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Appendix A. The Imperfect Competition Case

This section develops structural equations that describe relationships between firm revenue or

variable factor demand and peer group composition. Using these equations, we provide structural

interpretations of empirical estimates. We study an environment in which the variable input share

and output demand elasticity are industry-specific.

A1. Setup

With market power, each firm charges a markup over marginal cost that depends on the elasticity

of demand it faces for its product. To model this phenomenon, we begin with an adapted version of

the environment considered in De Loecker (2011). In this environment, consumers have CES pref-

erences across firm-specific varieties within 2-digit industries. This yields industry-specific demand

elasticities for each variety that are fixed over time. In particular, the demand faced by firm i can

be written as

qi,b,k,t = Xk,tp
ηk
i,b,k,te

ζi,b,k,t .

In this equation, one way of interpreting the industry-time effect Xk,t is as capturing the follow-

ing combination of industry-time specific demand shocks and an average price across varieties in

industry k at time t:

Xk,t =
Qk,t

P ηk
k,t

Alternatively, we can think of Xk,t as representing a more reduced form demand shifter that is

common to all varieties in industry k at time t. Either way, ηk is the demand elasticity faced by

each firm in industry k for its product and ζi,b,k,t is an i.i.d demand shock that is uncorrelated with

TFP shocks.

Profit maximization yields the following expression for the firm-year-industry specific price:

ln pi,b,k,t =− 1

Dk
lnAi,b,k,t +

θk
Dk

lnwB(b),k,t −
θk
Dk

ln[
1 + ηk
ηk

θk]

+
1− θk
Dk

[lnXk,t + ζi,b,k,t].

(A1)

The denominator Dk = −ηk(1 − θk) + θk > 0. As ηk approaches negative infinity, ln pi,b,k,t goes

to a constant by construction and firms have no market power. Otherwise, positive productivity

shocks depress output prices. Associated negative shocks to marginal costs lead firms to increase
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output, moving further down marginal revenue and demand functions. That is, the more market

power firms have, the greater the pass-through of positive productivity shocks to price discounts.

Similarly, positive wage shocks and positive demand shocks get passed through to increased variety

prices in this environment.

By definition, lnRi,b,k,t = ln pi,b,k,t + ln qi,b,k,t = (1 + ηk) ln pi,b,k,t + lnXk,t + ζi,b,k,t. Insertion

of equation (A1) into this condition delivers the following general expression for revenue, which

matches equation (5) in the main text. This expression also holds under perfect competition, when

ηk = −∞.

lnRi,b,k,t =
1 + ηk

ηk(1− θk)− θk
lnAi,b,k,t −

θk(1 + ηk)

ηk(1− θk)− θk
lnwB(b),k,t

− θk(1 + ηk)

Dk
ln[

1 + ηk
ηk

θk] +
1

Dk
[lnXk,t + ζi,b,k,t]

(A2)

If the firm is a price taker, this expression matches equation (2) in the main text with no change in

price by l’Hôpital’s Rule. As demand for the firm’s product becomes less elastic, a given change in

revenue must be driven by a larger TFP shock because the firm is more constrained in its optimal

increase in quantity. For example, with θk = 0.7 and ηk = −2, a 10 percent positive observed

revenue change would reflect a 13 percent increase in TFP. However, with ηk = −10 instead, the

associated TFP increase needed to achieve the same change in revenue is only 4 percent. Under

perfect competition, this required TFP increase is further reduced to 3.3 percent.

A2. Derivation of an Estimating Equation

As seen in equation (A2), the pass-through of TFP shocks into revenue depends both on the

strength of industry-specific market power and the importance of endogenous variable factor ad-

justments in response to TFP shocks. Within heterogeneous peer groups, there are thus variable

revenue responses to the same TFP shock, making peer effects as described by a revenue based es-

timation equation heterogeneous within peer groups. This heterogeneous response mixes the TFP

spillover parameter γA with market power and variable factor share parameters ηk and θk. In equa-

tion (4) in the main text, the structural interpretation of the firm fixed effect is determined jointly

by the firm-specific fixed effect term and the spillover term.

To see this mathematically, begin with equation (A2) and set the firm fixed effect αR
i to equal
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−1+ηk(i)
Dk(i)

αA
i . Remaining firm-specific terms in equation (4) then have the structural interpretation

γR
∑

j∈Mb,t, ̸=i

[ωij(Mb,t)α
R
j ] + εRi,b,k,t =

(1 + ηk(i))

Dk(i)
γA

∑
j∈Mb,t, ̸=i

[ωij(Mb,t)α
R
j

Dk(j)

1 + ηk(j)
]

−
(1 + ηk(i))

Dk(i)
εAi,b,k,t +

ζi,b,k,t
Dk(i)

.

From this equation, it is clear that if firm i is in the same industry as all its peers, revenue spillovers

γR directly measure TFP spillovers γA. However, if they are in different industries, the estimated

spillover in the revenue equation γR mixes information about peer group composition and variable

markups.

Our approach for recovering structural TFP spillovers is to adjust the dependent variable to

homogenize treatment effects in estimation equations with the same form as equation (4). In

particular, dividing both sides of equation (A2) by −1+ηk
Dk

yields the adjusted revenue measure

(A3) ln R̃i,b,k,t ≡ − Dk

1 + ηk
lnRi,b,k,t

for use as an outcome. Substituting for lnAi,b,k,t using equation (3) in the main text, we have

the following alternative structural equation for adjusted revenue, in which the spillover parameter

equals the TFP spillover parameter γA:

ln R̃i,b,k,t = αA
i + ϕ̃B(b),k,t + γA

 ∑
j∈Mb,t,̸=i

ωij(Mb,t)α
A
j

+ ε̃i,b,k,t.(A4)

Because using adjusted revenue ln R̃i,b,k,t as the dependent variable isolates firm fixed effects as the

permanent firm-specific component of TFP αA
i , the TFP spillover parameter γA can be directly

estimated as the peer effect parameter.

The new structural interpretation of the fixed effects in equation (A4) is

ϕ̃B(b),k,t = ϕA
B(b),k,t − θk lnwB(b),t − θk ln

ηk
1 + ηk

+ θk ln θk −
1

1 + ηk
lnXk,t

and the error term in equation (A4) is

ε̃Ri,b,k,t = εAi,b,k,t −
ζi,b,k,t
1 + ηk

.
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As in the perfect competition case, the fixed effects control for location fundamentals, input costs,

and industry-time specific demand conditions.

A3. Measuring Factor Shares, Markups, and TFP

Our robustness analysis that explicitly accounts for firm-specific price endogeneity requires mea-

sures of variable factor shares θk and demand elasticities ηk for implementation, as described in

equation (A3). We calculate these objects using revenue and payments to variable and fixed inputs

as observed in the data.

Using the firm level cost minimization condition, De Loecker and Eeckhout (2018) show that

the firm level markup can be calculated as θk
Ri,b,k,t

(wL)i,b,k,t
. This relationship can be verified as being

identical for all firms in industry k in the context of the more restrictive model laid out above. In

particular, we have an industry level markup which is equal to ηk
1+ηk

by profit maximization.

In the data, we observe firm level revenue Ri,b,k,t and annual payments to labor and materials.

We infer payments to capital as rental and repair costs plus the book value of capital (net of

amortization) times a discount rate plus industry-specific depreciation rate. We set the discount

rate to be the prime business rate plus 0.04 minus the inflation rate. The prime business rate

comes from the Bank of Canada (Bank of Canada, 2019). The inflation rate is calculated using

the consumer price index information from Statistics Canada (Statistics Canada, 2019b). We infer

payments to real estate as building maintenance costs plus property taxes plus rent plus the value

of buildings and land (net of amortization) times a mortgage rate plus depreciation rate minus

a capital gains rate. We manually collected information on commercial property tax rates for

Montreal, Toronto, and Vancouver (see replication material for details). The mortgage rate is the

prime rate plus 0.02. The depreciation rate is non-zero for structures only and is calculated for

each 2-digit industry. We use information on flows and stocks of fixed non-residential capital by

industry and type of asset to calculate depreciation rates. This information comes from Statistics

Canada (Statistics Canada, 2019a). The capital gains rate uses the CMA level Teranet-National

Bank residential home price index (Teranet-National Bank, 2019).

Using this information, we calculate the output elasticity with respect to variable factors θk,t and

the markup
ηk,t

1+ηk,t
at the 2-digit industry-year level. We calculate the output elasticity with respect

to factor f , θfk,t, by aggregating payments to factors across all firms in each 2-digit industry-year

bin, where the variable factor share θk,t is calculated as θmaterials
k,t + θlabork,t . With θk,t in hand, we
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calculate the industry-year specific markup as

ηk,t
1 + ηk,t

= θk,t

∑
iRi,k,t∑

i(wL)i,k,t
.

Using this equation, we solve out for demand elasticities ηk,t and average across years to recover

calibrations of ηk. Our calibrations of θk are also averages of θk,t across years in our data.1

1We also experimented with using firm-specific markups but found them to be too noisy to be of use in estimation.
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Appendix B. Estimation Details

This appendix derives the updating rules used for αi in estimation.

B1. Case With One Peer Effect Term

We have the following generalized estimation equation which follows from equation (7) in the

main text:

yi,k,b,t = αi + ᾱ+ γᾱW−i
b,t + ϕB(b),k(i),t + γ

∑
j∈Mb,t\{i}

ωij(Mb,t)αj + εi,k,b,t,

where W−i
b,t =

∑
j∈Mb,t\{i} ωij(Mb,t). If W−i

b,t is a constant (as in the linear-in-means specification),

we get initial estimates of αi, γᾱW
−i
b,t + ᾱ + ϕB(b),k(i),t, and γ. If W−i

b,t is not a constant, we can

separately identify σ = γᾱ and ᾱ + ϕB(b),k(i),t. αi is then updated using the updating rule below,

derived by minimizing the associated nonlinear least square objective function.

The nonlinear least square estimator minimizes the following objective function:

∑
i∈I

∑
t∈Ti

(
yi,k,b,t − αi − ᾱ− γᾱ

∑
j∈Mb,t\{i}

ωij(Mb,t)− ϕB(b),k(i),t − γ
∑

j∈Mb,t\{i}

ωij(Mb,t)αj

)2

For the linear-in-means specification, ωij(Mb,t) =
1

|Mb,t|−1 and for the agglomeration specification,

ωij(Mb,t) = 1.

The first-order condition with respect to αi is:

0 = −2
∑
t∈Ti

(
yi,k,b,t − αi − ᾱ− γᾱW−i

b,t − ϕB(b),k(i),t − γ
∑

j∈Mb,t\{i}

ωij(Mb,t)αj

)
− 2

∑
t∈Ti

∑
j∈Mb,t\{i}

(
yj,k,b,t − αj − ᾱ− γᾱW−j

b,t − ϕB(b),k(j),t − γ
∑

j′∈Mb,t\{j}

ωjj′(Mb,t)αj′

)
γωji(Mb,t).

Solving for αi (Step 1/3):

Tiαi =
∑
t∈Ti

(
yi,k,b,t − ᾱ− γᾱW−i

b,t − ϕB(b),k(i),t − γ
∑

j∈Mb,t\{i}

ωij(Mb,t)αj

)

+
∑
t∈Ti

∑
j∈Mb,t\{i}

(
yj,k,b,t − αj − ᾱ− γᾱW−j

b,t − ϕB(b),k(j),t − γ
∑

j′∈Mb,t\{i,j}

ωjj′(Mb,t)αj′

)
γωji(Mb,t)

−
∑
t∈Ti

∑
j∈Mb,t\{i}

γ2ωji(Mb,t)
2αi
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Solving for αi (Step 2/3):

Tiαi +
∑
t∈Ti

∑
j∈Mb,t\{i}

γ2ωji(Mb,t)
2αi =

∑
t∈Ti

(
yi,k,b,t − ᾱ− γᾱW−i

b,t − ϕB(b),k(i),t − γ
∑

j∈Mb,t\{i}

ωij(Mb,t)αj

)

+
∑
t∈Ti

∑
j∈Mb,t\{i}

(
yj,k,b,t − αj − ᾱ− γᾱW−j

b,t − ϕB(b),k(j),t − γ
∑

j′∈Mb,t\{i,j}

ωjj′(Mb,t)αj′

)
γωji(Mb,t)

Solving for αi (Step 3/3):

αi =

1(
Ti + γ2

∑
t∈Ti

∑
j∈Mb,t\{i} ωji(Mb,t)2

)×
∑
t∈Ti

[(
yi,k,b,t − ᾱ− γᾱW−i

b,t − ϕB(b),k(i),t − γ
∑

j∈Mb,t\{i}

ωij(Mb,t)αj

)

+ γ
∑

j∈Mb,t\{i}

(
yj,k,b,t − αj − ᾱ− γᾱW−j

b,t − ϕB(b),k(j),t − γ
∑

j′∈Mb,t\{i,j}

ωjj′(Mb,t)αj′

)
ωji(Mb,t)

]

In the linear-in-means specification with basic weights ωij(Mb,t) =
1

|Mb,t|−1 , this expression is:

αi =

1(
Ti + γ2

∑
t∈Ti

1
|Mb,t|−1

)×
∑
t∈Ti

[(
yi,k,b,t − ᾱ(1− γ)− ϕB(b),k(i),t −

γ

|Mb,t| − 1

∑
j∈Mb,t\{i}

αj

)

+
γ

|Mb,t| − 1

∑
j∈Mb,t\{i}

(
yj,k,b,t − αj − ᾱ(1− γ)− ϕB(b),k(j),t −

γ

|Mb,t| − 1

∑
j′∈Mb,t\{i,j}

αj′

)]

In the agglomeration model with basic weights ωji(Mb,t) = 1, this expression is:
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αi =

1(
Ti + γ2

∑
t∈Ti

(|Mb,t| − 1)
)×

∑
t∈Ti

[(
yi,k,b,t − ᾱ(1− γ)− γᾱMb,t − ϕB(b),k(i),t − γ

∑
j∈Mb,t\{i}

αj

)

+ γ
∑

j∈Mb,t\{i}

(
yj,k,b,t − αj − ᾱ(1− γ)− γᾱMb,t − ϕB(b),k(j),t − γ

∑
j′∈Mb,t\{i,j}

αj′

)]

B2. Horse race

We carry out the analogous process for the horse race specification. For estimation, we replace

γAgg
∑

j∈Mb,t, ̸=i αj + σ̈(|Mb,t| − 1) in the baseline horse race estimation equation (8) in the main

text with its generalized counterpart γW
∑

j∈Mb,t,̸=i αjωij(Mb,t) +σ̈W
∑

j∈Mb,t, ̸=i ωij(Mb,t). Define

two weights, one for each element of the horse race

W−i
q,b,t =

∑
j∈Mb,t\{i}

ωs(k(i), k(j),Mb,t)

where q ∈ {m, s}. The nonlinear least square estimator minimizes the following objective function:

∑
i∈I

∑
t∈Ti

(
yi,k,b,t − αi − ᾱ− γsᾱW

−i
s,b,t − γmᾱW−i

m,b,t − ϕk(i),B(b),t

− γs
∑

j∈Mb,t\{i}

ωs(k(i), k(j),Mb,t)αj − γm
∑

j∈Mb,t\{i}

ωm(k(i), k(j),Mb,t)αj

)2

The first-order condition with respect to αi:

0 = −2
∑
t∈Ti

(
yi,k,b,t − αi − ᾱ− γsᾱW

−i
s,b,t − γmᾱW−i

m,b,t − ϕk(i),B(b),t

− γs
∑

j∈Mb,t\{i}

ωs (k (i) , k (j) ,Mb,t)αj − γm
∑

j∈Mb,t\{i}

ωm (k (i) , k (j) ,Mb,t)αj

)
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=− 2
∑
t∈Ti

∑
j∈Mb,t\{i}

[(
yj,k,b,t − αj − ᾱ− γsᾱW

−j
s,b,t − γmᾱW−j

m,b,t − ϕk(j),B(b),t

− γs
∑

j′∈Mb,t\{j}

ωs(k(j), k(j
′),Mb,t)αj′ − γm

∑
j′∈Mb,t\{j}

ωm(k(j), k(j′),Mb,t),Mb,t)αj′

)

×
(
γsωs(k(j), k(i),Mb,t) + γmωm(k(j), k(i),Mb,t)

)]

Solving for αi (Step 1/2):

Tiαi + αi

∑
t∈Ti

∑
j∈Mb,t\{i}

(
γsωs(k(j), k(i),Mb,t) + γmωm(k(j), k(i),Mb,t)

)2
=
∑
t∈Ti

(
yi,k,b,t − ᾱ− γsᾱW

−i
s,b,t − γmᾱW−i

m,b,t − ϕk(i),B(b) − γs
∑

j∈Mb,t\{i}

ωs(k(i), k(j),Mb,t)αj

− γm
∑

j∈Mb,t\{i}

ωm(k(i), k(j),Mb,t)αj

)

+
∑
t∈Ti

∑
j∈Mb,t\{i}

[(
yj,k,b,t − αj − ᾱ− γsᾱW

−j
s,b,t − γmᾱW−j

m,b,t − ϕk(j),B(b)

− γs
∑

j′∈Mb,t\{i,j}

ωs(k(j), k(j
′),Mb,t)αj′ − γm

∑
j′∈Mb,t\{i,j}

ωm(k(j), k(j′),Mb,t)αj′

)

×
(
γsωs(k(j), k(i),Mb,t) + γmωm(k(j), k(i),Mb,t)

)]
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Solving for αi (Step 2/2):

αi =

1

Ti +
∑

t∈Ti

∑
j∈Mb,t\{i}

(
γsωs(k(j), k(i),Mb,t) + γmωm(k(j), k(i),Mb,t)

)2×
∑
t∈Ti

[(
yi,k,b,t − ᾱ− γsᾱW

−i
s,b,t − γmᾱW−i

m,b,t − ϕk(i),B(b)

− γs
∑

j∈Mb,t\{i}

ωs(k(i), k(j),Mb,t)αj − γm
∑

j∈Mb,t\{i}

ωm(k(i), k(j),Mb,t)αj

)

+
∑

j∈Mb,t\{i}

[(
yj,k,b,t − αj − ᾱ− γsᾱW

−j
s,b,t − γmᾱW−j

m,b,t − ϕk(j),B(b)

− γs
∑

j′∈Mb,t\{i,j}

ωs(k(j), k(j
′),Mb,t)αj′ − γm

∑
j′∈Mb,t\{i,j}

ωm(k(j), k(j′),Mb,t)αj′

)
×

(
γsωs(k(j), k(i),Mb,t) + γmωm(k(j), k(i),Mb,t)

)]]
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Appendix C. Proofs of Consistency

This appendix analyzes the consistency of an estimator of spillovers between firms based on

the minimization of the squared prediction errors. The proofs shown here mimic the proof of

Theorem 1 in Arcidiacono et al. (2012) (AFGK), in particular the first four lemmas where they

show the consistency of their estimator. Throughout this section, firm i in peer group n at time t

is characterized by a fixed effect αi and a shock ϵi,t,n. We analyze:

1) The consistency of an estimator where spillovers of firm j to firm i in peer group n are weighted

by a known weight ωi,j,n;

2) The consistency of a horse race estimator where both agglomeration spillovers (ωi,j,n = 1) and

linear-in-mean spillovers (ωi,j,n = 1
|Mn,t|−1 , where Mn,t denotes the set of firms in peer group

n at time t) operate simultaneously;

3) The lack of consistency and bias of the estimator when the number of groups N goes to

infinity, but the peer group has a fixed time dimension, in particular T = 2, and the shocks

ϵi,t,n are autocorrelated;

4) The consistency of the estimator when both N and T go to infinity and the shocks are

autocorrelated.

Throughout this section, we maintain most of AFGK’s assumptions:

(i) E (ϵi,t,nϵj,t,k) = 0 for all j ̸= i and n ̸= k.

(ii) E (ϵi,t,nαj) = 0 for all i, j, t, n.

(iii) E
(
α4
in

)
< ∞ for all i, n.

(iv) E (ϵi,t,n) = 0 and E
(
ϵ4i,t,n

)
< ∞ for all i, t, n.

(v) E
(
ϵ2i,t,n|n, t

)
= E

(
ϵ2j,t,n|n, t

)
for all i, j, t, n.

(vi) The parameter γ ∈ Γ where Γ is compact.

In the first two cases, as in AFGK, we also assume that E (ϵi,t,nϵj,s,k) = 0 for t ̸= s. This

assumption is relaxed in the other two cases. Furthermore, we assume that the fixed effects {αin}

are not linear combinations of each other in i to guarantee uniqueness of the solutions, which was

an implicit assumption in AFGK.

As in AFGK, we analyze consistency using a simplified structure of peer groups with a limited

number of firms and periods (expect for Case 4). We do not expect this simplification to affect
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the general results. In the same spirit, we do not allow firm i’s outcome to be affected by other

covariates, except for peer effects. That is, we do not include industry-year or local area-year fixed

effects as in our main analysis. Again, we do not believe that the general message of this section is

affected by this choice of exposition.

Case 1 - General Weights

Outcome yi,t,n of firm i in peer group n at time t is:

yi,t,n = αi + γ
∑

j∈Mn,t ̸=i

ωi,j,n,tαj + ϵi,t,n

In addition to the six assumptions listed above, we assume that E (ϵi,t,nϵj,s,k) = 0 for t ̸= s. We

consider the following limiting case:

(a) Firms are observed for at most two periods.

(b) Each peer group has two firms in each period.

(c) Within each peer group, one firm is observed for two periods and the other firm is observed

for one period only.

The optimization problem is

min
α,γ

1

N

N∑
n=1

((y11n − α1n−γω12nα2n)
2 + (y12n − α1n − γω13nα3n)

2

+ (y21n − α2n − γω21nα1n)
2 + (y32n − α3n − γω31nα1n)

2)

where we omit the time period index in the weight given that two firms meet for only one time

period.

Following AFGK, we first concentrate out the αs. Taking the first-order conditions and solving

for the firm fixed effects (omitting the index n), we get:

α1 =((
1 + (γω13)

2
)
(1− γω21γω12) (y11 − γω12y21) +

(
1 + (γω12)

2
)
(1− γω13γω31) (y12 − γω13y32)

)
(
(1− γω31γω13)

2
(
1 + (γω12)

2
)
+ (1− γω21γω12)

2
(
1 + (γω13)

2
))
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α2 =


(
(1− γω31γω13)

2 γω12 − γω21

(
1 + (γω13)

2
)
(1− γω21γω12)

)
y11

+
(
(1− γω31γω13)

2 + (1− γω21γω12)
(
1 + (γω13)

2
))

y21

− (γω21 + γω12) (1− γω13γω31) y12 + (γω21 + γω12) (1− γω13γω31) γω13y32


(
(1− γω31γω13)

2
(
1 + (γω12)

2
)
+ (1− γω21γω12)

2
(
1 + (γω13)

2
))

α3 =


(
(1− γω21γω12)

2 γω13 − γω31

(
1 + (γω12)

2
)
(1− γω13γω31)

)
y12

+
(
(1− γω21γω12)

2 + (1− γω13γω31)
(
1 + (γω12)

2
))

y32

− (γω31 + γω13) (1− γω21γω12) y11 + (γω31 + γω13) (1− γω21γω12) γω12y21


(
(1− γω31γω13)

2
(
1 + (γω12)

2
)
+ (1− γω21γω12)

2
(
1 + (γω13)

2
))

Note that the above expressions simplify to the same ones as in AFGK when all weights are equal

to 1:

α1 =
(y11 − γy21) + (y12 − γy32)

2 (1− γ2)

α2 =
y21 − γ3y11 − γy12 + γ2y32

(1− γ4)

α3 =
y32 − γy11 + γ2y21 − γ3y12

(1− γ4)

After several substitutions, the original minimization problem becomes:

min
γ

1

N

N∑
n=1

((1− γω31nγω13n) (y11n − γω12ny21n)− (1− γω21nγω12n) (y12n − γω13ny32n))
2

(1− γω31nγω13n)
2
(
1 + (γω12n)

2
)
+ (1− γω21nγω12n)

2
(
1 + (γω13n)

2
)

which is the same as in AFGK when the weights are equal to 1, i.e.

min
γ

1

N

N∑
n=1

(y11n − γy21n − y12n + γy32n)
2

2 (1 + γ2)
.

Substituting for the true data generating process:

yi,t,n = αo
i + γ0

∑
j∈Mn,t ̸=i

ωi,j,n,tα
o
j + ϵoi,t,n
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we obtain

min
γ

1

N

N∑
n=1

q (yn, γ)

where (omitting the index n):

q (yn, γ) =

(
(1− γω31γω13) (α

o
1 + γ0ω12a

o
2 + ϵ◦11 − γω12 (α

o
2 + γ0ω21a

o
1 + ϵo21))

− (1− γω21γω12) (ao1 + γ0ω13ao3 + ϵ◦12 − γω13 (αo
3 + γ0ω31ao1 + ϵo32))

)2

(1− γω31γω13)
2
(
1 + (γω12)

2
)
+ (1− γω21γω12)

2
(
1 + (γω13)

2
) .

Consider the expected value of the function q(yn, γ). Using assumptions (i), (ii), and (iv), the

expression simplifies to:

E(q(y, γ)) = σ2
ϵ

+E


(
((1− γω31γω13) (1− γω12γ0ω21)− (1− γω21γω12) (1− γω13γ0ω31))α

o
1

+ (1− γω31γω13) (γ0 − γ)ω12ao2 − (1− γω21γω12) (γ0 − γ)ω13ao3

)2

(1− γω31γω13)
2
(
1 + (γω12)

2
)
+ (1− γω21γω12)

2
(
1 + (γω13)

2
)

 .

The first term does not depend on γ. Because the denominator of the second term is positive

and the numerator is squared, it is equal to zero when γ = γ0 while strictly positive when γ ̸= γ0.

Hence, E[q(y, γ0)] < E[q(y, γ)] for all γ ∈ Γ such that γ ̸= γ0.

As suggested in AFGK, most of the requirements to apply Theorem 12.1 in Wooldridge (2010) are

satisfied with the exception of the following: For all γ ∈ Γ, |q(γ, y)| ≤ b(y) where b is a non-negative

function such that E(b(y)) < ∞ Given that q(γ, y) is always positive we can ignore the absolute

value. Going back to the definition of q(γ, y) :

q(γ, y) =
((1− γω31γω13) (y11 − γω12y21)− (1− γω21γω12) (y12 − γω13y32))

2

(1− γω31γω13)
2
(
1 + (γω12)

2
)
+ (1− γω21γω12)

2
(
1 + (γω13)

2
)

and using the triangular inequality, we can show that q(γ, y) < 2
(
y211 + 2y221 + 2y212 + 2y232

)
. The

last step is to show that E
(
2y211n + 2y221n + 2y212n + 2y232n

)
< ∞. This follows exactly the proof in

AFGK and we omit it here. Theorem 12.1 in Wooldridge (2010) can be applied to obtain γ̂
p→ γ0.

Case 2 - Horse Race

We now consider the consistency of a horse race estimator where both agglomeration spillovers

(ωa
i,j,n = 1) and linear-in-mean spillovers (ωb

i,j,n = 1
|Mn,t|−1 , where Mn,t denotes the set of firms in

peer group n at time t) operate simultaneously. In this case, outcome yi,t,n of firm i in peer group
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n at time t is:

yi,t,n = αi + γ
∑

j∈Mn,t ̸=i

αjn + ρ
∑

j∈Mn,t ̸=i

αjn

|Mn,t| − 1
+ ϵi,t,n.

We consider a situation where each peer group has the following composition:

(a) Firm 0n is observed for 3 periods.

(b) Firm 1n is observed only in the first period.

(c) Firm 2n is observed only in the second period.

(d) Firm 3n and 4n are observed only in the third period.

The optimization problem is

min
α,γ,ρ

1

N

N∑
i=1

(
ϵ201n + ϵ202n + ϵ203n + ϵ211n + ϵ222n + ϵ233n + ϵ243n

)
where

ϵ01n = y01n − α0n − (γ + ρ)α1n

ϵ02n = y02n − α0n − (γ + ρ)α2n

ϵ33n = y03n − α0n −
(
γ +

ρ

2

)
(α3n + α4n)

ϵ11n = y11n − α1n − (γ + ρ)α0n

ϵ22n = y22n − α2n − (γ + ρ)α0n

ϵ33n = y33n − α3n −
(
γ +

ρ

2

)
(α0n + α4n)

ϵ43n = y43n − α4n −
(
γ +

ρ

2

)
(α0n + α3n) .

We first concentrate out α1, α2, α3, and α4 for all groups. From the first-order conditions, after

several substitutions, we are able to rewrite the argument of the summation above as:

ϵ201n + ϵ202n + ϵ203n + ϵ211n + ϵ212n + ϵ233n + ϵ243n

=

(
y01n − (γ + ρ)y11n −

(
1− (γ + ρ)2

)
α0n

)2
+
(
y02n − (γ + ρ)y22n −

(
1− (γ + ρ)2

)
α0n

)2
1 + (γ + ρ)2

+

((
γ + ρ

2

)
y33n +

(
γ + ρ

2

)
y43n −

(
1 +

(
γ + ρ

2

))
y03n +

(
1−

(
γ + ρ

2

)) (
1 + 2

(
γ + ρ

2

))
α0n

)2(
3
(
γ + ρ

2

)2
+ 2

(
γ + ρ

2

)
+ 1
)

Instead of concentrating out α0n, we work directly with the minimization of the expected criterion
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function. To do so, we substitute for the true data generating process

y01n = αo
0n + (γ0 + ρ0)α

o
1n + ϵo01n

y02n = αo
0n + (γ0 + ρ0)α

o
2n + ϵo02n

y03n = αo
0n +

(
γ0 +

ρ0
2

)
(αo

3n + αo
4n) + ϵo03n

y11n = αo
1n + (γ0 + ρ0)α

o
0n + ϵo11n

y22n = αo
2n + (γ0 + ρ0)α

o
0n + ϵo22n

y33n = αo
3n +

(
γ0 +

ρ0
2

)
(αo

0n + αo
4n) + ϵo33n

y43n = αo
4n +

(
γ0 +

ρ0
2

)
(αo

0n + αo
3n) + ϵo43n

The expected value of that object can then be written as

E

(
ϵ201n + ϵ202n + ϵ203n + ϵ211n + ϵ222n + ϵ233n + ϵ243n

)
= E

(
((γ0 + ρ0)− (γ + ρ))αo

1n + (1− (γ + ρ) (γ0 + ρ0))α
o
0n −

(
1− (γ + ρ)2

)
α0n

)2
1 + (γ + ρ)2

+E

(
((γ0 + ρ0)− (γ + ρ))αo

2n + (1− (γ + ρ) (γ0 + ρ0))α
o
0n −

(
1− (γ + ρ)2

)
α0n

)2
1 + (γ + ρ)2

+E

(((
γ + ρ

2

) (
1 +

(
γ0 +

ρ0
2

))
−
(
γ0 +

ρ0
2

) (
1 +

(
γ + ρ

2

)))
(αo

3n + αo
4n)

+
(
1 +

(
γ + ρ

2

))
(α0n − αo

0n) + 2
(
γ + ρ

2

) ((
γ0 +

ρ0
2

)
αo
0n −

(
γ + ρ

2

)
α0n

))2

2
(
γ + ρ

2

)2
+
(
1 +

(
γ + ρ

2

))2
+ 3σ2

ϵn

using assumptions (i), (ii), and (v) and assuming E (ϵi,t,nϵj,s,k) = 0 for t ̸= s. Given that the

first three terms on the right hand side are non-negative, the minimum is attained at 3σ2
en when

α0n = αo
0n, γ = γ0, and ρ = ρo. To complete the proof of consistency, as in the previous case, one

has to show that the original object can be bounded for all possible γs. We omit this step which

can be achieved in a similar fashion to the previous case.

Case 3 - Autocorrelated Errors

As in the first case, we assume that peer groups have a simplified composition:

(a) We observe firms for at most two periods.

(b) Each peer group has two firms in each period.
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(c) Within each peer group, one firm is observed for two periods and the other firm is observed

for one period only.

Outcome yi,t,n of firm i in peer group n at time t is:

yi,t,n = αi + γ
∑

j∈Mn,t ̸=i

αj + ϵitn

where we assume ϵi,t,n = ρϵi,t−1,n + ui,t,n. The optimization problem is

min
α,γ

1

N

N∑
n=1

((y11n − α1n − γα2n)
2 + (y12n − α1n − γα3n)

2

+ (y21n − α2n − γα1n)
2 + (y32n − α3n − γα1n)

2).

As in the first case we concentrate out the αs. From the first-order conditions, we find that:

α1n =
(y11n − γy21n) + (y12n − γy32n)

2 (1− γ2)

α2n =
y21n − γ3y11n − γy12n + γ2y32n

(1− γ4)

α3n =
y32n − γy11n + γ2y21n − γ3y12n

(1− γ4)

Substituting, we get:

min
γ

1

N

N∑
n=1

(y11n − γy21n − y12n + γy32n)
2

2 (1 + γ2)

Substituting y with the true data generating process yields

min
γ

1

N

N∑
n=1

((γ0 − γ)αo
2n − (γ0 − γ) ao3n + ϵo11 − ϵo12n + γϵo32n − γϵo21n)

2

2 (1 + γ2)
.
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Consider the expected value of the argument within the summation

E

(
((γ0 − γ)αo

2 − (γ0 − γ)αo
3 + ϵo11 − ϵo12 + γϵo32 − γϵo21)

2

2 (1 + γ2)

)

= E

(
(γ0 − γ)2 (α20n − α30n)

2

2 (1 + γ2)

)

+E

(
(ϵ11n − ϵ12n + γϵ32n − γϵ21n)

2

2 (1 + γ2)

)

+E

(
2 (γ0 − γ) (α20n − α30n) (ϵ11n − ϵ12n + γϵ32n − γϵ21n)

2 (1 + γ2)

)
.

All three terms on the right hand side are non-negative. The third term is equal to zero because of

assumption (ii). Assuming that σαα is the covariance between α20n and α30n and that the variance

of α is the same across different αs, the whole expression becomes:

(γ0 − γ)2

(1 + γ2)

(
σ2
α − σαα

)
+ σ2

ϵ −
ρσ2

ϵ

(1 + γ2)

using assumptions (i), (iv), and (v). If ρ = 0, this expression is minimized at γ = γ0. If ρ ̸= 0,

minimizing the above leads to the following expression:

(γ0 − γ) (1 + γγ0) =
γρσ2

ϵ

(σ2
α − σαα)

Assuming that γ0 and ρ are positive, γ cannot be equal to γ0 because the left hand side would be 0

while the right hand side would be strictly positive. The optimal solution to the limiting objective

function is not γ0, and hence the estimator of γ would be asymptotically biased.

Case 4 - T → ∞

Here, we show that the bias in Case 3 disappears if we allow for T to diverge as well. As in Case

3, we assume (in addition to the standard six assumptions) that

ϵi,t,n = ρϵi,t−1,n + ui,t,n.

We consider the following simplified structure of peer groups:

(a) Each peer group has two firms in each period.

(b) Within each group, one firm is observed for T periods and the other firm is observed for one
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period only.

Outcome yi,t,n of firm i in peer group n at time t is:

yi,t,n = αi + γ
∑

j∈Mn,t ̸=i

αj + ϵi,t,n

which is consistent with either linear-in-means or aggregate spillovers. To simplify notation, the

staying firm is characterized by the indices (0, t) and the one-period firms by (t, t) so the time t

identifies those firms. Dropping the peer group index n, the optimization problem is:

min
a,γ

1

N

N∑
n=1

1

T

(
T∑
t=1

(y0t − α0 − γαt)
2 + (ytt − αt − γα0)

2

)

First we concentrate out the fixed effects for the one-period firms. From the first-order conditions,

we have:

αt =
γ (y0t − α0) + (ytt − γα0)

1 + γ2

Substituting back into the problem:

min
a,γ

1

N

N∑
n=1

1

T

(
T∑
t=1

((y0t − α0)− γ (ytt − γα0))
2

1 + γ2

)
.

The first-order condition for α0 leads to

α0 =

∑T
t=1 (y0t − γytt)

T (1− γ2)
.

Substituting back in yields

min
γ

1

N

N∑
n=1

1

T

 T∑
t=1

((
y0t −

∑T
τ=1(y0τ−γyττ )

T (1−γ2)

)
− γ

(
ytt − γ

∑T
τ=1(y0τ−γyττ )

T (1−γ2)

))2
1 + γ2

 .

Next, we substitute in the true data generating process:

y0t = αo
0 + γ0α

o
t + ϵo0t

ytt = αo
t + γ0α

o
0 + ϵott
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to obtain

min
γ

qN,T (γ, y) ≡

min
γ

1

N

N∑
n=1

1

T

 T∑
t=1

(
(γ0 − γ)

(
αo
t −

∑T
τ=1

αo
τ
T

)
+ ϵo0t − γϵott −

∑T
τ=1

ϵo0τ−γϵoττ
T

)2
1 + γ2

 .

We consider the performance of the estimator under a sequential asymptotic framework where we

first let N → ∞, and then let T → ∞ (i.e. (N,T )
seq→ ∞).

Define the limiting objective function as

q(γ, y) ≡ lim
T→∞

plim
N→∞

qN,T (γ, y)

and we first consider plimN→∞ qN,T (γ, y):

E

 1

T

 T∑
t=1

(
(γ0 − γ)

(
αo
t −

∑T
τ=1

αo
τ
T

)
+ ϵo0t − γϵott −

∑T
τ=1

ϵo0τ−γϵoττ
T

)2
1 + γ2




=
1

T

1

1 + γ2

T∑
t=1

(γ0 − γ)2

1 + γ2
E

(
αo
t −

T∑
τ=1

αo
τ

T

)2

+
1

T

1

1 + γ2

T∑
t=1

E

(
ϵo0t − γϵott −

T∑
τ=1

ϵo0τ − γϵoττ
T

)2

,

where the cross-products are 0 by assumption (ii). Notice that both terms are squared and non-

negative. The first term is minimized at 0 when γ = γ0. The expectation in the second term can



22

be expressed as

E

[(
ϵo0t − γϵott −

T∑
τ=1

ϵo0τ − γϵoττ
T

)]2

= E

(1− 1

T

)
ϵ0t − γ

(
1− 1

T

)
ϵtt −

T∑
τ=1̸=t

ϵ0τ − γϵττ
T

2
= E

[(
1− 1

T

)2

ϵ20t + γ2
(
1− 1

T

)2

ϵ2tt +
1

T 2

( T∑
τ=1̸=t

ϵ0τ − γϵττ

)2

− 2γ

(
1− 1

T

)2

ϵ0tϵtt

+ 2γ

(
1− 1

T

)
ϵtt

T∑
τ=1̸=t

ϵ0τ − γϵττ
T

− 2

(
1− 1

T

)
ϵ0t

T∑
τ=1̸=t

ϵ0τ − γϵττ
T

]

= (1 + γ2)

(
1− 1

T

)2

σ2
ϵ +

2

T 2

( T∑
τ=1̸=t

σ2
ϵ + 2

T∑
τ,τ ′=1̸=t,τ ̸=τ ′

E(ϵ0τ ϵ0τ ′ )

)

+
2γ2

T 2

( T∑
τ=1̸=t

σ2
ϵ + 2

T∑
τ,τ ′=1̸=t,τ ̸=τ ′

E(ϵττ ϵττ ′ )

)
− 2

T

(
1− 1

T

) T∑
τ=1̸=t

E(ϵ0tϵ0τ )

Note that

∣∣∣∣ T∑
τ=1̸=t

E(ϵ0tϵ0τ )

∣∣∣∣ ≤ ∣∣∣∣ T∑
τ,τ ′=1̸=t,τ ̸=τ ′

E(ϵ0τ ϵ0τ ′ )

∣∣∣∣ ≤ 2
T−1∑
k=1

|ρkσ2
ϵ | ≤ 2σ2

ϵ

1− |ρ|T

1− |ρ|
= O(1),

even as T → ∞ since |ρ| < 1. The same can be said for the covariances of ϵττ since they are

equivalent to that of ϵ0τ .

We can thus show that the whole second term can be written as

(
T − 1

T

)2

σ2
ϵ +

2

T 2

( T∑
τ=1̸=t

σ2
ϵ +2

T∑
τ,τ ′=1̸=t,τ ̸=τ ′

E(ϵ0τ ϵ0τ ′ )

)
− 2

T 2(1 + γ2)

(
1− 1

T

) T∑
t=1

T∑
τ=1̸=t

E(ϵ0tϵ0τ ).

Since the final term above is a function of γ, it is not guaranteed that setting γ = γ0 minimizes

the objective function and hence may be biased as shown in Case 3. However, when we take the

limit as T → ∞, this term is O(1/T ) and hence goes to 0. In addition, the second term is O(1/T )

and also approaches 0, and thus the whole term reduces to σ2
ϵ in the limit.

This means that, in the limit as T → ∞, we only have to consider the first term of

plimN→∞ qN,T (γ, y) in optimizing γ, and hence the solution is γ = γ0.

To have convergence for our estimator, we require uniform convergence of the objective function

qN,T (γ, y) to q(γ, y). As in the previous case (and as in AFGK), we only need to show that for all
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γ ∈ Γ, ∣∣∣∣∣∣∣
1

T

T∑
t=1

((
y0t −

∑T
τ=1(y0τ−γyττ )

T (1−γ2)

)
− γ

(
ytt − γ

∑T
τ=1(y0τ−γyττ )

T (1−γ2)

))2
1 + γ2

∣∣∣∣∣∣∣ ≤ b(γ)

where b is a non-negative function such that E (b (γ)) < ∞. This can be shown using repeatedly

the triangular inequality.
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Appendix D. Details about Connectivity Weights

This section provides details about the connectivity weights used in the empirical analysis.

Input-output weights allow for examination of the extent to which spillovers operate through the

flow of goods. Stronger input-output linkages may facilitate knowledge transfer about production

practices or demand conditions. We build input-output weights using the Basic Price version of

the 2010 4-digit NAICS Statistics Canada input-output table (Statistics Canada, 2015). As in

Ellison, Glaeser and Kerr (2010), underlying continuous weights are the maximum of upstream and

downstream input and output shares:

wIOC
ij = max[Inputk(i),k(j),Inputk(j),k(i),Outputk(i),k(j),Outputk(j),k(i)].

We also construct separate weights using each component of wIOC
ij . These produce similar results.

Occupational similarity weights allow for examination the extent to which knowledge transfer

that is specific to particular occupations is an important driver of firm spillovers.2 We view results

using these weights as informative about the extent to which industries with more similar occu-

pational mixes have more productive knowledge flows. Closer occupational similarity with peers

could mean that workers learn more about how to effectively perform their core occupational tasks,

where such knowledge transfer may happen through chance encounters (Atkin, Chen and Popov,

2022). We build occupational similarity measures using the 2002 US National Industry Occupation

Employment Matrix, which is built using data from the Occupational Employment Statistics survey

conducted by the Bureau of Labor Statistics (Bureau of Labor Statistics, 2008). For each industry,

it gives the share of employees in each four-digit occupation. Similar to Ellison, Glaeser and Kerr

(2010), we define occupational similarity weights as:

wOCCSIM
ij = max[Corr(Occ. Sharek(i),Occ. Sharek(j)), 0].

Worker flows weights similarly capture the extent to which workers in firm i’s industry are likely

to have either direct experience working in peers’ industries or to use a similar set of skills in their

jobs. Seeing a high rate of worker flows from peers’ industries is an indicator of closer connections

in one or both of these dimensions. We build information on the prevalence of inter-industry worker

flows by using the employer-employee match component of our data set. Using all employees in

2Ellison, Glaeser and Kerr (2010) interpret greater coagglomeration of firms in occupationally similar industries in local
labor markets as reflecting labor market pooling. Their interpretation is likely to be less relevant at the small spatial scale of
spillovers that we examine in this paper.
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Canada earning at least CAD 5,000 that had different employers in 2001 and 2002, we calculate the

share of worker flows from firms in each industry k′ that go to each other industry k, adjusting for

the share of industry k′ in total employment. In particular,

wWFLOW
ij =

fraction of industry job changers to industry k(i) that are from k′(j)

fraction of total job changers from industry k′(j)
.

The denominator accounts for the fact that random choices out of industries with greater worker

shares and/or mobility rates would mechanically generate greater flows to all other industries.

Therefore, wWFLOW
ij measures the extent to which worker flows from industry k′(j) to industry k(i)

are greater or less than expected relative to random destination industry choices, taking transitions

out of industry k′(j) as given.

Finally, similar to Greenstone, Hornbeck and Moretti (2010), we also test whether firms in the

same 2-digit industry generate differential spillovers to those in other 2-digit industries. In this case,

wSAME
ij = 1 if k(i) = k(j) at the 2-digit NAICS level and 0 otherwise. Rather than using terciles,

we implement this weight in the empirical work by examining impacts of having a higher fraction

of peers in the same industry.
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Figure E2. – Changes in Log Revenue Induced by Firm Entry

-.1
5

-.1
-.0

5
0

.0
5

Co
ef

fic
ien

t

-2 -1 0 1
Event time

(a) Negative shock: firm entry causes a change in average peer quality below 10th percentile
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(b) Positive shock: firm entry causes a change in average peer quality above 90th percentile

Notes: Figures show coefficients and confidence intervals from event-study regressions. The dependent variable is firm

log revenue residualized for estimated fixed effects in Table 2 column (1) Panel C. Dots are coefficients on yearly event-time
dummies, normalizing the coefficient on event-time −1 to 0. Horizontal solid lines are coefficients on biyearly event-time

dummies, normalizing the coefficient on pooled event-time −1 and −2 to 0. Whiskers and dashed lines show associated 90%
confidence intervals calculated using standard errors clustered at the event level. Estimation samples only include incumbent

firms in peer groups in which all incumbents experience a change in average peer quality that is below the 10th percentile (Panel
A) or above the 90th percentile (Panel B) of the change in average peer quality distribution across all firm-year observations in
the primary estimation sample. Only such events that are induced by the arrival of new firms in a peer group location with no
other changes in peer composition up to two years prior and one year after the event are included. Panel A has 93 events, 220

incumbents, and 2200 observations. Panel B has 25 events, 60 incumbents, and 560 observations.
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Table E1. – Coefficient Stability Around Large Events

Event time t− 2 t− 1 t t+ 1 t+ 2

(1) (2) (3) (4) (5)
Change in average peer quality < 10th percentile

Avg. Peer Firm F.E. 0.0214 0.0250 0.0215 0.0367 0.0107
(0.0063) (0.0057) (0.0060) (0.0068) (0.0063)

X̄ 0.06 0.17 -0.56 -0.39 -0.30
Number of Obs. 16,100 19,600 19,500 16,300 12,700

Change in average peer quality < 25th percentile
Avg. Peer Firm F.E. 0.0262 0.0228 0.0167 0.0236 0.0158

(0.0048) (0.0042) (0.0043) (0.0055) (0.0050)

X̄ 0.05 0.13 -0.30 -0.19 -0.14
Number of Obs. 36,700 44,800 44,500 36,900 28,200

Change in average peer quality > 75th percentile
Avg. Peer Firm F.E. 0.0243 0.0241 0.0162 0.0225 0.0196

(0.0047) (0.0042) (0.0037) (0.0044) (0.0048)

X̄ -0.30 -0.33 0.16 0.16 0.14
Number of Obs. 40,400 49,200 49,100 40,300 30,200

Change in average peer quality > 90th percentile
Avg. Peer Firm F.E. 0.0206 0.0272 0.0085 0.0170 0.0168

(0.0075) (0.0069) (0.0075) (0.0063) (0.0071)

X̄ -0.54 -0.63 0.19 0.18 0.13
Number of Obs. 16,900 20,600 20,500 16,900 12,700

Notes: Each entry is from a separate regression analogous to that in Table 2 column (1) Panel C but using post-estimation
data and different sub-samples. All firms exposed to changes in average peer quality of the amount indicated in each panel are

assigned an event year. Regressions of firm log revenue residualized for estimated fixed effects in Table 2 column (1) Panel C on

average peer quality, aggregate peer quality, and number of peers are run separately by event time. X̄ is the average of average
peer quality in each estimation sample. Standard errors are clustered by peer group area.
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Table E2. – More Information About Peer Groups

Peer Group Area Radius

75m 150m 200m 250m
Panel A: Average and SD Across Firm-Years

# of Peers 15.95 28.26 36.34 45.13
(19.55) (42.15) (53.43) (64.72)

Area (sq. km) 0.043 0.100 0.155 0.216
(0.115) (0.216) (0.340) (0.403)

Panel B: Average and SD Across Firms

# of Peer Groups Experienced 1.45 1.44 1.44 1.43
(0.72) (0.71) (0.71) (0.70)

Notes: Averages and standard deviations (in parentheses) are for single-location high-skilled services firms in the primary
estimation sample. The sample excludes firms in peer group areas with one or more member postal code with an area that

is greater than π752sq meters (0.018 sq km) and peer group areas with fewer than two high-skilled services firms in any year

2001-2012. The sample only includes firms in the Montreal, Toronto, or Vancouver census metropolitan areas. Statistics in
Panel A are calculated using all firm-year observations. Statistics in Panel B are calculated using one observation per firm.
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Table E3. – Aggregate Impacts of Counterfactual Firm Allocation Across Peer Groups, Het.
Treatment

Randomization Type Fixed Group Size Equal Group Size

Nature of Spillovers Considered LIM +
HET

+ AGG LIM +
HET

+ AGG

(1) (2) (3) (4)
Estimates w/ Area × Year F.E., -0.0034 -0.0029 -0.0037 -0.0071
Randomized Within Areas (0.0006) (0.0008) (0.0006) (0.0004)

Estimates w/o Area × Year F.E., -0.0129 -0.0170 -0.0134 -0.0238
Randomized Within Areas (0.0007) (0.0016) (0.0006) (0.0011)

Estimates w/o Area × Year F.E., -0.0094 -0.0231 -0.0093 -0.0271
Randomized Across All Locations (0.0013) (0.0015) (0.0013) (0.0015)

Notes: Table presents the means and standard deviations of changes in aggregate revenue that would ensue under 100

simulations of various scenarios in which sorting of firms across peer groups is eliminated. Results in the two columns under
the header “Fixed Group Size” are generated holding peer group size fixed and those under the header “Equal Group Size” are

generated given full randomization of firms across peer groups. In each column headed by LIM + HET, counterfactual firm

revenue absent sorting is calculated adjusting for the linear-in-means component of the spillover as well as the fraction of peers
in the top tercile of the local 500-meter radius area’s firm quality distribution, using coefficients from Table 6, column 6. In

each column headed by +AGG, the same two terms plus the agglomeration term are included in the calculation, again using

coefficients from Table 6, column 6. The first row uses fixed effects estimates from Table 2 column (1) Panel C and imposes
demeaning and randomization across peer groups within 500-meter radius areas. The second row uses fixed effects estimates

from Table 2 column (2) Panel C instead with the same demeaning and randomization procedures. The third row uses fixed

effects estimates from Table 2 column (2) Panel C but demeans and randomizes across all peer groups.
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