteristic means
VA VA × 𝐼𝑥,𝑖 𝐼𝑥,𝑖 = 0 𝐼𝑥,𝑖 = 1

Volume, Size, and Capabilities
ED visits -0.045 -0.001 8,625 23,111

(0.017) (0.002)
Admissions -0.044 -0.003 3,247 8,148

(0.016) (0.002)
Total staffed beds -0.044 -0.007 139 463

(0.017) (0.002)
Teaching hospital -0.045 -0.003 0.00 0.93

(0.017) (0.002)
Trauma center -0.052 0.006 0.00 1.00

(0.018) (0.004)
Advanced cardiac care -0.051 -0.004 0.00 1.00

(0.018) (0.002)

Staffing
ED staff per 1,000 ED visits -0.050 -0.001 0.19 1.21

(0.022) (0.003)
Nurses per 1,000 patient-days -0.045 0.003 3.80 8.60

(0.017) (0.002)
Physicians per 1,000 patient-days -0.050 -0.000 1.12 7.95

(0.022) (0.003)
Hospitalists per 1,000 patient-days -0.051 0.006 0.03 0.30

(0.022) (0.003)
Intensivists per 1,000 patient-days -0.050 0.001 0.00 0.15

(0.022) (0.003)

Spending and Outcomes
Relative spending -0.045 -0.002 0.95 1.22

(0.016) (0.002)
Mortality rate -0.045 0.005 7.13 7.96

(0.017) (0.003)
Readmission rate -0.045 -0.003 11.73 12.72

(0.017) (0.002)

Note: This table presents regression results investigating heterogeneous treatment effects along characteristics
of the VA hospital associated with each zip code. For each VA hospital characteristic 𝑥, we divide observations
𝑖, based on whether 𝑥 is below vs. above the median, denoted by 𝐼𝑥,𝑖 = 0 and 𝐼𝑥,𝑖 = 1, respectively. Regression
results correspond to equation (A.26). The coefficient on VA represents the LATE of going to the VA, and
the coefficient on VA × 𝐼𝑥,𝑖 represents the difference in the LATE between observations with 𝐼𝑥,𝑖 = 1 and
observations with 𝐼𝑥,𝑖 = 0. Appendix A.5 provides further details on the hospital characteristics.
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Table A.13: Heterogeneity by Difference Between VA and Non-VA Hospital Characteristics

Regression estimates Characteristic means
VA VA × 𝐼𝑥,𝑖 𝐼𝑥,𝑖 = 0 𝐼𝑥,𝑖 = 1

Volume, Size, and Capabilities
ED visits -0.046 -0.000 -38,214 -8,950

(0.017) (0.002)
Admissions -0.045 -0.001 -12,217 -2,690

(0.017) (0.002)
Total staffed beds -0.046 -0.000 -152 236

(0.017) (0.002)
Teaching hospital -0.045 -0.001 -0.15 0.78

(0.017) (0.002)
Trauma center -0.052 -0.001 -0.86 -0.05

(0.018) (0.002)
Advanced cardiac care -0.052 -0.003 -0.34 0.34

(0.018) (0.002)

Staffing
ED staff per 1,000 ED visits -0.051 -0.001 -0.00 0.00

(0.022) (0.003)
Nurses per 1,000 patient-days -0.046 -0.000 -0.00 0.00

(0.017) (0.002)
Physicians per 1,000 patient-days -0.051 -0.001 -0.01 0.00

(0.022) (0.003)
Hospitalists per 1,000 patient-days -0.051 -0.002 -0.00 0.00

(0.022) (0.002)
Intensivists per 1,000 patient-days -0.051 -0.003 -0.00 0.00

(0.022) (0.003)

Spending and Outcomes
Relative spending -0.044 0.000 -0.01 0.30

(0.017) (0.002)
Mortality rate -0.046 0.005 -5.29 -3.97

(0.017) (0.002)
Readmission rate -0.045 -0.002 -6.76 -4.83

(0.017) (0.002)

Note: This table presents regression results investigating heterogeneous treatment effects along the difference
between VA and non-VA hospital characteristics associated with each zip code. Non-VA hospital characteristics
are averaged within each zip code with weights proportional to the number of rides going to each non-VA
hospital from the zip code. VA hospital characteristics are taken for the VA hospital with the largest share of
rides from the zip code. Each difference is formed by subtracting the value for the (average) non-VA hospital
characteristic from the value for the associated VA hospital characteristic. For each difference 𝑥, we divide
observations 𝑖, based on whether 𝑥 is below vs. above the median, denoted by 𝐼𝑥,𝑖 = 0 and 𝐼𝑥,𝑖 = 1, respectively.
Regression results correspond to equation (A.26). The coefficient on VA represents the LATE of going to the
VA, and the coefficient on VA× 𝐼𝑥,𝑖 represents the difference in the LATE between observations with 𝐼𝑥,𝑖 = 1
and observations with 𝐼𝑥,𝑖 = 0. Appendix A.5 provides further details on the hospital characteristics.
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