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1 Additional Proofs

Proofs of Propositions 3 and 4

We first prove Proposition 4. Proposition 3 is a corollary of Proposition 4 and its proof.
To see this, take the existing allocation to be the laissez-faire outcome and the existing
regulatory policy is exactly the set menus the firm offers after each signal if unrestricted—
there are no off-path contracts in the existing policy. In reality, a laissez-faire policy would
allow the firm to offer any menu of contracts, but for the purposes of our exercise, one should
imagine a regulatory policy that restricts the firm to exactly those menus it is offering on
the market. This makes finding local improvements maximally difficult. Proposition 4 states
that we can find a local improvement, and the proof below constructs the improvement using
two added latent contracts for each signal.

In what follows, we describe contracts as a pair (z0, z1) in which zi are net transfers to
the agent in state ωi—namely, zi = −p + t(ωi). To avoid clutter, we drop dependence on x
in U and u.

Let R be a regulatory policy implementing a, with M s ∈ R the menu the firm offers
after signal s. Without loss, assume R = {M s}s∈S.1 We further assume the menu M s =
{(z1

0 , z
1
1), ..., (zNs

0 , zNs
1 )} is ordered so that zn0 > zn+1

0 and zn1 < zn+1
1 —the net transfer in ω0 is

decreasing, and the net transfer in ω1 is increasing. This is without loss as any contract that
offers a lower net transfer in both events than another is never chosen by any type of agent
either on or off path. Similarly, we assume without loss that every contract in M s would be
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1Adding menus to the policy only makes the exercise easier.
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chosen by some type θ—not necessarily in the support of s—if offered the menu M s. If not,
we can remove those contracts, and the policy we construct still implements a.

Within the implementation of a via R, for each M s, let csθ denote the contract type θ
chooses if offered M s. For any contract c ∈ M s, denote the set of types not in the support
of s that choose c from M s as

Θs(c) := {θ ∈ Θ\supp(s)|csθ = c}.

To reduce notational clutter, we will write Θs((z0, z1)) as Θs(z0, z1). We introduce further
useful notation:

• Let uz = max{uz(ωi, zi)| i ∈ {0, 1}, (z0, z1) ∈ C} be the highest marginal utility in any
event of any contract in C.

• Let µ = min{µ(θ|s)| s ∈ S, θ ∈ supp(s)}.

• Let θ = min{θ ∈ Θ} and θ = max{θ ∈ Θ}.

• Let ∆Θ = min{|θ − θ′| : θ, θ′ ∈ Θ, θ′ 6= θ} and ∆Θ = θ − θ.

Outline of the proof: To obtain a new regulatory policy that implements an improvement,
we take each menu M s, modify the existing contracts, and add up to two additional contracts.
Both the modified contracts and the new contracts are close to contracts already in use. As
we have a target allocation â in mind, we necessarily replace each contract in M s intended for
some type θ ∈ supp(s) with the corresponding contract in the allocation â. Each contract
in M s that is chosen only by types θ /∈ supp(s) is replaced with a modified version that
still attracts type θ given the other modified contracts. Nevertheless, moving to â from a
may require more deterrence power than these modified off-path contracts provide, so we
construct two additional latent contracts and add them to the menu. These new contracts
attract types not in the support of s that previously would choose the contracts with the
highest and lowest respective transfers in ω1.

We first prove a series of lemmas which we use to modify and construct contracts as
described above while staying within required bounds. The first lemma shows that given
any contract c ∈ C and some type θ, we can modify the contract continuously such that all
types above θ prefer the modified contract to c, all types below θ prefer c to the modified
contract, and the firm’s expected profit from selling the modified contract to types above θ
is worse than selling them c. Moreover, we provide bounds on the utility differences between
the two contracts for any type.

Lemma 1. There exists an unbounded and strictly increasing differentiable function f(α) ≥
0, a continuous function ∆(z, α, θ), and a constant k ≥ 0 such that, for any contract z =
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(z0, z1) ∈ C that does not underinsure, any θ, and any α ≥ 0 we have

U(θ′, (z0 −∆(z, α, θ), z1 + α))− U(θ′, (z0, z1)) ∈ (f(α), kα) ∀θ′ ≥ θ,

U(θ′′, (z0 −∆(z, α, θ), z1 + α))− U(θ′′, (z0, z1)) < −f(α) ∀θ′′ < θ,

Π(θ′, (z0 −∆(z, α, θ), z1 + α))− Π(θ′, (z0, z1)) < −∆Θ

2
α ∀θ′ ≥ θ.

Moreover, ∆(z, α, θ) ∈ [0, θ
1−θα].

Proof. Let z1 = max(z′0,z
′
1)∈C z

′
1. Define f(α) =

∆Θ

2
(u(ω1, z1+α)−u(ω1, z1)) and k = ∆Θ

2(1−θ)uz.

That u is differentiable, increasing and unbounded in z implies f is an unbounded and
strictly increasing differentiable function. Fix any θ and let θ− = max{θ′ ∈ Θ : θ′ < θ} and
θc = θ+θ−

2
. For each α ≥ 0, define ∆(z, α, θ) to satisfy

u(ω0, z0 −∆(z, α, θ)) = u(ω0, z0) +
θc

1− θc
[u(ω1, z1)− u(ω1, z1 + α)]. (1)

Note that ∆(z, 0, θ) = 0. Taking the derivative with respect to α, we get

∂∆(z, α, θ)

∂α
=

θcuz(ω1, z1 + α)

(1− θc)uz(ω0, z0 −∆(z, α, θ))
≤ θc

(1− θc)
,

where the inequality follows from the fact that, because (z0, z1) does not underinsure, we
have uz(ω0, z0) ≥ uz(ω1, z1), and therefore, uz(ω0, z0−∆(z, α, θ)) ≥ uz(ω1, z1 +α). Thus, we
have

∆(z, α, θ) =

∫ α

0

∂∆(z, α′, θ)

∂α′
dα′ ≤ θc

1− θc
α ≤ θ

1− θ
α.

For any θ′, using (1) we have

U(θ′, (z0 −∆(z, α, θ), z1 + α))− U(θ′, (z0, z1)) (2)

= (1− θ′)u(ω0, z0 −∆(z, α, θ)) + θ′u(ω1, z1 + α)− (1− θ′)u(ω0, z0)− θ′u(ω1, z1)

= [u(ω1, z1 + α)− u(ω1, z1)]
(
θ′ − (1− θ′) θc

1− θc
)

=
θ′ − θc
1− θc

[u(ω1, z1 + α)− u(ω1, z1)].

If θ′ < θc, then θ′−θc
1−θc < θ′ − θc ≤ −∆Θ

2
and so (2) implies

U(θ′, (z0 −∆(z, α, θ), z1 + α))− U(θ′, (z0, z1)) <
−∆Θ

2
[u(ω1, z1 + α)− u(ω1, z1)]

≤ −f(α),
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where the last inequality follows from the fact that, because u is concave in z, u(ω1, z1 +
α)− u(ω1, z1) ≥ u(ω1, z1 + α)− u(ω1, z1). If θ′ > θc, then θ′−θc

1−θc > θ′ − θc ≥ ∆Θ

2
and so

U(θ′, (z0 −∆(z, α, θ), z1 + α))− U(θ′, (z0, z1)) >
∆Θ

2
[u(ω1, z1 + α)− u(ω1, z1)]

≥ f(α),

and also, because θ′−θc
1−θc <

∆Θ

2(1−θ)

U(θ′, (z0 −∆(z, α, θ), z1 + α))− U(θ′, (z0, z1)) <
∆Θ

2(1− θ)
[u(ω1, z1 + α)− u(ω1, z1)]

=
∆Θ

2(1− θ)

∫ α

0

uz(ω1, z1 + a)da

<
∆Θ

2(1− θ)
uzα

= kα.

Firm profits for θ′ ≥ θc satisfy

Π(θ′, (z0 −∆(z, α, θ), z1 + α))− Π(θ′, (z0, z1)) = ∆(z, α, θ)(1− θ′)− αθ′

≤ α((1− θ′) θc
1− θc

− θ′)

≤ −∆Θ

2
α.

�

An analogous argument works in reverse for contracts that do not overinsure, only now
we increase transfers in state ω0 and decrease transfers in ω1. We omit the proof as it is
analogous to that for the previous lemma.

Lemma 2. There exists an unbounded and strictly increasing differentiable function g(α) ≥
0, a continuous function η(z, α, θ), and a constant k′ ≥ 0 such that, for any contract z =
(z0, z1) ∈ C that does not overinsure, any θ, and any α ≥ 0 we have

U(θ′, (z0 + α, z1 − η(z, α, θ)))− U(θ′, (z0, z1)) ∈ (g(α), k′α) ∀θ′ ≤ θ

U(θ′′, (z0 + α, z1 − η(z, α, θ)))− U(θ′′, (z0, z1)) < −g(α) ∀θ′′ > θ,

Π(θ′, (z0 + α, z1 − η(z, α, θ)))− Π(θ′, (z0, z1)) < −∆Θ

2
α ∀θ′ ≤ θ.

Moreover, η(z, α, θ) ∈ [0, 1−θ
θ
α].

The following lemma bounds the utility difference between any two contracts for a fixed
type as a function of the distance between the two contracts. Recall that uz is the highest
marginal utility achieved in any event by any contract in C.
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Lemma 3. For all contracts (z0, z1) and (z′0, z
′
1) in C with ||(z0, z1)− (z′0, z

′
1)|| ≤ ε, we have

|U(θ, (z0, z1))− U(θ, (z′0, z
′
1))| ≤ uzε .

Proof. Take (z0, z1) and (z′0, z
′
1) in C with ||(z0, z1)− (z′0, z

′
1)|| ≤ ε and note

|U(θ, (z0, z1))− U(θ, (z′0, z
′
1))|

≤ U(θ,max{z0, z
′
0},max{z1, z

′
1})− U(θ,min{z0, z

′
0},min{z1, z

′
1})

≤ U(θ,min{z0, z
′
0}+ ε,min{z1, z

′
1}+ ε)− U(θ,min{z0, z

′
0},min{z1, z

′
1})

≤ (1− θ)
∫ ε

0

uz(ω0,min{z0, z
′
0}+ y)dy + θ

∫ ε

0

uz(ω1,min{z1, z
′
1}+ y)dy

≤ εuz.

�

The next lemma establishes a single-crossing property. If contract c has a higher net
transfer than contract c′ in ω1, and a lower net transfer in ω0, and some type θ prefers c to
c′, then all higher types also prefer c to c′. Analogously, if some type θ prefers c′ to c, then
all lower types also prefer c′ to c.

Lemma 4. Suppose (z0, z1) and (z′0, z
′
1) are contracts with z1 < z′1 and z′0 < z0. If U(θ, (z′0, z

′
1)) ≥

U(θ, (z0, z1)), then U(θ′, (z′0, z
′
1)) > U(θ′, (z0, z1)) for all θ′ > θ, and if U(θ, (z0, z1)) ≥

U(θ, (z′0, z
′
1)), then U(θ′, (z0, z1)) > U(θ′, (z′0, z

′
1)) for all θ′ < θ.

Proof. Given our assumptions, we have U(θ, (z′0, z
′
1)) ≥ U(θ, (z0, z1)) if and only if

u(ω0, z
′
0)− u(ω0, z0) ≥ θ

1− θ
[u(ω1, z1)− u(ω1, z

′
1)].

For θ′ > θ, we have

θ

1− θ
[u(ω1, z1)− u(ω1, z

′
1)] >

θ′

1− θ′
[u(ω1, z1)− u(ω1, z

′
1)],

in which the inequality follows because u(ω1, z1) < u(ω1, z
′
1) for z1 < z′1. Together, these in-

equalities imply u(ω0, z
′
0)−u(ω0, z0) > θ′

1−θ′ [u(ω1, z1)−u(ω1, z
′
1)], which implies U(θ′, (z′0, z

′
1)) >

U(θ′, (z0, z1)). The proof of the second claim is analogous. �

Proof of Proposition 4

We now construct the new regulatory policy R̂ to implement â using the preceding lemmas
to ensure that the distance between the R and R̂ is Lipschitz continuous in the distance
between a and â. This means the new policy is within the desired bound for some sufficiently
large K.
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Proof. Let ε = d(â, a) ≤ d := maxa′,a′′∈C d(a′, a′′). For each signal s, we can divide the set of
contracts in M s into three types: those selected on path (call this set N o

s ), those not selected
on path but having higher transfers in ω1 as compared to any contract in N o

s (call this set
N+
s ) and those not selected on path but having higher transfers in ω0 than any contract in
N o
s (call this set N−s ).2 By the assumption that R satisfies the option diversity condition,

each contract in N+
s must not underinsure and each contract in N−s must not overinsure.

We will construct, for each s, sets of contracts Ñ+
s and Ñ−s containing modified versions

of contracts in N+
s and N−s respectively and at most two new latent contracts. Each type

who would choose a contract in N+
s ∪ N−s from M s will continue to purchase the modified

version of that contract when offered M̂ s = M s
â ∪ Ñ+

s ∪ Ñ−s ,3 their utility increases from the
modified contract relative to the unmodified contract, and the firm’s profit from that type
buying the modified contract is lower than purchasing the unmodified contract. Moreover,
any type not in the support of s that chooses the contract in M s

a with the largest payment
in ω1 will now choose the new downward latent contract from M̂ s, and any type not in the
support of s that chooses the contract in M s

a with the largest payment in ω0 will now choose
the new upward latent contract from M̂ s.

Let N+
s = {(zn,+0 , zn,+1 ) : n = 1, ..., N+

s }, in which N+
s = |N+

s |, with indices ordered so
that zn,+0 > zn+1,+

0 and zn,+1 < zn+1,+
1 . Similarly, define N−s = {(zn,−0 , zn,−1 ) : n = 1, ..., N−s }

with N−s = |N−s | and indices ordered so that zn,−0 > zn+1,−
0 and zn,−1 < zn+1,−

1 . Define N o
s and

N o
s analogously. To simplify notation, we write (z0,+

0 , z0,+
1 ) := (z

N0
s ,o

0 , z
No

s ,o
1 ) for the contract

in N o
s with the largest payment in ω1 and (z0,−

0 , z0,−
1 ) := (z1,o

0 , z1,o
1 ) for the contract in N o

s

with the largest payment in ω0. We proceed in steps.

Step 1: Construct new latent contracts

Suppose Θs(z0,+
0 , z0,+

1 ) 6= ∅ or Θs(z0,−
0 , z0,−

1 ) 6= ∅; otherwise, continue to the next step.
Consider the case when Θs(z0,+

0 , z0,+
1 ) 6= ∅. Take θ+

0 := min{θ > θ
s}. The monotonic-

ity of demand for insurance in θ implies that if any type θ > θ
s

is purchasing (z0,+
0 , z0,+

1 ),
θ+

0 must be doing so. Option diversity then implies that (z0,+
0 , z0,+

1 ) does not underin-
sure. Using Lemma 1, construct a new downward latent contract as (ẑ0,+

0 , ẑ0,+
1 ) = (z0,+

0 −
∆((z0,+

0 , z0,+
1 ), α+

0 , θ
0
+), z0,+

1 + α+
0 ), where we increase the net transfer in ω1 by α+

0 and de-

crease the net transfer in ω0 by ∆((z0,+
0 , z0,+

1 ), α+
0 , θ

0
+). We take α+

0 to be the smallest value
of α ≥ 4ε

∆Θµ
such that

U(θ+
0 , (z

0,+
0 −∆((z0,+

0 , z0,+
1 ), α, θ+

0 ), z0,+
1 + α))− U(θ+

0 , (z
0,+
0 , z0,+

1 )) ≥ εuz,

U(θ
s
, (z0,+

0 −∆((z0,+
0 , z0,+

1 ), α, θ+
0 ), z0,+

1 + α))− U(θ
s
, (z0,+

0 , z0,+
1 )) ≤ −εuz,

so θ > θ
s

prefers the newly constructed latent contract (ẑ0,+
0 , ẑ0,+

1 ) to (z0,+
0 , z0,+

1 ), while θ
s

prefers the latter.

2Note that if a contract c ∈ Ms is not chosen by any type in supp(s) but is chosen by some type
θ /∈ supp(s), it must be that θ > θ

s
or θ < θs due to the assumption that supp(s) = {θ ∈ Θ|θs ≤ θ ≤ θ

s}.
If the former, c must have a higher net transfer in ω1 than any contract in Ms chosen by types in supp(s),
and if the latter, it must have a lower transfer in ω0.

3Recall that Ms
â denotes the set of contracts allocated to types in the support of s under â.
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Because the above inequalities hold for α such that f(α) ≥ εuz (where f is as defined in
Lemma 1), we have α+

0 ≤ max{f−1(εuz),
4ε

∆Θµ
}. Let δ+

0 (ε) = max{f−1(εuz),
4ε

∆Θµ
}. Because

f is differentiable and strictly increase, f−1 is differentiable and therefore Lipschitz contin-
uous on [0, d], which immediately implies that δ+

0 (ε) is Lipschitiz continuous in ε on [0, d].
Moreover, the distance between (ẑ0,+

0 , ẑ0,+
1 ) from (z0,+

0 , z0,+
1 ) is α+

0 + ∆((z0,+
0 , z0,+

1 ), α+
0 , θ) ≤

α+
0 (1 +

θ+
0

1−θ+
0

) ≤ δ+
0 (ε)(1 +

θ+
0

1−θ+
0

), which is Lipschitz in ε.

Take any θ > θ
s
. We now show that θ will prefer the new downward latent contract

(ẑ0,+
0 , ẑ0,+

1 ) to any contract (z′0, z
′
1) ∈ M s

â. For an arbitrary (z′0, z
′
1) ∈ M s

â, let (z0, z1) be a
contract in M s

a such that ||(z′0, z′1)− (z0, z1)|| ≤ ε. We then have

U(θ, (ẑ0,+
0 , ẑ0,+

1 ))− U(θ, (z′0, z
′
1)) ≥ U(θ, (z0,+

0 , z0,+
1 )) + εuz − U(θ, (z′0, z

′
1))

≥ U(θ, (z0,+
0 , z0,+

1 )) + εuz − U(θ, (z0, z1))− εuz
≥ 0,

in which the first inequality follows by our selection of α+
0 , the second inequality by Lemma

3 and last inequality follows because θ
s

prefers (z0,+
0 , z0,+

1 ) to (z0, z1) as agent incentive
compatibility holds for a, so every type θ > θ

s
also prefers (z0,+

0 , z0,+
1 ) to (z0, z1). A similar

argument implies no type θ ≤ θ
s

prefers (ẑ0,+
0 , ẑ0,+

1 ) to their preferred contract in M s
â.

We can similarly construct a new upward latent contract (ẑ0,−
0 , ẑ0,−

1 ) when Θs(z0,−
0 , z0,−

1 ) 6=
∅ using Lemma 2, with analogous properties.

Step 2: Modify existing off-path contracts

SupposeN+
s 6= ∅. For n = 1, ..., N+

s , let θ+
n = min{θ′ ∈ Θs(zn,+0 , zn,+1 )}. If Θs(z0,+

0 , z0,+
1 ) =

∅, let δ+
0 (ε) = 4ε

∆Θµ
. Again using Lemma 1, define (ẑn,+0 , ẑn,+1 ) = (zn,+0 −∆((zn,+0 , zn,+1 ), α+

n , θ
+
n ), zn,+1 +

α+
n ) in which α+

n is the smallest value of α ≥ δ+
n−1(ε) such that, for θ′n = max{θ ∈ Θ : θ <

θ+
n }, we have

U(θ+
n , (z

n,+
0 −∆((zn,+0 , zn,+1 ), α, θ+

n ), zn,+1 + α))− U(θ+
n , (ẑ

n−1,+
0 , ẑn−1)) ≥ kδ+

n−1(ε),

U(θ′n, (z
n,+
0 −∆((zn,+0 , zn,+1 ), α, θ+

n ), zn,+1 + α))− U(θ′n, (ẑ
n−1,+
0 , ẑn−1)) ≤ −kδ+

n−1(ε)

where k is the constant from Lemma 1. Thus, α+
n ≤ δ+

n (ε) := max{f−1(kδ+
n−1(ε)), δ+

n−1(ε)}.
To show that δ+

n (ε) is Lipschitz in ε for ε ∈ [0, d], we proceed by induction. We have the
base case δ+

0 , and suppose δ+
n−1(ε) is Lipschitz. Because f is differentiable, f−1(kδ+

n−1(ε)) is

Lipschitz in ε for ε ∈ [0, d], so δ+
n (ε) is clearly Lipschitz in ε on this interval as well. Be-

cause ∆((zn,+0 , zn,+1 ), α, θ+
n ) ∈ [0, θ+

n

1−θ+
n
α] by Lemma 1, we conclude that the distance between

(ẑn,+0 , ẑn,+0 ) and (zn,+0 , zn,+1 ) is at most α+
n + ∆((zn,+0 , zn,+1 ), α+

n , θ
+
n ) ≤ δ+

n (ε)(1 + θ+
n

1−θ+
n

), which

is Lipschitz in ε for ε ∈ [0, d].

We note that this construction implies α+
n ≥ α+

n−1. Using the same argument as in step
1, we can show that all θ ≥ θ+

n prefer (ẑn,+0 , ẑn,+1 ) to any contract in M s
â ∪ {(ẑ

m,+
0 , ẑm,+1 )}n−1

m=0
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(note that this contains the new downward latent contract) and all θ < θ+
n prefer some

contract in M s
â ∪ {(ẑ

m,+
0 , ẑm,+1 )}n−1

m=0 to (ẑn,+0 , ẑn,+1 ).

We can construct a similar set of modified contracts {(ẑn,−0 , ẑn,−1 )}N
−
s

n=1 for each contract in
N−0 to go with the new downward latent contract—these contracts have higher net transfers
in ω0 and lower transfers in ω1, and we define α−n analogously.

Step 3: Define the new regulatory policy R̂ and show it implements â

Let M̂ s = M s
â ∪ {(ẑ

n,−
0 , ẑn,−1 )}N

−
s

n=0 ∪ {(ẑ
n,+
0 , ẑn,+1 }

N+
s

n=0. Denote by (ẑ0, ẑ1)sθ and (z0, z1)sθ the
contracts received by type θ with signal s from the allocations â and a respectively. By
construction, we have

(ẑn,+0 , ẑn,+1 ) ∈ arg max
(z′0,z

′
1)∈M̂s

U(θ, (z′0, z
′
1)) ∀θ ∈ Θs(zn,+0 , zn,+1 ), n = 0, ..., N+

s ,

(ẑn,−0 , ẑn,−1 ) ∈ arg max
(z′0,z

′
1)∈M̂s

U(θ, (z′0, z
′
1)) ∀θ ∈ Θs(zn,−0 , zn,−1 ), n = 0, ..., N+

s ,

(ẑ0, ẑ1)sθ ∈ arg max
(z′0,z

′
1)∈M̂s

U(θ, (z′0, z
′
1)) ∀θ ∈ supp(s).

The first two lines imply that it is incentive compatible for θ > θ
s

who choose (zn,+0 , zn,+1 )
from M s in the implementation of a, to choose (ẑn,+0 , ẑn,+1 ) from M̂ s and for θ < θs who
choose (zn,−0 , zn,−1 ) from M s in the implementation of a to choose (ẑn,−0 , ẑn,−1 ) from M̂ s. The
third line implies that, when M̂ s is offered after signal s, each θ ∈ supp(s) finds it incentive
compatible to purchase the contract they are specified to receive in â. We assume below
that types in s′ 6= s follow such strategies when offered M̂ s.

Because ||(z′0, z′1)s
′

θ − (z0, z1)s
′

θ || ≤ ε, the firm’s expected profits in â after s′ is at most ε
less than after s′ under a:∑

θ∈supp(s′)

µ(θ|s′)Π(θ, (ẑ0, ẑ1)s
′

θ ) ≥ −ε+
∑

θ∈supp(s′)

µ(θ|s′)Π(θ, (z0, z1)s
′

θ ). (3)

The order condition implies that for s′ > s, there are types in the support of s′, namely

θ > θ
s
, that will find it optimal to purchase a contract from {zn,+0 , zn,+1 }

N+
s

n=0—namely,
Θs(zn,+0 , zn,+1 ) 6= ∅ for some n ∈ {0, ..., N+

s }. The probability of such types is bounded
below by µ. The firm’s expected profits from offering M̂ s after signal s′ > s when θ > θs
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make these choices is

∑
θ∈supp(s)

µ(θ|s′)Π(θ, (ẑ0, ẑ1)sθ) +

N+
s∑

n=0

∑
θ∈Θs(zn,+

0 ,zn,+
1 )

µ(θ|s′)Π(θ, (ẑn,+0 , ẑn,+1 )) (4)

≤
∑

θ∈supp(s)

µ(θ|s′)(Π(θ, (z0, z1)sθ) + ε) +

N+
s∑

n=0

[
∑

θ∈Θs(zn,+
0 ,zn,+

1 )

µ(θ|s′)(Π(θ, (zn,+0 , zn,+1 ))− ∆Θ

2
α+
n )]

≤ ε−
µ∆Θ

2

4ε

∆Θµ
+

∑
θ∈supp(s)

µ(θ|s′)Π(θ, (z0, z1)sθ) +

N+
s∑

n=0

∑
θ∈Θs(zn,+

0 ,zn,+
1 )

µ(θ|s′)Π(θ, (zn,+0 , zn,+1 ))

= −ε+
∑

θ∈supp(s)

µ(θ|s′)Π(θ, (z0, z1)sθ) +

N+
s∑

n=0

∑
θ∈Θs(zn,+

0 ,zn,+
1 )

µ(θ|s′)Π(θ, (zn,+0 , zn,+1 ))

= −ε+ Π(M s, s′),

where the last line is ε less than the profit for the firm from offering M s after s′, which we call
Π(M s, s′). The first inequality above follows from Lemma 1 and ||(z′0, z′1)s

′

θ − (z0, z1)s
′

θ || ≤ ε,
the second inequality since α+

n ≥ 4ε
∆Θµ

for all n. Thus, the modified latent contracts in M̂ s

ensure the firm’s profits from deviating to s′ go down relative to the firm’s profits from the
same deviation under R.

Because R implements a, the firm’s expected profits from offering M s after signal s′ must
be less than its profits of offering M s′ , namely

Π(M s, s′) ≤
∑

θ∈supp(s′)

µ(θ|s′)Π(θ, (z0, z1)s
′

θ ).

This inequality along with (3) implies that Π(M s, s′) is at least ε less than the profit from
offering M s′ after s′. By (4), we know that the profit from offering M̂ s′ after s′ is at most ε
less than the profit from offering M s′ after s′. Putting these together, we conclude that the
firm’s profit from offering M̂ s after s′ is

∑
θ∈supp(s)

µ(θ|s′)Π(θ, (ẑ0, ẑ1)sθ) +

N+
s∑

n=0

∑
θ∈Θs(zn,+

0 ,zn,+
1 )

µ(θ|s′)Π(θ, (ẑn,+0 , ẑn,+1 ))

≤
∑

θ∈supp(s′)

µ(θ|s′)Π(θ, (ẑ0, ẑ1)s
′

θ ),

where the last term is the firm’s expected profit after signal s′ under allocation â. Thus,
offering M̂ s after s′ gives lower expected profit than offering M̂ s′ . A similar argument applies
for s′ < s.
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Constructing analogous M̂ s for each signal s, we define R̂ = {M̂ s}s∈S. We claim that
R̂ implements â. We construct an equilibrium in which the firm offers M̂ s after signal s
and each type θ ∈ supp(s) chooses (ẑ0, ẑ1)sθ from M̂ s. If θ > max{θ ∈ supp(s)}, then
θ ∈ Θs(zn,+0 , zn,+1 ) for some n = 0, ..., N+

s , in which case we specify that θ, when offered M̂ s

chooses (ẑn,+0 , ẑn,+1 ). Similarly, if θ < min{θ ∈ supp(s)}, then θ ∈ Θs(zn,−0 , zn,−1 ) for some
n = 0, ..., N−s , in which case we specify that θ, when offered M̂ s chooses (ẑn,−0 , ẑn,−1 ). As
argued above, this is incentive compatible for agents by construction of our latent contracts
and the fact that â is agent-incentive compatible. As we have shown above, the firm would
have no profitable deviations from offering menu M̂ s after signal s, so firm incentives are
satisfied, and R̂ implements â. By construction, R̂ uses contracts whose distance from
contracts in R are Lipschitz in ε and statement of the Proposition follows. Moreover, by our
construction, each θ > θ

s
purchases a downward latent contract that does not underinsure

and each θ < θs purchases an upward latent contract that does not overinsure. Thus, R̂
satisfies the option diversity condition. �

Proof of Proposition 5

Proof. We make the construction using only data identified through the inferences described
in section 4.2.

Since Mi is a profit-maximizing contract after signal si, the firm has no incentive to offer
any other menu after signal si. Therefore, if we add latent contracts to Mi which are not
chosen by any type in the support of si, the only deviations we need to worry about are the
firm offering some Mi for i < n after signal sn. As the regulator knows the maximal risk
types θ

si
in the support of si for each i, she constructs the latent contracts targeted at this

type. For each i < n, ci = (pi, t
i
) is constructed so that no type in the support of signal si

strictly prefers it from M ′
i = Mi∪{ci}, while any type θ > θ

si
prefers it from M ′

i . Therefore,
if the firm offers M ′

i after signal sn, we can construct equilibria in which types θ > θ
si

select
ci, while all other types in the support of sn select a contract from Mi. If the firm offers MC

n

after signal sn, every type chooses either (pC , `) or the contract they would chose from Mn

in the laissez-faire outcome.4

We will construct ci(δ) as a continuous function of δ := pmn
n − pC , setting ci(δ) = cmi

i for
δ ≤ 0.5 For pC = pmn

n the price cap is non-binding. As we start to lower pC further, we can
continuously bound the change in the firm’s profit from offering MC

n after sn, as a function
of δ. As we lower pC , some types may switch to purchasing (pC , `) from MC

n . By Lemma 1
of Chade and Schlee [2012], these switches must weakly increase the firm’s profit: that is,
at a price cap pC such that a type is indifferent between a contract (p, t) and (pC , `), with

4Note that if the price cap is binding for any contract, then it must bind for the highest coverage contract
on the menu. For any type θ who chose (p, t) from menu Mi in the laissez-faire outcome, they still prefer
(p, t) over any contract that is unaffected by the price cap. Moreover, if the price cap binds for any contract
it has to bind at the top, so (pC , `) is available and dominates all other contracts with price pC .

5If the price cap is non-binding, we don’t need a latent contract, and we set the latent contract equal to
the highest coverage contract on Mi, so the distance between the two is zero.
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t < `, the firm’s profit from selling that type (pC , `) is higher than selling (p, t). As these
switches can only increase the firm’s profit, all decrease in profit must come from the impact
of the price cap on menu prices. Therefore lowering the price cap by δ lowers firm profit
from offering MC

n after sn by at most δ—a continuous bound on the firm’s change in profit.

By Lemma 4, types θ > θ
si

will choose cmi
i = (pmi

i , `) when offered the menu Mi as cmi
i

is the contract selected by θ
si

and has the highest transfer is ω1. By Lemma 1,6 we can
continuously modify ci from cmi

i by increasing the premium and the transfer, such that all
types weakly below θ

si
prefer cmi

i to ci, while θ > θ
si

prefers ci. Moreover, the difference
between the firm’s profits from selling ci and selling cmi

i , to θ > θ
si

, is decreasing continuously
in the distance between ci and cmi

i . While the regulator may not know the firm’s exact profits
from offering Mi after signal sn, she knows that it is less than the firm’s profits from offering
Mn after signal sn (as Mn is a firm-optimal menu after sn). Because the regulator knows the
proportion of θ

sn
types in the support of sn (as θ

sn
> θ

si
, these types prefer ci from M ′

i),
and the firm’s profit from selling ci to these types, she can calculate a lower-bound on how
much firm profits will decrease from offering M ′

i after signal sn relative to offering Mi.
7 The

distance between ci and cmi
i that is needed to reduce firm profits from offering M ′

i after sn
by δ is continuous in δ.8 Therefore for each i, we can construct a latent contract ci(δ) which
is continuous in δ such that the firm offers M ′

i after signal si, and MC
n after sn. �

2 Extensions

Generalization of the Order Condition

We state Theorem 1 under an order condition that represents a natural monotonicity on
risk and coverage needs. This ordering of signals allows the regulator to construct optimal
regulatory policy using at most two latent contracts. However, the fact that the regulator can
implement any solution to (RP) (and, indeed, any allocation that satisfies firm participation
and agent incentives) still holds even under weaker assumptions than Assumption 1. We

6Since tmn
i = `.

7While the regulator may not know what the profits from offering Mi after signal sn are, she knows that
as she modifies ci, at least type θ

sn
will choose different contracts from Mi and M ′i . Because only types

θ > θ
si

switch from purchasing csii to ci and all such switches reduce firm profits, she can calculate an

upper-bound on how much firm profit’s changes in ci by looking at the impact of only type θ
sn

switching.
8The proof of Lemma 1, now taking the value θc as defined in that proof, to be θ

si
, shows how to construct

a contract ci parameterized by α ≥ 0 such that ||ci − cmi
i || = α + ∆(cmi

i , α, θ
sn

) and firm profits changes

from any type θ ∈ (θ
si
, θ
sn

] switching to ci from cmi
i , by α((1−θ) θ

si

1−θsi −θ) < 0; in expectation, this reduces

firm profits from offering M ′i after signal sn by at least α|(1 − θsn) θ
si

1−θsi − θ
si |λ(cmn

n ), where λ(cmn
n ) is the

fraction of type θ
sn

agents in the support of signal sn. If we want to reduce firm profits from offering M ′i to

sn by δ, then we can set α = δ(|(1− θsn) θ
si

1−θsi − θ
si |λ(cmn

n ))−1 and the distance between the latent contract

ci and cmi
i will be at most α + ∆(cmi

i , α, θ
sn

) ≤ δ[(|(1 − θsn) θ
si

1−θsi − θ
si |λ(cmn

n ))−1(1 + θ
sn

1−θsn )] (where the

inequality follows from ∆(cmi
i , α, θ) ≤ θ

1−θα as shown in Lemma 1).
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provide one such assumption below, albeit with a regulatory policy that requires more latent
contracts. The assumption relaxes the use of a single state for ordering types, and can also
be used to relax the assumption that u(·, ω0, x) is the same for all x.

Assumption 1 (General Type Ordering and Signal Monotonicity). For each pair of signals
s and s′, there exist (θ′, x′) ∈ supp(s′) and ω′, ω′′ ∈ Ω such that one of the following two
conditions hold:

(a) θ′(ω′)
θ′(ω′′)

> θ(ω′)
θ(ω′′)

and uz(·, ω′, x′) ≥ uz(·, ω′, x) and uz(·, ω′′, x′) ≤ uz(·, ω′′, x) for all (θ, x) ∈
supp(s)

(b) θ′(ω′)
θ′(ω′′)

< θ(ω′)
θ(ω′′)

and uz(·, ω′, x′) ≤ uz(·, ω′, x) and uz(·, ω′′, x′) ≥ uz(·, ω′′, x) for all (θ, x) ∈
supp(s)

The construction of a regulatory policy to implement a is analogous to those in the proof
of Theorem 1, with ω′ playing the role of ω1 and ω′′ playing the role of ω0. The regulator adds
to M s

a an upward and downward latent contract for each state, constructed in the same way
as in Theorem 1 relative to ω1. They are not purchased by any types in the support of signal
s but are attractive to types in signal s′ 6= s (which exist in each s′ 6= s by Assumption
1) and reduce firm profits by an arbitrarily large amount when purchased. Although we
assumed that u is constant across ω0 in the baseline model, it is easy to see that the proof
of Theorem 1 still holds whenever uz(z, ω0, x) is (weakly) decreasing in x.

Observable Agent Characteristics

In some cases, a regulator may be able to condition her policy on observable attributes of
individual agents, ensuring that for particular subgroups, the firm can only offer a particular
subset of menus. For instance, governments often condition benefits or subsidies on earnings,
and employee health plan premiums often vary based on salary—these attributes may well
be relevant to agents’ preferences over transfers. Our main result applies with essentially no
changes in these settings. If the regulator observes a partition of agent categories, she can
effectively choose a separate regulatory policy for each element of the partition. As long as
the categories within each partition element satisfy our order conditions, Theorem 1 applies
within each partition element.

Competition and Market Structure

In many insurance markets, firms face competition. We explore competition within the
non-contractible loss model, assuming the regulator wishes to maximize consumer welfare.
Due to fixed costs, efficiency requires a single firm in the market. If all firms that enter
split the market equally, our analysis extends immediately: the optimal regulatory policy is
the same as with one firm, only one firm enters, and this firm receives zero profit—if more
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firms enter, some firm makes negative expected profit. Though reassuring, equal splitting
is not always a reasonable assumption in practice. In a decentralized market, entrants can
selectively target agents through advertising. This may facilitate cream-skimming, even if
the entrant is legally required to offer insurance to all. Cream-skimming is a serious concern
because it can undermine incentives for the first firm to enter or force incumbents out of the
market.9

Assume our monopolist (the incumbent firm) must serve all agents, and a single potential
entrant may target advertisements to particular categories. The entrant must also serve all
agents, but we suppose that an agent defaults to the incumbent unless he sees an advertise-
ment for the entrant. The entrant offers the same menus as the incumbent firm, and agents
select the same option from a given menu regardless of what firm they choose. Assume
both firms’ signals are perfectly informative of each agent’s category, x, and the regulator’s
objective is to maximize consumer welfare. Moreover, suppose there is a fixed cost to enter
the market κ, and an additional constant marginal cost C per agent served—this cost is
separate from contract payouts, capturing things like administrative expenses and capital
requirements. Hence, we can decompose the fixed cost of a single firm serving the entire
market as k = κ+C. If the entrant captures a market share α ∈ [0, 1] it incurs costs κ+αC,
while the incumbent incurs costs κ+ (1− α)C.

To illustrate the problem, suppose there are two categories x ∈ {H,L} and two degenerate
events ω ∈ {ω0, ω1}—an agent in category x suffers loss `x in event ω1, which occurs with
probability θx. In the optimal allocation, both types get full insurance at a common price
p∗, and the incumbent’s participation constraint binds. Selling to all agents never covers
the entrant’s fixed costs, but targeting only category L, with `L ≤ `H and θL ≤ θH , can be
profitable. If the entrant claims a share α ∈ [0, 1] of category L agents, then entry is strictly
profitable if

αµ(L, θL)(p∗ − θL`L − C) > κ.

If fixed costs are sufficiently small, or the difference between types is sufficiently large, entry
is profitable, and the first-best allocation is not part of an equilibrium.

How well can the regulator do when entrants might cream-skim? Let Tc ⊂ T denote
the set of types the entrant chooses to serve, and suppose the entrant can claim a share
αx ∈ [0, 1] of category x. The entrant can then earn a profit of

πe(a) = max
Tc⊂T

∑
τ∈Tc

αxµ(τ)(Π(τ, cτ )− C)− κ.

Suppose fixed costs for the incumbent are large enough that the regulator wants to deter
entry (and assume doing so is feasible). Entry is not a problem as long as the allocation
satisfies a no cream-skimming constraint which ensures the entrant finds it unprofitable to
enter the market:

πe(a) ≤ 0.

9This issue has been studied since at least the seminal work of Rothschild and Stiglitz [1976].
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The natural analog to the relaxed regulator’s problem in this setting is:

max
a

W (a) (CRP)

s.t. π(a) ≥ 0

πe(a) ≤ 0.

Assume a solution to this problem exists. The regulator maximizes her objective function
subject only to the incumbent firm’s participation constraint π(a) ≥ 0 and the entrant firm’s
no cream-skimming constraint πe(a) ≤ 0. Our relaxed problem in this context assumes the
regulator wants to prevent entry. If there are many potential entrants and free entry into the
market, then πe(a) ≤ 0 must hold in any equilibrium allocation. Therefore, the regulator
can do weakly better by deterring entry.

In this modified problem, the regulator targets a single contract to each category, of-
fering full insurance, but the price can differ across categories. Offering lower prices to
agents in lower categories is necessary to prevent cream-skimming, but this also limits cross-
subsidization.

Proposition 6. The solution to (CRP) provides a contract cx to all types in category x.
There exists a collection of contracts {cx, cx}x∈X such that the regulatory policyR = {Mx}x∈X
with Mx = {cx, cx, cx} implements the solution to (CRP).

Proof. The argument that the solution to the relaxed problem provides the same contract
to all agents in the same category is analogous to Proposition 1, and we omit it. Imple-
mentability is a corollary to the proof of Theorem 1. �

Constrained Regulation

Two important policy questions for insurance regulation are whether to prevent firms from
excluding customers and whether to mandate buying insurance. While optimal policy re-
quires both features—implementation depends on the firm offering insurance to all agents
and all agents buying insurance—regulators may not always have the ability to enforce them.
We can capture many natural restrictions on the regulator through constraints on the space
of permissible policies. Here are a few examples:

• All agents must have the same options: The policy R must contain a single menu M .
This might reflect anti-discrimination laws or strong fairness norms.

• The regulator can enforce contracts, but not menus: The policy must have the form
R = 2C \ {∅} for some set of contracts C. If a regulator cannot verify whether the firm
offers specific contracts, then the firm may construct its own menus from some grand
set of permitted contracts.
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• Firms can refuse service: The policy R must include the null menu {(0, 0)}. Without a
law to ensure otherwise, the firm retains the right to exclude some potential customers.

• Agents can opt out: The policy R must include the null contract (0, 0) in each menu.
This corresponds to the inability to enforce a purchase mandate.

Insurance Mandates: A Double-Edged Sword:

Definition 1. A regulatory policy with unenforceable menus is a regulatory policy
taking one of two forms. The regulator chooses a set of contracts C such that either i)
R = 2C \ {∅} or ii) R = {S ∪ {(0, 0)} : S ∈ 2C \ {∅}}. In the former case, there is an
insurance mandate, and in the latter case, there is no insurance mandate.

We show in a special case of the non-contractible loss model that insurance mandates
may harm welfare when the regulator can enforce contracts but not menus. Consider the
non-contractible loss model with one loss event, ω1, and two categories x ∈ {L,H}, each
with a single risk type. Category L faces risk θL of loss `L in event ω1, and category H faces
risk θH of loss `H . Assume `H > `L, initial wealth e > `L and θH > θL. A fraction µ of
agents are in category L. We assume the regulator seeks to maximize consumer welfare.

Proposition 1 implies that the regulator’s optimal solution entails selling full insurance
to all categories at the same price, set to give the firm exactly zero profit. To implement
this allocation, the regulator must force the firm to include a latent contract in each menu.
We study what a regulator can achieve if it can only enforce a set C of permitted contracts,
from which the firm can construct menus as it pleases.

We first explore policies with an insurance mandate. Since there is no need to screen
within categories, without loss the firm offers a single contract to each agent, and the universe
of permissible contracts is

C = {(ph, th), (pL, tL)}.

Notice that agents have no choice here—they must accept whatever contract the firm offers.
The only incentive constraints are those of the firm. The regulator chooses C to solve

max µU(L, θL, pL, tL) + (1− µ)U(H, θH , pH , θH)

s.t. µ(pL − θLtL) + (1− µ)(pH − θHtH) ≥ k

pL − θLtL ≥ pH − θLtH
pH − θHtH ≥ pL − θHtL

The regulator must satisfy the firm’s participation constraint and incentive constraints to
offer the correct contract to each type.

Under these assumptions, any policy with mandatory insurance optimally has the firm
offer the same contract to both categories. The firm IC constraints imply

θL(tH − tL) ≥ pH − pL ≥ θH(tH − tL).
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While the regulator wants the firm to offer higher coverage to category H, the best she
can do is to ensure both categories get the same contract. If every agent receives the
same contract, then at least one category is underinsured or overinsured. Since the firm’s
participation constraint binds, the regulator’s problem amounts to choosing a single coverage
level t ∈ [`L, `H ] and setting

p = t(µθL + (1− µ)θH) + k.

Proposition 7. Any optimal regulatory policy in which insurance is mandatory involves the
firm offering the same contract to every agent: pH = pL = p and tH = tL = t.

Proof. Let (pH , tH), (pL, tL) be an optimal policy. The firm’s participation constraint clearly
binds. The firm’s IC constraints require that

θL(tH − tL) ≥ pH − pL ≥ θH(tH − tL).

If tH ≥ tL, this can only be true if the two contracts are identical since θH > θL. We show
that tH ≥ tL in any optimal allocation.

Suppose tL > tH . At most one of the two IC constraints can bind. Suppose

pH − pL = θL(tH − tL) > θH(tH − tL),

meaning that FIC-H is slack. The Lagrangian for the regulator’s problem is

L =µ[(1− θL)u(e− pL) + θLu(e− pH + tL − `L)]

+ (1− µ)[(1− θH)u(e− pH) + θHu(e− pH + tH − `H)]

+ λ[µ(pL − θLtL) + (1− µ)(pH − θHtH)] + γ(pL − θLtL − pH + θLtH),

where λ ≥ 0 is the multiplier for the participation constraint, and γ ≥ 0 is the multiplier for
the lone IC constraint. The necessary first-order conditions with respect to tL and tH are

u′(e− pL + tL − `L) = λ+
γ

µ
, u′(e− pH + tH − `H) = λ− γ

1− µ
θL
θH
.

Since pH − pL > θH(tH − tL) > tH − tL, we have

e− pH + tH − `H < e− pL + tL − `H < e− pL + tL − `L.

This implies that marginal utility in the loss event is higher for type H than for type L.
From the first order conditions, this implies

γ

µ
< − γ

1− µ
θL
θH
,

which is impossible. We conclude that FIC-L is slack: pH − pL < θL(tH − tL).

16



We next show that tH = `H . If tH > `H , then H has higher wealth in the loss event than
in the no-loss event. Construct an alternative policy (pL, tL), (p′H , t

′
H) with p′H = pH − ε

and t′H = tH − ε
θH

. By construction, this leaves the firm’s profit unchanged, and FIC-H still
holds. FIC-L also holds because

pL − θLtL ≥ pH − θLtH > pH − θLpH − ε+
θL
θH
ε.

Concavity of u implies this allocation yields a strict welfare improvement. If tH < `H , then
H has higher wealth in the no-loss event than in the loss event. Construct an alternative
policy (pL, tL), (p′H , t

′
H) with p′H = pH + ε and t′H = tH + ε

θH
. By construction, this leaves

the firm’s profit unchanged, and FIC-H still holds. Because the constraint was slack, FIC-L
also holds for sufficiently small ε. Concavity of u again implies this allocation yields a strict
welfare improvement. We conclude that tH = `H . Moreover, this implies that tL > `H > `L,
so L has higher wealth in the loss event than in the no-loss event.

To complete the proof, we consider two cases. First, suppose FIC-H is slack. Construct
an alternative policy (p′L, t

′
L), (pH , tH) with p′L = pL − ε and t′L = tL − ε

θL
. By construction,

this leaves the firm’s profit unchanged, and both FIC-L and FIC-H hold for small enough
ε since both constraints were slack. Concavity of u implies this allocation yields a strict
improvement, so the original allocation was not optimal.

Now suppose that FIC-H binds. The corresponding Lagrangian is

L =µ[(1− θL)u(e− pL) + θLu(e− pH + tL − `L)]

+ (1− µ)[(1− θH)u(e− pH) + θHu(e− pH + tH − `H)]

+ λ[µ(pL − θLtL) + (1− µ)(pH − θHtH)] + γ(pH − θHtH − pL + θHtL),

where λ ≥ 0 is the multiplier for the participation constraint, and γ ≥ 0 is the multiplier for
the lone IC constraint. The necessary first-order conditions with respect to pL, tL, and tH
are

(1− θL)u′(e− pL) + θLu
′(e− pL + tL − `L) = λ− γ

µ
,

u′(e− pL + tL − `L) = λ− γ

µ

θH
θL
, and u′(e− pH + tH − `H) = λ+

γ

1− µ
.

Substituting the second into the first gives

u′(e− pL) = λ− γ

µ

1− θH
1− θL

.

Note that
e− pL < e− pH = e− pH + tH − `H < e− pL + tL − `L,

which implies u′(e− pL) > u′(e− pH + tH − `H). This means

−γ
µ

1− θH
1− θL

>
γ

1− µ
,

which is impossible. Therefore the necessary conditions for optimality cannot be satisfied.
We conclude that tH ≥ tL as desired. �
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This result highlights a problem with insurance mandates under a weak regulator. If
the regulator cannot force the firm to include latent contracts in the menus, then the firm
can hold agents hostage, offering only the most expensive or lowest coverage option. The
firm will not offer higher coverage to category H, even at a higher price, because if doing
so is profitable, then it is even more profitable to offer the expensive contract to category
L. Allowing agents to opt out of insurance can help because it allows us to target different
contracts to different categories—if the contract intended for category H is too expensive
for category L, then the firm is willing to offer a lower cost or lower coverage option to those
agents. However, this entails a trade-off as there is less cross-subsidization across agents.
Which effect is more important depends on the particular parameters.

Example: Optimality of Optional Insurance

Suppose
u(z, ω, x) = log(100− p+ t(ω)− `x(ω)),

where initial wealth e = 100, and `x(ω) = `x if ω = ω1, and zero otherwise. Assume the two
categories L and H are equally prevalent, that θL = 0.5 and θH = 0.501, and that `L = 30
and `H = 114. If insurance is mandatory, the optimal policy prescribes a single contract
(p∗, t∗) ≈ (47.6, 95.3) for all agents. Category L is overinsured, category H is underinsured,
and consumer welfare is approximately 4.048. If insurance is optional, the regulator can
do better by allowing the contracts (30, 60) and (55.49, 110.7). Category H prefers either
contract to the null contract, but the former is unprofitable since θH > 1

2
, so the firm offers

(55.49, 110.7) to H. Category L on the other hand would rather go uninsured than pay the
high premium. Consumer welfare is approximately 4.09.

In order to simplify the question of when a mandate is strictly dominated by no mandate,
we focus on the case when there is no fixed cost (k = 0) and look at the limit as θL → θH ,
so that the difference in losses are the main difference between L and H.

Proposition 8. There exists `H such that, if `H ∈ [`H ,
e
θH

) and |θL − θH | is sufficiently
small, it is optimal to make insurance optional.

Proof. Consider the optimal contract under the mandate. We know that both types receive
(p, t). Because the firm’s participation constraint, will bind, we know p = (µθL+(1−µ)θH)t.
It is straightforward when θH ≈ θL to show that t ∈ (`L, `H). Consider the optimal contract
with a mandate when `H = e

θH
− ε for some ε > 0. In order for H to not receive negative

infinite utility, it must be that e − p + t > e
θH
− ε. Because, when θL ≈ θH , the optimal

payment p ≈ θHt, we get e− p < ε θH
1−θH

. As ε→ 0, L’s utility approaches −∞.

Suppose the regulator drops the mandate and only allows the firm to offer (p, t) =
(θH`H , `H). For `H high enough, the autarky outcome for L is strictly higher utility than
under the mandate. H prefers the new contract to the previous mandate contract when θH ≈
θL because t < `H and H benefits from moving to a zero-profit contract with underinsurance
to a zero-profit contract with full-coverage. �
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Intuitively, the larger the difference in coverage needs between the two categories, the
more costly it is to pool them. The optimal policy with an insurance mandate involves
overinsurance for category L and underinsurance for category H. As `H increases, the
optimal contract with an insurance mandate converges towards full insurance for category
H, which is costly for category L. Without the mandate, when `L < e agents in category L
are able to guarantee their autarky payoff, which is strictly higher than the payoff from buying
the contract for category H. When the regulator cannot force the firm to offer additional
options in particular menus, letting agents opt out provides an alternative way to discipline
the firm. This could become more effective if the regulator were to directly offer some
insurance contracts—a “government option.” Changing the agents’ outside option could
allow the regulator to maintain more cross-subsidization. The interaction of government
options with constrained regulation seems an interesting avenue for further research.

Technical extensions

Many natural extensions are straightforward. For instance, little changes if we assume
compact—rather than finite—sets of categories and types. Moreover, one can further extend
the implementation result to allow even weaker order conditions on agent categories if one is
willing to include additional latent contracts in each menu. Generically, we can strengthen
our main result to implement the desired allocation in a way such that some agents have
strict incentives to choose latent contracts after firm deviations, and on path, all agents have
strict incentives to not choose the latent contracts—to do this, simply adjust the payouts of
our latent contracts by ε to break indifference and make agent preferences strict. Thus, one
can make the firm’s menu choice preference strict as well.
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