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Remark. Equations, claims and lemmas introduced in this Online Appendix are numbered as OA.#. Equations,
claims, lemmas and theorems with regular numbering refer to those introduced in the printed manuscript.

I Omitted Proofs for Theorem 1
I.1 Proof of Lemma A1

Claim OA.1. SP(a) is an open interval. That is, SP(a)=(p,p̄).

Proof. Clearly, SP(a) is a connected set because the sample path of Xt is almost surely continuous. Let
p :=infSP(a), and p̄ :=supSP(a). We need to show that p̄,p /∈SP(a). Suppose, toward a contradiction, that
p̄∈SP(a). Then, consider a history that leads to the belief p̄ and the continuation play starting from this history.
Since the belief process is a martingale, we have pt= p̄ for all t≤T and almost all sample paths. Agent opti-
mality then implies a(p̄)=0, and thus the diffusion coefficient of the belief process at p̄ is strictly positive. This
contradicts pt= p̄ for all t≤T and almost all sample paths. The same argument proves that p /∈SP(a).

Claim OA.2. The principal’s equilibrium policy function b has a cutoff structure on SP(a). That is, there
exists a unique p∗∈ [p,p̄] such that p∈(p,p∗) implies b(p)=0 and p∈(p∗,p̄) implies b(p)=1.

Proof. The proof is almost identical to that of Lemma A2, and is thus omitted.

We continue with a technical claim that will be later used.

Claim OA.3. Fix a positive integer T. For any ε>0 there exists η>0 satisfying the following property:
Take any pair of adapted processes dY 1

t =µ1,tdt+σdBt and dY 2
t =µ2,tdt+σdBt such that µj,t∈ [0,1]

for j=1,2 and for every t. Let P1 and P2 be the probability distributions over (C([0,T ]),B(C([0,T ])))24

generated by such stochastic processes. IfA∈B(C([0,T ])) is such that EP1[IA]<η then EP2[IA]<ε.

Proof. The proof of this technical claim can be found in our working paper (Ekmekci et al., 2021).

Claim OA.4. p̄=1

Proof. Assume towards a contradiction that p̄<1.
Case 1: p̄>p∗.

The belief process pt is a martingale, so for every ε>0 there exists an ϵ>0 such that if pt>p̄−ϵ, then
P(infs>tps>p∗+ε | θ=NI)>1−ε. This implies that P(T=Tλ | θ=NI)>1−εwhere Tλ is the arrival
of the next Poisson-shock. Notice that for every η>0 we can take εη>0 such that the agent’s payoff at

pt is no more than (u+c)
(

r1
r1+λ

)
+η. This implies that for every ν>0 we can take η small enough (taking

εη to satisfy the condition above) so that E
(∫min{t+1,T}

t (a(pt))dt | θ=NI
)
<ν. Hence, there existsϖ>0

such that E
(∫min{t+1,T}

t (1−a(t))dt | θ=NI
)
>ϖ.

Consider the law of motion (A1) when pt ∈ [p∗,p̄]. Observe that the instantaneous variance of the
belief process when the (noninvestible type) agent plays a(·) is bounded below by a positive constant

24B stands for the Borel sigma-field, and C([0,T ]) is the set of continuous functions over [0,T ].
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times (1−at)2min{p∗(1−p∗),p̄(1−p̄)}2> 0. Because p̄ < 1 and because pt−p0 =
∫ t
0 dpt, we obtain

that E
[∣∣pmin{t+1,T}−pt

∣∣2]≥ δ for some positive constant δ, hence E
[∣∣pmin{t+1,T}−pt

∣∣]≥ δ. Because(
pmin{t+1,T}−pt

)
has mean zero, we obtain that E

[(
pmin{t+1,T}−pt

)+]≥ δ
2 . Taking ε< δ

4 we conclude

that P
(
pmin{t+1,T}>p̄+

ε
2

)
>0, which is a contradiction.

Case 2: p̄≤p∗.
Assume p̄≤ p∗. Then, b(p) = 0 for all p∈ SP(a). Claim OA.3 implies that, for every T > 0, if the

noninvestible agent plays at=0 for every t∈ [0,T ], then the relationship terminates before T with probability
zero, which implies that the agent’s best response must satisfy at=0 for every t>0. This contradicts the
assumption that p̄ is never reached.

Claim OA.5. p=0.

Proof. The proof is analogous to that of Claim OA.4, and is thus omitted.

Proof of Lemma A1. That SP(a)=(0,1) follows directly from Claims OA.4 and OA.5.

I.2 Translation Invariance

Lemma OA.1 (Translation Invariance of Agent’s Problem). Fix an arbitrary strategy profile (α,β) and some
ϵ∈R. Consider a new profile (α′,β′), defined by α′

t := αt

∣∣∣{Zs−ϵ}s≤t and β′t := βt

∣∣∣{Zs−ϵ}s≤t . Then,
the payoff of the noninvestible agent satisfies

E{U1(t,α,β)|Z0=z}=E
{
U1(t,α

′,β′)
∣∣Z0=z+ϵ

}
,

almost surely, for all t≥0 and z∈R.

Proof. The law of motion of the process {Zt}t≥0 from the perspective of the noninvestible agent is:

dZt=
1
2ψ

2(1−αt)2dt+ψ(1−αt)dBt.

This means that, if the principal perturbs her strategy using a constant displacement, the agent can maintain
his distribution of payoffs intact by imitating the perturbation.

Lemma OA.2 (Conditional Translation Invariance of Principal’s Problem). Fix an arbitrary strategy
profile (α,β) and some ϵ ∈ R. Consider a new profile (α′,β′), defined by α′

t := αt

∣∣∣{Zs−ϵ}s≤t and

β′t := βt

∣∣∣{Zs−ϵ}s≤t for all t≥0. Then, the conditional payoffs of the principal satisfy

E{U2(t,α,β)|θ=NI,Zt=z}=E
{
U2(t,α

′,β′)
∣∣θ=NI,Zt=z+ϵ},

E{U2(t,α,β)|θ=I,Zt=z}=E
{
U2(t,α

′,β′)
∣∣θ=I,Zt=z+ϵ},

almost surely, for all t≥0 and z∈R.

Proof. In the case of conditioning on θ=NI, the law of motion of {Zt}t≥0 is as in the proof of Lemma OA.1.
In the case of conditioning on θ=I, the dynamics of {Zt}t≥0 satisfies

dZt=−1
2ψ

2(1−αt)2dt+ψ(1−αt)dBt.
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In both cases the dynamics are linear givenα, so if the agent perturbs his strategy using a constant displacement
in z−space, the principal can maintain her payoff distribution intact by imitating the perturbation.

I.3 Monotonicity and Curvature of Value Functions

Proof of Corollary A2. We first establish the claimed properties of W(·). From the law of motion of pt
given by (1), we know that the diffusion coefficient converges to 0 as p→ 0 or p→ 1. So it is easy to
verify that limp→0W(p)=0 and limp→1W(p)= λ

r2+λ
wNI . Also, since the principal can always ignore

any information,W(p) is bounded below byW(p)≡ λ
r2+λ

max{0,R(p)}. The principal’s HJB equation is

r2W(p)= max
b̃∈[0,1]

{
1

2
ψ2[1−a(p)]2γ(p)2W ′′(p)+λb̃[R(p)−W(p)]

}
.

So we always have W ′′(p)≥0; that is, W(·) is convex on (0,1). Since limp→0W(p)=0 and W(·)≥0,
W(·) must be (weakly) increasing at 0, and because it is convex,W(·) is increasing on (0,1).

Now we turn to v(·). Suppose first that r1≥ r∗, so that in equilibrium a(·)≡0. From Claim A2 and
conditions (A27) and (A29), v(·) is strictly decreasing and concave on (−∞,z∗), with limz→−∞v(z)=u+c.
From Claim A3 and conditions (A28) and (A30), v(·) is strictly decreasing and convex on (z∗,∞), with
limz→∞v(z)=

r1
r1+λ

(u+c). Suppose now that r1<r∗, so that in equilibrium a(·) is hump-shaped. In light
of Claims A2 and A3 and conditions (A15), (A18), (A21) and (A24), it suffices to show that v(·) is strictly
decreasing and concave on (zL,z∗), and strictly decreasing and convex on (z∗,zR). But these properties follow
immediately from Claim A1 and the fact that a(·) is hump-shaped with 0<a(z)<1 for z∈(zL,zR).

II Omitted Proofs for Theorem 2
Proof of Lemma A7. Recall from the proof of Claim A8 that r1<r∗ implies vR<vL. Then by Claim A10
and Corollary A4, we are done if we can find an λ2≥λ1 and an r such that λ>λ2 and r1<r imply that
a∗−(u;r1)<a

∗
+(u;r1,λ). Using (A31) and (A32), we have

a∗−(u;r1)<a
∗
+(u;r1,λ)

⇐⇒

√
2
ψ ϕ(0)

√
2r1
ψ ϕ

(
vL−u√
κL

)
+Φ
(
vL−u√
κL

)
−Φ(0)

>

1√
r1
ϕ
(√

2
r1+λ

λψ
r1c
u
)

ϕ

(
vR−

r1
r1+λ

u
√
κR

)
+ ψ√

2(r1+λ)

[
Φ

(
vR−

r1
r1+λ

u
√
κR

)
−Φ
(√

2
r1+λ

λψ
r1c
u
)]

(OA.1)

Since ϕ
(
vL−u√
κL

)
≤ϕ(0) and Φ

(
vL−u√
κL

)
≤1, we can find a lower bound for the LHS of (OA.1) whenever

r1<1:
√
2
ψ
ϕ(0)

√
2
ψ
ϕ(0)+1−Φ(0)

.

Now let us find an upper bound for the RHS of (OA.1). First, when λ≥1, we know

1
√
r1
ϕ

(√
2

r1+λ

λψ

r1c
u

)
≤ 1
√
r1
ϕ

(√
2

r1+1

ψ

r1c
u

)
. (OA.2)
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Second, by direct calculation we have
vR−

r1
r1+λ

u
√
κR

=
√
2ψ
4

(
3√
λ+r1

+
√

1
r1+λ

+ 8
ψ2

)
, and when λ≥1, we have

vR− r1
r1+λ

u
√
κR

≤
√
2ψ

4

(
3√
1+0

+

√
1

1+0
+

8

ψ2

)
=

√
2

4

(
3ψ+

√
ψ2+8

)
.

Then,

ϕ

(
vR− r1

r1+λ
u

√
κR

)
≥ϕ

(√
2

4

(
3ψ+

√
ψ2+8

))
. (OA.3)

Third, ψ√
2(r1+λ)

[
Φ

(
vR−

r1
r1+λ

u
√
κR

)
−Φ
(√

2
r1+λ

λψ
r1c
u
)]

≥− ψ√
2λ
(1−Φ(0)).Apparently, there exists λ≥λ1,

such that for all λ>λ, we have

ϕ

(√
2

4

(
3ψ+

√
ψ2+8

))
− ψ√

2λ
(1−Φ(0))≥ 1

2
ϕ

(√
2

4

(
3ψ+

√
ψ2+8

))
. (OA.4)

Defining λ2=max{1,λ} and applying conditions (OA.2), (OA.3) and (OA.4), we know that whenever

λ>λ2, we have the following upper bound for the RHS of (OA.1):
1√
r1
ϕ
(√

2
r1+1

ψ
r1c

u
)

1
2
ϕ
(√

2
4

(
3ψ+

√
ψ2+8

)) .

Now we compare the lower bound for the LHS of (OA.1) with the upper bound for the RHS of (OA.1).

Taking limit r1→0, we have limr1→0

1√
r1
ϕ
(√

2
r1+1

ψ
r1c

u
)

1
2
ϕ
(√

2
4

(
3ψ+

√
ψ2+8

)) =0<

√
2
ψ
ϕ(0)

√
2
ψ
ϕ(0)+1−Φ(0)

. So there exists r′>0

such that this inequality holds for all r1<r′.
Letting r=min{1,r′,r∗}, we have a⋆−(u;r1)<a

⋆
+(u;r1,λ) whenever λ>λ2 and r1<r, as desired.

Proof of Claim A11. Note that

a∗+(u;r1,λ)=1− 1

ϕ

(
vR−

r1
r1+λ

u
√
κR

)
+ ψ√

2(r1+λ)

[
Φ

(
vR−

r1
r1+λ

u
√
κR

)
−Φ
(√

2
r1+λ

λψ
r1c
u
)] 1√

2π
e
− λ2

λ+r1

ψ2

r21c
2 u

2

.

(OA.5)

Note also that, for all λ>λ1,
vR−

r1
r1+λ

u
√
κR

=
√
2ψ
4

(
3√
λ+r1

+
√

1
λ+r1

+ 8
ψ2

)
≤

√
2ψ
4

(
3√
λ1
+
√

1
λ1
+ 8
ψ2

)
. Thus

for all λ>λ1,

ϕ

(
vR− r1

r1+λ
u

√
κR

)
+

ψ√
2(r1+λ)

[
Φ

(
vR− r1

r1+λ
u

√
κR

)
−Φ

(√
2

r1+λ

λψ

r1c
u

)]
≥ ϕ

(√
2ψ

4

(
3√
λ1

+

√
1

λ1
+

8

ψ2

))
− ψ√

2λ
. (OA.6)

Let A′ to be such that 1√
2πA′ =

1
2ϕ
(√

2ψ
4

(
3√
λ1
+
√

1
λ1
+ 8
ψ2

))
. Since limλ→∞

ψ√
2λ

=0, there must exist

λ′3≥λ1, such that for all λ>λ′3,

ϕ

(√
2ψ

4

(
3√
λ1

+

√
1

λ1
+

8

ψ2

))
− ψ√

2λ
>

1√
2πA′

. (OA.7)
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Finally, letA=max{A′,2}. Conditions (OA.5), (OA.6) and (OA.7) then tell us that whenever λ>λ′3, we
have

a∗+(u;r1,λ)>1−A′e
− λ2

λ+r1

ψ2

r21c
2 u

2

≥1−Ae
− λ2

λ+r1

ψ2

r21c
2 u

2

.

III Omitted Proofs for Theorem 3
Proof of Claim A17. The proof is almost identical to Lemma OA.5’s proof, and is thus omitted.

IV Patient Limit: Toward a Proof of Theorem 4
For each n∈N, take the unique Markov equilibrium (an,bn) associated with the discount factor ri,n for
i=1,2. Assume that limn→∞ri,n=0 and limn→∞(r2,n/r1,n) :=χ∈ (0,∞). Let Vn(·) be the agent’s
value function in the equilibrium (an,bn) and Wn(·) be the principal’s value function. We will often use
z ≡ log(p/1−p) as state variable when analyzing the agent’s behavior. When doing so, we denote by
vn(z):=Vn(p(z)) the agent’s value function in the z−space. Write z∗n for the principal’s equilibrium cutoff.
Write zL,n for the infimum belief z at which the agent plays an(z)>0 and write zR,n for the supremum.
Write T for the equilibrium stopping time that stops the play of the game. Without labeling explicitly, we note
that the distribution of T depends on n and the current state z. For i=1,2 and θ∈{NI,I}, let Eθn

{
e−ri,nT

}
be the expected discount factor when the stopping action is taken in the equilibrium (an,bn) discounted at
rate ri,n. When the game starts at state z, let

En
{
e−ri,nT

}
:=p(z)ENIn

{
e−ri,nT

}
+(1−p(z))EIn

{
e−ri,nT

}
.

Claim OA.6. Take (r1,r2)∈R2
++ and let τ be any stopping time. Assume that E{e−r1τ}=ξ∈(0,1).

i) If r2≤r1 then
ξ≤E

{
e−r2τ

}
≤ξ(r2/r1).

ii) If r2>r1 then
ξ(r2/r1)≤E

{
e−r2τ

}
≤ξ.

Moreover, for each ξ∈(0,1) and any inequality above, there exists a distribution over stopping times for
which this inequality is tight.

Proof. The proof of this technical claim can be found in our working paper (Ekmekci et al., 2021).

Claim OA.7. For every ε> 0 there exists z† ∈R and ñ1 ∈N such that, if z≥ z† and n≥ ñ1, then the
continuation payoff of the agent at z is less than ε in the equilibrium (an,bn).

Proof. Otherwise we can find a sequence of equilibria (an,bn) starting at (zn) → +∞ in which the
agent obtains a payoff weakly greater than ε. Since the agent’s equilibrium payoff is bounded above by
(u+c)

[
1−ENIn

(
e−r1,nT

)]
, we have ENIn

(
e−r1,nT

)
≤
(
1− ε

u+c

)
, and hence the principal’s payoff in equi-

librium (an,bn) at zn is at most max

{(
1− ε

u+c

)
,
(
1− ε

u+c

)(r2,n/r1,n)}
p(zn)wNI,which is always strictly

less thanwNI . Meanwhile, since r2,n→0 and zn→∞ as n→∞, the principal’s payoff at zn by terminating

the relationship in the first opportunity satisfies limn→∞

(
λ

r2,n+λ

)
[(1−p(zn))wI+p(zn)wNI]=wNI. So

the principal has a profitable deviation when n is sufficiently large.
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We assume that n≥ñ1 for the remainder of this proof.

Claim OA.8. For every fixed z0, we have limsupn→∞vn(z0)≤u.

Proof. Take any small ε∈(0,u/2). For each n∈N, let znε :=inf{z|an(z)=1−ε}. There are two cases to
consider. Let z† be defined and delivered by Claim OA.7. Every sequence can be split into (at most) two
subsequence, each one of them satisfying one of the cases below.

Case 1 znε ≤z† for every n∈N.
In this case, takem∈N such that z†−m<z0 and let zn0 :=z

n
ε −m. Since vn(·) is decreasing, it suffices

to show that limsupn→∞vn(z
n
0 )≤u.

Take any ζ>0. Suppose that the game starts at zn0 and consider the stopping time T̂n that stops the play of
the game at the first timeZn(t)=znε (setting T̂n=+∞ if this event does not happen in finite time). Note that
Zn(t) is a submartingale under the strategy of the noninvestible type and that an(z)≤1−ε with probability
one before T̂n. Using this observation and Zn(t)’s law of motion (A2), it is straightforward to show that
T̂n<+∞ with probability one under the strategy of the noninvestible type and that ENIn

[
e−r1,nT̂n

]
→1.

Take n∗∗∈N for which n>n∗∗ implies ENIn
[
e−r1,nT̂n

]
>1−ε. Next notice that, at the state znε , vn is

decreasing and concave (by Corollary A2), and hence

r1,nvn(z
n
ε )=r1,n[u+(1−an(znε ))c]+

1

2
ψ2[1−an(znε )]

2[v′(an(znε ))+v′′(an(znε ))]
≤r1,n[u+(1−an(znε ))c],

which implies vn(zεn)≤u+εc, because an(zεn)=1−ε. It follows that the payoff of the noninvestible type
converges to a number not greater than (1−ε)(u+εc)+ε(u+c), which proves the result as ε is arbitrary.

Case 2 znε >z† for every n∈N.
We may assume that z0<z† for every n as otherwise the claim follows from Claim OA.7. Suppose that

the game starts at z0 and consider the stopping time T̂n that stops the play of the game at z†. As in Case
1, we have T̂n<+∞ with probability one under the noninvestible-type’s strategy and ENIn

{
e−r1,nT̂n

}
→1.

Since limsupn→∞vn
(
z†
)
≤ε<u/2, the rest of the proof follows the same argument as in Case 1.

Claim OA.9. limn→∞zL,n=−∞.

Proof. The proof follows verbatim from Claim A14’s proof.

Lemma OA.3. For every z0< liminfz∗n, we have limn→∞an(z0)=1.

Proof. By Claim OA.9, z0∈(zL,n,z
∗
n) for n sufficiently large. Then from condition (A11), we know that

an(·) eventually satisfies the following differential equation

a′n(z)=1−an(z)−2
(
vn(z)−u

c

)
. (OA.8)

Assume toward a contradiction that we can find a subsequence such that limn→∞an(z0)= ā<1. Take
m∈N such that 1−ā

4 m>2. Claim OA.9 implies that [z0−m,z0]⊂(zL,n,z
∗
n) for n sufficiently large. Claim

OA.8 and the monotonicity of vn(·) imply that we can find n†∈N such that for every n≥n†, for every
z∈ [z0−m,z0], we have 2

(
vn(z)−u

c

)
< 1−ā

4 . Given the contradiction assumption, we can find n†∈N such
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that for every n≥n† we have an(z0)< 1+ā
2 . Since an(·) is strictly increasing on [z0−m,z0], this implies

an(z)<
1+ā
2 for all z∈ [z0−m,z0]. So (OA.8) implies a′n(z)>

1−ā
4 for all z∈ [z0−m,z0] and hence

an(z0−m)<an(z0)− 1−ā
4 m<an(z0)−2<0,

which leads to a contradiction as an is bounded below by 0.

Lemma OA.4. For every z0< liminfn→∞z
∗
n, we have limn→∞vn(z0)=u.

Proof. By Claim OA.9, z0∈ (zL,n,z
∗
n) for n sufficiently large. Take ϑ>0 such that z0+2ϑ< liminfz∗n

and, taking a subsequence if necessary, assume that z0+ϑ<z∗n for each one of its elements.
Assume toward a contradiction, taking a subsequence if necessary, that limn→∞vn(z0)<u−ε, for some

ε>0. Because vn(·) is strictly decreasing, we may take n∗ such that n≥n∗ implies vn(z)<u− ε
2 for all

z∈
[
z0,z0+

ϑ
2

]
. In this case, we have a′n(z)=1−an(z)−2

(
vn(z)−u

c

)
≥ ε
c for every z∈

[
z0,z0+

ϑ
2

]
. This

implies that limsupnan(z0)≤1−
(
ϑ
2

)
ε
c , contradicting Lemma OA.3.

Lemma OA.5. Fix a prior p0∈(0,1) and some p̄∈(p0,1). For each r>0, consider an adapted Markov
function αr(·) and a belief process defined by substituting αr(·) into (A1). Take ε> 0 and let T̄ be the
random time that stops the play in the first time that p≥ p̄. Then we have:

limsup
r↓0

ENI
{
r

∫ T̄

0
e−rtI{αr(pt)≤1−ε}dt

}
=0.

Proof. Take a small ϵ>0. Next, take ζ>0 and let Tζ be the stopping time that stops the play in the first time
that the posterior reaches (ζ,p̄)c. Using the martingale property of beliefs whose law of motion is given by
(A1), it is straightforward to show that we can take ζ small enough so that PNI

{
Tζ<∞,p(Tζ)=ζ

}
< ϵ

2 .
Therefore, we have:

ENI
{
r

∫ T̄

0
e−rtI{αr(pt)≤1−ε}dt

}
≤ ϵ

2
+ENI

{
r

∫ Tζ

0
I{αr(pt)≤1−ε}dt

}
.

We must then show that limsupr↓0ENI
{
r
∫ Tζ
0 I{αr(pt)≤1−ε}dt

}
< ϵ

2 . Let ξr(t) be a function that is 1

whenever ar(pt)≤1−ε and 0 otherwise. It suffices to show that limsupr↓0rENI
{∫ Tζ

0 ξr(t)dt
}
< ϵ

2 .

For that we will consider a different stopping time T∗ and a new process ξ∗r(t) which are built from Tζ and
ξr(t) in the following way. Whenever Tζ<∞ and

∫ Tζ
0 ξr(t)dt∈(m−1,m) for somem∈N, we will set

ξ∗r(t):=

{
ξr(t) t≤Tζ,
1 t>Tζ.

We will also set T∗ := Tζ + t̃, where t̃ is defined by
∫ Tζ
0 ξr(t)dt+ t̃ =m. Whenever Tζ < +∞ and∫ Tζ

0 ξr(t)dt=m−1 for some m∈N, we set ξ∗r(t) :=ξr(t) and T∗ :=Tζ. Clearly it suffices to show that

limsupr↓0ENI
{
r
∫ T∗

0 ξ∗r(t)dt
}
< ϵ

2 . Next, we build a family of stochastic processes
{
ξ∗r,m(t)

}
m∈N from
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ξ∗r(t) by setting

ξ∗r,m(t):=

{
ξ∗r(t)

∫ t
0ξ

∗(t)dt∈(m−1,m],

0 otherwise.

This immediately implies that rENI
{∫ T∗

0 ξ∗r(t)dt
}
=r
∑∞

m=1ENI
{∫ T∗

0 ξ∗r,m(t)dt
}
.

Next, observe that, conditional on θ=NI, pt is a bounded submartingale. Thus, for any adapted function
ξ̃(t)∈{0,1} and any stopping time T̃, we have

1≥pT−p0=ENI
[∫ T

0
dpt

]
=ENI

[∫ T

0
ξ̃(t)dpt

]
+ENI

[∫ T

0

(
1−ξ̃(t)

)
dpt

]
≥ENI

[∫ T

0
ξ̃(t)dpt

]
because

(
1−ξ̃(t)

)
being an adapted process and pt being a submartingale jointly imply thatENI

[∫ T
0

(
1−ξ̃(t)

)
dpt

]
≥

0. As a result, we have

1≥ENI
[∫ T

0
ξ∗r(t)dpt

]
=

∞∑
m=1

ENI
[∫ T

0
ξ∗r,m(t)dpt

]
. (OA.9)

Next, since 0<ζ<p̄<1, from condition (A1) it is straightforward to show that there exists a positive
constant ϑ>0 such that, for anym∈N, we have

ENI
{∫ T∗

0
ξ∗r,m(t)dpt

}
≥ϑENI

{∫ T∗

0
ξ∗r,m(t)dt

}
. (OA.10)

Therefore, combining (OA.9) and (OA.10) we have

∞∑
m=1

ENI
{∫ T∗

0
ξ∗r,m(t)dt

}
≤ 1

ϑ

∞∑
m=1

ENI
{∫ T∗

0
ξ∗r,m(t)dpt

}
≤ 1

ϑ
,

implying that
∑∞

m=1rENI
{∫ T∗

0 ξ∗r,m(t)dt
}
≤ r
ϑ , which is smaller than ϵ

2 when r is sufficiently small.

Lemma OA.6. limn→∞z
∗
n=z

∗∗.

Proof. Suppose toward a contradiction that we can find a subsequence for which limn→∞z
∗
n := z̄ >z

∗∗.
Let zm be the midpoint between z̄ and z∗∗. Take ε> 0. Consider the game starting at zm. Notice that
Lemma OA.4 implies that limn→∞vn(z

m)=u, while Lemma OA.5 implies that, for each ν>0, we have

lim
n→∞

ENIn
{
r1,n

∫ T

0
e−r1,ntI{an(zt)≤1−ν}dt

}
=0.

These two observations imply that limn→∞ENIn
(
e−r1,nT

)
=0, which, by the same argument as Claim

OA.6’s proof, implies that limn→∞ENIn
(
e−r2,nT

)
=0; that is, conditional on θ=NI, the principal derives

zero discounted payoff from the game. It follows that the principal obtains a limit payoff bounded above
by zero at zm. But then, for n sufficiently large, if the stopping opportunity arrives at z=zm, the principal
can profitably deviate by stopping the game to obtain p(zm)wNI+(1−p(zm))wI>0, a contradiction.

Lemma OA.7. For every z0>z∗∗ and i=1,2, we have limn→∞En
{
e−ri,nT

}
=1.
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Proof. Fix z0 > z∗∗. By Claim OA.6, it suffices to show that limn→∞En
{
e−r2,nT

}
= 1. Taking a

subsequence if necessary, assume toward a contradiction that limn→∞En
{
e−r2,nT

}
<1.

Let τ̃ be the stopping time that stops the play in the first time that either the state reaches [0,p(z∗n)] or when
T happens. Let x=e−r2,nt. LetQn be the distribution of pτ̃ andHn(· |pτ̃) be the conditional distribution
of x given pτ̃ .
Step 1. We show that the contradiction assumption implies that, the discounted amount of time that the
relationship continues with beliefs close to p(z∗n) is nonnegligible (i.e., condition (OA.13) holds).

Note that

Wn(p(z0))=

∫ 1

p(z∗n)

∫ 1

0
x
[
I{pτ̃>p(z∗n)}R(pτ̃)+I{pτ̃≤p(z∗n)}Wn(p(z

∗
n))
]
Hn(dx |pτ̃)dQn(dpτ̃).

Because limn→∞Wn(p(z
∗
n))=limn→∞R(p(z

∗
n))=0, we have

limsup
n→∞

Wn(p(z0))=limsup
n→∞

∫ 1

p(z∗n)

∫ 1

0
xR(pτ̃)Hn(dx |pτ̃)Qn(dpτ̃). (OA.11)

Moreover, sinceR(p∗∗)=0 and p(z∗n)→p∗∗ (by Lemma OA.6), for every ε>0 there exists ζ>0 such that
when n is sufficiently large,R(p)>ζ for every p>p(z∗n)+ε. Combining this observation with condition
(OA.11), it is easy to show that, for every ε>0, if

limsup
n→∞

∫ 1

p(z∗n)+ε

∫ 1

0
(1−x)Hn(dx |pτ̃)Qn(dpτ̃)>0,

then we would have limsupn→∞Wn(p(z0))<R(p(z0)), which contradicts bn(z0)=1 (principal optimality)
when n is sufficiently large. Hence, for every ε>0, we have

limsup
n→∞

∫ 1

p(z∗n)+ε

∫ 1

0
(1−x)Hn(dx |pτ̃)Qn(dpτ̃)=0. (OA.12)

Therefore, the assumption that limn→∞En
(
e−r2,nT

)
<1 implies that, for every ε>0, we have

limsup
n→∞

∫ p(z∗n)+ε

p(z∗n)

∫ 1

0
(1−x)Hn(dx |pτ̃)Qn(dpτ̃)>0. (OA.13)

For the remainder of this proof, we take ε>0 such that p(z∗n)+ε<
(
z0+z∗∗

2

)
.

Step 2. We show that condition (OA.13) implies that, the noninvestible type has a profitable deviation by
fully mimicking the investible type.

Lemma OA.5 implies that if we let T̄m be the random time that stops the play in the first time that the
posterior leaves

(
m−1,1−m−1

)
or that T happens, then for each υ>0, we have

lim
n→∞

ENIn

{
r1,n

∫ T̄m

0
e−r1,ntI{an(pt)≤1−υ}dt

}
=0.

By the martingale property of beliefs we can takem∈N large enough to make limsupn→∞PNI
{
inft≤Tpt≤m−1

}
as small as we want. Analogously, we can take m large enough to guarantee that whenever the posterior
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starts at
(
1−m−1,1

)
then limsupn→∞PNI {inft≤Tpt≤p(z∗n)+ε} is as small as we want. These two

observations then imply that

limsup
n→∞

ENIn
{
r1,n

∫ T

0
e−r1,nt(1−an(pt))dt

}
=0. (OA.14)

Next, let y=e−r1,nt. For θ∈{NI,I}, letQθn stand for the distribution of pT (not pτ̃ as above) given the
strategy of type θ and letHθ

n(· |pT) stand for the conditional distribution of y given pT and the strategy of
type θ. On the one hand, using (OA.12) and (OA.14), it is straightforward to see that, taking a subsequence
if necessary, the limit payoff of the noninvestible type from following his equilibrium strategy is given by:

lim
n→∞

u

∫ p(z∗n)+ε

0

∫ 1

0
(1−y)HNI

n (dy |pT)QNIn (dpT)>0, (OA.15)

where the positive sign follows from (OA.13). On the other hand, the limit payoff of the noninvestible type from
following the strategy of the investible type (i.e., always boosting performance with probability 1) is given by:

lim
n→∞

u

∫ p(z∗n)+ε

0

∫ 1

0
(1−y)HI

n(dy |pT)QIn(dpT)>0. (OA.16)

Next, a straightforward application of Bayes rule implies thatHNI
n (· |pT)=HI

n(· |pT) for every pT∈(0,1).
Moreover, using p(z∗n)+ε<

(
z0+z∗∗

2

)
and Bayes rule, one can find ξ>1 such that QIn(A)≥ξQNIn (A)

for every (Borel-measurable) A⊂ [0,p(z∗n)+ε]. Hence, subtracting (OA.15) from (OA.16) we obtain an
expression at least as large as

lim
n→∞

(ξ−1)u

∫ p(z∗n)+ε

0

∫ 1

0
(1−y)HNI

n (dy |pT)QNIn (dpT)>0.

This implies that the noninvestible type can profitably deviate by fully mimicking, which leads to a contra-
diction and concludes the proof.

Proof of Theorem 4. First, for the agent, Lemmas OA.4 and OA.6 tell us that limn→∞vn(z)=u for all
z<z∗∗, and Lemma OA.7 implies that limn→∞vn(z)=0 for all z>z∗∗.

Next, for the principal, we first argue that Wn(·) converges pointwise to max{0,R(·)}. In light of
Corollary A2, we continuously extend Wn(·) from (0,1) to [0,1] by setting Wn(0) = 0 and Wn(1) =

λ
r2,n+λ

wNI . Lemma OA.7 implies that limn→∞Wn(p(z))=R(p(z)) for all z>z∗∗. We now show that
limn→∞Wn(p(z))=0 for all z≤z∗∗. To see this, fix any z≤z∗∗ and take any ε>0. SinceR(p(z∗∗))=0,
there exists δ > 0 such that R(p(z∗∗)+ δ)< ε

2 . But then, we can find n∗ such that for every n > n∗,
Wn(p(z

∗∗)+δ)<ε. SinceWn(·) is increasing, it follows thatWn(p(z))<ε for every n>n∗. So we must
have limn→∞Wn(p(z))=0, because ε is arbitrary andWn(·) is bounded below by 0.

To show uniform convergence, note that for any fixed n,Wn(·) is bounded below by λ
r2,n+λ

max{0,R(·)}
such that Wn(1)=

λ
r2,n+λ

R(1). Because Wn(·) is convex and increasing, |W ′
n(·)| is bounded above by

(wNI−wI), and hence {Wn}n is uniformly equicontinuous. SinceWn converges pointwise to max{0,R},
invoking Arzelà–Ascoli theorem we conclude that the convergence is uniform.
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