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B Proofs and Derivations: Section 3

Proof of Lemma 4 [Planner’s problem]

The planner’s objective is given by the sum of investors’ and creditors’ expected utility.
Formally, ignoring constant terms that depend only on endowments, we have W =
uI,P + uC,P , where uI,P and uC,P are given by

uI,P =
[
Q (b) − 1 + βI

∫ s

b
(s − b) dF I,P (s)

]
k − Υ (k)

uC,P =
[
−Q (b) + βC

(∫ s

b
bdF C,P +

∫ b

s
ϕsdF C,P (s)

)]
k − ∆ (b) k,

which imply that

W =

βI

∫ s

b

(s − b) dF I,P (s) + βC

(∫ s

b

bdF C,P +
∫ b

s

ϕsdF C,P (s)
)

︸ ︷︷ ︸
≡MP (b)

− 1 − ∆ (b)

 k − Υ (k) .

The results in Lemma 1 follow immediately.
Note that a planner that exclusively values the welfare of investors simply maximizes

uI,P , taking as given Q (b) as defined in the paper. This is as if the planner decided to
set F C,P (s) = F C (s). This observation is useful when relating our results to the Hertz
scenario in the paper. A planner that assigns different welfare weights to investors and
creditors simply maximizes a linear combination of uI,P and uC,P .

Proof of Proposition 4 [Marginal welfare effect of varying the leverage cap]

The result follows directly by totally differentiating the characterization of the planner’s
objective in Lemma 1, applying the envelope theorem, and noting that db⋆

db
= 1 whenever

the leverage cap is binding.
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Proof of Proposition 5 [Impact of beliefs on optimal regulation: General
characterization]

The variational derivative of marginal welfare effects with respect to beliefs F j for
j ∈ {I, C} is

δ dW
db

δF j
· Gj =

dMP
(
b
)

db
− d∆ (b)

db

δk⋆
(
b
)

δF j
· Gj


+
[
MP

(
b
)

− ∆ (b) − M
(
b
)] [δ dk⋆

db

δF j
· Gj

]
−

δM
(
b
)

δF j
· Gj

 dk⋆
(
b
)

db
.

Notice that we can express optimal investment as k⋆
(
b
)

= Ψ
(
M
(
b
)

− 1
)
, where Ψ (·) is

the inverse function of Υ′ (·). This implies that

δk
(
b
)

δF j
· Gj = Ψ′ (·)

δM
(
b
)

δF j
· Gj

 and
dk
(
b
)

db
= Ψ′ (·)

dM
(
b
)

db
.

Dividing these two expressions, we get

δk(b)
δF j · Gj

dk(b)
db

=
δM(b)

δF j · Gj

dM(b)
db

,

or equivalently, δM
(
b
)

δF j
· Gj

 dk⋆
(
b
)

db
=

dM
(
b
)

db

δk⋆
(
b
)

δF j
· Gj

 .

Combining our results, we obtain the required expression.
Whenever the planner’s objective is well-behaved in b, establishing that

δ dW

db
δF j · Gj > 0

guarantees that optimal leverage regulation involves a looser leverage cap. Formally, this
is the case whenever (i) the planner’s objective is quasi-concave in b and

δ dW

db
δF j · Gj > 0

evaluated at the optimal (second-best) policy or (ii) welfare takes any shape and
δ dW

db
δF j ·Gj >

0 for all b. As is standard in normative exercises, the planner’s objective need not be quasi-
concave without imposing additional restrictions on primitives — even though we find the
problem to be well-behaved when simulating the model for standard functional forms and
belief distributions.
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Proof of Proposition 6 [Impact of beliefs on optimal regulation: Specific
scenarios]

First, consider the debt and joint exuberance scenarios. By Proposition 3, debt or joint
exuberance (in a hazard rate sense) increases M (b) and also the marginal value of leverage
dM(b)

db for all b.
Moreover, we have

dMP
(
b
)

db
<

dM
(
b
)

db
⇒

dMP
(
b
)

db
− d∆ (b)

db
−

dM
(
b
)

db

 < 0

and also
MP

(
b
)

< M
(
b
)

⇒ MP
(
b
)

− ∆
(
b
)

− M
(
b
)

< 0.

Moreover, for any marginal increase in debt/joint exuberance represented by the distortion
Gj , we have

δM
(
b
)

δF j
· Gj > 0,

δ dM
db

δF j
· Gj > 0.

Using Proposition 5,1 we obtain that

δ dW
db

δF j
· Gj = φ ·

dMP
(
b
)

db
− d∆ (b)

db
−

dM
(
b
)

db︸ ︷︷ ︸
<0


δM

(
b
)

δF j
· Gj︸ ︷︷ ︸

>0



+ φ ·

MP
(
b
)

− ∆
(
b
)

− M
(
b
)

︸ ︷︷ ︸
<0


δ dM

db

δF j
· Gj︸ ︷︷ ︸

>0

 < 0,

as required.
Second, consider the equity exuberance scenario. Repeating our steps above, we find

1In general, note that δ dk⋆

db

δF j · Gj = Ψ′ (·) δ dM
db

δF j · Gj + Ψ′′ (·) δM(b)
δF j · Gj . When adjustment costs are

quadratic, Ψ′ (·) = φ — a scalar defined in the text — and Ψ′′ (·) = 0.
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that

δ dW
db

δF j
· Gj = φ ·

dMP
(
b
)

db
− d∆ (b)

db
−

dM
(
b
)

db︸ ︷︷ ︸
≶0,≡A


δM

(
b
)

δF j
· Gj︸ ︷︷ ︸

>0,≡B



+ φ ·

MP
(
b
)

− ∆
(
b
)

− M
(
b
)

︸ ︷︷ ︸
<0,≡C


δ dM

db

δF j
· Gj︸ ︷︷ ︸

<0,≡D

 .

and we can write

δ dW
db

δF j
· Gj > 0 ⇔ AB + CD > 0 ⇔ A > −C

D

B
,

which is equivalent to

dMP
(
b
)

db
− d∆ (b)

db
−

dM
(
b
)

db
> −

[
MP

(
b
)

− ∆
(
b
)

− M
(
b
)] δ dM

db
δF j · Gj

δ dM

db
δF j · Gj

.

The results in this proposition follow directly by combining the comparative statics in
Propositions 3 with the general characterization in Proposition 5. Our conclusions about
optimal policy follow directly, because those results provide signs for

δ dW

db
δF j · Gj > 0 for all

b.

Proof of Proposition 7 [Impact of the planner’s beliefs on optimal regulation:
Specific scenarios]

Each case in the proposition holds constant the beliefs of creditors and investors. Hence,
the terms M

(
b
)

> 0, k⋆
(
b
)

> 0, and dk⋆(b)
db

≥ 0 in the marginal welfare effect dW
db

(see
Proposition 4) are also held fixed. It is then clear that dW

db
is increasing in the planner’s

marginal value dMP (b)
db

of leverage and weakly increasing in the planner’s valuation MP
(
b
)

of investment.
By a parallel argument to Proposition 3, it follows that (i) MP

(
b
)

increases with the

planner’s equity exuberance, debt exuberance, and joint exuberance, and that (ii) dMP (b)
db

increases with the planner’s debt exuberance or joint exuberance but decreases with the
planner’s equity exuberance. This establishes the claims in the proposition.
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C Extensions

C.1 Imperfect knowledge of beliefs

C.1.1 Optimal policy conditional on endogenous investment

For technical consistency, we assume here that Θ is a closed set of pairs of continuous
cumulative distribution functions. We can equip this set with the sup norm to make it
a metric space, meaning that we define probability measures over the Borel sets in Θ,
including the planner’s probability measure µ.

Let I
(
b, θ
)

=
{

θ̃ ∈ Θ : k⋆
(
b, θ̃
)

= k⋆
(
b, θ
)}

be the set of beliefs under which the
equilibrium response to policy b is the same as under θ. For any given θ, a consistent
policy b

⋆ has to solve the following fixed point problem:

b
⋆ ∈ arg max

b
Eµ

[
W
(
b, k⋆

(
b; θ̃
))∣∣∣ I (b

⋆
, θ
)]

. (1)

For any interior solution to the maximization problem in (1), we have the first-order
condition

Eµ

dMP
(
b
)

db
−

d∆
(
b
)

db

 k⋆
(
b; θ̃
)

+
[
MP

(
b
)

− ∆ (b) − M
(
b; θ̃
)] dk⋆

(
b; θ̃
)

db

∣∣∣∣∣∣ I
(
b

⋆
, θ
) = 0.

(2)
A consistent policy b

⋆ must also satisfy this condition, and substituting, we obtain

Eµ

dMP
(
b
)

db
−

d∆
(
b
)

db

 k⋆
(
b

⋆; θ̃
)

+
[
MP

(
b
)

− ∆ (b) − M
(
b

⋆; θ̃
)] dk⋆

(
b

⋆; θ̃
)

db

∣∣∣∣∣∣ I
(
b

⋆
, θ
) = 0.

The expression used in the paper follows by noting that k⋆
(
b

⋆; θ̃
)

is a constant conditional

on the information set I
(
b

⋆
, θ
)
, and that the mapping between capital and M

(
b

⋆; θ̃
)

is

invertible, so that we can remove all terms except dk⋆(b;θ̃)
db

from the expectation operator

— note that dMP (b)
db and MP

(
b
)

depend on the planner’s beliefs, not on investors’ or
creditors’ beliefs.

Alternative policy problem 1/No conditioning on endogenous investment:
The marginal welfare effect of varying b when the planner does not observe realized
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investment is given by the equivalent of (2) without conditioning on any information:

Eµ

[
dW

db

]
= Eµ

[[
dMP

(
b
)

db
−

d∆
(
b
)

db

]
k⋆
(
b; θ̃
)

+
[
MP

(
b
)

− ∆ (b) − M
(
b; θ̃
)] dk⋆

(
b; θ̃
)

db

]

=

[
dMP

(
b
)

db
−

d∆
(
b
)

db

]
Eµ

[
k⋆
(
b; θ̃
)]

+
[
MP

(
b
)

− ∆ (b) − Eµ

[
M
(
b; θ̃
)]]

Eµ

[
dk⋆
(
b; θ̃
)

db

]

− Covµ

[
M
(
b; θ̃
)

,
dk⋆
(
b; θ̃
)

db

]
.

We note that the marginal benefit of varying b does not have a certainty equivalent
property, because the planner must consider the covariance between agents’ valuation
of investment M

(
b; θ̃
)

and the policy elasticity dk⋆(b;θ̃)
db

. Intuitively, it is more valuable
to impose a binding leverage cap if beliefs that induce overinvestment also induce a high
policy elasticity. For instance, if θ is a scalar parameter so that a higher θ shifts creditors’
beliefs in the sense that of hazard rate dominance, then Proposition 3 implies that this
covariance is positive, meaning that uncertain debt exuberance further strengthens the
case for imposing a binding leverage cap. By contrast, if θ is a parameter that shifts
(equity) investors’ beliefs in a hazard rate sense, then this covariance is negative, which
makes a binding leverage cap (even) less attractive.

Alternative policy problem 2/Commitment: Hauk, Lanteri and Marcet (2021)
study a planner who maximizes expected welfare E [W (τ, s, A)], where τ is a scalar policy
variable, s = h (τ, A) is a quantity/signal determined in equilibrium, and A is the state
of the economy. The planner observes s but not A, and commits to a mapping τ = R (s)
based on the observable signal. In our setting, we can map τ → b to the (binding) leverage
requirement, s → k⋆ to equilibrium capital investment, and A → θ =

{
F I , F C

}
to any

uncertainty about agents’ beliefs. Under appropriate regularity conditions, a variational
argument in Proposition 2 in Hauk, Lanteri and Marcet (2021) implies that an optimal
commitment satisfies the following first-order condition:

E

 ∂W
∂b k⋆ + ∂W

∂k
dk⋆

db

1 − dk⋆

db
R′ (k⋆)

∣∣∣∣∣∣ k⋆

 = 0.

Evaluating the derivatives, we obtain

E


(

dMP (b)
db − d∆(b)

db

)
k⋆ +

(
MP

(
b
)

− ∆ (b) − M
(
b; θ̃
))

dk⋆

db

1 − dk⋆

db
R′ (k⋆)

∣∣∣∣∣∣∣∣ k
⋆

 = 0,
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where all terms inside the expectation are evaluated at b = R (k⋆). Since the first
term in the numerator is known conditional on k⋆, and defining the random variable
Ω =

(
1 − dk⋆

db
R′ (k⋆)

)−1
,we can re-write this condition as

E [Ω| k⋆]

dMP
(
b
)

db
−

d∆
(
b
)

db

 k⋆

+E [Ω|k⋆]E
[(

MP
(
b
)

− ∆ (b) − M
(
b; θ̃
)) dk⋆

db

∣∣∣∣ k⋆
]

+Cov

[
Ω,
(
MP

(
b
)

− ∆ (b) − M
(
b; θ̃
)) dk⋆

db

]
= 0.

Noting that M
(
b; θ̃
)

is also known conditional on k⋆, we can further simplify to obtain

dMP
(
b
)

db
−

d∆
(
b
)

db

 k⋆

+
(
MP

(
b
)

− ∆ (b) − M
(
b; θ̃
)){

E
[

dk⋆

db

∣∣∣∣ k⋆
]

+ Cov

[
Ω̂,

dk⋆

db

]}
= 0,

where Ω̂ = Ω
E[Ω|k⋆] . This condition is the same as in the case discussed in the paper,

except for the final term, which depends on Cov
[
Ω, dk⋆

db

]
. As discussed in more detail

in Hauk, Lanteri and Marcet (2021), Ω corrects the first-order condition for the change
in the probability distribution of k⋆ when the planner alters her ex-ante commitment. If
this change of measure is correlated with policy elasticities, it introduces an additional
marginal welfare effect. By contrast, a planner in a “consistent” equilibrium, in the sense
that we discuss in the text, does not take this change into account since she is able to
adjust her policy ex-post, after k⋆ is realized.

C.1.2 Robust optimal policy

Applying the envelope theorem to the planner’s problem, and noting that the constraint
set Θ does not depend on b, we can write the marginal welfare effect of varying b as

d

db
min
θ∈Θ

W
(
b, k⋆

(
b; θ
))

=

dMP
(
b
)

db
−

d∆
(
b
)

db

 k⋆
(
b; θ̂

(
b
))

+
[
MP

(
b
)

− ∆ (b) − M
(
b
)] ∂k⋆

(
b; θ̂

(
b
))

∂b
,
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where θ̂
(
b
)

denotes the solution to the minimization problem. Thus, the planner considers
the same inframarginal and incentive effects as in the baseline model, but now evaluates
them at the worst-case beliefs.

To gain further insights, we characterize the worst-case beliefs in two steps. First,
we note that by Lemma 4, welfare for any given b depends on beliefs only through their
impact on k⋆. In the case with quadratic adjustment costs, welfare is a quadratic function
of k⋆

(
b; θ
)
. Thus, we can equivalently define the worst-case belief as the value of θ that

induces the largest deviation from the planner’s preferred value of k⋆. Moreover, noting
that k⋆ is a linear function of the market valuation M (b; θ), we can write the worst case
beliefs in terms of the largest mis-valuation of capital investments:

θ̂
(
b
)

= arg max
θ∈Θ

∣∣∣M (
b; θ
)

− MP
(
b
)∣∣∣ , (3)

We formally define the set of plausible beliefs Θ in the planner’s problem as follows:

Θ =

(mI , mC
)

:
∑

j∈{I,C}
Ej,P

[
mj log mj

]
≤ D, Ej,P

[
mj
]

= 1

 .

This set contains all beliefs such that the sum of relative entropies across investors and
creditors, relative to the planner’s beliefs, is at most D. The worst-case beliefs in problem
(3) must also solve the dual problem

min
θ

∑
j∈{I,C}

Ej,P
[
mj log mj

]
subject to

k⋆
(
b; θ
)

= K,

Ej,P
[
mj
]

= 1.

where K is the value of k⋆
(
b; θ
)

that is achieved by the maximum in problem (3).

Equivalently, noting that there is a one-to-one relationship between k⋆
(
b; θ
)

and the

market valuation M
(
b; θ
)
, and expanding the expected values, we can write this problem

8



as

min
θ

∑
j∈{I,C}

∫ s̄

s
mj (s) log mj (s) dF j,P (s) subject to

βI
∫ s

b
(s − b) mI (s) dF I,P (s)

+βC

(∫ s

b
bmC (s) dF C,P (s) + ϕ

∫ b

s
smC (s) dF C (s)

)
= M,

(
υ0
)

∫ s̄

s
mI (s) dF I,P (s) = 1,

(
υI
)

∫ s̄

s
mC (s) dF C,P (s) = 1,

(
υC
)

,

where the variables in brackets denote the relevant Lagrange multipliers. Taking the
first-order conditions yields:

1 + log mI (s) = υI + υ0βI max
{

s − b, 0
}

(4)

1 + log mC (s) =

υC + υ0βCb, s ≥ b

υC + υ0βCϕs, s < b,
(5)

where mj (s) denotes the proportional distortion (i.e., a Radon-Nikodym derivative) of
agent j’s beliefs relative to the planner’s, and where υ0, υI , and υC are Lagrange
multipliers defined in the Online Appendix.

Equation (4) characterizes the worst-case distortion mI(s) to investors’ beliefs. For a
given b, investors’ beliefs about default states with s < b do not affect market valuations
or capital investment. Hence, it is optimal in those states to implement a fixed distortion
mI (s) = eυI−1.2 The optimal distortion in solvent states, by contrast, scales with the value
of investors’ equity claim s − b. Equation (5) characterizes the worst case for creditors’
beliefs. Once again, in order to maximize capital distortions, these conditions imply that
belief distortions are scaled with the value of creditors’ claims in each (default or solvent)
state of the world. In conclusion, we find that a planner gears robust optimal policy
towards belief distortions that most heavily affect market valuations. The worst-case
belief distortions correlate with the market valuations of debt and equity claims.

2If the worst-case capital distortion in problem (3) features overinvestment with M
(
b; θ
)

> MP
(
b
)
,

then this fixed distortion satisfies mI (s) < 1, and vice versa.
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C.2 Monetary policy

In the model with monetary policy described in Section 4.2, investors’ problem is
equivalent to the proof of Lemma 1, except that the price of debt is given by

Q (b, r) = β (r)
(∫ s

b
bdF C (s) + ϕ

∫ b

s
sdF C (s)

)
,

with βC now given by β (r) = 1
1+r . All our results in Section 2 of the paper therefore apply

once we replace the market value of investment M (b) in investors’ objective function with

M (b, r) = βI
∫ s

b
(s − b) dF I (s) + β (r)

(∫ s

b
bdF C (s) + ϕ

∫ b

s
sdF C (s)

)
.

A parallel argument to Lemma 4, taking into account the deadweight loss L (r) of interest
rate distortions, establishes that the planner’s problem is

max
b,r

W
(
b⋆
(
b, r
)

, k⋆
(
b, r
)

, r
)

,

where the welfare function is

W (b, k, r) =
[
MP (b, r) − ∆ (b) − 1

]
k − Υ (k) − L (r) .

Taking the total derivative with respect to r yields the expression used in the paper.
Finally, totally differentiating investors’ first-order conditions yields

dk⋆
(
b, r
)

dr
= 1

Υ′′ (k⋆)
dM

(
b, r
)

dr
= 1

Υ′′ (k⋆)
β′ (r)
β (r) Q (b, r) ,

which for a given value of r is increasing in the bond price Q (b, r). We conclude that, as
claimed in the text, dk⋆(b,r)

dr is not diminished by equity exuberance (which leaves Q (b, r)
unchanged), and is increased by debt exuberance (which increases Q (b, r)).

C.3 Alternative micro-foundations for externalities

C.3.1 Ex-post government bailouts

With government bailouts, investors’ problem is equivalent to the proof of Lemma 1,
except for investors’ date 1 budget constraints and the equilibrium price of debt, which
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are now given by

cI
1 (s) = nI

1 (s) + max {s + t (b, s) − b, 0} k, ∀s

Q (b) = βC

(∫ s

s⋆(b)
bdF C (s) +

∫ s⋆(b)

s
(ϕs + t (b, s)) dF C (s)

)
,

where s = s⋆ (b) solves the equation s + t (b, s) − b = 0, and is uniquely defined as long as
t (b, s) is decreasing in s and increasing in b. All our results in Section 2 therefore apply
once we replace the market value of investment M (b) in investors’ objective function with

M (b) = βI
∫ s

s⋆(b)
(s + t (b, s) − b) dF I (s)+βC

(∫ s

s⋆(b)
bdF C +

∫ s⋆(b)

s
(ϕs + t (b, s)) dF C (s)

)
.

A parallel argument to Lemma 4 establishes that the planner’s problem is

max
b

W
(
b⋆
(
b
)

, k⋆
(
b
))

,

where the welfare function is

W (b, k) =
[
MP (b) − ∆ (b) − 1

]
k − Υ (k) ,

with the externality ∆ (b) defined in the paper, and with the planner’s valuation of
investment defined as

MP (b) = βI
∫ s

s⋆(b)
(s + t (b, s) − b) dF I.P (s)

+ βC

(∫ s

s⋆(b)
bdF C,P +

∫ s⋆(b)

s
(ϕs + t (b, s)) dF C,P (s)

)
.

With these alternative definitions, we can repeat the steps leading to Propositions 4 and
5 to establish the marginal welfare effects that we used in the paper.

Finally, taking variational derivatives and integrating by parts, we obtain the effect of
belief distortions on market valuations as

δM

δF I
· GI = βI

∫ s

s⋆(b)
(s + t (b, s) − b) dGI (s)

= −βI
∫ s

s⋆(b)

(
1 + ∂t (b, s)

∂s

)
GI (s) ds,
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and

δM

δF C
· GC = βC

(∫ s

s⋆(b)
bdGC (s) +

∫ s⋆(b)

s
(ϕs + t (b, s)) dGC (s)

)

= −βC

(
(1 − ϕ) s⋆ (b) GC (s⋆ (b)) +

∫ s⋆(b)

s

(
ϕ + ∂t (b, s)

∂s

)
GC (s) ds

)
.

These expressions show that, if bailouts satisfy ∂t(b,s)
∂s ≤ 0, then the presence of bailouts

attenuates the sensitivity of the market valuation M (b) to the changes in beliefs GI (s)
and GC (s). Moreover, if bailouts are convex in s, so that ∂t(b,s)

∂s is larger in absolute value
for low s, then the attenuation effect is skewed towards belief distortions in bad states.
Intuitively, bailouts imply that agents’ beliefs about downside risk become less important
for market valuation.

We further obtain the effect of belief distortions on the marginal value of leverage as

δ dM
db

δF I
· GI = βI

(
−
∫ s

s⋆(b)
dGI (s) +

∫ s

s⋆(b)

∂t (b, s)
∂b

dGI (s)
)

= βI

((
1 − ∂t (b, s⋆ (b))

∂b

)
GI (s⋆ (b)) −

∫ s

s⋆(b)

∂2t (b, s)
∂b∂s

GI (s) ds

)
,

and

δ dM
db

δF C
· GC = −βCGC (s⋆ (b)) ∂s⋆ (b)

∂b

(
1 + ∂t (b, s⋆ (b))

∂s
+ (1 − ϕ)s⋆ (b) gC (s⋆ (b))

GC (s⋆ (b))

)

− βC
∫ s⋆(b)

0

∂2t (b, s)
∂b∂s

GC (s) ds.

If bailouts satisfy ∂t(b,s)
∂b ≥ 0, then the effect of changes in beliefs over the marginal default

state s⋆ (b) on the marginal valuation dM
db is attenuated towards zero by the presence of

bailouts. In addition, both variational derivatives of dM
db contain a term with the sign

of −∂2t(b,s)
∂b∂s Gj (s) for j ∈ {I, C}. These terms arise because changes in beliefs affect

investors’ strategic incentive to take on leverage in order to increase bailouts. If the
strategic incentive ∂t(b,s)

∂b is decreasing in s, then optimism increases dM
db . Bailouts are often

modeled as a convex function of the shortfall b − s of asset values from debt obligations.
This directly implies ∂2t(b,s)

∂b∂s ≤ 0.

C.3.2 Fire sales/Pecuniary externalities

Detailed description of the environment: We consider an extension of our baseline
model with three time periods t = 0, 1, 2. There are three type of agents: Investors,
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creditors and households. Investors’ and creditors’ preferences are given by

U I = cI
0 + βIEI

[
cI

1 + cI
2

]
UC = cC

0 + βCEC
[
cC

1 + cC
2

]
.

Investors’ budget constraints at each date are

cI
0 = nI

0 − k0 − Υ (k0) + Q (b, λ) k0

cI
1 = q (k0 − k1) − ξk0

cI
2 =

sk1 − bλk0, s ∈ N

0, s ∈ D.

Investors are endowed with nI
0 at date 0. They raise Q (b, λ) k0 at date 0 from creditors,

where λ = 1 − ξ
q represents the market price of capital at date 1, which investors take as

given. This finances their expenditure on capital and consumption. At date 1, investors
have no endowment and sell k0 −k1 units of capital and pay the reinvestment requirement
ξ per unit of k0. At date 2, in non-default states (denoted s ∈ N ), investors consume the
difference between the value of their remaining capital and the face value of their bonds.
As described in the text, we write b for the normalized face per unit of λk.

Creditors’ budget constraints are

cC
0 = nC

0 − hQ (b, λ) k0

cC
1 = 0

cC
2 = h

bλk0, s ∈ N

ϕsk1, s ∈ D.

Creditors buy a fraction h of investors’ debt at date 0. They have no endowment or
consumption at date 1. At date 2, they are repaid the face value of their debt if investors
do not default, and extract a fraction ϕ of the value of remaining capital otherwise.

Households are active at dates 1 and 2. Their preferences are given by

UH = cH
1 + EH

[
cH

2

]
.
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Their budget constraints are

cH
1 = nH

1 − qkH
1

cH
2 = F

(
kH

1

)
.

Households have an endowment at date 1, which they can spend on purchasing capital
kH

1 . Capital purchases yield consumption F
(
kH

1

)
at date 2. We assume that F

(
kH

1

)
is

concave and satisfies F ′ (0) < (1 − ϕ)EI [s]. The latter inequality is a sufficient condition
ensuring that, in equilibrium, investors will never sell more capital to households than is
necessary to cover their reinvestment need.

Equilibrium characterization: At date 1, the non-negativity constraint for investors’
consumption always binds. Setting cI

1 = 0, we obtain

k1 =
(

1 − ξ

q

)
k0 ≡ λk0.

This implies that investors’ asset values at date 2 are

sk1 = λsk0.

Optimally, the following condition therefore determines investors’ default choice:

s ∈ D ⇔ sk1 < bλk0

⇔ s < b.

By creditors’ optimality conditions, the price of debt at date 0, per unit of k0, satisfies

Q (b, λ) = βC

[∫ s̄

b
λbdF C (s) + ϕ

∫ b

s
λsdF C (s)

]

= λβC

[∫ s̄

b
bdF C (s) + ϕ

∫ b

s
sdF C (s)

]
.

Following the steps leading to Lemma 1 in the baseline model, we now find that investors’
problem can be re-written as

max
b,k0

[λM (b) − 1] k0 − Υ (k0) subject to b ≤ b,
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where M (b) is defined as in the paper. Investors’ first-order conditions determining the
optimal choice of b and k0 are therefore

λ
dM (b)

db
= µ (6)

λM (b) − 1 = Υ′ (k0) . (7)

In addition, households’ first-order condition for capital purchases, which is given by

q = F ′
(
kH

1

)
,

and substituting the market clearing requirement that kH
1 = k0 − k1, we obtain the

equilibrium relationship

q = F ′ (k0 − k1) = F ′
(

ξ

q
k0

)
= F ′ ((1 − λ) k0) .

Using the definition 1 − ξ
q = λ, we can write q = ξ

1−λ , which implies that

ξ = (1 − λ)F ′ ((1 − λ) k0) . (8)

For any given b, equilibrium is obtained by solving equations (6), (7) and (8) for the
unknown variables k0 = k⋆

0

(
b
)
, b = b⋆

(
b
)

and λ = λ⋆
(
b
)
. We can further write (7) as

k0 = Ψ (λM (b) − 1) ,

where Ψ (.) is the inverse of Υ′ (.), and substitute into (8) to obtain

ξ = (1 − λ)F ′ ((1 − λ) Ψ (λM (b) − 1)) ,

This equation defines an implicit mapping from market valuations M (b) to equilibrium
prices λ. Let λ = Λ (M (b)) denote this mapping. Whenever the leverage cap is binding,
we can now write equilibrium prices as

λ⋆
(
b
)

= Λ
(
M
(
b
))

, (9)

which we will employ in our welfare analysis below.

Welfare analysis: The planner maximizes the sum of agents’ utilities in equilibrium.
Ignoring exogenous endowments and repeating the steps leading to Lemma 4, we can write
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and simplify welfare as follows:

W = U I + UC + UH ∝
[
λMP (b) − 1

]
k0 − Υ (k0) + F

(
kH

1

)
− qkH

1

=
[
λMP (b) − 1

]
k0 − Υ (k0) + F

(
kH

1

)
− ξ

1 − λ
kH

1

=
[
λMP (b) − 1

]
k0 − Υ (k0) + F ((1 − λ) k0) − ξk0

≡ W (b, k0, λ) .

where the third line follows by substituting the market clearing condition kH
1 = k0 − k1.

Notice that we can write

∂W

∂λ
= MP (b) k0 +

{
F ′
(
kH

1

)
− q

}
︸ ︷︷ ︸

=0

dkH
1

dλ

= MP (b) k0,

where the second line follows by substituting households’ first-order condition for capital
purchases. The planner sets b to maximize

W
(
b⋆
(
b
)

, k⋆
0

(
b
)

, λ⋆
(
b
))

.

Whenever the leverage cap is binding, totally differentiating this expression yields

dW

db
=

λ
dMP

(
b
)

db
+ MP

(
b
) dλ

db

 k⋆
0

(
b
)

+
[
λMP

(
b
)

− 1 − Υ′
(
k⋆

0

(
b
))] dk⋆

0

(
b
)

db

=

λ
dMP

(
b
)

db
+ MP

(
b
) dλ

db

 k⋆
0

(
b
)

+ λ
[
MP

(
b
)

− M
(
b
)] dk⋆

0

(
b
)

db
,

where the second line substitutes investors’ first-order condition. Dividing both sides by
λ > 0 yields the marginal welfare effects used in the paper.

Further welfare analysis The response of equilibrium prices to b, using the mapping
derived in Equation (9), can be expressed as

dλ

db
= Λ′

(
M
(
b
)) dM

(
b
)

db
.
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To obtain a tractable characterization of this effect to belief distortions, we use a log-linear
approximation

log Λ (M) ≃ λ0 − λ1M.

We now obtain
d log λ

db
=

Λ′
(
M
(
b
))

Λ
(
M
(
b
))

︸ ︷︷ ︸
=−λ1

dM
(
b
)

db̂
.

Hence, we find that
δ
(

d log λ

db

)
δF j

· Gj = −λ1

δ
dM(b)

db

δF j
· Gj

 .

We note that, as discussed in the paper, this effect scales with the variational derivative
of the marginal value of leverage, which we have characterized in Lemma 2.

C.4 Endogenous belief distortions

When beliefs are endogenous to aggregate capital investments K, which individual
investors take as given, we write the market value of capital (i.e., the equivalent to M (b)
in Lemma 1) as

M (b; K) = βI
∫ s̄

b
(s − b) dF I (s; K) + βC

[∫ s̄

b
bdF C (s) + ϕ

∫ b

s
sdF C (s; K)

]
.

The first-order conditions of an individual investor are, as in the baseline model,

∂M(b; K)
∂b

= µ

M (b; K) = 1 + Υ′ (k) .

Substituting the consistency requirement that k = K and totally differentiating, we obtain

∂M
(
b; k
)

∂b
+

∂M
(
b; k
)

∂K

dk

db
= Υ′′ (k) dk

db

⇒ dk⋆

db
=

∂M
(
b; k⋆

)
∂b

Υ′′ (k) −
∂M

(
b; k
)

∂K

−1

. (10)
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Similarly, the total variational derivative with respect to beliefs F j satisfies

δM
(
b; k
)

δF j
· Gj +

∂M
(
b; k
)

∂K

δk⋆
(
b
)

δF j
· Gj

 = Υ′′ (k)

δk⋆
(
b
)

δF j
· Gj


⇒

δk⋆
(
b
)

δF j
· Gj =

δM
(
b; k⋆

)
δF j

· Gj

Υ′′ (k) −
∂M

(
b; k
)

∂K

−1

.

(11)

We can further compute, with quadratic adjustment costs,

δ dk⋆

db

δF j
· Gj =

δ

(
∂M(b;k)

∂b

(
Υ′′ (k) − ∂M(b;k)

∂K

)−1
)

δF j
· Gj

=
[

δ ∂M
∂b

δF j
· Gj

]Υ′′ (k) −
∂M

(
b; k
)

∂K

−1

+
∂M

(
b; k
)

∂b

Υ′′ (k) −
∂M

(
b; k
)

∂K

−2
δ ∂M

∂K

δF j
· Gj . (12)

Repeating the steps leading to Proposition 4, we find that the marginal welfare effect of
varying b is given by

dW

db
=

dMP
(
b
)

db
−

d∆
(
b
)

db

 k⋆
(
b
)

+
[
MP

(
b
)

− ∆
(
b
)

− M
(
b
)] dk⋆

db
.

Taking variational derivatives, we then obtain

δ dW
db

δF j
· Gj =

dMP
(
b
)

db
−

d∆
(
b
)

db

δk⋆
(
b
)

δF j
· Gj


+
[
MP

(
b
)

− ∆
(
b
)

− M
(
b
)] δ dk⋆

db

δF j
· Gj


− dk⋆

db

δM
(
b
)

δF j
· Gj

 . (13)
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Now we divide (10) by (11) to obtain

dk⋆

db

δM
(
b
)

δF j
· Gj

 =
∂M

(
b; k⋆

)
∂b

δk⋆
(
b
)

δF j
· Gj

 .

Substituting into (13) establishes that

δ dW
db

δF j
· Gj =

dMP
(
b
)

db
−

d∆
(
b
)

db
−

∂M
(
b; k⋆

)
∂b

δk⋆
(
b
)

δF j
· Gj


+
[
MP

(
b
)

− ∆
(
b
)

− M
(
b
)] δ dk⋆

db

δF j
· Gj

 . (14)

Finally, substituting (11) and (12) into (14), we get

δ dW

db

δF j
· Gj =

(
Υ′′ (k) −

∂M
(
b; k
)

∂K

)−1

︸ ︷︷ ︸
Multiplier A

{[
dMP

(
b
)

db
−

d∆
(
b
)

db
−

∂M
(
b; k⋆

)
∂b

][
δM

(
b; k⋆

)
δF j

· Gj

]

+
[
MP

(
b
)

− ∆
(
b
)

− M
(
b
)] [δ ∂M

∂b

δF j
· Gj

]}
+
[
MP

(
b
)

− ∆
(
b
)

− M
(
b
)] ∂M

(
b; k⋆

)
∂b

(
Υ′′ (k) −

∂M
(
b; k⋆

)
∂K

)−2
δ ∂M

∂K

δF j
· Gj . (15)

The first two lines are the same as in the baseline model, but are multiplied by the factor
A defined in the text. The final term, which arises only if M(b; K) is not linear in K, is
also amplified, and increases the magnitude of the incentive effect if a distortion increases
the responsiveness of M to K.

D Additional Proofs and Derivations

D.1 Regularity conditions

Note that investors always find it optimal to choose non-negative leverage in equilibrium,
since

dM

db

∣∣∣∣
b=0

= βC − βI > 0.

Therefore, for a given leverage constraint b, our problem always features a solution for
leverage in

[
0, b
]

and a finite solution for investment, since d2V
dk2 = −Υ′′ (k) < 0. A

sufficient condition that guarantees a finite solution without leverage regulation is that
creditors perceive the net present value of investment to be negative if there is always
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default, that is, βCϕEC [s] < 1, since

lim
b→∞

M (b) = βCϕEC [s] .

This sufficient condition extends directly to the environment with bailouts in Section
4, after imposing that bailouts are bounded above, t (b, s) ≤ t̄, and that investment
has negative net present value if always in distress, even under the maximum bailout,
βC
(
ϕEC [s] + t̄

)
< 1.

In order to explore the quasi-concavity of the investors’ objective, it is useful to
normalize dM

db , characterized in the paper, as follows:

J (b) =
dM
db

βC (1 − F C (b)) ≡ 1 − βI

βC

1 − F I (b)
1 − F C (b) − (1 − ϕ) b

fC (b)
1 − F C (b) ,

where the normalization is valid for any non-zero level of b. Therefore, it follows that
the quasi-concavity of the investors’ objective can be established by characterizing the
conditions under which J ′ (b) is negative. Note that

J ′ (b) = − βI

βC

∂

∂b

(
1 − F I (b)
1 − F C (b)

)
− (1 − ϕ)

[
fC (b)

1 − F C (b) + b
∂

∂b

(
fC (b)

1 − F C (b)

)]
.

There are two sufficient conditions that, when jointly satisfied, guarantee that J ′ (b) < 0.
First, when the hazard rate of creditors’ beliefs is monotone increasing, then

∂

∂b

(
fC (b)

1 − F C (b)

)
> 0.

Second, if investors are more optimistic than creditors in the hazard-rate sense, then

∂

∂b

(
1 − F I (b)
1 − F C (b)

)
> 0.

Therefore, when both conditions are satisfied, we have J ′ (b) < 0, which yields the result.
We formally state this result as Lemma 1.

Lemma 1. (Single-peaked objective function without bailouts) Suppose that there
is no bailout, and:

1. Equity investors are weakly more optimistic than creditors in the hazard-rate order;

2. Creditors’ hazard rate fC(s)
1−F C(s) is increasing in s.

Then M (b) is single peaked.
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Notice that the solution for optimal leverage can be expressed in general as follows:

b = 1
(1 − ϕ) fC(b)

1−F C(b)

(
1 − βI

βC

1 − F I (b)
1 − F C (b)

)
.

Note also that whenever βI = βC , dM
db

∣∣∣
b=0

= 0, but the rest of the results remain valid.

D.2 Variations and cumulative distribution functions

For simplicity, we drop the superscript j and work with F (s) and G (s) in this appendix.
Recall that a function F (s) is a cumulative distribution function if and only if it is non-
decreasing, right-continuous, and satisfies F (s) = 0 and F (s) = 1. We say a variation
G (s) of beliefs is valid if, for small enough ε, the perturbed belief F (s) + εG (s) remains
a cumulative distribution function.

Definition 1. A right-continuous function G (s) is a valid variation of a cumulative
distribution function F (s) if G (s) = G (s) = 0, and there exists an ε̄ > 0 such that
for all ε ∈ [0, ε̄], the following conditions are satisfied:

1. F (s) + εG (s) is non-decreasing in s;

2. 0 ≤ F (s) + εG (s) ≤ 1, ∀s.

The following lemma shows that our regularity conditions in the baseline model are
sufficient to guarantee that all variations are valid.

Lemma 2. (Regularity conditions on belief variations) If (i) F (s) and G (s) are
continuously differentiable, (ii) f (s) = F ′ (s) > 0, and (iii) G (s) = G (s) = 0, then
G (s) is a valid variation of F (s).

Proof. By assumption, f (s) = F ′ (s) and g (s) = G′ (s) are continuous and therefore
bounded on the interval [s, s], so that we can define f = inf {g (s)| s ∈ [s, s]} > 0 and
g = inf {f (s)| s ∈ [s, s]}. For all s, we have

F ′ (s) + εG′ (s) = f (s) + εg (s) ≥ f + εg,

Hence, F (s) + εG (s) is non-decreasing for all ε ≤ f/|g| ≡ ε̄.
Moreover, note that, for all ε ≤ ε̄, and for all s, we have

F (s) + εG (s) = F (s) + εG (s)︸ ︷︷ ︸
=0

+
∫ s

s
(f (s) + εg (s))︸ ︷︷ ︸

≥0, ∀ε≤ε̄

ds ≥ F (s) = 0,
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and similarly,

F (s) + εG (s) = F (s) + ε G (s)︸ ︷︷ ︸
=0

−
∫ s

s
(f (s) + εg (s))︸ ︷︷ ︸

≥0, ∀ε≤ε̄

ds ≤ F (s) = 1.

Hence, 0 ≤ F (s) + εG (s) ≤ 1 for all ε ≤ ε̄, as required.

D.3 First-best corrective policy

The first-best problem when the planner can control both b and k is

max
b,k

W (b, k) =
[
MP (b) − ∆ (b) − 1

]
k − Υ (k) ,

with first-order conditions

dMP
(
b1)

db
− d∆

(
b1)

db
= 0

MP
(
b1
)

− ∆
(
b1
)

− 1 = Υ′
(
k1
)

,

where we denote by b1 and k1 the first-best leverage and investment. Formally, we consider
an equilibrium with Pigouvian taxes τ = (τk, τb), where investors pay τkk + τbb at date 0
to the government, which is then rebated as a lump sum to either investors or creditors.
Investors solve

V (τ) = max
b,k

[M (b) − 1] k − Υ (k) − τkk − τbb,

with first-order conditions

dM (b)
db

k = τb

M (b) − 1 = Υ′ (k) + τk.

It follows that the corrective policy that achieves the first-best solution is

τb =
[

dM
(
b1)

db
−
(

dMP
(
b1)

db
− d∆

(
b1)

db

)]
k1

τk = M
(
b1
)

−
(
MP

(
b1
)

− ∆
(
b1
))

.

D.4 Properties of hazard-rate dominant perturbations

We often rely on the following two properties of hazard-rate dominant
variations/perturbations.
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Property 1 The hazard rate after an arbitrary perturbation of the form described in
Section 2 of the paper is given by h (s) = f(s)+εg(s)

1−(F (s)+εG(s)) . Its derivative with respect to ε

takes the form

dh (s)
dε

= g (s)
1 − (F (s) + εG (s)) + (f (s) + εg (s)) G (s)

(1 − (F (s) + εG (s)))2 .

In the limit in which ε → 0, for hazard-rate dominance to hold, it must be the case that
limε→0

dh(s)
dε < 0, therefore

lim
ε→0

dh (s)
dε

= g (s)
1 − F (s) + f (s)

1 − F (s)
G (s)

1 − F (s) < 0

⇐⇒ g (s) + f (s)
1 − F (s)G (s) < 0

⇐⇒ g (s)
G (s) + f (s)

1 − F (s) > 0

⇐⇒ f (s)
1 − F (s) > − g (s)

G (s) ,

where in the second-to-last line the sign of the inequality flips because G (s) is negative,
since hazard-rate dominance implies first-order stochastic dominance.

Property 2 Hazard-rate dominance implies that a perturbation increases 1−F (s)
1−F (b) , where

s > b. This implies that

lim
ε→0+

∂

∂ε

(1 − F (s) − εG (s)
1 − F (b) − εG (b)

)
= (−G (s)) (1 − F (b)) − (1 − F (s)) (−G (b))

(1 − F (b))2 ≥ 0,

or equivalently
(−G (s)) (1 − F (b)) ≥ (1 − F (s)) (−G (b)) . (16)

D.5 Binding equity constraint

Whenever the investors’ date 0 non-negativity constraint is binding, the total amount of
equity is effectively fixed to nI

0, and Lemma 1 ceases to hold. When the date 0 non-
negativity constraint binds, the problem that investors face can be expressed as

max
b,k

βI
∫ s

s⋆(b)
(s − b) dF I (s) k,

where k = nI
0

1−Q(b) and Q (b) = βC
(∫ s

s⋆(b) bdF C (s) + ϕ
∫ s⋆(b)

s sdF C (s)
)
. Intuitively,

investors maximize the leverage return on their initial wealth nI
0. Under natural regularity

23



conditions, the solution to this problem is given by the first-order condition on b

1 − Q (b⋆)
Qb (b⋆) =

∫ s
s⋆(b⋆) (s − b⋆) dF I (s)∫ s

s⋆(b⋆) dF I (s)
, (17)

where Qb (b) = βC
(∫ s

s⋆(b) dF C (s) − (1 − ϕ) s⋆ (b) fC (s⋆ (b))
)
. Equation (17) is the

counterpart of Equation (11) in Simsek (2013), after accounting for the cost of distress
associated with bankruptcy. In this appendix, to highlight the differences with Simsek
(2013), we focus on the case of equity exuberance, although our approach can be used
to study other scenarios. Formally, we consider the case in which F C (s) = F C,P (s) =
F I,P (s).

In order to understand whether equilibrium leverage increases or decreases in response
to a perturbation in investors’ leverage, it follows from Equation (17) that it is sufficient

to characterize the behavior of T (b) ≡
∫ s

s⋆(b) sdF I(s)∫ s

s⋆(b) dF I(s)
=
∫ s

b (s − b) fI(s)
1−F I(b)ds. The change in

T (b) induced by a change in investors’ beliefs in the direction GI is given by

δT

δF I
· GI =

∫ s
b (s − b)

[
gI (s)

(
1 − F I (b)

)
− f I (s)

(
−GI (b)

)]
ds

(1 − F I (b))2 .

If δT
δF I · GI is positive (negative), leverage will increase (decrease). This characterization

allows to consider any perturbation of beliefs. However, if we are interested in hazard-rate
dominant perturbations, it can be shown that when investors become more optimistic in
a hazard-rate sense and they are constrained on the amount of equity issued, leverage
increases in equilibrium. Formally, ∂T

∂F I · GI ≥ 0 if

(∫ s

b
(s − b)gI (s) ds

)(
1 − F I (b)

)
−
(∫ s

b
(s − b) f I (s) ds

)(
−GI (b)

)
≥ 0,

which is equivalent to(∫ s

b

(
−GI (s)

)
ds

)(
1 − F I (b)

)
−
(∫ s

b

(
1 − F I (s)

)
ds

)(
−GI (b)

)
≥ 0,

which follows by integrating (16) over s ∈ [b, s]. This argument is an alternative way to
formalize some of the main results in Simsek (2013), in particular Theorems 4 and 5.

Finally, we can consider the normative implications of this case. In this scenario, the
planner’s objective can be written as βI

∫ s
s⋆(b) (s − b) dF I,P (s) k. With a single degree of

freedom, since b and k are connected via the date 0 budget constraint of investors, it is
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straightforward to show that an increase in optimism by investors in the hazard-rate sense
calls for tightening leverage regulations.

D.6 Alternative modeling assumptions

D.6.1 Outside equity issuance

We consider an extension of our baseline model in which, in addition to investors and
creditors, there are shareholders (denoted S) who are able to invest in outside equity
claims against investors’ cash flows. The lifetime utility of a representative shareholder is
cS

0 + βSES
[
cS

1 (s)
]
, where ES is the expectation under shareholders’ beliefs F S (s). For

simplicity, we continue to assume segmented markets: creditors do not invest in equity,
and shareholders do not invest in bonds.

In addition to leverage b, investors choose a share σ ∈ [0, 1] of equity to retain, and
sell a share 1 − σ of equity claims to shareholders. The market value of outside equity in
equilibrium is then given by

P S (b, σ) = (1 − σ) βS
∫ s

b
(s − b) dF S (s) .

By contrast, the market value of debt Q (b) remains unchanged from the baseline model,
since the payoff to debtholders is unaffected by inside or outside ownership of equity
shares. Repeating the steps leading to Lemma 1 in the text, we find that the following
reformulation of the investors’ problem characterizes the equilibrium:

Lemma 3. [Investors’ problem with outside equity issuance] Investors solve the following
problem to decide their optimal investment, outside equity issuance, and leverage choices
at date 0:

V
(
b
)

= max
b,k;σ∈[0,1]

[M (b, σ) − 1] k − Υ (k)

s.t. b ≤ b (µ) ,

where µ denotes the Lagrange multiplier on the leverage constraint imposed by the
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government (reformulated as bk ≤ bk), and M (b, σ) is given by

M (b, σ) = σ βI
∫ s

s⋆(b)
(s − b) dF I (s)︸ ︷︷ ︸

inside equity

+ (1 − σ) βS
∫ s

s⋆(b)
(s − b) dF S (s)︸ ︷︷ ︸

outside equity

(18)

+ βC

(∫ s

s⋆(b)
bdF C (s) + ϕ

∫ s⋆(b)

s
sdF C (s)

)
︸ ︷︷ ︸

debt

.

Lemma 3 shows that investors continue to maximize the same objective as in the
baseline model, but must first solve an auxiliary maximization problem in Equation (18),
which determines the optimal value σ of the share of equity retained by insiders. The
auxiliary problem is clearly linear in σ. Hence, for any given choice of b, it is either
optimal to retain all shares (σ = 1) or sell all shares to outsiders (σ = 0), depending on
the differences between insiders’ and outsiders’ discount factors and beliefs.

This result clarifies how our main results are affected by outside equity issuance. On
the one hand, if inside and outside shareholders have the same preferences and beliefs,
then investors are indifferent between all values of σ, and their problem reduces to the
exact same problem as in the baseline model. In this case, all of our positive and normative
results on the marginal effects of changes in beliefs carry over without modification.

On the other hand, if there are differences in preferences or belief disagreements
between insiders and outsiders, then investors’ choices are affected only by marginal
changes in the beliefs of (outside) shareholders if it is optimal to sell all shares with
σ = 1, and only by marginal changes in their own beliefs if σ = 0. However, all of our
results on the effects of equity exuberance continue to remain true after a modification
to the definition of exuberance, namely, that both investors’ beliefs F I (s) and outsider
shareholders’ beliefs F S (s) become more optimistic in the sense of hazard-rate dominance.

D.6.2 Collateralized credit

In the body of the paper, we consider an environment in which creditors can seize from
investors the full gross return on investment in case of default. If we assume that capital
trades at a price q (s) at date 1, and that credit is collateralized exclusively by the
market value of the investment at date 1, we can reformulate the relevant equations to
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accommodate collateralized borrowing as follows:

cI
1 (s) = nI

1 (s) + sk + max {q (s) − b, 0} k, ∀s

Q (b) = βC

(∫ s

s⋆(b)
bdF C (s) + ϕ

∫ s⋆(b)

s
q (s) dF C (s)

)
,

where s⋆ (b) now solves q (s⋆) = b. It is straightforward to extend our results to this case.
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