Second-best fairness: The trade-off between false positives and false negatives

Online Appendix

Alexander W. Cappelen and Cornelius Cappelen and Bertil Tungodden
June 29, 2023

A. Additional material

Table A1: Multiple Hypotheses Testing - Compensation-experiment

R-W p-value :					H-B p-value :					
All	US		Norway		All		US		Norway	
(2) (3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)

| 25 percent | 0.0040 | 0.0040 | 0.0040 | 0.0040 | 0.0080 | 0.0080 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0086 | 0.0086 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 percent | 0.0040 | 0.0040 | 0.0040 | 0.0040 | 0.0040 | 0.0040 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 75 percent | 0.0040 | 0.0040 | 0.0040 | 0.0040 | 0.0040 | 0.0040 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 100 percent | 0.0040 | 0.0040 | 0.0040 | 0.0040 | 0.0040 | 0.0040 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| Controls | No | Yes |

Note: The table reports the Holm-Bonferroni and Romano-Wolf corrections for multiple hypotheses testing for the estimated treatment effects in Table 3.

Table A2: Country Differences

	Compensation		Earnings		Unemployment		All Treatments	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Norway	$\begin{gathered} \hline 0.027 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.025 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.093 \\ (0.018) \end{gathered}$	$\begin{gathered} \hline 0.090 \\ (0.018) \end{gathered}$	$\begin{gathered} 0.067 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.065 \\ (0.015) \end{gathered}$	$\begin{gathered} 0.062 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.062 \\ (0.011) \end{gathered}$
25 percent	$\begin{aligned} & -0.139 \\ & (0.026) \end{aligned}$	$\begin{aligned} & -0.139 \\ & (0.026) \end{aligned}$	$\begin{aligned} & -0.169 \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.168 \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.163 \\ & (0.024) \end{aligned}$	$\begin{aligned} & -0.163 \\ & (0.024) \end{aligned}$	$\begin{aligned} & -0.157 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.156 \\ & (0.015) \end{aligned}$
50 percent	$\begin{aligned} & -0.179 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.177 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.161 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.162 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.264 \\ & (0.021) \end{aligned}$	$\begin{aligned} & -0.268 \\ & (0.021) \end{aligned}$	$\begin{aligned} & -0.227 \\ & (0.011) \end{aligned}$	$\begin{aligned} & -0.228 \\ & (0.011) \end{aligned}$
75 percent	$\begin{aligned} & -0.495 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.495 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.431 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.431 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.581 \\ & (0.026) \end{aligned}$	$\begin{aligned} & -0.580 \\ & (0.026) \end{aligned}$	$\begin{aligned} & -0.502 \\ & (0.016) \end{aligned}$	$\begin{aligned} & -0.501 \\ & (0.016) \end{aligned}$
100 percent	$\begin{aligned} & -0.735 \\ & (0.023) \end{aligned}$	$\begin{aligned} & -0.734 \\ & (0.023) \end{aligned}$	$\begin{aligned} & -0.728 \\ & (0.023) \end{aligned}$	$\begin{aligned} & -0.727 \\ & (0.023) \end{aligned}$	$\begin{aligned} & -0.834 \\ & (0.019) \end{aligned}$	$\begin{aligned} & -0.836 \\ & (0.019) \end{aligned}$	$\begin{aligned} & -0.765 \\ & (0.013) \end{aligned}$	$\begin{aligned} & -0.764 \\ & (0.013) \end{aligned}$
Norway*25	$\begin{gathered} 0.071 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.068 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.087 \\ (0.033) \end{gathered}$	$\begin{gathered} 0.088 \\ (0.033) \end{gathered}$	$\begin{gathered} 0.008 \\ (0.033) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.033) \end{gathered}$	$\begin{gathered} 0.056 \\ (0.020) \end{gathered}$	$\begin{gathered} 0.052 \\ (0.020) \end{gathered}$
Norway*50	$\begin{gathered} 0.005 \\ (0.032) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.032) \end{gathered}$	$\begin{aligned} & -0.052 \\ & (0.029) \end{aligned}$	$\begin{aligned} & -0.046 \\ & (0.029) \end{aligned}$	$\begin{aligned} & -0.020 \\ & (0.028) \end{aligned}$	$\begin{gathered} -0.020 \\ (0.028) \end{gathered}$	$\begin{aligned} & -0.037 \\ & (0.014) \end{aligned}$	$\begin{aligned} & -0.036 \\ & (0.014) \end{aligned}$
Norway*75	$\begin{gathered} 0.060 \\ (0.042) \end{gathered}$	$\begin{gathered} 0.057 \\ (0.042) \end{gathered}$	$\begin{gathered} 0.067 \\ (0.040) \end{gathered}$	$\begin{gathered} 0.070 \\ (0.040) \end{gathered}$	$\begin{gathered} -0.006 \\ (0.038) \end{gathered}$	$\begin{aligned} & -0.010 \\ & (0.038) \end{aligned}$	$\begin{gathered} 0.038 \\ (0.023) \end{gathered}$	$\begin{gathered} 0.035 \\ (0.023) \end{gathered}$
Norway*100	$\begin{aligned} & -0.126 \\ & (0.031) \end{aligned}$	$\begin{aligned} & -0.126 \\ & (0.031) \end{aligned}$	$\begin{aligned} & -0.184 \\ & (0.029) \end{aligned}$	$\begin{aligned} & -0.181 \\ & (0.029) \end{aligned}$	$\begin{gathered} -0.112 \\ (0.023) \end{gathered}$	$\begin{gathered} -0.108 \\ (0.024) \end{gathered}$	$\begin{aligned} & -0.140 \\ & (0.016) \end{aligned}$	$\begin{aligned} & -0.141 \\ & (0.016) \end{aligned}$
Constant	$\begin{gathered} 0.887 \\ (0.015) \\ \hline \end{gathered}$	$\begin{gathered} 0.868 \\ (0.019) \\ \hline \end{gathered}$	$\begin{gathered} 0.881 \\ (0.016) \\ \hline \end{gathered}$	$\begin{gathered} 0.882 \\ (0.020) \\ \hline \end{gathered}$	$\begin{gathered} 0.922 \\ (0.013) \\ \hline \end{gathered}$	$\begin{gathered} 0.911 \\ (0.017) \\ \hline \end{gathered}$	$\begin{gathered} 0.896 \\ (0.009) \\ \hline \end{gathered}$	$\begin{gathered} 0.885 \\ (0.010) \\ \hline \end{gathered}$
Controls	No	Yes	No	Yes	No	Yes	No	Yes
N	5,395	5,395	5,391	5,391	5,395	5,395	22,476	22,476
R^{2}	0.307	0.314	0.325	0.332	0.356	0.367	0.235	0.245
F-Test (interactions)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000

Note: The table reports OLS regressions on a binary variable taking the value one if the spectator pays the worker in the Compensation-experiment (Columns (1)-(2)), in the Earnings-experiment (Columns (3)-(4)), in the Unemployment-experiment (Columns (5)-(6)), and across all treatments (Columns (7)-(8)). "Norway" is an indicator for the spectator being from Norway. " 25 percent", " 50 percent", " 75 percent", and " 100 percent" are treatment indicators."Norway*25/50/75/100" are indicator variables between the spectator being from Norway and the treatment indicators. Controls include dummies for income, education, gender, age, and political ideology. The estimates are population weighted. Standard errors in parentheses.

Table A3: Additional Treatments with Controls

Panel A						
	National			Stakes		
	All	US	Norway	All	US	Norway
High stakes	$\begin{gathered} -0.046 \\ (0.021) \end{gathered}$	$\begin{aligned} & -0.027 \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.063 \\ & (0.031) \end{aligned}$			
Nationality				$\begin{aligned} & -0.009 \\ & (0.020) \end{aligned}$	$\begin{aligned} & -0.003 \\ & (0.026) \end{aligned}$	$\begin{gathered} -0.012 \\ (0.030) \end{gathered}$
Constant	$\begin{gathered} 0.722 \\ (0.021) \end{gathered}$	$\begin{gathered} 0.721 \\ (0.029) \end{gathered}$	$\begin{gathered} 0.716 \\ (0.031) \end{gathered}$	$\begin{gathered} 0.688 \\ (0.021) \end{gathered}$	$\begin{gathered} 0.686 \\ (0.029) \end{gathered}$	$\begin{gathered} 0.684 \\ (0.030) \end{gathered}$
Controls	Yes	Yes	Yes	Yes	Yes	Yes
N	2,696	1,347	1,349	2,696	1,347	1,349
R^{2}	0.014	0.007	0.029	0.017	0.008	0.029

Panel B

	Endowment					Cost		
	All	US	Norway	All	US	Norway		
Endowment	-0.015	0.005	-0.033					
	(0.020)	(0.026)	(0.030)					
Low cost				-0.060	-0.114	-0.004		
				(0.024)	(0.032)	(0.035)		
High cost				-0.060	-0.083	-0.037		
				(0.024)	(0.031)	(0.036)		
	0.710	0.692	0.728	0.695	0.708	0.676		
Constant	(0.021)	(0.028)	(0.031)	(0.024)	(0.032)	(0.036)		
Controls	Yes	Yes	Yes	Yes	Yes	Yes		
N	2,696	1,346	1,350	2,699	1,346	1,353		
R^{2}	0.014	0.008	0.027	0.021	0.019	0.033		

Note: The table reports OLS regressions on a binary variable taking the value one if the spectator pays the compensation, with controls. In Panel A, the base treatment is the main treatment in the Compensation-experiment with a 50 percent probability of a false claim. "High stakes" indicates the treatment where the stakes are 8 USD, and "Nationality" indicates the treatment where the spectators were not told that the workers were recruited on an international labor market platform and where the pay was reported in the local currency. In columns (1)(3) in Panel B, the base treatment is the main treatment in the Compensationexperiment with a 50 percent probability of a false claim, and "Endowment" indicates the treatment where the spectator is endowed with 1 USD but does not have a personal cost of paying. In columns (4)-(6) in Panel B, the base treatment is the treatment where the spectator is endowed with 1 USD but does not have a personal cost of paying, and "Low cost" and "High cost" indicate treatments where spectators are endowed with 1 USD but there is a personal cost (0.1 USD and 0.3 USD) if they decide to pay the worker. Controls include dummies for income, education, gender, age, and political ideology. The estimates are population weighted. Standard errors in parentheses.

Table A4: Multiple Hypotheses Testing - Additional Treatments

	R-W p-value:			H-B p - value :		
	All	US	Norway	All	US	Norway
	(2)	(3)	(4)	(5)	(6)	(7)
High Stakes	0.1355	0.7131	0.1633	0.0945	1	0.1885
Nationaly	0.6135	0.9880	0.7331	0.7534	1	1
Endowment	0.6135	0.9880	0.7331	0.7534	1	1
Low Cost	0.0239	0.0080	0.7331	0.0217	0.0033	1
High Cost	0.0677	0.0239	0.7331	0.0417	0.0409	1
Controls	Yes	Yes	Yes	Yes	Yes	Yes

Note: The table reports the Holm-Bonferroni and Romano-Wolf corrections for multiple hypotheses testing for the estimated treatment effects in Table 5.

Table A5: Regression Analysis of Treatment Effects - Earnings-experiment

	All		US		Norway	
	(1)	(2)	(3)	(4)	(5)	(6)
25 percent	$\begin{gathered} -0.123 \\ (0.017) \end{gathered}$	$\begin{gathered} -0.121 \\ (0.017) \end{gathered}$	$\begin{gathered} -0.169 \\ (0.027) \end{gathered}$	$\begin{gathered} -0.170 \\ (0.027) \end{gathered}$	$\begin{aligned} & -0.082 \\ & (0.019) \end{aligned}$	$\begin{gathered} -0.080 \\ (0.019) \end{gathered}$
50 percent	$\begin{gathered} -0.187 \\ (0.015) \end{gathered}$	$\begin{gathered} -0.185 \\ (0.015) \end{gathered}$	$\begin{aligned} & -0.161 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.163 \\ & (0.022) \end{aligned}$	$\begin{gathered} -0.213 \\ (0.019) \end{gathered}$	$\begin{aligned} & -0.207 \\ & (0.019) \end{aligned}$
75 percent	$\begin{gathered} -0.399 \\ (0.020) \end{gathered}$	$\begin{gathered} -0.397 \\ (0.020) \end{gathered}$	$\begin{aligned} & -0.431 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.433 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.365 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.361 \\ & (0.028) \end{aligned}$
100 percent	$\begin{gathered} -0.820 \\ (0.014) \end{gathered}$	$\begin{gathered} -0.818 \\ (0.015) \end{gathered}$	$\begin{gathered} -0.728 \\ (0.023) \end{gathered}$	$\begin{gathered} -0.727 \\ (0.023) \end{gathered}$	$\begin{gathered} -0.912 \\ (0.017) \end{gathered}$	$\begin{aligned} & -0.907 \\ & (0.017) \end{aligned}$
Low income		$\begin{gathered} -0.005 \\ (0.012) \end{gathered}$		$\begin{aligned} & -0.027 \\ & (0.017) \end{aligned}$		$\begin{gathered} 0.031 \\ (0.017) \end{gathered}$
Low education		$\begin{gathered} -0.033 \\ (0.015) \end{gathered}$		$\begin{gathered} -0.025 \\ (0.022) \end{gathered}$		$\begin{aligned} & -0.049 \\ & (0.020) \end{aligned}$
Male		$\begin{gathered} 0.016 \\ (0.012) \end{gathered}$		$\begin{gathered} 0.011 \\ (0.017) \end{gathered}$		$\begin{gathered} 0.022 \\ (0.016) \end{gathered}$
Low age		$\begin{gathered} 0.035 \\ (0.012) \end{gathered}$		$\begin{gathered} 0.035 \\ (0.017) \end{gathered}$		$\begin{gathered} 0.035 \\ (0.016) \end{gathered}$
Right-wing		$\begin{gathered} -0.067 \\ (0.013) \end{gathered}$		$\begin{gathered} -0.061 \\ (0.018) \end{gathered}$		$\begin{aligned} & -0.061 \\ & (0.019) \end{aligned}$
Constant	$\begin{gathered} 0.927 \\ (0.009) \end{gathered}$	$\begin{gathered} 0.930 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.881 \\ (0.016) \end{gathered}$	$\begin{gathered} 0.897 \\ (0.023) \end{gathered}$	$\begin{gathered} 0.973 \\ (0.008) \end{gathered}$	$\begin{gathered} 0.961 \\ (0.017) \end{gathered}$
N	5,391	5,391	2,692	2,692	2,699	2,699
R^{2}	0.311	0.318	0.239	0.245	0.412	0.421

Note: The table reports OLS regressions on a binary variable taking the value of one if the spectator pays the earnings in the Earnings-experiment for the pooled, US, and Norway samples. " 25 percent", " 50 percent", " 75 percent", and " 100 percent" are treatment indicators. Controls include dummies for income, education, gender, age, and political ideology. The estimates are population weighted. Standard errors in parentheses.

Table A6: Multiple Hypotheses Testing - Earnings-experiment

	R-W p-value :						H-B p-value :					
	All		US		Norway		All		US		Norway	
	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
25 percent	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
50 percent	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
75 percent	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
100 percent	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0	0	0.0000	0.0000	0	0
Controls	No	Yes										

Note: The table reports the Holm-Bonferroni and Romano-Wolf corrections for multiple hypotheses testing for the estimated treatment effects in Table A5.

Table A7: Compensation-experiment versus Earnings-experiment

	All		US		Norway	
	(1)	(2)	(3)	(4)	(5)	(6)
25 percent	$\begin{aligned} & -0.104 \\ & (0.018) \end{aligned}$	$\begin{aligned} & \hline-0.106 \\ & (0.018) \end{aligned}$	$\begin{aligned} & -0.139 \\ & (0.026) \end{aligned}$	$\begin{aligned} & \hline-0.140 \\ & (0.026) \end{aligned}$	$\begin{aligned} & \hline-0.068 \\ & (0.025) \end{aligned}$	$\begin{gathered} -0.075 \\ (0.026) \end{gathered}$
50 percent	$\begin{aligned} & -0.176 \\ & (0.016) \end{aligned}$	$\begin{aligned} & -0.176 \\ & (0.016) \end{aligned}$	$\begin{aligned} & -0.179 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.177 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.173 \\ & (0.023) \end{aligned}$	$\begin{aligned} & -0.176 \\ & (0.023) \end{aligned}$
75 percent	$\begin{aligned} & -0.465 \\ & (0.021) \end{aligned}$	$\begin{aligned} & -0.466 \\ & (0.021) \end{aligned}$	$\begin{aligned} & -0.495 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.496 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.436 \\ & (0.032) \end{aligned}$	$\begin{gathered} -0.440 \\ (0.032) \end{gathered}$
100 percent	$\begin{aligned} & -0.797 \\ & (0.016) \end{aligned}$	$\begin{aligned} & -0.796 \\ & (0.016) \end{aligned}$	$\begin{aligned} & -0.735 \\ & (0.023) \end{aligned}$	$\begin{aligned} & -0.734 \\ & (0.023) \end{aligned}$	$\begin{aligned} & -0.861 \\ & (0.020) \end{aligned}$	$\begin{gathered} -0.863 \\ (0.020) \end{gathered}$
Earnings	$\begin{gathered} 0.026 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.024 \\ (0.014) \end{gathered}$	$\begin{aligned} & -0.006 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.006 \\ & (0.022) \end{aligned}$	$\begin{gathered} 0.060 \\ (0.017) \end{gathered}$	$\begin{gathered} 0.052 \\ (0.018) \end{gathered}$
Earnings*25	$\begin{aligned} & -0.019 \\ & (0.025) \end{aligned}$	$\begin{aligned} & -0.014 \\ & (0.025) \end{aligned}$	$\begin{aligned} & -0.030 \\ & (0.037) \end{aligned}$	$\begin{aligned} & -0.028 \\ & (0.037) \end{aligned}$	$\begin{aligned} & -0.014 \\ & (0.032) \end{aligned}$	$\begin{aligned} & -0.004 \\ & (0.032) \end{aligned}$
Earnings*50	$\begin{aligned} & -0.011 \\ & (0.022) \end{aligned}$	$\begin{gathered} -0.009 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.018 \\ (0.031) \end{gathered}$	$\begin{gathered} 0.015 \\ (0.031) \end{gathered}$	$\begin{aligned} & -0.040 \\ & (0.030) \end{aligned}$	$\begin{aligned} & -0.032 \\ & (0.030) \end{aligned}$
Earnings*75	$\begin{gathered} 0.066 \\ (0.029) \end{gathered}$	$\begin{gathered} 0.070 \\ (0.029) \end{gathered}$	$\begin{gathered} 0.064 \\ (0.040) \end{gathered}$	$\begin{gathered} 0.065 \\ (0.040) \end{gathered}$	$\begin{gathered} 0.071 \\ (0.042) \end{gathered}$	$\begin{gathered} 0.079 \\ (0.042) \end{gathered}$
Earnings*100	$\begin{gathered} -0.023 \\ (0.021) \end{gathered}$	$\begin{aligned} & -0.021 \\ & (0.021) \end{aligned}$	$\begin{gathered} 0.007 \\ (0.033) \end{gathered}$	$\begin{gathered} 0.009 \\ (0.033) \end{gathered}$	$\begin{aligned} & -0.051 \\ & (0.026) \end{aligned}$	$\begin{aligned} & -0.045 \\ & (0.026) \end{aligned}$
Constant	$\begin{gathered} 0.900 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.892 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.887 \\ (0.015) \end{gathered}$	$\begin{gathered} 0.876 \\ (0.019) \end{gathered}$	$\begin{gathered} 0.914 \\ (0.015) \end{gathered}$	$\begin{gathered} 0.911 \\ (0.019) \end{gathered}$
Controls	No	Yes	No	Yes	No	Yes
N	10,786	10,786	5,387	5,387	5,399	5,399
R^{2}	0.307	0.313	0.249	0.254	0.384	0.392

Note: The Table reports OLS regressions comparing the treatment effects in the Compensation-experiment and the treatment effects in the Earnings-experiment for the pooled, US, and Norway samples. " 25 percent", " 50 percent", " 75 percent", and " 100 percent" are treatment indicators. "Earnings" is an indicator variable for being in the Earnings-experiment. "Earn*25/50/75/100" are interaction variables between being in the Earnings-experiment and the treatment indicators. Controls include dummies for income, education, gender, age, and political ideology. The estimates are population weighted. Standard errors in parentheses.
Table A8: Multiple Hypotheses Testing - Comparison of Experiments

Panel A: Earnings-experiment													
	R-W p-value :						H-B p-value :						
	All		US		Norway		All		US		Norway		
	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	
Earnings	0.2191	0.2829	0.9482	0.9522	0.0040	0.0159	0.4945	0.6234	1	1	0.0063	0.0302	
Earnings*25	0.6813	0.8287	0.8008	0.8167	0.6773	0.8845	1	1	1	1	1	1	
Earnings*50	0.8287	0.8287	0.9004	0.9243	0.3147	0.4940	1	1	1	1	0.7395	0.8808	
Earnings*75	0.0876	0.0518	0.3546	0.3307	0.2948	0.2390	0.2199	0.1712	0.9956	0.9956	0.5469	0.4376	
Earnings*100	0.6056	0.6375	0.9522	0.9482	0.1952	0.2948	1	1	1	1	0.4206	0.5469	
	Controls	No	Yes										

[^0]Note: The table reports the Holm-Bonferroni and Romano-Wolf corrections for multiple hypotheses testing for the estimated treatment effects in Table A7 (Panel A) and Table A12 (Panel B).

Table A9: Regression Analysis of Treatment Effects - Unemployment-experiment

	All		US		Norway	
	(1)	(2)	(3)	(4)	(5)	(6)
25 percent	$\begin{gathered} \hline-0.158 \\ (0.017) \end{gathered}$	$\begin{gathered} -0.161 \\ (0.017) \end{gathered}$	$\begin{aligned} & -0.163 \\ & (0.024) \end{aligned}$	$\begin{aligned} & -0.163 \\ & (0.024) \end{aligned}$	$\begin{aligned} & -0.155 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.162 \\ & (0.023) \end{aligned}$
50 percent	$\begin{gathered} -0.274 \\ (0.014) \end{gathered}$	$\begin{gathered} -0.278 \\ (0.014) \end{gathered}$	$\begin{gathered} -0.264 \\ (0.021) \end{gathered}$	$\begin{aligned} & -0.268 \\ & (0.021) \end{aligned}$	$\begin{aligned} & -0.284 \\ & (0.019) \end{aligned}$	$\begin{aligned} & -0.289 \\ & (0.019) \end{aligned}$
75 percent	$\begin{aligned} & -0.583 \\ & (0.019) \end{aligned}$	$\begin{aligned} & -0.584 \\ & (0.019) \end{aligned}$	$\begin{gathered} -0.581 \\ (0.026) \end{gathered}$	$\begin{gathered} -0.580 \\ (0.026) \end{gathered}$	$\begin{aligned} & -0.587 \\ & (0.028) \end{aligned}$	$\begin{gathered} -0.591 \\ (0.028) \end{gathered}$
100 percent	$\begin{gathered} -0.890 \\ (0.012) \end{gathered}$	$\begin{gathered} -0.890 \\ (0.012) \end{gathered}$	$\begin{gathered} -0.834 \\ (0.019) \end{gathered}$	$\begin{aligned} & -0.836 \\ & (0.019) \end{aligned}$	$\begin{gathered} -0.946 \\ (0.013) \end{gathered}$	$\begin{gathered} -0.944 \\ (0.014) \end{gathered}$
Low income		$\begin{gathered} -0.010 \\ (0.012) \end{gathered}$		$\begin{gathered} -0.011 \\ (0.016) \end{gathered}$		$\begin{gathered} -0.002 \\ (0.018) \end{gathered}$
Low education		$\begin{gathered} -0.003 \\ (0.014) \end{gathered}$		$\begin{gathered} 0.001 \\ (0.020) \end{gathered}$		$\begin{gathered} -0.015 \\ (0.019) \end{gathered}$
Male		$\begin{gathered} 0.024 \\ (0.012) \end{gathered}$		$\begin{gathered} 0.023 \\ (0.016) \end{gathered}$		$\begin{gathered} 0.025 \\ (0.017) \end{gathered}$
Low age		$\begin{gathered} 0.065 \\ (0.012) \end{gathered}$		$\begin{gathered} 0.049 \\ (0.016) \end{gathered}$		$\begin{gathered} 0.078 \\ (0.017) \end{gathered}$
Right-wing		$\begin{aligned} & -0.075 \\ & (0.013) \end{aligned}$		$\begin{gathered} -0.079 \\ (0.017) \end{gathered}$		$\begin{aligned} & -0.069 \\ & (0.019) \end{aligned}$
Constant	$\begin{gathered} 0.955 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.943 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.922 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.919 \\ (0.019) \end{gathered}$	$\begin{gathered} 0.989 \\ (0.006) \end{gathered}$	$\begin{gathered} 0.968 \\ (0.016) \end{gathered}$
N	5,395	5,395	2,695	2,695	2,700	2,700
R^{2}	0.353	0.364	0.311	0.320	0.401	0.414

Note: The table reports OLS regressions on a binary variable taking the value one if the spectator pays the unemployment benefits in the Unemployment-experiment for the pooled, US, and Norway samples. " 25 percent", " 50 percent", " 75 percent", and "100 percent" are treatment indicators. Controls include dummies for income, education, gender, age, and political ideology. The estimates are population weighted. Standard errors in parentheses.

Table A10: Multiple Hypotheses Testing - Unemployment-experiment

	$\mathbf{R - W ~ p - v a l u e ~ : ~}$						H-B p-value :					
	All		US		Norway		All		US		Norway	
	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
25 percent	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
50 percent	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
75 percent	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
100 percent	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	0	0	0.0000	0.0000	0	0
Controls	No	Yes										

Note: The table reports the Holm-Bonferroni and Romano-Wolf corrections for multiple hypotheses testing for the estimated treatment effects in Table A9.

Table A11: Estimated Shares - Unemployment-experiment

	All		US		Norway	
	Lower bound	Upper bound	Lower bound	Upper bound	Lower bound	Upper bound
False positive averse	0.203	0.319	0.241	0.341	0.167	0.295
	(0.015)	(0.012)	(0.020)	(0.016)	(0.021)	(0.018)
Symmetric	0	0.231	0	0.200	0	0.257
		(0.038)		(0.052)		(0.056)
False negative averse	0.566	0.681	0.558	0.659	0.576	0.705
	(0.028)	(0.012)	(0.038)	(0.016)	(0.042)	(0.018)
Observations	5395	5395	2695	2695	2700	2700

Note: The table reports the lower and upper bounds of the shares of false positive averse spectators, symmetric spectators, and false negative averse spectators in the Unemployment-experiment. The estimated shares are based on the estimates from Table A9 without controls. The estimates are population weighted. Standard errors are in parentheses.

Table A12: Compensation-experiment versus Unemployment-experiment

	All		US		Norway	
	(1)	(2)	(3)	(4)	(5)	(6)
25 percent	$\begin{gathered} -0.104 \\ (0.018) \end{gathered}$	$\begin{aligned} & -0.105 \\ & (0.018) \end{aligned}$	$\begin{gathered} -0.139 \\ (0.026) \end{gathered}$	$\begin{gathered} -0.139 \\ (0.026) \end{gathered}$	$\begin{gathered} -0.068 \\ (0.025) \end{gathered}$	$\begin{aligned} & -0.074 \\ & (0.026) \end{aligned}$
50 percent	$\begin{gathered} -0.176 \\ (0.016) \end{gathered}$	$\begin{gathered} -0.175 \\ (0.016) \end{gathered}$	$\begin{aligned} & -0.179 \\ & (0.022) \end{aligned}$	$\begin{gathered} -0.176 \\ (0.022) \end{gathered}$	$\begin{gathered} -0.173 \\ (0.023) \end{gathered}$	$\begin{aligned} & -0.176 \\ & (0.023) \end{aligned}$
75 percent	$\begin{aligned} & -0.465 \\ & (0.021) \end{aligned}$	$\begin{gathered} -0.466 \\ (0.021) \end{gathered}$	$\begin{aligned} & -0.495 \\ & (0.028) \end{aligned}$	$\begin{gathered} -0.494 \\ (0.028) \end{gathered}$	$\begin{gathered} -0.436 \\ (0.032) \end{gathered}$	$\begin{aligned} & -0.440 \\ & (0.032) \end{aligned}$
100 percent	$\begin{aligned} & -0.797 \\ & (0.016) \end{aligned}$	$\begin{gathered} -0.795 \\ (0.016) \end{gathered}$	$\begin{aligned} & -0.735 \\ & (0.023) \end{aligned}$	$\begin{gathered} -0.733 \\ (0.023) \end{gathered}$	$\begin{gathered} -0.861 \\ (0.020) \end{gathered}$	$\begin{gathered} -0.861 \\ (0.020) \end{gathered}$
Unemployment	$\begin{gathered} 0.055 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.061 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.035 \\ (0.020) \end{gathered}$	$\begin{gathered} 0.041 \\ (0.020) \end{gathered}$	$\begin{gathered} 0.075 \\ (0.016) \end{gathered}$	$\begin{gathered} 0.080 \\ (0.017) \end{gathered}$
Unemployment*25	$\begin{aligned} & -0.055 \\ & (0.025) \end{aligned}$	$\begin{aligned} & -0.056 \\ & (0.025) \end{aligned}$	$\begin{gathered} -0.024 \\ (0.035) \end{gathered}$	$\begin{gathered} -0.024 \\ (0.035) \end{gathered}$	$\begin{gathered} -0.087 \\ (0.034) \end{gathered}$	$\begin{aligned} & -0.088 \\ & (0.034) \end{aligned}$
Unemployment*50	$\begin{gathered} -0.098 \\ (0.021) \end{gathered}$	$\begin{gathered} -0.103 \\ (0.021) \end{gathered}$	$\begin{gathered} -0.085 \\ (0.030) \end{gathered}$	$\begin{gathered} -0.091 \\ (0.030) \end{gathered}$	$\begin{gathered} -0.111 \\ (0.030) \end{gathered}$	$\begin{aligned} & -0.113 \\ & (0.030) \end{aligned}$
Unemployment*75	$\begin{gathered} -0.118 \\ (0.029) \end{gathered}$	$\begin{gathered} -0.119 \\ (0.028) \end{gathered}$	$\begin{gathered} -0.085 \\ (0.038) \end{gathered}$	$\begin{gathered} -0.086 \\ (0.038) \end{gathered}$	$\begin{aligned} & -0.151 \\ & (0.042) \end{aligned}$	$\begin{aligned} & -0.150 \\ & (0.042) \end{aligned}$
Unemployment*100	$\begin{gathered} -0.093 \\ (0.019) \end{gathered}$	$\begin{aligned} & -0.096 \\ & (0.020) \end{aligned}$	$\begin{gathered} -0.099 \\ (0.030) \end{gathered}$	$\begin{gathered} -0.103 \\ (0.030) \end{gathered}$	$\begin{gathered} -0.085 \\ (0.024) \end{gathered}$	$\begin{aligned} & -0.084 \\ & (0.025) \end{aligned}$
Constant	$\begin{gathered} 0.900 \\ (0.011) \\ \hline \end{gathered}$	$\begin{gathered} 0.880 \\ (0.013) \\ \hline \end{gathered}$	$\begin{gathered} 0.887 \\ (0.015) \\ \hline \end{gathered}$	$\begin{gathered} 0.865 \\ (0.019) \\ \hline \end{gathered}$	$\begin{gathered} 0.914 \\ (0.015) \end{gathered}$	$\begin{gathered} 0.900 \\ (0.019) \\ \hline \end{gathered}$
Controls	No	Yes	No	Yes	No	Yes
N	10,790	10,790	5,390	5,390	5,400	5,400
R^{2}	0.328	0.337	0.285	0.292	0.379	0.389

Note: The table reports OLS regressions comparing the treatment effects in the Compensation-experiment and the treatment effects in the Unemployment-experiment for the pooled, US, and Norway samples. " 25 percent", " 50 percent", " 75 percent", and "100 percent" are treatment indicators. "Unemployment" is an indicator variable for being in the Unemployment-experiment. "Unemp*25/50/75/100" are interaction variables between being in the Unemployment-experiment and the treatment indicators. Controls include dummies for income, education, gender, age, and political ideology. The estimates are population weighted. Standard errors in parentheses.
Table A13: Political Differences

	All				US				Norway			
	(1) Pooled	(2) Comp	(3) Earn	(4) Unemp	(5) Pooled	(6) Comp	$\begin{aligned} & \text { (7) } \\ & \text { Earn } \end{aligned}$	(8) Unemp	(9) Pooled	(10) Comp	$\begin{aligned} & (11) \\ & \text { Earn } \end{aligned}$	$\begin{gathered} (12) \\ \text { Unemp } \\ \hline \end{gathered}$
Right-wing	$\begin{aligned} & \hline-0.015 \\ & (0.012) \end{aligned}$	$\begin{aligned} & -0.034 \\ & (0.025) \end{aligned}$	$\begin{gathered} -0.016 \\ (0.020) \end{gathered}$	$\begin{gathered} 0.007 \\ (0.015) \end{gathered}$	$\begin{aligned} & -0.023 \\ & (0.019) \end{aligned}$	$\begin{aligned} & -0.063 \\ & (0.038) \end{aligned}$	$\begin{aligned} & \hline-0.022 \\ & (0.034) \end{aligned}$	$\begin{gathered} 0.010 \\ (0.027) \end{gathered}$	$\begin{gathered} -0.005 \\ (0.014) \end{gathered}$	$\begin{aligned} & -0.013 \\ & (0.032) \end{aligned}$	$\begin{gathered} 0.006 \\ (0.016) \end{gathered}$	$\begin{gathered} 0.010 \\ (0.009) \end{gathered}$
25 percent	$\begin{gathered} -0.114 \\ (0.012) \end{gathered}$	$\begin{aligned} & -0.093 \\ & (0.021) \end{aligned}$	$\begin{gathered} -0.112 \\ (0.019) \end{gathered}$	$\begin{gathered} -0.138 \\ (0.020) \end{gathered}$	$\begin{aligned} & -0.146 \\ & (0.017) \end{aligned}$	$\begin{gathered} -0.134 \\ (0.029) \end{gathered}$	$\begin{aligned} & -0.170 \\ & (0.032) \end{aligned}$	$\begin{gathered} -0.137 \\ (0.029) \end{gathered}$	$\begin{gathered} -0.086 \\ (0.015) \end{gathered}$	$\begin{aligned} & -0.055 \\ & (0.030) \end{aligned}$	$\begin{aligned} & -0.063 \\ & (0.021) \end{aligned}$	$\begin{aligned} & -0.141 \\ & (0.027) \end{aligned}$
50 percent	$\begin{gathered} -0.221 \\ (0.008) \end{gathered}$	$\begin{aligned} & -0.171 \\ & (0.019) \end{aligned}$	$\begin{gathered} -0.172 \\ (0.017) \end{gathered}$	$\begin{aligned} & -0.229 \\ & (0.017) \end{aligned}$	$\begin{aligned} & -0.211 \\ & (0.012) \end{aligned}$	$\begin{aligned} & -0.189 \\ & (0.025) \end{aligned}$	$\begin{aligned} & -0.151 \\ & (0.026) \end{aligned}$	$\begin{gathered} -0.222 \\ (0.024) \end{gathered}$	$\begin{gathered} -0.230 \\ (0.011) \end{gathered}$	$\begin{gathered} -0.154 \\ (0.028) \end{gathered}$	$\begin{aligned} & -0.189 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.233 \\ & (0.022) \end{aligned}$
75 percent	$\begin{gathered} -0.449 \\ (0.014) \end{gathered}$	$\begin{aligned} & -0.461 \\ & (0.025) \end{aligned}$	$\begin{aligned} & -0.354 \\ & (0.024) \end{aligned}$	$\begin{gathered} -0.532 \\ (0.024) \end{gathered}$	$\begin{aligned} & -0.479 \\ & (0.019) \end{aligned}$	$\begin{gathered} -0.528 \\ (0.032) \end{gathered}$	$\begin{aligned} & -0.387 \\ & (0.035) \end{aligned}$	$\begin{gathered} -0.521 \\ (0.033) \end{gathered}$	$\begin{gathered} -0.422 \\ (0.021) \end{gathered}$	$\begin{aligned} & -0.397 \\ & (0.038) \end{aligned}$	$\begin{aligned} & -0.321 \\ & (0.034) \end{aligned}$	$\begin{aligned} & -0.543 \\ & (0.034) \end{aligned}$
100 percent	$\begin{aligned} & -0.823 \\ & (0.010) \end{aligned}$	$\begin{aligned} & -0.793 \\ & (0.019) \end{aligned}$	$\begin{aligned} & -0.804 \\ & (0.018) \end{aligned}$	$\begin{gathered} -0.875 \\ (0.015) \end{gathered}$	$\begin{aligned} & -0.753 \\ & (0.016) \end{aligned}$	$\begin{gathered} -0.734 \\ (0.028) \end{gathered}$	$\begin{aligned} & -0.711 \\ & (0.029) \end{aligned}$	$\begin{gathered} -0.815 \\ (0.024) \end{gathered}$	$\begin{gathered} -0.892 \\ (0.013) \end{gathered}$	$\begin{aligned} & -0.851 \\ & (0.026) \end{aligned}$	$\begin{aligned} & -0.890 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.933 \\ & (0.018) \end{aligned}$
Right-wing*25	$\begin{gathered} -0.047 \\ (0.022) \end{gathered}$	$\begin{gathered} -0.043 \\ (0.042) \end{gathered}$	$\begin{gathered} -0.038 \\ (0.038) \end{gathered}$	$\begin{aligned} & -0.065 \\ & (0.036) \end{aligned}$	$\begin{aligned} & -0.035 \\ & (0.033) \end{aligned}$	$\begin{gathered} -0.019 \\ (0.060) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.058) \end{gathered}$	$\begin{gathered} -0.084 \\ (0.053) \end{gathered}$	$\begin{gathered} -0.053 \\ (0.030) \end{gathered}$	$\begin{aligned} & -0.054 \\ & (0.058) \end{aligned}$	$\begin{aligned} & -0.073 \\ & (0.045) \end{aligned}$	$\begin{aligned} & -0.049 \\ & (0.047) \end{aligned}$
Right-wing*50	$\begin{aligned} & -0.081 \\ & (0.016) \end{aligned}$	$\begin{aligned} & -0.016 \\ & (0.035) \end{aligned}$	$\begin{gathered} -0.050 \\ (0.033) \end{gathered}$	$\begin{aligned} & -0.145 \\ & (0.031) \end{aligned}$	$\begin{aligned} & -0.055 \\ & (0.024) \end{aligned}$	$\begin{gathered} 0.039 \\ (0.050) \end{gathered}$	$\begin{gathered} -0.034 \\ (0.048) \end{gathered}$	$\begin{gathered} -0.137 \\ (0.045) \end{gathered}$	$\begin{gathered} -0.108 \\ (0.021) \end{gathered}$	$\begin{aligned} & -0.062 \\ & (0.049) \end{aligned}$	$\begin{aligned} & -0.082 \\ & (0.042) \end{aligned}$	$\begin{aligned} & -0.160 \\ & (0.041) \end{aligned}$
Right-wing*75	$\begin{aligned} & -0.106 \\ & (0.025) \end{aligned}$	$\begin{gathered} -0.015 \\ (0.046) \end{gathered}$	$\begin{aligned} & -0.143 \\ & (0.044) \end{aligned}$	$\begin{gathered} -0.152 \\ (0.039) \end{gathered}$	$\begin{aligned} & -0.069 \\ & (0.034) \end{aligned}$	$\begin{gathered} 0.114 \\ (0.063) \end{gathered}$	$\begin{aligned} & -0.135 \\ & (0.060) \end{aligned}$	$\begin{aligned} & -0.167 \\ & (0.052) \end{aligned}$	$\begin{gathered} -0.139 \\ (0.037) \end{gathered}$	$\begin{gathered} -0.132 \\ (0.067) \end{gathered}$	$\begin{aligned} & -0.152 \\ & (0.061) \end{aligned}$	$\begin{gathered} -0.137 \\ (0.058) \end{gathered}$
Right-wing*100	$\begin{gathered} -0.040 \\ (0.016) \end{gathered}$	$\begin{aligned} & -0.016 \\ & (0.032) \end{aligned}$	$\begin{aligned} & -0.056 \\ & (0.029) \end{aligned}$	$\begin{gathered} -0.047 \\ (0.023) \end{gathered}$	$\begin{aligned} & -0.039 \\ & (0.027) \end{aligned}$	$\begin{gathered} 0.005 \\ (0.051) \end{gathered}$	$\begin{aligned} & -0.057 \\ & (0.048) \end{aligned}$	$\begin{gathered} -0.058 \\ (0.038) \end{gathered}$	$\begin{gathered} -0.048 \\ (0.018) \end{gathered}$	$\begin{gathered} -0.040 \\ (0.038) \end{gathered}$	$\begin{gathered} -0.078 \\ (0.026) \end{gathered}$	$\begin{aligned} & -0.043 \\ & (0.023) \end{aligned}$
Constant	$\begin{gathered} 0.931 \\ (0.006) \\ \hline \end{gathered}$	$\begin{gathered} 0.911 \\ (0.013) \\ \hline \end{gathered}$	$\begin{gathered} 0.931 \\ (0.011) \\ \hline \end{gathered}$	$\begin{gathered} 0.953 \\ (0.009) \\ \hline \end{gathered}$	$\begin{gathered} 0.903 \\ (0.010) \\ \hline \end{gathered}$	$\begin{gathered} 0.904 \\ (0.017) \\ \hline \end{gathered}$	$\begin{gathered} 0.888 \\ (0.019) \\ \hline \end{gathered}$	$\begin{gathered} 0.919 \\ (0.016) \\ \hline \end{gathered}$	$\begin{gathered} 0.960 \\ (0.008) \\ \hline \end{gathered}$	$\begin{gathered} 0.918 \\ (0.019) \\ \hline \end{gathered}$	$\begin{gathered} 0.972 \\ (0.011) \\ \hline \end{gathered}$	$\begin{gathered} 0.986 \\ (0.008) \\ \hline \end{gathered}$
N	22,476	5,395	5,391	5,395	11,226	2,695	2,692	2,695	11,250	2,700	2,699	2,700
R^{2}	0.237	0.304	0.317	0.362	0.200	0.261	0.244	0.320	0.283	0.362	0.418	0.411

Note: The table reports OLS regressions on a binary variable taking the value one if the spectator pays the worker, for both countries together (All) and separately for each country. In each case, we report across all experiments (Pooled) and separately for each experiment. " 25 percent", " 50 percent", " 75 percent", and " 100 percent" are treatment indicators. "Rightwing" is an indicator variable for the spectator being right-wing. "Rightwing*25/50/75/100" are interaction variables between the spectator being right-wing and the treatment indicators. Control variables include income, education, gender, and age. The estimates are population weighted. Standard errors in parentheses.
Table A14: Estimated Shares: Political and Country Differences

Note: Panel A reports the political difference in the upper bound of the share of false negative averse spectators (the difference in the upper bound of the share of false positive averse spectators is the opposite and thus not reported), in the share of strongly false positive averse spectators, and in the share of strongly false negative averse spectators, for both countries together (All) and separately for each country. In each case, we report across all experiments (Pooled) and separately for each experiment. The estimated differences are based on the estimates from Table A13. Panel B reports disaggregated comparisons of the country differences in the upper bound of the share of false negative averse spectators, in the share of strongly false positive averse spectators, and in the share of strongly false negative averse spectators. The estimated differences are based on the estimates from Table A2.

Table A15: Policy Attitudes - Associations with Controls

Panel A: Unemployment							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Male	$\begin{gathered} 0.138 \\ (0.024) \end{gathered}$						
Low education		$\begin{gathered} 0.202 \\ (0.027) \end{gathered}$					
Low income			$\begin{gathered} 0.440 \\ (0.024) \end{gathered}$				
Low age				$\begin{gathered} 0.406 \\ (0.024) \end{gathered}$			
Right-wing					$\begin{aligned} & -0.876 \\ & (0.026) \end{aligned}$		
Altruism						$\begin{gathered} 0.343 \\ (0.019) \end{gathered}$	
Religion							$\begin{gathered} 0.015 \\ (0.011) \end{gathered}$
Constant	$\begin{gathered} 4.291 \\ (0.017) \end{gathered}$	$\begin{gathered} 4.307 \\ (0.014) \end{gathered}$	$\begin{gathered} 4.161 \\ (0.016) \end{gathered}$	$\begin{gathered} 4.153 \\ (0.016) \end{gathered}$	$\begin{gathered} 4.629 \\ (0.014) \end{gathered}$	$\begin{gathered} 2.218 \\ (0.117) \end{gathered}$	$\begin{gathered} 4.282 \\ (0.056) \end{gathered}$
N	22,476	22,476	22,476	22,476	22,476	22,476	22,476
R^{2}	0.002	0.003	0.018	0.015	0.060	0.019	0.000

Panel B: Income Inequality							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Male	$\begin{gathered} \hline 0.235 \\ (0.024) \end{gathered}$						
Low education		$\begin{gathered} 0.203 \\ (0.026) \end{gathered}$					
Low income			$\begin{gathered} 0.362 \\ (0.024) \end{gathered}$				
Low age				$\begin{gathered} 0.468 \\ (0.024) \end{gathered}$			
Right-wing					$\begin{aligned} & -1.351 \\ & (0.026) \end{aligned}$		
Altruism						$\begin{gathered} 0.254 \\ (0.019) \end{gathered}$	
Religion							$\begin{gathered} -0.233 \\ (0.011) \end{gathered}$
Constant	$\begin{gathered} 5.049 \\ (0.018) \end{gathered}$	$\begin{gathered} 5.113 \\ (0.014) \end{gathered}$	$\begin{gathered} 5.004 \\ (0.017) \end{gathered}$	$\begin{gathered} 4.927 \\ (0.017) \end{gathered}$	$\begin{gathered} 5.581 \\ (0.012) \end{gathered}$	$\begin{gathered} 3.577 \\ (0.118) \end{gathered}$	$\begin{gathered} 6.384 \\ (0.056) \end{gathered}$
N	22,476	22,476	22,476	22,476	22,476	22,476	22,476
R^{2}	0.005	0.003	0.012	0.020	0.139	0.010	0.026

Note: The table reports OLS regressions where the dependent variable is the response on a seven-point agree-disagree scale on the statement "Unemployment benefits should be made more generous" (Panel A) and the statement "The government should help reduce income inequalities" (Panel B) across all treatments. The regressors in the columns (1) - (5) are dummies for gender, education, income, age, and political ideology. In column (6), the regressor is the response on the following questions on altruism "How willing are you to give to good causes without expecting anything in return?" (not willing at all (1), not too willing (2), somewhat willing (3), very willing(4)), and in (7) the response on the following question on religiosity: "Is religion important in your life?" (not important at all (1), not too important (2), somewhat important (3), very important (4)). Standard errors in parentheses.

Table A16: Policy Attitudes - Probability of a False Claim is 50 percent

	Unemployment				Income inequality			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Pay	$\begin{gathered} 0.562 \\ (0.056) \end{gathered}$	$\begin{gathered} 0.251 \\ (0.043) \end{gathered}$	$\begin{gathered} 0.237 \\ (0.043) \end{gathered}$	$\begin{gathered} 0.240 \\ (0.043) \end{gathered}$	$\begin{gathered} 0.412 \\ (0.056) \end{gathered}$	$\begin{gathered} 0.230 \\ (0.048) \end{gathered}$	$\begin{gathered} 0.185 \\ (0.048) \end{gathered}$	$\begin{gathered} 0.158 \\ (0.047) \end{gathered}$
Fairness: unemployment benefits		$\begin{gathered} 0.424 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.405 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.395 \\ (0.014) \end{gathered}$				
Cost: unemployment benefits		$\begin{aligned} & -0.362 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.341 \\ & (0.015) \end{aligned}$	$\begin{gathered} -0.345 \\ (0.015) \end{gathered}$				
Fairness: income equalization						$\begin{gathered} 0.409 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.348 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.351 \\ (0.013) \end{gathered}$
Cost: income equalization						$\begin{gathered} -0.273 \\ (0.015) \end{gathered}$	$\begin{aligned} & -0.238 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.218 \\ & (0.015) \end{aligned}$
Constant	$\begin{gathered} 3.938 \\ (0.048) \end{gathered}$	$\begin{gathered} 3.630 \\ (0.120) \end{gathered}$	$\begin{gathered} 3.636 \\ (0.119) \end{gathered}$	$\begin{gathered} 2.446 \\ (0.224) \end{gathered}$	$\begin{gathered} 4.853 \\ (0.048) \end{gathered}$	$\begin{gathered} 4.771 \\ (0.095) \end{gathered}$	$\begin{gathered} 4.903 \\ (0.095) \end{gathered}$	$\begin{gathered} 4.416 \\ (0.228) \end{gathered}$
Controls	No	No	Yes	Yes	No	No	Yes	Yes
Additional controls	No	No	No	Yes	No	No	No	Yes
N	5,390	5,390	5,390	5,390	5,390	5,390	5,390	5,390
R^{2}	0.024	0.422	0.437	0.444	0.012	0.293	0.330	0.343

Note: The table reports OLS regressions where the dependent variable is the response on a seven-point agree-disagree scale on the statement "Unemployment benefits should be made more generous" (columns (1)-(4)) or the statement "The government should help reduce income inequalities" (columns (5)-(8)), for the treatments where the probability of a false claim is 50 percent. "Pay" is a binary variable taking the value one if the spectator pays the worker. Regressors indicate agreement with the following statements on a five-point scale: "It is unfair that the involuntary unemployed are not fully compensated for their income loss" ("Fairness: unemployment benefits"), "Generous unemployment benefits hurt the economy" ("Cost: unemployment benefits"), "It is unfair that some people have higher income than others" ("Fairness: income equalization"), "Large income redistribution hurts the economy" ("Cost: income equalization"). Controls include dummies for income, education, gender, age, and political ideology. Additional controls include a regressor indicating the response to the following question on a four-point scale: "How willing are you to give to good causes without expecting anything in return?" (not willing at all (1), not too willing (2), somewhat willing (3), very willing(4)) and a regressor indicating the response to the following question on a four-point scale "Is religion important in your life?" (not important at all (1), not too important (2), somewhat important (3), very important (4)). The estimates are population weighted. Standard errors in parentheses.

Table A17: Policy Attitudes - US

	Unemployment				Income inequality			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Pay	$\begin{gathered} 0.602 \\ (0.034) \end{gathered}$	$\begin{gathered} 0.295 \\ (0.027) \end{gathered}$	$\begin{gathered} 0.272 \\ (0.026) \end{gathered}$	$\begin{gathered} 0.270 \\ (0.026) \end{gathered}$	$\begin{gathered} \hline 0.379 \\ (0.036) \end{gathered}$	$\begin{gathered} \hline 0.203 \\ (0.030) \end{gathered}$	$\begin{gathered} 0.155 \\ (0.029) \end{gathered}$	$\begin{gathered} 0.138 \\ (0.028) \end{gathered}$
Fairness: unemployment benefits		$\begin{gathered} 0.472 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.444 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.440 \\ (0.010) \end{gathered}$				
Cost: unemployment benefits		$\begin{aligned} & -0.309 \\ & (0.009) \end{aligned}$	$\begin{aligned} & -0.290 \\ & (0.009) \end{aligned}$	$\begin{gathered} -0.292 \\ (0.009) \end{gathered}$				
Fairness: income equalization						$\begin{gathered} 0.462 \\ (0.008) \end{gathered}$	$\begin{gathered} 0.387 \\ (0.008) \end{gathered}$	$\begin{gathered} 0.389 \\ (0.008) \end{gathered}$
Cost: income equalization						$\begin{aligned} & -0.278 \\ & (0.009) \end{aligned}$	$\begin{gathered} -0.232 \\ (0.009) \end{gathered}$	$\begin{gathered} -0.219 \\ (0.009) \end{gathered}$
Constant	$\begin{gathered} 4.234 \\ (0.027) \end{gathered}$	$\begin{gathered} 3.357 \\ (0.078) \end{gathered}$	$\begin{gathered} 3.438 \\ (0.076) \end{gathered}$	$\begin{gathered} 2.718 \\ (0.153) \end{gathered}$	$\begin{gathered} 4.716 \\ (0.029) \end{gathered}$	$\begin{gathered} 4.448 \\ (0.059) \end{gathered}$	$\begin{gathered} 4.536 \\ (0.060) \end{gathered}$	$\begin{gathered} 2.988 \\ (0.157) \end{gathered}$
Controls	No	No	Yes	Yes	No	No	Yes	Yes
Additional controls	No	No	No	Yes	No	No	No	Yes
N	11,226	11,226	11,226	11,226	11,226	11,226	11,226	11,226
R^{2}	0.029	0.419	0.440	0.442	0.010	0.330	0.380	0.392

Note: The table reports OLS regressions where the dependent variable is the response on a seven-point agree-disagree scale on the statement "Unemployment benefits should be made more generous" (columns (1)-(4)) or the statement "The government should help reduce income inequalities" (columns (5)-(8)), for the US sample. "Pay" is a binary variable taking the value one if the spectator pays the worker. Regressors indicate agreement with the following statements on a five-point scale: "It is unfair that the involuntary unemployed are not fully compensated for their income loss" ("Fairness: unemployment benefits"), "Generous unemployment benefits hurt the economy" ("Cost: unemployment benefits"), "It is unfair that some people have higher income than others" ("Fairness: income equalization"), "Large income redistribution hurts the economy" ("Cost: income equalization"). Controls include dummies for income, education, gender, age, and political ideology. Additional controls include a regressor indicating the response to the following question on a four-point scale: "How willing are you to give to good causes without expecting anything in return?" (not willing at all (1), not too willing (2), somewhat willing (3), very willing(4)) and a regressor indicating the response to the following question on a four-point scale "Is religion important in your life?" (not important at all (1), not too important (2), somewhat important (3), very important (4)). The estimates are population weighted. Standard errors in parentheses.

Table A18: Policy Attitudes - Norway

	Unemployment				Income inequality			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Pay	$\begin{gathered} 0.561 \\ (0.035) \end{gathered}$	$\begin{gathered} 0.286 \\ (0.028) \end{gathered}$	$\begin{gathered} 0.274 \\ (0.028) \end{gathered}$	$\begin{gathered} 0.271 \\ (0.028) \end{gathered}$	$\begin{gathered} \hline 0.292 \\ (0.034) \end{gathered}$	$\begin{gathered} 0.146 \\ (0.029) \end{gathered}$	$\begin{gathered} 0.120 \\ (0.029) \end{gathered}$	$\begin{gathered} 0.105 \\ (0.029) \end{gathered}$
Fairness: unemployment benefits		$\begin{gathered} 0.343 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.329 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.329 \\ (0.010) \end{gathered}$				
Cost: unemployment benefits		$\begin{aligned} & -0.422 \\ & (0.011) \end{aligned}$	$\begin{gathered} -0.408 \\ (0.011) \end{gathered}$	$\begin{gathered} -0.405 \\ (0.011) \end{gathered}$				
Fairness: income equalization						$\begin{gathered} 0.385 \\ (0.008) \end{gathered}$	$\begin{gathered} 0.333 \\ (0.009) \end{gathered}$	$\begin{gathered} 0.333 \\ (0.009) \end{gathered}$
Cost: income equalization						$\begin{aligned} & -0.252 \\ & (0.011) \end{aligned}$	$\begin{gathered} -0.212 \\ (0.011) \end{gathered}$	$\begin{aligned} & -0.196 \\ & (0.011) \end{aligned}$
Constant	$\begin{gathered} 3.761 \\ (0.029) \end{gathered}$	$\begin{gathered} 4.128 \\ (0.087) \end{gathered}$	$\begin{gathered} 4.092 \\ (0.087) \end{gathered}$	$\begin{gathered} 3.910 \\ (0.174) \end{gathered}$	$\begin{gathered} 5.200 \\ (0.028) \end{gathered}$	$\begin{gathered} 5.123 \\ (0.064) \end{gathered}$	$\begin{gathered} 5.296 \\ (0.061) \end{gathered}$	$\begin{gathered} 4.155 \\ (0.163) \end{gathered}$
Controls	No	No	Yes	Yes	No	No	Yes	Yes
Additional controls	No	No	No	Yes	No	No	No	Yes
N	11,250	11,250	11,250	11,250	11,250	11,250	11,250	11,250
R^{2}	0.031	0.433	0.440	0.441	0.009	0.301	0.340	0.352

Note: The table reports OLS regressions where the dependent variable is the response on a seven-point agree-disagree scale on the statement "Unemployment benefits should be made more generous" (columns (1)-(4)) or the statement "The government should help reduce income inequalities" (columns (5)-(8)), for the Norway sample. "Pay" is a binary variable taking the value one if the spectator pays the worker. Regressors indicate agreement with the following statements on a five-point scale: "It is unfair that the involuntary unemployed are not fully compensated for their income loss" ("Fairness: unemployment benefits"), "Generous unemployment benefits hurt the economy" ("Cost: unemployment benefits"), "It is unfair that some people have higher income than others" ("Fairness: income equalization"), "Large income redistribution hurts the economy" ("Cost: income equalization"). Controls include dummies for income, education, gender, age, and political ideology. Additional controls include a regressor indicating the response to the following question on a four-point scale: "How willing are you to give to good causes without expecting anything in return?" (not willing at all (1), not too willing (2), somewhat willing (3), very willing(4)) and a regressor indicating the response to the following question on a four-point scale "Is religion important in your life?" (not important at all (1), not too important (2), somewhat important (3), very important (4)). The estimates are population weighted. Standard errors in parentheses.

Table A19: Policy Attitudes - Compensation-experiment

	Unemployment				Income inequality			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Pay	$\begin{gathered} 0.448 \\ (0.050) \end{gathered}$	$\begin{gathered} 0.157 \\ (0.038) \end{gathered}$	$\begin{gathered} 0.152 \\ (0.038) \end{gathered}$	$\begin{gathered} \hline 0.148 \\ (0.038) \end{gathered}$	$\begin{gathered} 0.338 \\ (0.051) \end{gathered}$	$\begin{gathered} 0.188 \\ (0.043) \end{gathered}$	$\begin{gathered} 0.159 \\ (0.042) \end{gathered}$	$\begin{gathered} 0.144 \\ (0.041) \end{gathered}$
Fairness: unemployment benefits		$\begin{gathered} 0.449 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.426 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.417 \\ (0.014) \end{gathered}$				
Cost: unemployment benefits		$\begin{aligned} & -0.372 \\ & (0.014) \end{aligned}$	$\begin{gathered} -0.346 \\ (0.015) \end{gathered}$	$\begin{aligned} & -0.348 \\ & (0.014) \end{aligned}$				
Fairness: income equalization						$\begin{gathered} 0.416 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.348 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.355 \\ (0.013) \end{gathered}$
Cost: income equalization						$\begin{gathered} -0.280 \\ (0.015) \end{gathered}$	$\begin{aligned} & -0.239 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.217 \\ & (0.015) \end{aligned}$
Constant	$\begin{gathered} 4.158 \\ (0.040) \end{gathered}$	$\begin{gathered} 3.727 \\ (0.118) \\ \hline \end{gathered}$	$\begin{array}{r} 3.719 \\ (0.116) \\ \hline \end{array}$	$\begin{gathered} 2.683 \\ (0.220) \end{gathered}$	$\begin{gathered} 4.962 \\ (0.041) \\ \hline \end{gathered}$	$\begin{gathered} 4.872 \\ (0.090) \\ \hline \end{gathered}$	$\begin{gathered} 4.949 \\ (0.089) \end{gathered}$	$\begin{gathered} 4.386 \\ (0.222) \end{gathered}$
Controls	No	No	Yes	Yes	No	No	Yes	Yes
Additional controls	No	No	No	Yes	No	No	No	Yes
N	5,395	5,395	5,395	5,395	5,395	5,395	5,395	5,395
R^{2}	0.017	0.452	0.467	0.472	0.009	0.308	0.352	0.367

Note: The table reports OLS regressions where the dependent variable is the response on a seven-point agree-disagree scale on the statement "Unemployment benefits should be made more generous" (columns (1)-(4)) or the statement "The government should help reduce income inequalities" (columns (5)-(8)), for the Compensation-experiment. "Pay" is a binary variable taking the value one if the spectator pays the worker. Regressors indicate agreement with the following statements on a five-point scale: "It is unfair that the involuntary unemployed are not fully compensated for their income loss" ("Fairness: unemployment benefits"), "Generous unemployment benefits hurt the economy" ("Cost: unemployment benefits"), "It is unfair that some people have higher income than others" ("Fairness: income equalization"), "Large income redistribution hurts the economy" ("Cost: income equalization"). Controls include dummies for income, education, gender, age, and political ideology. Additional controls include a regressor indicating the response to the following question on a four-point scale: "How willing are you to give to good causes without expecting anything in return?" (not willing at all (1), not too willing (2), somewhat willing (3), very willing(4)) and a regressor indicating the response to the following question on a four-point scale "Is religion important in your life?" (not important at all (1), not too important (2), somewhat important (3), very important (4)). The estimates are population weighted. Standard errors in parentheses.

Table A20: Policy Attitudes - Earnings-experiment

	Unemployment				Income inequality			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Pay	$\begin{gathered} \hline 0.450 \\ (0.050) \end{gathered}$	$\begin{gathered} \hline 0.262 \\ (0.039) \end{gathered}$	$\begin{gathered} 0.238 \\ (0.038) \end{gathered}$	$\begin{gathered} \hline 0.239 \\ (0.038) \end{gathered}$	$\begin{gathered} 0.327 \\ (0.051) \end{gathered}$	$\begin{gathered} \hline 0.189 \\ (0.044) \end{gathered}$	$\begin{gathered} 0.149 \\ (0.043) \end{gathered}$	$\begin{gathered} 0.131 \\ (0.042) \end{gathered}$
Fairness: unemployment benefits		$\begin{gathered} 0.435 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.413 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.409 \\ (0.014) \end{gathered}$				
Cost: unemployment benefits		$\begin{aligned} & -0.359 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.337 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.337 \\ & (0.015) \end{aligned}$				
Fairness: income equalization						$\begin{gathered} 0.385 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.325 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.328 \\ (0.012) \end{gathered}$
Cost: income equalization						$\begin{aligned} & -0.286 \\ & (0.014) \end{aligned}$	$\begin{aligned} & -0.238 \\ & (0.014) \end{aligned}$	$\begin{gathered} -0.214 \\ (0.015) \end{gathered}$
Constant	$\begin{gathered} 4.088 \\ (0.040) \end{gathered}$	$\begin{gathered} 3.618 \\ (0.121) \end{gathered}$	$\begin{gathered} 3.577 \\ (0.118) \end{gathered}$	$\begin{gathered} 2.700 \\ (0.213) \end{gathered}$	$\begin{gathered} 4.974 \\ (0.042) \end{gathered}$	$\begin{gathered} 4.998 \\ (0.088) \end{gathered}$	$\begin{gathered} 5.129 \\ (0.087) \end{gathered}$	$\begin{gathered} 4.392 \\ (0.221) \end{gathered}$
Controls	No	No	Yes	Yes	No	No	Yes	Yes
Additional controls	No	No	No	Yes	No	No	No	Yes
N	5,391	5,391	5,391	5,391	5,391	5,391	5,391	5,391
R^{2}	0.017	0.431	0.448	0.451	0.009	0.287	0.335	0.354

Note: The table reports OLS regressions where the dependent variable is the response on a seven-point agree-disagree scale on the statement "Unemployment benefits should be made more generous" (columns (1)-(4)) or the statement "The government should help reduce income inequalities" (columns (5)-(8)), for the Earnings-experiment. "Pay" is a binary variable taking the value one if the spectator pays the worker. Regressors indicate agreement with the following statements on a five-point scale: "It is unfair that the involuntary unemployed are not fully compensated for their income loss" ("Fairness: unemployment benefits"), "Generous unemployment benefits hurt the economy" ("Cost: unemployment benefits"), "It is unfair that some people have higher income than others" ("Fairness: income equalization"), "Large income redistribution hurts the economy" ("Cost: income equalization"). Controls include dummies for income, education, gender, age, and political ideology. Additional controls include a regressor indicating the response to the following question on a four-point scale: "How willing are you to give to good causes without expecting anything in return?" (not willing at all (1), not too willing (2), somewhat willing (3), very willing(4)) and a regressor indicating the response to the following question on a four-point scale "Is religion important in your life?" (not important at all (1), not too important (2), somewhat important (3), very important (4)). The estimates are population weighted. Standard errors in parentheses.

Table A21: Policy Attitudes - Unemployment-experiment

	Unemployment				Income inequality			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Pay	$\begin{gathered} \hline 0.770 \\ (0.049) \end{gathered}$	$\begin{gathered} 0.455 \\ (0.041) \end{gathered}$	$\begin{gathered} 0.432 \\ (0.041) \end{gathered}$	$\begin{gathered} 0.437 \\ (0.041) \end{gathered}$	$\begin{gathered} 0.365 \\ (0.051) \end{gathered}$	$\begin{gathered} 0.151 \\ (0.043) \end{gathered}$	$\begin{gathered} 0.106 \\ (0.042) \end{gathered}$	$\begin{gathered} 0.091 \\ (0.042) \end{gathered}$
Fairness: unemployment benefits		$\begin{gathered} 0.367 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.360 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.352 \\ (0.014) \end{gathered}$				
Cost: unemployment benefits		$\begin{aligned} & -0.349 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.333 \\ & (0.015) \end{aligned}$	$\begin{gathered} -0.339 \\ (0.015) \end{gathered}$				
Fairness: income equalization						$\begin{gathered} 0.446 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.386 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.390 \\ (0.012) \end{gathered}$
Cost: income equalization						$\begin{aligned} & -0.283 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.245 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.219 \\ & (0.015) \end{aligned}$
Constant	$\begin{gathered} 3.761 \\ (0.039) \end{gathered}$	$\begin{gathered} 3.657 \\ (0.117) \end{gathered}$	$\begin{gathered} 3.682 \\ (0.117) \end{gathered}$	$\begin{gathered} 2.566 \\ (0.233) \end{gathered}$	$\begin{gathered} 4.916 \\ (0.041) \\ \hline \end{gathered}$	$\begin{gathered} 4.776 \\ (0.090) \end{gathered}$	$\begin{gathered} 4.946 \\ (0.090) \end{gathered}$	$\begin{gathered} 4.760 \\ (0.222) \end{gathered}$
Controls	No	No	Yes	Yes	No	No	Yes	Yes
Additional controls	No	No	No	Yes	No	No	No	Yes
N	5,395	5,395	5,395	5,395	5,395	5,395	5,395	5,395
R^{2}	0.052	0.389	0.399	0.408	0.011	0.324	0.360	0.374

Note: The table reports OLS regressions where the dependent variable is the response on a seven-point agree-disagree scale on the statement "Unemployment benefits should be made more generous" (columns (1)-(4)) or the statement "The government should help reduce income inequalities" (columns (5)-(8)), for the Unemployment-experiment. "Pay" is a binary variable taking the value one if the spectator pays the worker. Regressors indicate agreement with the following statements on a five-point scale: "It is unfair that the involuntary unemployed are not fully compensated for their income loss" ("Fairness: unemployment benefits"), "Generous unemployment benefits hurt the economy" ("Cost: unemployment benefits"), "It is unfair that some people have higher income than others" ("Fairness: income equalization"), "Large income redistribution hurts the economy" ("Cost: income equalization"). Controls include dummies for income, education, gender, age, and political ideology. Additional controls include a regressor indicating the response to the following question on a four-point scale: "How willing are you to give to good causes without expecting anything in return?" (not willing at all (1), not too willing (2), somewhat willing (3), very willing(4)) and a regressor indicating the response to the following question on a four-point scale "Is religion important in your life?" (not important at all (1), not too important (2), somewhat important (3), very important (4)). The estimates are population weighted. Standard errors in parentheses.
Table A22: Policy Attitudes - Disability-treatment

	All				US				Norway			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Pay	$\begin{gathered} 0.860 \\ (0.085) \end{gathered}$	$\begin{gathered} 0.393 \\ (0.068) \end{gathered}$	$\begin{gathered} 0.364 \\ (0.067) \end{gathered}$	$\begin{gathered} 0.361 \\ (0.066) \end{gathered}$	$\begin{gathered} 0.627 \\ (0.113) \end{gathered}$	$\begin{gathered} 0.290 \\ (0.092) \end{gathered}$	$\begin{gathered} 0.245 \\ (0.089) \end{gathered}$	$\begin{gathered} 0.246 \\ (0.089) \end{gathered}$	$\begin{gathered} 1.066 \\ (0.121) \end{gathered}$	$\begin{gathered} 0.458 \\ (0.097) \end{gathered}$	$\begin{gathered} 0.432 \\ (0.094) \end{gathered}$	$\begin{gathered} 0.421 \\ (0.094) \end{gathered}$
Fairness: disability benefits		$\begin{gathered} 0.494 \\ (0.025) \end{gathered}$	$\begin{gathered} 0.479 \\ (0.026) \end{gathered}$	$\begin{gathered} 0.465 \\ (0.026) \end{gathered}$		$\begin{gathered} 0.559 \\ (0.037) \end{gathered}$	$\begin{gathered} 0.526 \\ (0.038) \end{gathered}$	$\begin{gathered} 0.517 \\ (0.038) \end{gathered}$		$\begin{gathered} 0.398 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.382 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.383 \\ (0.036) \end{gathered}$
Cost: disability benefits		$\begin{aligned} & -0.278 \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.261 \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.261 \\ & (0.027) \end{aligned}$		$\begin{aligned} & -0.204 \\ & (0.035) \end{aligned}$	$\begin{gathered} -0.200 \\ (0.035) \end{gathered}$	$\begin{gathered} -0.207 \\ (0.035) \end{gathered}$		$\begin{aligned} & -0.391 \\ & (0.041) \end{aligned}$	$\begin{gathered} -0.375 \\ (0.041) \end{gathered}$	$\begin{aligned} & -0.364 \\ & (0.042) \end{aligned}$
Constant	$\begin{gathered} 4.150 \\ (0.068) \end{gathered}$	$\begin{gathered} 3.068 \\ (0.207) \end{gathered}$	$\begin{gathered} 3.037 \\ (0.206) \end{gathered}$	$\begin{gathered} 1.956 \\ (0.366) \end{gathered}$	$\begin{gathered} 4.574 \\ (0.092) \end{gathered}$	$\begin{gathered} 2.564 \\ (0.288) \end{gathered}$	$\begin{gathered} 2.662 \\ (0.287) \end{gathered}$	$\begin{gathered} 1.416 \\ (0.470) \end{gathered}$	$\begin{gathered} 3.746 \\ (0.096) \end{gathered}$	$\begin{gathered} 3.858 \\ (0.304) \end{gathered}$	$\begin{gathered} 3.866 \\ (0.299) \end{gathered}$	$\begin{gathered} 3.155 \\ (0.594) \end{gathered}$
Controls	No	No	Yes	Yes	No	No	Yes	Yes	No	No	Yes	Yes
Additional controls	No	No	No	Yes	No	No	No	Yes	No	No	No	Yes
N	1,796	1,796	1,796	1,796	898	898	898	898	898	898	898	898
R^{2}	0.067	0.470	0.484	0.489	0.035	0.410	0.436	0.445	0.110	0.523	0.539	0.542

Note. The table reports OLS regressions where the dependent variable is the response on a seven-point agree-disagree scale on the statement "Unemployment benefits should be made more generous" (columns (1)-(4)) or the statement "The government should help reduce income inequalities" (columns (5)-(8)), for the Disability-experiment. "Pay" is a binary variable taking the value one if the spectator pays the worker. Regressors indicate agreement with the following statements on a five-point scale: "It is unfair that disabled people who cannot work are not fully compensated for their income loss" ("Fairness: disability benefits"), "Generous disability benefits hurt the economy" ("Cost: disability benefits"). Controls include dummies for income, education, gender, age, and political ideology. Additional controls include a regressor indicating the response to the following question on a four-point scale: "How willing are you to give to good causes without expecting anything in return?" (not willing at all (1), not too willing (2), somewhat willing (3), very willing(4)) and a regressor indicating the response to the following question on a four-point scale "Is religion important in your life?" (not important at all (1), not too important (2), somewhat important (3), very important (4)). The estimates are population weighted. Standard errors in parentheses.

Table A23: Policy Attitudes - Unemployment versus Disability

	All		US		Norway	
	(1)	(2)	(3)	(4)	(5)	(6)
Disability	$\begin{aligned} & -0.096 \\ & (0.018) \end{aligned}$	$\begin{gathered} -0.096 \\ (0.017) \end{gathered}$	$\begin{aligned} & -0.063 \\ & (0.023) \end{aligned}$	$\begin{gathered} -0.063 \\ (0.023) \end{gathered}$	$\begin{gathered} -0.131 \\ (0.026) \end{gathered}$	$\begin{aligned} & -0.129 \\ & (0.026) \end{aligned}$
Male		$\begin{gathered} 0.029 \\ (0.017) \end{gathered}$		$\begin{gathered} 0.018 \\ (0.023) \end{gathered}$		$\begin{gathered} 0.039 \\ (0.027) \end{gathered}$
Low education		$\begin{gathered} -0.010 \\ (0.020) \end{gathered}$		$\begin{gathered} -0.021 \\ (0.028) \end{gathered}$		$\begin{aligned} & -0.001 \\ & (0.030) \end{aligned}$
Low income		$\begin{aligned} & -0.000 \\ & (0.018) \end{aligned}$		$\begin{gathered} -0.013 \\ (0.024) \end{gathered}$		$\begin{gathered} 0.017 \\ (0.027) \end{gathered}$
Low age		$\begin{gathered} 0.075 \\ (0.017) \end{gathered}$		$\begin{gathered} 0.066 \\ (0.023) \end{gathered}$		$\begin{gathered} 0.084 \\ (0.026) \end{gathered}$
Right-wing		$\begin{aligned} & -0.120 \\ & (0.019) \end{aligned}$		$\begin{gathered} -0.106 \\ (0.026) \end{gathered}$		$\begin{gathered} -0.134 \\ (0.029) \end{gathered}$
Constant	$\begin{gathered} 0.681 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.669 \\ (0.020) \end{gathered}$	$\begin{gathered} 0.659 \\ (0.016) \end{gathered}$	$\begin{gathered} 0.660 \\ (0.027) \end{gathered}$	$\begin{gathered} 0.705 \\ (0.018) \end{gathered}$	$\begin{gathered} 0.677 \\ (0.029) \end{gathered}$
N	3,595	3,595	1,797	1,797	1,798	1,798
R^{2}	0.010	0.033	0.004	0.021	0.019	0.049

Note: The table reports OLS regression estimates comparing the willingness to pay unemployment benefits and disability benefits when the probability of a false claim is 50 percent, for the pooled, US, and Norway samples. "Disability" is an indicator variable equal to one if the spectator is asked about disability benefits and zero if the spectator is asked about unemployment benefits. Controls include dummies for income, education, gender, age, and political ideology. The estimates are population weighted. Standard errors in parentheses.

B. Earnings-experiment - Study 1 and Study 2

This appendix presents an overview of the two versions of the Earnings-experiment, Study 1 and Study 2, that were conducted in the US and Norway prior to main data collection. Both studies were organized through the international survey provider Norstat, Study 1 was implemented in 2019 and Study 2 in 2015. In both the US and Norway, spectators were recruited from an existing panel to reflect the general population on a limited set of observables (age, gender, and geographical location).

In both Study 1 and Study 2, the spectators decide whether to pay workers earnings for having completed an assignment. In Study 1, the spectators decide whether a worker should be paid when there is a chance that the worker has filed a false claim. In Study 2, the spectators decide whether a group of four workers should be paid when some of the workers have filed a false claim.

B. 1 Samples

Table B1 provides an overview of the background characteristics of the spectators in the two countries for each of the two experiments.

Table B1: Descriptive Statistics

	Study 1			Study 2	
	United States	Norway		United States	Norway
Household income (median)	55.000 (USD)	750.000 (NOK)	75.000 (USD)	650.000 (NOK)	
Low education (share)	0.45	0.45	0.34	0.37	
Male	0.50	0.47	0.46	0.50	
Age	42	46	45	49	
Right-wing (share)	0.33	0.23	0.31	0.26	
N			1001	1000	1000

Note: The table presents the descriptive statistics for the spectators' background variables. Participants were recruited independently and organized through Research Now in the US and Norstat in Norway. The income variable is yearly household income in USD for the US and NOK for Norway (1 USD was about 8 NOK when these experiments were implemented), for which the median is displayed. "Low education" indicates the share of individuals not having a college degree. "Male" indicates the share of individuals who are male, "Age" is the mean age in years, and "Right-wing" indicates the share of individuals voting for the Republican Party in the US or one of two right-wing parties in Norway (the Conservative Party and the Progress Party; Høyre and Fremskrittspartiet).

The main stages of Study 1 are summarized in Table B2.
Table B2: Sequence of Events in the Experiment

```
Stage of experiment
1. Work stage: Workers choose whether to do an assignment or to report falsely
that they have done an assignment.
2. Matching stage: Workers are matched in five different groups such that
the probability that a worker randomly drawn from the group has filed a false claim is either 0 ,
\(25,50,75\), or 100 percent. Each spectator is randomly matched to a worker
from one of the five groups.
3. Payment stage: Each spectator is informed of the probability that the
worker has filed a false claim and asked to decide whether the worker should get paid. The workers are
paid according to the spectator decisions.
```

Note: The table provides an overview of the main stages of the experiment in Study 1. Study 2 follows the same main stages, but in this case the stakeholders decide whether to pay earnings to a group of four workers.

B. 2 Study 1: Payment to an individual

In Study 1, we examine spectators that decide whether to pay a worker earnings for an assignment when they know the probability that the worker has filed a false claim. The key features of Study 1 are the same as in the Earnings-experiment in the main paper, but there are some minor differences in the instructions.

B.2.1 Results

Figure B1 shows the share of spectators choosing to pay the worker in each of the five treatments for the pooled sample, and separately for the US and Norway. Most spectators choose to pay the worker when it is certain that the worker has not cheated. An almost equally large majority chooses not to pay when it is certain that the worker has filed a correct claim. The share paying the worker is almost unaffected by the probability of a false claim until the probability of a false claim is higher than 0.5 . For the US and Norway, the patterns are quite similar, except that the share who do not pay when it is certain that the worker filed a correct claim is higher in the US than in Norway ($\mathrm{p}=0.01$).

Figure B1: Share of Spectators who Pay

Note: The figure shows the share of spectators choosing to pay in each of the five treatments in Study 1 and Study 2. The upper, middle, and lower panels provide the shares for the pooled sample, the US sample, and the Norway sample. The treatments are indicated with the probability of a worker having filed a false claim in Study 1 and the share who has filed a false claim in Study 2. The standard errors are indicated.

Table B3 reports the corresponding regression analysis for the pooled sample and for the US sample and the Norway sample separately. 83.7 percent of the spectators pay the worker when it is certain that the worker has done the assignment, while this share drops by 3.2 and 5.7 percentage points when the probability of a false claim increases to 0.25 and 0.5 respectively. It follows that there are more false negative averse spectators than false positive averse spectators in the pooled sample, with an estimated difference of 56.0 percentage points $(p<0.001)$. In both countries there are more false negative averse spectators than false positive averse spectators.

Table B3: Regression Analysis of Treatment Effects - Study 1

	All		US		Norway	
	(1)	(2)	(3)	(4)	(5)	(6)
25 percent	$\begin{aligned} & -0.032 \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.033 \\ & (0.027) \end{aligned}$	$\begin{gathered} -0.060 \\ (0.044) \end{gathered}$	$\begin{gathered} -0.062 \\ (0.044) \end{gathered}$	$\begin{aligned} & -0.005 \\ & (0.030) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.030) \end{aligned}$
50 percent	$\begin{aligned} & -0.057 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.057 \\ & (0.028) \end{aligned}$	$\begin{gathered} -0.085 \\ (0.044) \end{gathered}$	$\begin{gathered} -0.088 \\ (0.044) \end{gathered}$	$\begin{aligned} & -0.029 \\ & (0.032) \end{aligned}$	$\begin{aligned} & -0.037 \\ & (0.032) \end{aligned}$
75 percent	$\begin{aligned} & -0.252 \\ & (0.031) \end{aligned}$	$\begin{gathered} -0.251 \\ (0.031) \end{gathered}$	$\begin{aligned} & -0.260 \\ & (0.046) \end{aligned}$	$\begin{gathered} -0.269 \\ (0.046) \end{gathered}$	$\begin{aligned} & -0.245 \\ & (0.040) \end{aligned}$	$\begin{gathered} -0.246 \\ (0.040) \end{gathered}$
100 percent	$\begin{aligned} & -0.612 \\ & (0.028) \end{aligned}$	$\begin{gathered} -0.611 \\ (0.028) \end{gathered}$	$\begin{aligned} & -0.540 \\ & (0.042) \end{aligned}$	$\begin{gathered} -0.547 \\ (0.042) \end{gathered}$	$\begin{aligned} & -0.685 \\ & (0.036) \end{aligned}$	$\begin{aligned} & -0.681 \\ & (0.036) \end{aligned}$
low income		$\begin{gathered} -0.042 \\ (0.019) \end{gathered}$		$\begin{gathered} 0.006 \\ (0.031) \end{gathered}$		$\begin{gathered} -0.013 \\ (0.026) \end{gathered}$
Low education		$\begin{gathered} -0.033 \\ (0.019) \end{gathered}$		$\begin{gathered} -0.064 \\ (0.030) \end{gathered}$		$\begin{gathered} -0.013 \\ (0.024) \end{gathered}$
Male		$\begin{gathered} -0.064 \\ (0.019) \end{gathered}$		$\begin{gathered} -0.063 \\ (0.029) \end{gathered}$		$\begin{gathered} -0.040 \\ (0.025) \end{gathered}$
Low age		$\begin{gathered} 0.031 \\ (0.019) \end{gathered}$		$\begin{gathered} -0.039 \\ (0.030) \end{gathered}$		$\begin{gathered} 0.097 \\ (0.024) \end{gathered}$
Right-wing		$\begin{aligned} & -0.030 \\ & (0.022) \end{aligned}$		$\begin{gathered} -0.004 \\ (0.032) \end{gathered}$		$\begin{gathered} -0.023 \\ (0.031) \end{gathered}$
Constant	$\begin{gathered} 0.837 \\ (0.018) \end{gathered}$	$\begin{gathered} 0.893 \\ (0.024) \end{gathered}$	$\begin{gathered} 0.775 \\ (0.030) \end{gathered}$	$\begin{gathered} 0.857 \\ (0.039) \end{gathered}$	$\begin{gathered} 0.900 \\ (0.021) \end{gathered}$	$\begin{gathered} 0.887 \\ (0.029) \end{gathered}$
N	2,001	2,001	1,000	1,000	1,001	1,001
R^{2}	0.228	0.239	0.158	0.168	0.332	0.349

Note: The table reports OLS regressions on an indicator variable taking the value one if the spectator pays. " 25 percent", " 50 percent", "75 percent", and " 100 percent" are indicators of the probability that the worker has filed a false claim. "Low income" is an indicator for reporting a household income of less than 60,000 USD in the US and less than 600,000 NOK in Norway, "Low education" is an indicator for not having a college degree, "Male" is an indicator for being male, and "Low age" is an indicator for being below median age. A participant is classified as "Right-wing" if voting for the Republican Party in the US or one of two right-wing parties in Norway (the Conservative Party and the Progress Party; Høyre and Fremskrittspartiet). Robust standard errors in parentheses.

Table B4 displays estimated shares of the upper and lower bounds of the shares of false positive averse, symmetric, and false negative averse for the pooled, US and Norway samples. About 75 percent of the spectators are false negative averse, around 20.0 percent of the spectators are false positive averse, while only a negligible share of the spectators has symmetric preferences. We observe a significantly larger share of false negative averse spectators and a significantly smaller share of false positive averse spectators in the US than in Norway (in both cases, $p<0.001$).

Table B4: Estimated Shares

	All - Study 1		All - Study 2	
	Lower bound	Upper bound	Lower bound	Upper bound
False positive averse	$\begin{array}{r} 0.195 \\ (0.020) \end{array}$	$\begin{array}{r} 0.219 \\ (0.021) \end{array}$	$\begin{array}{r} 0.353 \\ (0.054) \end{array}$	$\begin{array}{r} 0.358 \\ (0.024) \end{array}$
Symmetric	0	$\begin{array}{r} 0.049 \\ (0.057) \end{array}$	0	$\begin{array}{r} 0.010 \\ (0.068) \end{array}$
False negative averse	$\begin{array}{r} 0.756 \\ (0.046) \end{array}$	$\begin{array}{r} 0.781 \\ (0.021) \end{array}$	$\begin{array}{r} 0.638 \\ (0.024) \end{array}$	$\begin{array}{r} 0.643 \\ (0.024) \end{array}$
	US - Study 1		US - Study 2	
	Lower bound	Upper bound	Lower bound	Upper bound
False positive averse	$\begin{array}{r} 0.285 \\ (0.032) \end{array}$	$\begin{array}{r} 0.310 \\ (0.033) \end{array}$	$\begin{array}{r} 0.290 \\ (0.076) \end{array}$	$\begin{array}{r} 0.355 \\ (0.034) \end{array}$
Symmetric	0	$\begin{array}{r} 0.050 \\ (0.092) \end{array}$	0	$\begin{array}{r} 0.130 \\ (0.097) \end{array}$
False negative averse	$\begin{array}{r} 0.665 \\ (0.073) \end{array}$	$\begin{array}{r} 0.690 \\ (0.033) \end{array}$	$\begin{array}{r} 0.580 \\ (0.035) \end{array}$	$\begin{array}{r} 0.645 \\ (0.034) \end{array}$
	Norway - Study 1		Norway - Study 2	
	Lower bound	Upper bound	Lower bound	Upper bound
False positive averse	$\begin{array}{r} 0.285 \\ (0.032) \end{array}$	$\begin{array}{r} 0.310 \\ (0.033) \end{array}$	$\begin{array}{r} 0.205 \\ (0.034) \end{array}$	$\begin{array}{r} 0.355 \\ (0.034) \end{array}$
Symmetric	0	$\begin{array}{r} 0.050 \\ (0.092) \end{array}$	0	$\begin{array}{r} 0.300 \\ (0.089) \end{array}$
False negative averse	$\begin{array}{r} 0.665 \\ (0.073) \end{array}$	$\begin{array}{r} 0.690 \\ (0.033) \end{array}$	$\begin{array}{r} 0.495 \\ (0.074) \end{array}$	$\begin{array}{r} 0.645 \\ (0.034) \end{array}$

Note: The table displays the lower and upper bounds for the share of false positive averse spectators, symmetric spectators, and false negative averse spectators in the pooled sample (upper panels), in the US (middle panels), and Norway (lower panels), for each of the two studies. Standard errors are in brackets.

Figure B2 shows the strength of the spectators' preferences when deciding whether to pay the worker by comparing the upper bounds of the shares of false positive spectators and false negative averse spectators with the shares of strongly false positive averse spectators and the share of strongly false negative averse spectators. Most of the spectators have strong preferences: about 19.5 percent of the spectators are strongly false positive averse, while about 58.5 percent of the spectators are strongly false negative averse. The patterns are the same in both countries. However, we find a larger share of strongly false positive averse spectators in the US than in Norway, and a larger share of strongly false negative averse spectators in Norway than in the US (in both cases, $p<0.001$).

Figure B2: Strength of Second-best Fairness Preferences

Note: The dark bars report the estimated upper bounds of the shares of spectators who are false positive averse and false negative averse. The transparent grey bars report the shares of spectators who are strongly false positive averse or strongly false negative averse. The upper panels report the estimates for the pooled samples in Study 1 and Study 2. The middle panels report the estimates for the US sample and the lower panel reports the estimates for the Norway sample. The standard errors are indicated.

B. 3 Study 2: Payment to a Group

In Study 2, we examine spectators making a choice about whether to pay a group of workers earnings for an assignment when they know how many of the workers in the group have filed a false claim. The spectators cannot differentiate between the group members, they have to pay all or none of them.

B.3.1 Results

In Figure B1, we observe that 90.5 percent of the spectators choose to pay when it is certain that all the workers have filed a correct claim, while 86.8 percent choose not to pay when it is certain that all the workers have filed a false claim.

Table B5 reports the corresponding regression analysis for the pooled sample and for the US and Norway samples separately. The introduction of a first and second worker who filed a false claim in the group causes a 9.0 percentage points and a 26.2 percentage point drop in the share paying. It follows that there are more false negative averse than false positive averse spectators in the pooled sample, with an estimated difference of 28.5 percentage points $(p<0.001)$. While there is no change in the share of spectators paying with a third worker filing a false claim, we observe the largest drop in the share paying when everyone in the group has filed a false claim, with only 13.3 percent of the spectators paying ($p<0.001$). Columns (3) - (6) show that there are more false negative averse spectators than false positive averse spectators in both the US and in Norway, with an estimated difference in the share of false negative averse spectators and the share of false positive averse spectators of 29.0 percentage points and 28.0 percentage points in the US and Norway.

Table B4 shows that about 65 percent of the spectators are false negative averse in the pooled sample, while about 35 percent of the spectators are false positive averse. Only a negligible share of the spectators exhibits symmetric preferences. The estimated shares of the different types of spectators are almost the same in the US and Norway.

The right panels of Figure B2 show the strength of the second-best fairness preferences. We observe that almost all of the false negative averse spectators are strongly false negative averse. For the false positive averse spectators, we observe that about half of them have a strong secondbest fairness preferences. There is a larger share of strongly false negative averse spectators in Norway compared to the US.

Table B5: Regression Analysis of Treatment Effects - Study 2

	All		US		Norway	
	(1)	(2)	(3)	(4)	(5)	(6)
25 percent	$\begin{gathered} -0.090 \\ (0.024) \end{gathered}$	$\begin{aligned} & -0.093 \\ & (0.024) \end{aligned}$	$\begin{gathered} -0.095 \\ (0.036) \end{gathered}$	$\begin{aligned} & -0.091 \\ & (0.036) \end{aligned}$	$\begin{aligned} & -0.085 \\ & (0.033) \end{aligned}$	$\begin{aligned} & -0.096 \\ & (0.032) \end{aligned}$
50 percent	$\begin{aligned} & -0.262 \\ & (0.028) \end{aligned}$	$\begin{gathered} -0.266 \\ (0.028) \end{gathered}$	$\begin{gathered} -0.245 \\ (0.041) \end{gathered}$	$\begin{aligned} & -0.247 \\ & (0.040) \end{aligned}$	$\begin{aligned} & -0.280 \\ & (0.039) \end{aligned}$	$\begin{aligned} & -0.288 \\ & (0.039) \end{aligned}$
75 percent	$\begin{aligned} & -0.267 \\ & (0.028) \end{aligned}$	$\begin{gathered} -0.269 \\ (0.028) \end{gathered}$	$\begin{gathered} -0.310 \\ (0.041) \end{gathered}$	$\begin{aligned} & -0.302 \\ & (0.040) \end{aligned}$	$\begin{aligned} & -0.225 \\ & (0.038) \end{aligned}$	$\begin{gathered} -0.231 \\ (0.037) \end{gathered}$
100 percent	$\begin{aligned} & -0.773 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.774 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.775 \\ & (0.032) \end{aligned}$	$\begin{aligned} & -0.766 \\ & (0.032) \end{aligned}$	$\begin{aligned} & -0.770 \\ & (0.032) \end{aligned}$	$\begin{aligned} & -0.779 \\ & (0.031) \end{aligned}$
low income		$\begin{gathered} 0.046 \\ (0.019) \end{gathered}$		$\begin{gathered} 0.023 \\ (0.029) \end{gathered}$		$\begin{gathered} 0.068 \\ (0.025) \end{gathered}$
Low education		$\begin{aligned} & -0.017 \\ & (0.019) \end{aligned}$		$\begin{gathered} 0.022 \\ (0.029) \end{gathered}$		$\begin{aligned} & -0.059 \\ & (0.026) \end{aligned}$
Male		$\begin{aligned} & -0.061 \\ & (0.018) \end{aligned}$		$\begin{aligned} & -0.088 \\ & (0.027) \end{aligned}$		$\begin{gathered} -0.042 \\ (0.025) \end{gathered}$
Low age		$\begin{gathered} 0.022 \\ (0.018) \end{gathered}$		$\begin{aligned} & -0.012 \\ & (0.027) \end{aligned}$		$\begin{gathered} 0.058 \\ (0.025) \end{gathered}$
Right-wing		$\begin{aligned} & -0.089 \\ & (0.020) \end{aligned}$		$\begin{aligned} & -0.092 \\ & (0.028) \end{aligned}$		$\begin{aligned} & -0.083 \\ & (0.030) \end{aligned}$
Constant	$\begin{gathered} 0.905 \\ (0.015) \end{gathered}$	$\begin{gathered} 0.940 \\ (0.021) \end{gathered}$	$\begin{gathered} 0.890 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.945 \\ (0.032) \end{gathered}$	$\begin{gathered} 0.920 \\ (0.019) \end{gathered}$	$\begin{gathered} 0.939 \\ (0.028) \end{gathered}$
N	2,000	2,000	1,000	1,000	1,000	1,000
R^{2}	0.306	0.322	0.301	0.319	0.315	0.336

Note: The table reports OLS regressions on an indicator variable taking the value one if the spectator pays. " 25 percent", " 50 percent"," 75 percent", and "100 percent" are indicators of the share of workers in the group who has filed a false claim. "Low income" is an indicator for reporting a household income of less than 60,000 USD in the US and less than 600,000 NOK in Norway, "Low education" is an indicator for not having a college degree, "Male" is an indicator for being male, and "Low age" is an indicator for being below median age. A participant is classified as "Right-wing" if voting for the Republican Party in the US or one of two right-wing parties in Norway (the Conservative Party and the Progress Party; Høyre and Fremskrittspartiett). Robust standard errors in parentheses.

B. 4 Political Affiliation and Policy Attitudes

Table B6 provides an overview of the estimated political differences in the shares of false negative averse spectators (upper bound), and strongly false positive spectators and strongly false negative averse spectators pooled for the two studies and for each study separately. In both the US and Norway, there is a smaller share of strongly false negative averse spectators among the right-wing participants than among the non-right-wing participants.

Table B7 estimates the effect of paying in the experiment on the extent to which the spectator agrees with the statement "The state should help reduce income inequality in society." There is a significant positive association between paying in the experiment and agreeing that the state should help reduce income inequality: being false negative averse increases significantly the support for redistribution $(p<0.001)$. We observe the same associations between the spectators' behavior and political attitudes in the US and Norway.

Table B6: Political Differences: Right-wing versus Non-right-wing

	All			US			Norway		
	Pooled	Study 1	Study 2	Pooled	Study 1	Study 2	Pooled	Study 1	Study 2
False Negative	$\begin{aligned} & -0.079 \\ & (0.037) \end{aligned}$	$\begin{gathered} -0.024 \\ (0.049) \end{gathered}$	$\begin{gathered} -0.113 \\ (0.053) \end{gathered}$	$\begin{gathered} -0.045 \\ (0.052) \end{gathered}$	$\begin{gathered} 0.048 \\ (0.071) \end{gathered}$	$\begin{gathered} -0.136 \\ (0.076) \end{gathered}$	$\begin{gathered} -0.106 \\ (0.052) \end{gathered}$	$\begin{aligned} & -0.072 \\ & (0.065) \end{aligned}$	$\begin{gathered} -0.090 \\ (0.076) \end{gathered}$
Strongly False Positive	$\begin{gathered} 0.044 \\ (0.033) \end{gathered}$	$\begin{gathered} 0.065 \\ (0.046) \end{gathered}$	$\begin{gathered} 0.020 \\ (0.047) \end{gathered}$	$\begin{gathered} 0.010 \\ (0.046) \end{gathered}$	$\begin{gathered} 0.026 \\ (0.067) \end{gathered}$	$\begin{gathered} -0.022 \\ (0.062) \end{gathered}$	$\begin{gathered} 0.050 \\ (0.046) \end{gathered}$	$\begin{gathered} 0.044 \\ (0.058) \end{gathered}$	$\begin{gathered} 0.063 \\ (0.074) \end{gathered}$
Strongly False Negative	$\begin{aligned} & -0.160 \\ & (0.039) \end{aligned}$	$\begin{gathered} -0.116 \\ (0.056) \end{gathered}$	$\begin{gathered} -0.206 \\ (0.054) \end{gathered}$	$\begin{aligned} & -0.169 \\ & (0.054) \end{aligned}$	$\begin{gathered} -0.126 \\ (0.076) \end{gathered}$	$\begin{aligned} & -0.210 \\ & (0.077) \end{aligned}$	$\begin{gathered} -0.135 \\ (0.056) \end{gathered}$	$\begin{gathered} -0.064 \\ (0.084) \end{gathered}$	$\begin{aligned} & -0.202 \\ & (0.075) \end{aligned}$
Controls	Yes								
N	4,001	2,001	2,000	2,000	1,000	1,000	2,001	1,001	1,000
R^{2}	0.267	0.232	0.318	0.226	0.162	0.315	0.318	0.335	0.326

Note: The table reports the difference between right-wing and non-right-wing spectators in the share of false negative averse spectators (upper bound) in the first row. The estimated difference in the share of false positives spectators (upper bound) is the opposite and thus not reported. The political differences in the share of strongly false positive averse spectators and the share of strongly false negative averse spectators are reported in the second row and the third row. Standard errors in parentheses

Table B7: Should Equalize

	All		US		Norway	
	(1)	(2)	(3)	(4)	(5)	(6)
Pay	$\begin{gathered} 0.114 \\ (0.033) \end{gathered}$		$\begin{gathered} 0.085 \\ (0.048) \end{gathered}$		$\begin{gathered} 0.098 \\ (0.042) \end{gathered}$	
False negative averse		$\begin{gathered} 0.224 \\ (0.080) \end{gathered}$		$\begin{gathered} 0.232 \\ (0.111) \end{gathered}$		$\begin{gathered} 0.196 \\ (0.109) \end{gathered}$
Controls	Yes	Yes	Yes	Yes	Yes	Yes
N	4,001	801	2,000	400	2,001	401
R^{2}	0.034	0.060	0.066	0.109	0.020	0.052

Note: The table reports OLS results from regressions on the standardized response to the question "To what extent do you agree or disagree with the following statement: The state should help reduce income inequalities in society", where the response was on a seven-point scale from strongly disagree to strongly agree. "Pay" is an indicator for the spectator paying; "False negative averse" is an indicator for paying in the treatment where the probability that the worker has filed a false claim (Study 1) or the share of workers filing a false claim (Study 2) is 50 percent. The regressions reported in columns (1), (3), and (5) are based on the pooled sample, the US sample, and the Norway sample, respectively. The regressions reported in columns (2), (4), and (6) are based on the subsample randomly assigned to the treatment where the probability that the worker has filed a false claim (Study 1) or the share of workers who has filed a false claim (Study 2) is 50 percent. Controls included, but not reported, are indicators for gender, age, education, and income. Standard errors in parentheses.

B. 5 Conclusion

The results from the two previous versions of the Earnings-experiment are in line with the results from the main experiment. In both Study 1 and Study 2, we find that most spectators are false negative averse and that a significant minority of the spectators are false positive averse. We also observe that most spectators have strong second-best fairness preferences, the large majority being either strongly false negative averse or strongly false positive averse. These findings apply to both the US and Norway. In both studies, we find that the share of strongly false negative averse spectators is greater in Norway than in the US. Furthermore, right-wing spectators are more likely to be strongly false negative averse than non-right-wing spectators, and false negative averse spectators are more likely to be supportive of redistribution than false positive averse spectators.

C. Experimental instructions

This appendix displays the instructions for spectators and workers in the Compensation-experiment, the Earnings-experiment, and the Unemployment-experiment in the main study, as well as the instructions for the previous Earnings-experiments (Study 1 and Study 2).

C. 1 Instructions 2022

We provide the instructions as presented for the USA sample. For the Compensation-experiment, we provide instructions for all treatments except the treatment with low cost. For the Earningsexperiment and Unemployment-experiment, we report instructions for the treatments where it is equally likely that the worker has filed a false claim or a correct claim. Furthermore, we report the policy attitude questions and the questions on altruism and religiosity. Finally, this appendix also comprises the instructions presented to workers.

C.1.1 Compensation-experiment

Figure C1: Spectator Instructions for the Compensation-experiment - $\mathrm{P}=0$

We will ask you to make a choice that may have real consequences for a person. It is therefore very important that you carefully read the information below.

A few days ago, we recruited people via an international online labor market. It was randomly decided who were offered income-generating work and who were not offered work. Those who were not offered work were entitled to 4 USD as partial compensation for their loss of income from not being offered work. Those who were offered work could file a false claim for compensation by wrongly stating that they had not been offered work

We told them that a third party would decide whether a claim for compensation is to be paid out
Your task will now be to decide whether a person's claim for compensation is to be paid out. It is:

- Certain (100 percent probability) that this person has filed a correct claim for compensation

Please proceed by confirming that you have carefully read the information above and are ready to take a decision about whether this person is to be paid the compensation.

Click on >> to confirm
\square

We now ask you to make a choice for this person
Please mark your decision:Do not pay the compensation. This means that a person who has filed a correct claim for compensation is not paid the compensation

- Pay the compensation

You and nine other respondents make this decision, and we will randomly select one of you to be the one whose decision will determine whether the person is paid the compensation. Your decision is anonymous and not observed by other respondents
$\ll \quad \gg$

Figure C2: Spectator Instructions for the Compensation-experiment $-\mathrm{P}=0.25$

We will ask you to make a choice that may have real consequences for a person. It is therefore very important that you carefully read the information below.

A few days ago, we recruited people via an international online labor market. It was randomly decided who were offered income-generating work and who were not offered work. Those who were not offered work were entitled to 4 USD as partial compensation for their loss of income from not being offered work. Those who were offered work could file a false claim for compensation by wrongly stating that they had not been offered work.

We told them that a third party would decide whether a claim for compensation is to be paid out.
Your task will now be to decide whether a person's claim for compensation is to be paid out. There is:

- 75 percent probability that this person has filed a correct claim for compensation.
- 25 percent probability that this person has filed a false claim for compensation.

Please proceed by confirming that you have carefully read the information above and are ready to take a decision about whether this person is to be paid the compensation.

Click on >> to confirm
$\ll \quad \gg$

We now ask you to make a choice for this person.
Please mark your decision:

Do not pay the compensation. This means that there is a 75 percent probability that a person who has filed a correct claim for compensation is not paid the compensation.Pay the compensation. This means that there is a 25 percent probability that a person who has filed a false claim for compensation is paid the compensation.

You and nine other respondents make this decision, and we will randomly select one of you to be the one whose decision will determine whether the person is paid the compensation. Your decision is anonymous and not observed by other respondents.
$\ll \gg$

Figure C3: Spectator Instructions for the Compensation-experiment $-\mathrm{P}=0.5$

We will ask you to make a choice that may have real consequences for a person. It is therefore very important that you carefully read the information below.

A few days ago, we recruited people via an international online labor market. It was randomly decided who were offered income-generating work and who were not offered work. Those who were not offered work were entitled to 4 USD as partial compensation for their loss of income from not being offered work. Those who were offered work could file a false claim for compensation by wrongly stating that they had not been offered work.

We told them that a third party would decide whether a claim for compensation is to be paid out.
Your task will now be to decide whether a person's claim for compensation is to be paid out. There is:

- 50 percent probability that this person has filed a correct claim for compensation.
- 50 percent probability that this person has filed a false claim for compensation.

Please proceed by confirming that you have carefully read the information above and are ready to take a decision about whether this person is to be paid the compensation.

Click on >> to confirm

We now ask you to make a choice for this person.
Please mark your decision:

Do not pay the compensation. This means that there is a 50 percent probability that a person who has filed a correct claim for compensation is not paid the compensation.

Pay the compensation. This means that there is a 50 percent probability that a person who has filed a false claim for compensation is paid the compensation.

You and nine other respondents make this decision, and we will randomly select one of you to be the one whose decision will determine whether the person is paid the compensation. Your decision is anonymous and not observed by other respondents.
$\ll \quad \gg$

Figure C4: Spectator Instructions for the Compensation-experiment $-\mathrm{P}=0.75$

We will ask you to make a choice that may have real consequences for a person. It is therefore very important that you carefully read the information below.

A few days ago, we recruited people via an international online labor market. It was randomly decided who were offered income-generating work and who were not offered work. Those who were not offered work were entitled to 4 USD as partial compensation for their loss of income from not being offered work. Those who were offered work could file a false claim for compensation by wrongly stating that they had not been offered work.

We told them that a third party would decide whether a claim for compensation is to be paid out.
Your task will now be to decide whether a person's claim for compensation is to be paid out. There is:

- 25 percent probability that this person has filed a correct claim for compensation.
- 75 percent probability that this person has filed a false claim for compensation.

Please proceed by confirming that you have carefully read the information above and are ready to take a decision about whether this person is to be paid the compensation.

Click on >> to confirm

We now ask you to make a choice for this person.
Please mark your decision:
() Do not pay the compensation. This means that there is a 25 percent probability that a person who has filed a correct claim for compensation is not paid the compensation.

Pay the compensation. This means that there is a 75 percent probability that a person who has filed a false claim for compensation is paid the compensation.

You and nine other respondents make this decision, and we will randomly select one of you to be the one whose decision will determine whether the person is paid the compensation. Your decision is anonymous and not observed by other respondents.
$\ll \quad \gg$

Figure C5: Spectator Instructions for the Compensation-experiment $-\mathrm{P}=1$

We will ask you to make a choice that may have real consequences for a person. It is therefore very important that you carefully read the information below.

A few days ago, we recruited people via an international online labor market. It was randomly decided who were offered income-generating work and who were not offered work. Those who were not offered work were entitled to 4 USD as partial compensation for their loss of income from not being offered work. Those who were offered work could file a false claim for compensation by wrongly stating that they had not been offered work.

We told them that a third party would decide whether a claim for compensation is to be paid out.
Your task will now be to decide whether a person's claim for compensation is to be paid out. It is:

- Certain (100 percent probability) that this person has filed a false claim for compensation.

Please proceed by confirming that you have carefully read the information above and are ready to take a decision about whether this person is to be paid the compensation.

Click on >> to confirm
$\square \ll>$

We now ask you to make a choice for this person.
Please mark your decision:

Do not pay the compensation.

Pay the compensation. This means that a person who has filed a false claim for compensation is paid the compensation.

You and nine other respondents make this decision, and we will randomly select one of you to be the one whose decision will determine whether the person is paid the compensation. Your decision is anonymous and not observed by other respondents.

Figure C6: Spectator Instructions for the Compensation-experiment - Nationality, $\mathrm{P}=0.5$

We will ask you to make a choice that may have real consequences for a person. It is therefore very important that you carefully read the information below.

A few days ago, we recruited people via an online labor market. It was randomly decided who were offered incomegenerating work and who were not offered work. Those who were not offered work were entitled to 4 USD as partial compensation for their loss of income from not being offered work. Those who were offered work could file a false claim for compensation by wrongly stating that they had not been offered work.

We told them that a third party would decide whether a claim for compensation is to be paid out.
Your task will now be to decide whether a person's claim for compensation is to be paid out. There is:

- 50 percent probability that this person has filed a correct claim for compensation.
- 50 percent probability that this person has filed a false claim for compensation.

Please proceed by confirming that you have carefully read the information above and are ready to take a decision about whether this person is to be paid the compensation.

Click on >> to confirm
$\square<>$

We now ask you to make a choice for this person.
Please mark your decision:

Do not pay the compensation. This means that there is a 50 percent probability that a person who has filed a correct claim for compensation is not paid the compensation.Pay the compensation. This means that there is a 50 percent probability that a person who has filed a false claim for compensation is paid the compensation.

You and nine other respondents make this decision, and we will randomly select one of you to be the one whose decision will determine whether the person is paid the compensation. Your decision is anonymous and not observed by other respondents.

Figure C7: Spectator Instructions for the Compensation-experiment - Stakes, $\mathrm{P}=0.5$

We will ask you to make a choice that may have real consequences for a person. It is therefore very important that you carefully read the information below.

A few days ago, we recruited people via an international online labor market. It was randomly decided who were offered income-generating work and who were not offered work. Those who were not offered work were entitled to 8 USD as partial compensation for their loss of income from not being offered work. Those who were offered work could file a false claim for compensation by wrongly stating that they had not been offered work.

We told them that a third party would decide whether a claim for compensation is to be paid out.
Your task will now be to decide whether a person's claim for compensation is to be paid out. There is:

- 50 percent probability that this person has filed a correct claim for compensation.
- 50 percent probability that this person has filed a false claim for compensation.

Please proceed by confirming that you have carefully read the information above and are ready to make a decision about whether this person is to be paid the compensation.

Click on >> to confirm

$\ll \quad \gg$

We now ask you to make a choice for this person.
Please mark your decision:

Do not pay the compensation. This means that there is a 50 percent probability that a person who has filed a correct claim for compensation is not paid the compensation.

Pay the compensation. This means that there is a 50 percent probability that a person who has filed a false claim for compensation is paid the compensation.

You and nine other respondents make this decision, and we will randomly select one of you to be the one whose decision will determine whether the person is paid the compensation. Your decision is anonymous and not observed by other respondents.

Figure C8: Spectator Instructions for the Compensation-experiment - Endowment, $\mathrm{P}=0.5$

We will ask you to make a choice that may have real consequences for a person. It is therefore very important that you carefully read the information below.

A few days ago, we recruited people via an international online labor market. It was randomly decided who were offered income-generating work and who were not offered work. Those who were not offered work were entitled to 4 USD as partial compensation for their loss of income from not being offered work. Those who were offered work could file a false claim for compensation by wrongly stating that they had not been offered work.

We told them that a third party would decide whether a claim for compensation is to be paid out.
Your task will now be to decide whether a person's claim for compensation is to be paid out. There is:

- 50 percent probability that this person has filed a correct claim for compensation.
- 50 percent probability that this person has filed a false claim for compensation.

Please proceed by confirming that you have carefully read the information above and are ready to take a decision about whether this person is to be paid the compensation.

Click on >> to confirm
$\ll \gg$

We now ask you to make a choice for this person. You are paid 1 USD for making the decision.
Please mark your decision:

Do not pay the compensation. This means that there is a 50 percent probability that a person who has filed a correct claim for compensation is not paid the compensation.Pay the compensation. This means that there is a 50 percent probability that a person who has filed a false claim for compensation is paid the compensation.

You and nine other respondents make this decision, and we will randomly select one of you to be the one whose decision will determine whether the person is paid the compensation. Your decision is anonymous and not observed by other respondents.
$\ll \gg$

Figure C9: Spectator Instructions for the Compensation-experiment - High cost, $\mathrm{P}=0.5$

We will ask you to make a choice that may have real consequences for a person. It is therefore very important that you carefully read the information below.

A few days ago, we recruited people via an international online labor market. It was randomly decided who were offered income-generating work and who were not offered work. Those who were not offered work were entitled to 4 USD as partial compensation for their loss of income from not being offered work. Those who were offered work could file a false claim for compensation by wrongly stating that they had not been offered work.

We told them that a third party would decide whether a claim for compensation is to be paid out.
Your task will now be to decide whether a person's claim for compensation is to be paid out. There is:

- 50 percent probability that this person has filed a correct claim for compensation.
- 50 percent probability that this person has filed a false claim for compensation.

Please proceed by confirming that you have carefully read the information above and are ready to take a decision about whether this person is to be paid the compensation.

Click on >> to confirm
$\ll \gg$

We now ask you to make a choice for this person. You are paid 1 USD for making the decision. If you decide that the person is to be paid the compensation, we deduct 0.3 USD from your payment to partially cover the costs of the compensation.
Please mark your decision:

Do not pay the compensation. This means that there is a 50 percent probability that a person who has filed a correct claim for compensation is not paid the compensation.

Pay the compensation. This means that there is a 50 percent probability that a person who has filed a false claim for compensation is paid the compensation.

You and nine other respondents make this decision, and we will randomly select one of you to be the one whose decision will determine whether the person is paid the compensation. Your decision is anonymous and not observed by other respondents.

Figure C10: Worker Instructions - Compensation-experiment

Abstract

Introduction

Welcome to this research project! We very much appreciate your participation.

This is a study about decision-making. Several research institutions have provided funds for this research.

\section*{Payment}

Your payment will consist of the participation fee plus the amount of bonus points that you accumulate throughout the study. The exact amount of bonus points that you receive will depend on your and/or others' decision.

Your bonus will be paid to you using the bonus system within a few weeks after the completion of this HIT. Your payment for taking the HIT will be sent to you shortly after the completion of this HIT.

\section*{Procedures}

The study consists of two parts and you will be given instructions on your screen before every single part of the survey. Please always make sure to read the instructions carefully before you continue.

Participation Participation in this research study is completely voluntary. You have the right to withdraw at anytime or refuse to participate entirely without jeopardy to future participation in other studies conducted by us.

Confidentiality

All data obtained from you will be kept confidential and will only be reported in an aggregate format (by reporting only combined results and never reporting individual ones). All submissions will be concealed and all data will be stored in GDPR compliant, secure database until it has been deleted by us

Verification

At the end of this survey, you will be given a completion code You will need to copy this code to the survey code field on the AMT web page that directed you here at the beginning

Questions about the Research

If you have questions regarding this study, you may contact thechoicelab@nhh.no

C.1.2 Earnings-experiment

Figure C11: Spectator Instructions for the Earnings-experiment $-\mathrm{P}=0.5$

We will ask you to make a choice that may have real consequences for a person. It is therefore very important that you carefully read the information below.

A few days ago, we recruited people via an international online labor market and offered them work. Those who did the work were entitled to earnings of 4 USD. Those who did not do the work could file a false claim for the earnings by wrongly stating that they had worked. We told them that a third party would decide whether a claim for earnings is to be paid out.

Your task will now be to decide whether a person's claim for earnings is to be paid out. It is:

- 50 percent probability that this person has filed a correct claim for earnings.
- 50 percent probability that this person has filed a false claim for earnings.

Please proceed by confirming that you have carefully read the information above and are ready to make a decision about whether this person is to be paid the earnings.

Click on >> to confirm

We now ask you to make a choice for this person.
Please mark your decision:

Do not pay the earnings. This means that there is a 50 percent probability that a person who has filed a correct claim for earnings is not paid the earnings.

Pay the earnings. This means that there is a 50 percent probability that a person who has filed a false claim for earnings is paid the earnings.

You and nine other respondents make this decision, and we will randomly select one of you to be the one whose decision will determine whether the person is paid the earnings. Your decision is anonymous and not observed by other respondents.
$\ll \gg$

C.1.3 Unemployment-experiment

Figure C12: Spectator Instructions for the Unemployment-experiment - P = 0.5

We will ask you to consider what you would do if you had to decide whether a person is to be paid unemployment benefits. It is very important that you carefully read the information below.

Unemployment benefits are intended to partly compensate people who are involuntarily unemployed for their loss of income. People who are not involuntarily unemployed sometimes file a false claim for unemployment benefits by wrongly stating that they are involuntarily unemployed.

Consider a situation where a person has filed a claim for unemployment benefits. It is:

- 50 percent probability that this person has filed a correct claim for unemployment benefits.
- 50 percent probability that this person has filed a false claim for unemployment benefits.

Please proceed by confirming that you have carefully read the information above and are ready to take a decision about whether this person is to be paid the unemployment benefits.

Click on >> to confirm
$\ll>$

We now ask you to make a choice for this person.
Please mark your decision:Do not pay the unemployment benefits. This means that there is a 50 percent probability that a person who has filed a correct claim for unemployment benefits is not paid the unemployment benefits.Pay the unemployment benefits. This means that there is a 50 percent probability that a person who has filed a false claim for unemployment benefits is paid the unemployment benefits.
\qquad
\square
\square

Figure C13: Spectator Instructions for the Unemployment-experiment - Disability, $\mathrm{P}=0.5$

We will ask you to consider what you would have done if you had to decide whether a person is to be paid disability benefits. It is very important that you carefully read the information below.

Disability benefits are intended to partly compensate people who have a medical condition that prevents them from working for their loss of income. People who do not have a medical condition that prevents them from working sometimes file a false claim for disability benefits by wrongly stating that they are prevented from working because of a medical condition.

Consider a situation where a person has filed a claim for disability benefits. It is:

- 50 percent probability that this person has filed a correct claim for disability benefits.
- 50 percent probability that this person has filed a false claim for disability benefits.

Please proceed by confirming that you have carefully read the information above and are ready to take a decision about whether this person is to be paid the disability benefits.

Click on >> to confirm
$\ll \quad \gg$

We now ask you to make a choice for this person.
Please mark your decision:

Do not pay the disability benefits. This means that there is a 50 percent probability that a person who has filed a correct claim for disability benefits is not paid the disability benefits.

Pay the unemployment benefits. This means that there is a 50 percent probability that a person who has filed a false claim for disability benefits is paid the disability benefits.
$\ll \quad \gg$

C.1.5 Policy Attitudes and Additional Controls

Figure C14: Policy Attitudes, Fairness view, and Beliefs - Unemployment Benefits and Redistribution

To what extent do you agree or disagree with the following statements?							
	$\underset{\substack{\text { Strongly } \\ \text { Agree }}}{ }$	Agree	Mildy Agree	$\begin{aligned} & \text { Neither } \\ & \text { Agree } \\ & \text { nisar } \\ & \text { Disagree } \end{aligned}$	$\begin{aligned} & \text { Mildy } \\ & \text { Disagree } \end{aligned}$	Disagree	Strongly Disagree
Unemployment benefits should be made more generous.	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
It is unfair that the involuntary unemployed are not fully compensated for their income loss.	\bigcirc						
Generous unemployment benefits hurt the economy.	\bigcirc						
The government should help reduce income inequalities in society.	\bigcirc						
It is unfair that some people have higher income than others	\bigcirc						
Large income redistribution hurts the economy	\bigcirc						
	<<			>>			

Figure C15: Policy Attitudes, Fairness View, and Beliefs - Disability Benefits

To what extent do you agree or disagree with the following statements

	Strongly Agree	Agree	Mildly Agree	Neither Agree nor Disagree Disagree	$\begin{aligned} & \text { Mildly } \\ & \text { Disagree } \end{aligned}$	Disagree	Strongly Disagree
Disability benefits should be made more generous	\bigcirc						
It is unfair that disabled people who cannot work are not fully compensated for their income loss	\bigcirc						
Generous disability benefits hurt the economy	\bigcirc						

Figure C16: Additional Controls - Altruism and Religiosity

Is religion important in your life?

very important	somewhat important	not too important	not important at all
0			

How willing are you to give to good causes without expecting anything in return?

very willing	somewhat willing	not too willing	not willing at all
\bigcirc	\bigcirc	\bigcirc	

C. 2 Instructions - Previous Experiments (Study 1 and Study 2)

We here provide the instructions given to the spectators in the two versions of the Earningsexperiment conducted before the main data collection, We report instructions for the treatments where it is equally likely that the individual has made a false claim (Study 1) and equally many workers in the group that have filed a false a claim as a correct claim. We also provide the instructions given to the workers.

Figure C17: Instructions to Spectators - Study 1

In contrast to traditional survey questions that concern hypothetical situations, we now ask you to make a choice that will have real consequences for a person.

A few days ago, we recruited people via an international online labor market and gave them the opportunity to complete an assignment. The assignment was a simple task that required the individuals to work continuously for a certain period of time. The payment for doing the assignment was 4 USD.

The individuals had the opportunity to falsely report that they had done the assignment without actually having done it. They knew that if they falsely reported to have done the assignment, they could mistakenly be paid for having done it.

We want you to decide whether to pay 4 USD to a person For this person, there is 50 percent probability that this person has done the assignment and 50 percent probability that this person has falsely reported to have done the assignment.

Please mark which alternative you prefer. We pay the person according to your decision within a few days.

Alternative A: Pay 0 USD to the person. This means that he or she is not paid despite there being 50 percent probability
that he or she has done the assignment.
Alternative B: Pay 4 USD to the person. This means that he or she is paid despite there being 50 percent probability

Figure C18: Instructions to Spectators - Study 2

In contrast to traditional survey questions that concern hypothetical situations, we now ask you to make a choice that could have consequences for a real life situation.

A few days ago, we recruited people via an international online market place and gave them the opportunity to complete an assignment. The assignment was a simple task where the participants were required to work continuously for a certain period of time.

Everyone also got the opportunity to falsely report that they had done the assignment without actually. having done it. Those who made this choice did not do any other work.

We want you to decide how to distribute 16 USD between 8 of the recruited individuals. Your decision may be selected to determine the payments to the 8 individuals; it thus could have real life consequences.

6 of the individuals did the assignment, and 2 falsely reported to have done the assignment. You can choose between kwo ways of distributing the money. Please mark below which alternative you prefer:

Alternative A: Give 4 USD to 4 of the individuals who did the assignment and nothing to the other 4 individuals. This means that 2 individuals who did the assignment are not paid.

Alternative B: Give 2 USD to each of the 8 individuals. This means that the 2 individuals who falsely reported to have done the assignment are paid.

Figure C19: Instructions to workers

|General instructions:

You now take part in a research project. Please, carefully read and follow all instructions. Note that we retrieved your worker ID automatically when you followed the link to this page. We will use it to assign payments and therefore you do not need to enter any confirmation code after you have finished the study. You will remain anonymous throughout the study.

You will be paid a fixed participation fee of 2.5 USD and may in addition earn a bonus. If you have any questions regarding this study, you may contact thechoicelab@nhh.no.

A choice

We now want you to make a choice between the two following alternatives.
A. Do a 15 minutes word unscrambling assignment. Your performance will not be measured as there is no right or wrong answer, but we expect you to work continuously on the assignment.
B. Report to have done the 15 minutes word unscrambling assignment without doing it.

Your fixed participation fee does not depend on whether you choose A or B.

Your bonus payment may depend on whether you choose A or B. Your bonus payment is determined by a randomly selected third person. This person will have a sum of money to distribute among you and other participants in this study, and will not be able to distinguish between some of those who have done the assignment and those who have only reported to have done the assignment. You may therefore get paid a bonus both if you choose A and if you choose B.

[^0]: Panel B: Unemployment-experiment

 | Panel B: Unemployment-experiment | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | R-W p-value: | | | | | | H-B p-value : | | | | | |
 | All | | US | | Norway | | All | | US | | Norway | |
 | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) |

 $\begin{array}{lllllllllllllllllll}\text { Unemployment } & 0.0040 & 0.0040 & 0.1474 & 0.1116 & 0.0040 & 0.0040 & 0.0001 & 0.0000 & 0.2311 & 0.1894 & 0.0000 & 0.0000\end{array}$ $\begin{array}{lllllllllllllll}\text { Unemployment*25 } & 0.0279 & 0.0279 & 0.5538 & 0.5538 & 0.0239 & 0.0239 & 0.0456 & 0.0456 & 0.9798 & 0.9798 & 0.0196 & 0.0196\end{array}$ $\begin{array}{lllllllllllll}\text { Unemployment*50 } & 0.0040 & 0.0040 & 0.0239 & 0.0159 & 0.0040 & 0.0040 & 0.0000 & 0.0000 & 0.0314 & 0.0205 & 0.0014 & 0.0013\end{array}$ $\begin{array}{lllllllllllll}\text { Unemployment*75 } & 0.0040 & 0.0040 & 0.0837 & 0.0797 & 0.0040 & 0.0040 & 0.0001 & 0.0001 & 0.1396 & 0.1396 & 0.0021 & 0.0021\end{array}$
 $\begin{array}{lllllllllllll}\text { Unemployment*100 } & 0.0040 & 0.0040 & 0.0040 & 0.0040 & 0.0040 & 0.0080 & 0.0000 & 0.0000 & 0.0082 & 0.0055 & 0.0021 & 0.0021\end{array}$

 | | No | Yes | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
 | Controls | lal | | | | | | | | | | | |

