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Online Appendices

B Omitted Proofs

The Fund Investor’s Problem in Terms of Exponential Utilities:

max
a,b,c
− E exp

{
−γ

[
xF−1p+ rx − (arx − brb)− c

]}

subject to the manager’s incentive constraint (4) and her participation constraint

−E exp {−γ [arx − brb + c]} ≥ û0, (B.1)

where û0 is the exponential-utility version of u0.39 It is well known that in settings with
normally distributed returns, CARA utility can be rewritten in a mean-variance form,
leading to the problem described in Section IIIB in the main text.

The Social Planner’s Problem in Terms of Exponential Utilities:

max
a,b,c
− ω̃FE exp

{
−γ

[
xF−1p+ rx − (arx − brb)− c

]}
− ω̃DE exp

{
−γ

[
xD−1p+ xD(D − p)

]}
subject to (3), (4), (5), and (B.1), where ω̃i, i = F, F , are the modified Pareto weights.

From the FOC with respect to c it follows that the Lagrange multiplier on the partici-
pation constraint equals ω̃FMUF/MUM , where MUi denotes the expected marginal utility
of agent i. This value is the effective Pareto weight on the manager’s utility given that the
contract allows transfer between the fund investor and manager (through c). Similarly, if
transfers between fund and direct investors were allowed, then ω̃FMUF/λM = ω̃DMUD/λD,

39In particular, if the manager’s outside option is risk-free, then û0 = − exp(−γu0).
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and the distribution effects is zero. Without transfers, the Pareto weights that cancel out
the distribution effects (in the formulation with exponential utilities) are equal to inverse
marginal utilities times the population weights, ω̃F = λM/MUF and ω̃D = λD/MUD.

Rewriting the objective function and the participation constraint in the mean-variance
form gives the problem described in

Lemma 6. The following inequality holds:

1− a∗
a∗

[
1
a∗
−
(
λM
a∗

+ λD

)]
>

1− a∗∗
a∗∗

[
1
a∗∗
− λM/a

∗∗ + λD
λM + λD

]
.

Proof. For expositional convenience, denote a1 = a∗ and a2 = a∗∗. Given that both sides
of the above inequality are positive, it is equivalent to

(1− a1)/a2
1

(1− a2)/a2
2

λM + a1λD + (1− 2a1)λD
(λM + a2λD)λD/(λM + λD) + (1− 2a2)λD

> 1. (B.2)

From (12) and (23) we have

1− a1

a3
1(2a1 − 1) = 1− a2

a3
2(2a2 − 1)

λD
λM + λD

. (B.3)

Substituting this in (B.2), obtain

a1(2a1 − 1)
a2(2a2 − 1)

λD
λM + λD

λM + a1λD + (1− 2a1)λD
(λM + a2λD)λD/(λM + λD) + (1− 2a2)λD

> 1.

Since a1 > a2, it suffices to show that

λM + a1λD + (1− 2a1)λD
(λM + a2λD)λD/(λM + λD) + (1− 2a2)λD

>
λD + λM

λD
,

which is equivalent to

λM(2a2 − 1)
λD(a1 − a2) > 1. (B.4)
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To show (B.4), we will use equation (B.3). Rearranging (B.3) yields

1− a1

a3
1(2a1 − 1)

λM
λD

= 1− a2

a3
2(2a2 − 1) −

1− a1

a3
1(2a1 − 1) ,

or, equivalently,

λM(2a2 − 1)
λD

= a3
1

1− a1

[
(1− a2)(2a1 − 1)

a3
2

− (1− a1)(2a2 − 1)
a3

1

]
.

The right-hand side of the above equation equals

−a3
1 + 2a4

1 − 2a4
1a2 + a2a

3
1 − (−a3

2 + 2a4
2 − 2a4

2a1 + a1a
3
2)

(1− a1)a3
2

= (a1 − a2)
(1− a1)a3

2

[
−(1 + 2a1a2)(a2

1 + a1a2 + a2
2) + 2(a1 + a2)(a2

1 + a2
2) + a1a2(a1 + a2)

]
.

Rearranging terms and doing some more algebra, yields

λM(2a2 − 1)
λD(a1 − a2) = (2a1 − 1)a2

1(1− a2) + (2a2 − 1)a2
2(1− a1) + (2a1 − 1)a1a2 + 2a1a

2
2(1− a1)

a3
2(1− a1) .

Since 1/2 < a2 < a1 < 1,

λM(2a2 − 1)
λD(a1 − a2) >

(2a1 − 1)a2
1(1− a2) + (2a2 − 1)a2

2(1− a1) + (2a1 − 1)a1a2 + a3
2(1− a1)

a3
2(1− a1) > 1,

and thus (B.4) holds. �

Lemma 7. The fund investor’s and social planner’s second-order conditions are satisfied
in the equilibria with privately and socially optimal contracts, respectively.
Proof of Lemma 7. Denote by Fb/a and Fa the left-hand sides of the FOCs with respect
to b/a and a, respectively. From the proofs of Lemmas 2 and 4, once we plug in the FOC
with respect to b/a in the FOC with respect to a, the remaining terms only depend a.
Thus we can write Fa in the following form: Fa = g(a) + Fb/ah(a, b/a). The function g(a)
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is given by (the right-hand sides of) equations (12) and (23) with privately and socially
optimal contracts, respectively.

Differentiating Fa with respect to a and b/a,

Faa = ∂Fa
∂a

= g′(a) + Fb/a︸︷︷︸
=0

∂h(a, b/a)
∂a

+ Fb/a,ah(a, b/a),

Fa,b/a = ∂Fa
∂(b/a) = Fb/a︸︷︷︸

=0

∂h(a, b/a)
∂(b/a) + Fb/a,b/ah(a, b/a).

Notice that g′(a) < 0 (this follows from (12) with privately optimal contracts and
from (23) with socially optimal contracts). Furthermore, Fb/a,b/a < 0. Indeed, in the
privately optimal case, Fb/a,b/a = −γσ2/a < 0. Similarly, in the socially optimal case,
Fb/a,b/a = −γΛλMσ2 − γσ2/a < 0. Finally,

det
Fb/a,b/a Fa,b/a

Fa,b/a Fa,a

 = det
 Fb/a,b/a Fb/a,b/ah

Fb/a,b/ah g′(a) + Fb/a,b/ah
2

 = g′(a)Fb/a,b/a > 0.

This completes the proof. �

C Discussion on Value Added and Costs of Asset Man-
agement

This appendix elaborates on the assumptions we make regarding the costs and benefits of
asset management.

As mentioned in the body of the paper, there are a variety of interpretations for alpha.
In our formulation, alpha has nothing to do with superior information, which could be
associated with stock-selection and market-timing abilities. Under this interpretation,
direct investors who happen to buy the same assets or traded at the same time still do not
earn the same returns as the managers. This interpretation has the advantage of being
consistent with the vast literature (e.g., Fama and French, 2010) that casts doubt on the
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ability to generate abnormal returns by stock picking or market timing.
It is also consistent with a great deal of empirical evidence suggesting that savvy in-

vestors can augment their returns by lending securities, by conserving on transactions costs
(e.g., from crossing trades in-house or by obtaining favorable quotes from brokers) or by
providing liquidity (i.e., serving as a counterparty to liquidity demanders and earning a
premium on such trades). For example, securities lending contributed 5% of total revenue
of both BlackRock and State Street in 2017. While it has recently become possible for
some retail investors to participate in securities lending, they earn lower returns for this
activity and do not have the same opportunities as a large asset management firm. It is also
well established that portfolio managers can profit from providing immediacy in trades, by
either buying assets which are out of favor or selling ones that are in high demand.40 It
would be prohibitively expensive for retail investors to try to do this. Finally, Eisele et al.
(2020) present evidence that trades crossed internally within a fund complex are executed
more cheaply than comparable external trades.

The noise term ε in (1) captures the fact that the return-augmenting activities do
not produce a certain return each period. For example, the demand for liquidity, the
opportunities to lend shares and the possibility of crossing trades all fluctuate, so even a
very alert and skilled manager will have some randomness in her returns. Also for securities
that are lent, there is a risk that they will not be returned in a timely manner or potentially
at all.

There is also considerable evidence to support our assumption that the manager must
incur a private cost in order to deliver the abnormal returns. For instance, to successfully
buy and sell at the appropriate times to provide liquidity, the manager has to be actively
monitoring market conditions while markets are open. For securities lending, the manager
would also have to decide whether to accommodate requests to borrow shares. In some
cases, these demands arise because the entity borrowing the shares wants to vote them and
the manager must decide whether to pass up that choice.41

40In a classic paper, Keim (1999) estimates an annual alpha of 2.2% earned by liquidity provision
activities of a fund. Rinne and Suominen (2016) document that the top decile of liquidity providing
mutual funds outperform the bottom decile by about 60 basis points per year. Anand, Jotikasthira and
Venkataraman (2018) find similar estimates using a different sample of funds over a different time period.

41Most managers also incur some costs that are observable and can be passed on directly to fund
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We could instead assume that the private cost arises because the manager needs to exert
costly effort to generate the excess returns, as is often done in the contracting literature
(e.g., Holmstrom and Milgrom, 1987, 1991). Incorporating effort makes the algebra much
more involved.42 However, under certain assumptions our main insights extend to this case.
Importantly, it is the unobservability of the portfolio holdings and not the unobservability
of effort that is central to our mechanism. To make this clear and to focus on the key
friction, in our main model we do not include an effort choice. We analyze an extension
that incorporates effort in Appendix E.1 and show that our main insights carry over.

It is also plausible that the benefits and costs associated with the return-augmenting
activities are increasing in the size of the holdings.43 For example, in terms of the liquidity
provision and trade-crossing, the wider the range of securities in the portfolio and/or the
more a fund holds on any particular security, the easier it would be to provide liquidity or
more likely it would be that a trade can be offset. For securities lending, a larger portfolio
opens up additional lending opportunities. As mentioned earlier, it is simplest to think of
the costs as being tied to the time it takes to undertake the various activities. Thought of
this way, if the opportunities to augment returns increase as the portfolio expands, then
the costs of realizing them would naturally grow too.

investors. Examples would include custody, audit, shareholder reports, proxies and some external legal
fees. Our main results continue to hold in a model in which some costs are observable.

42Our results trivially extend if effort is bounded from above (e.g., if there is a time constraint), and
the optimal solution is at the upper bound.

43Implicit in our expressions for the return on the fund in (1) and the portfolio-management cost is
that they scale linearly with the size of the portfolio. This is seemingly inconsistent with Berk and Green
(2004) who assume that there are decreasing returns to scale in asset management, but it is not. Berk and
Green explicitly attribute decreasing returns to scale to the price impact of fund managers. The bigger
the portfolio invested in an alpha-opportunity, the smaller the return on a marginal dollar invested. Berk
and Green’s model is in partial equilibrium and their price impact is simply an exogenous function of fund
size. Ours is a general-equilibrium model, in which the price impact endogenously arises from a higher
aggregate demand of portfolio managers for the risky asset. Linearity allows us to solve the model in closed
form, but what is important conceptually is that the cost is increasing in x. We show in Appendix E.1
that while the algebra is messier, under some assumptions our main analysis extends to the case of more
general specifications of the return and cost.
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D Achieving the Social Optimum with Taxes

This appendix analyzes how imposing taxes can implement the constrained socially optimal
allocation and stock price in the equilibrium in which contracts are chosen by fund investors.
There are multiple ways of doing that, and we consider two alternatives here—one with
proportional income taxes (or subsidies) on the managers and fund investors, the other
with an income tax on the managers and a cap on a.44

First, suppose there are proportional tax rates on the fund investors’ and managers’
incomes, denoted by t and t′, respectively. The tax revenue—which is uncertain, given that
the incomes are uncertain—is distributed to the fund investors as a lump-sum transfer T .
Denote the constant and stochastic part of the transfer by τ0 and τ so that T = τ0+τ(D̃−p).
How τ0 and τ are determined is discussed later.

Since we want to implement the constrained optimal allocation, the taxes and the lump-
sum transfer will be such that y = (1− t′)[ax− b] and z = (1− t)[(1− a)x+ b] + τ are the
same as in the constrained social optimum.

The utilities of the fund investor and manager with taxes can be written as

UF = (1− t)(1− a)x∆ + z(µ− p)− c(1− t) + τ0 −
γ

2
[
z2σ2 + (1− t)2(1− a)2σ2

ε

]
+ xF−1p,

UM = (1− t′)ax∆− xψ + y(µ− p) + c(1− t′)− γ

2
[
y2σ2 + (1− t′)2a2σ2

ε

]
.

The manager’s demand function is

xM = ∆− ψ/[a(1− t′)] + µ− p
γσ2a(1− t′) + b(1− t′)

a(1− t′) . (D.1)

To implement the social optimum, we need a(1− t′) = a∗∗ and b(1− t′) = b∗∗.
From the first-order condition with respect to c, the Lagrange multiplier on the man-

44As will become clear from the analysis, we need two tax rates to eliminate the differences in the two
first-order conditions (with respect to b/a and a) in the private and social cases, and one tax rate is not
enough.
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ager’s participation constraint is ξ = (1− t)/(1− t′). The fund investor maximizes

UF + ξUM = [(1− t)x+ τ ] (∆ + µ− p) + τ0 −
1− t
1− t′xψ

− γ

2

{
z2σ2 + 1− t

1− t′y
2σ2 + (1− t)

[
(1− t)(1− a)2 + (1− t′)a2

]
σ2
ε

}

subject to the manager’s incentive constraint (D.1), y = (1− t′)[ax− b], and

z = (1− t)
[

1
1− t′

1− a
a

y + b

a

]
+ τ.

The first-order condition with respect to b/a is

(1− t)(∆ + µ− p− γσ2z)− 1− t
1− t′ψ = 0,

∆ + µ− p− γσ2z − 1
1− t′ψ = 0. (D.2)

Recall that the planner’s first-order condition with respect to b/a is

∆ + µ− p− γσ2z − ψλM/a
∗∗ + λD

λM + λD
= 0.

To equate the two, we need 1− t′ = (λM + λD)(λM/a∗∗ + λD), or

t′ = λM
λM/a∗∗ + λD

1− a∗∗
a∗∗

. (D.3)

Intuitively, the positive tax on the manager’s income inflates his costs relative to returns,
which discourages him from investing in the risky asset.

The first-order condition with respect to a is

(1− t) [(1− t)(1− a)− (1− t′)a] γσ2
ε + (∆ + µ− p+ γσ2z) 1− t

1− t′
1− a
a

∂y

∂a
= 0.

Dividing by 1 − t and using (D.2), ∂y/∂a = ψ/(γσ2a2(1 − t′)), and a(1 − t′) = a∗∗, the
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above condition can be rewritten as

[(1− t)(1− a)− (1− t′)a] γσ2
ε + 1− a

a∗∗3
ψ2

γσ2 = 0.

Recall that the planner’s first-order condition with respect to a is

(1− 2a∗∗)γσ2
ε + 1− a∗∗

a∗∗3
ψ2

γσ2
λD

λM + λD
= 0.

To equate the two, we need

1− a
(1− t)(1− a)− (1− t′)a = λD

λM + λD

1− a∗∗
1− 2a∗∗ , (D.4)

From a = a∗∗/(1 − t′) = a∗∗(λM/a∗∗ + λD)/(λM + λD), 1 − a = (1 − a∗∗)λD/(λM + λD),
and (D.4) simplifies to (1− t)(1− a)− (1− t′)a = 1− 2a∗∗, or

t(1− a) + t′a = 0. (D.5)

Using the expression for t′ given in (D.3) and a = a∗∗/(1− t′), we have

t = −λM/λD.

That is, in order to implement the constrained social optimum, the fund manager’s income
tax rate should be negative. Intuitively, in order to discourage the fund investor from
setting a too high, the subsidy should be used so that the fund investor effectively retains a
larger share of the return for himself. His after-tax share of the return equals (1−t)(1−a) =
1− (1− t′)a. That is, it is as if he only has to give (1− t′)a instead of a to the manager.
Thus the income tax rates t and t′ considered here effectively translate into the tax rates
of t′ imposed directly on a and b such that (1− t′)a = a∗∗ and (1− t′)b = b∗∗.
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Finally, the transfer to the fund investor that balances the budget is

T = [t(1− a) + t′a]x(∆ + D̃ − p) + (t− t′)[b(D̃ − p)− c]

= (t− t′)[b(D̃ − p)− c],

where the last equality follows from (D.5), and so τ0 = (t − t′)c and τ = (t − t′)b. Note
that while t− t′ < 0, the expected lump-sum transfer (t− t)′ [b(µ− p)− c] can be negative
or positive depending on the value of the manager’s outside option, which pins down c.

An alternative scheme that achieves the social optimum is a combination of the income
tax rate t′ given by (D.3) imposed on the manager together with a cap (an upper bound)
on the sensitivity of the manager’s compensation with respect to the fund performance, a,
at ā = a∗∗/(1− t′), so that a ≤ ā = (λM + a∗∗λD)/(λM + λD). As before, the total amount
of tax revenue should be paid to the fund investor as a lump-sum transfer.

E Extensions

E.1 Incorporating an Effort Choice by the Manager

In this appendix we extend the model in the main text to incorporate an effort choice by the
manager. We will assume here that the effort choice is unobservable to the fund investor
(the analysis of the case with observable effort is similar). We still assume, as in the main
text, that the manager’s portfolio choice is unobservable as well. We will demonstrate
that our main insights extend in this case. In particular, the individual fund managers
overestimate the effectiveness of incentive provision relative to the planner, which results
in crowded trades.

Consider general functional forms so that the benefit function is ∆̃(x, e), the cost func-
tion is ψ̃(x, e), and the variance of the noise term is ε̃(x, e).

The manager’s problem is

max
x,e

a∆̃(x, e)− ψ̃(x, e) + (ax− b)(µ− p)− γ

2σ
2(ax− b)2 − γ

2a
2ε̃(x, e) + c.
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The first-order conditions with respect to e is

∂∆̃
∂e
− 1
a

∂ψ̃

∂e
− γ

2a
∂ε̃

∂e
= 0. (E.1)

Think of the optimal effort solving (E.1) as e∗(x, a).
We impose the following assumptions.

Assumption 1. Suppose that for each a ∈ [1/2, 1], the function

a∆̃(x, e)− ψ̃(x, e)− γa2

2
[
x2 + ε(x, e)

]
is concave in (x, e). Moreover, denote

df(x, e∗(x, a))
dx

= ∂f

∂e

∂e∗

∂x
+ ∂f

∂x
,

where function f is either ∆̃, ψ̃, or ε̃, and e∗(x, a) is implicitly defined by (E.1). Suppose
that for each a ∈ [1/2, 1],

dψ

dx
>
γ

2

∣∣∣∣∣dεdx
∣∣∣∣∣ , d2ψ

dx2 ≥
γ

2

∣∣∣∣∣−d2ε

dx2

∣∣∣∣∣ .
The above inequalities require that the manager’s private cost is sufficiently increasing

and sufficiently convex in x (once the optimal effort choice is taken into account).
We now proceed with the analysis of the manager’s problem. The manager’s first-order

condition with respect to x (taking into account the fact that x affects the optimal choice
of effort according to e∗(x, a)) is

µ− p− γσ2(ax− b) + d∆̃
dx
− 1
a

dψ̃

dx
− γ

2a
dε̃

dx
= 0. (E.2)

Assumption 1 implies that the second-order conditions are satisfied, in particular,

SOCx ≡ −γσ2a+ d2∆̃
dx2 −

1
a

d2ψ̃

dx2 −
γa

2
d2ε̃

dx2 < 0.
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In what follows, we will use expressions for the effects of b and a on x that we derive
below. Differentiating (E.2) with respect to b,

γσ2 + SOCx
∂x

∂b
= 0,

∂x

∂b
= − γσ2

SOCx
= γσ2

γσ2a− d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

> 0.

Denote dx
di
≡ ∂x

∂i
+ ∂x

∂p

∂p

∂i
, i ∈ {a, b}. Taking the total derivative of (E.2) with respect to

b,

γσ2 − ∂p

∂b
+ SOCx

dx

db
= 0. (E.3)

Differentiating the market-clearing condition λMx+λDxD = x̄ with respect to b (and using
the expression for xD in the main text),

λM
dx

db
+ λD

∂xD

∂p

∂p

∂b
= λM

dx

db
− λD

1
γσ2

∂p

∂b
= 0,

∂p

∂b
= γσ2λM

λD

dx

db
.

Substituting this into (E.3), yields

dx

db
= γσ2

γσ2λM
λD
− SOCx

= γσ2

γσ2

(
a+ λM

λD

)
− d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

.

Notice that dx
db
≤ ∂x

∂b
, with strict inequality if λM > 0.
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Similarly, differentiating (E.2) with respect to a, gives

− γσ2x+ 1
a2
dψ̃

dx
− γ

2
dε̃

dx
+ SOCx

∂x

∂a
= 0,

∂x

∂a
= 1

γσ2a− d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

[
1
a2
dψ̃

dx
− γ

2
dε̃

dx

]
− x∂x

∂b
. (E.4)

The last term captures the negative effect of a on x because the manager is exposed to too
much aggregate risk—the effect which b offsets. There is a new effect that we did not have
before—a larger a reduces x if ε̃ is increasing in x because it exposes the manager to more
idiosyncratic risk, and this risk cannot be offset by an increase in b. Notice that without
it (as in the main text), we would have ∂x/∂a+ x∂x/∂b > 0, which captures the fact with
b offsetting the negative effect of a on x, we are only left with the positive effect that is
coming from reducing the effective cost. We want to make sure that ∂x/∂a+ x∂x/∂b > 0.
Notice that if this was not the case, it would not be optimal for the fund investor to use a
for incentive provision purposes. Assumption 1 ensures that, and we have

∂x

∂a
+ x

∂x

∂b
=

1
a2
dψ̃

dx
− γ

2
dε̃

dx

γσ2a− d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

> 0.

Similarly, we have

dx

da
+ x

dx

db
=

1
a2
dψ̃

dx
− γ

2
dε̃

dx

γσ2

(
a+ λD

λM

)
− d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

,

which is smaller than ∂x/∂a+ x∂x/∂b.
We now turn to the analysis of the fund investor’s problem. Denoting y = ax− b and
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z = x− y, this problem is

max
a,b,c,x

(1− a)∆̃(x, e∗(x, a)) + z(µ− p)− γσ2

2 z2 − γ(1− a)2

2 ε̃2(x, e∗(x, a))− c

subject to the manager’s participation constraint and incentive constraint (E.2) (in which
we substituted e∗(x, a) implicitly defined by (E.1)).

The fund investor’s first-order condition with respect to b is

d(UF + UM)
db

= ∂UF

∂x

∂x

∂b
+ ∂UM

∂x︸ ︷︷ ︸
=0

∂x

∂b
+ ∂(UF + UM)

∂b
= 0. (E.5)

The last term captures how b directly affects the social welfare by linearly transferring from
y to z. The first term captures the indirect effect of b on social welfare through its effect
on the manager’s demand x. Intuitively, notice that ∂UF/∂x should be positive, otherwise
b would not be positive. We will show that ∂UF/∂x > 0 formally below. The last term in
(E.5) is

∂(UF + UM)
∂b

= −γσ
2

2
∂(y2 + z2)

∂b
= γσ2(y − z) = γσ2 [(2a− 1)x− 2b] .

We will show below that this term is negative (notice that this term would be zero under
perfect risk sharing a = 1/2 and b = 0.)

Using (E.2),

∂UF

∂x
= (1− a)

[
d∆̃
dx

+ µ− p− γσ2z − γ

2 (1− a)dε̃
dx

]

= (1− a)
[
γσ2(y − z) + 1

a

dψ̃

dx
+ γ

2 (2a− 1)dε̃
dx

]
.

Then the investor’s first-order condition with respect to b becomes

(1− a)
[
γσ2(y − z) + 1

a

dψ̃

dx
+ γ

2 (2a− 1)dε̃
dx

]
∂x

∂b
+ γσ2(y − z) = 0, (E.6)
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or equivalently

(1− a)∂x
∂b

(1− a)∂x
∂b

+ 1

[
1
a

dψ̃

dx
+ γ

2 (2a− 1)dε̃
dx

]
+ γσ2(y − z) = 0. (E.7)

Notice that since the first term is strictly positive by Assumption 1, the second term is
strictly negative. It then also follows that the term in the square brackets in E.6 must be
strictly positive, that is, ∂UF/∂x = ∂(UF + UM)/∂x > 0. Intuitively, it means that it is
optimal for the fund investor to use contracts to provide incentives. It also then follows
that b > 0. Indeed, notice that at b = 0 and a ∈ [1/2, 1], the left-hand side of (E.7) is
strictly positive given Assumption 1, and thus b ≤ 0 cannot be optimal.

We will now compare the social planner’s first-order condition with respect to b to that
of an individual fund investor. The planner’s first-order condition with respect to b (after
canceling out the distributive effects, as in the main text) is the same as the corresponding
first-order condition for an investor, but ∂x/∂b is being replaced with dx/db, namely

∂UF

∂x

dx

db
+ ∂(UF + UM)

∂b
= 0,

or

(1− a)dx
db

(1− a)dx
db

+ 1

[
1
a

dψ̃

dx
+ γ

2 (2a− 1)dε̃
dx

]
+ γσ2(y − z) = 0.

Since dx/db < ∂x/∂b as long as λM > 0,

(1− a)dx
db

(1− a)dx
db

+ 1
<

(1− a)∂x
∂b

(1− a)∂x
∂b

+ 1
.

It then follows that under Assumption 1, the additional terms in the planner’s first-order
condition relative to the investor’s first-order condition are strictly negative.
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Now consider the first-order condition with respect to a. In the privately optimal case,
it is

d(UF + UM)
da

= ∂UF

∂x

∂x

∂a
+ ∂UF

∂e

∂e

∂a
+ ∂(UF + UM)

∂a
= 0.

Rewrite this to get

d(UF + UM)
da

= (1− a)
[
γσ2(y − z) + 1

a

dψ̃

dx
+ γ

2 (2a− 1)dε̃
dx

]
∂x

∂a

+ (1− a)
[
∂∆̃
∂e
− γ

2 (1− a)∂ε̃
∂e

]
∂e

∂a
− γσ2(y − z)x− γε2(2a− 1).

= (1− a)
[
γσ2(y − z) + 1

a

dψ̃

dx
+ γ

2 (2a− 1)dε̃
dx

]
∂x

∂a

+ (1− a)
(

1
a

∂ψ̃

∂e
+ γ

2 (2a− 1)∂ε̃
∂e

)
∂e

∂a
− γσ2(y − z)x− γε2(2a− 1) = 0.

where the second equality uses (E.1). Then using (E.6), we can rewrite the above condition
as follows:

(1− a)
[
γσ2(y − z) + 1

a

dψ̃

dx
+ γ

2 (2a− 1)dε̃
dx

](
∂x

∂a
+ x

∂x

∂b

)

+ (1− a)
(

1
a

∂ψ̃

∂e
+ γ

2 (2a− 1)∂ε̃
∂e

)
∂e

∂a
− γε2(2a− 1) = 0.

Using (E.7), the fund investor’s first-order condition with respect to a becomes

(1− a)
(
∂x

∂a
+ x

∂x

∂b

)

(1− a)∂x
∂b

+ 1

[
1
a

dψ̃

dx
+ γ

2 (2a− 1)dε̃
dx

]
+ (1− a)

(
1
a

∂ψ̃

∂e
+ γ

2 (2a− 1)∂ε̃
∂e

)
∂e

∂a

− γε2(2a− 1) = 0. (E.8)

Notice that we need dψ̃/dx > 0 or ∂ψ̃/∂e > 0, otherwise a = 1/2 is optimal. This is
guaranteed by Assumption 1.
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The social planner’s first-order condition with respect to a is obtained from (E.8) by
replacing

(1− a)
(
∂x

∂a
+ x

∂x

∂b

)

(1− a)∂x
∂b

+ 1
=

(1
a
− 1

)(1
a

dψ̃

dx
− γ

2a
dε̃

dx

)

γσ2 − d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

by a strictly smaller term,

(1− a)
(
dx

da
+ x

dx

db

)

(1− a)dx
db

+ 1
=

(1
a
− 1

)(1
a

dψ̃

dx
− γ

2a
dε̃

dx

)

γσ2

(
1 + λD

λM

)
− d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

.

Recall that the term in square brackets in (E.8) is strictly positive (by Assumption 1).
Therefore in the socially optimal case, there are additional negative terms (or the positive
terms are smaller) in the first-order condition with respect to a relative to that in the
privately optimal case.

As in the main model in the text, the planner recognizes that incentive provision is
weaker than individual fund investors perceive it to be. This is captured by additional
negative terms in the first-order conditions for a and b. It is no longer straightforward to
establish that the presence of these terms imply that both a and b in the socially optimal
case are smaller than those in the privately optimal case. Doing so requires us to impose
additional, hard to interpret, assumptions on the cross-derivatives and third derivatives
of the functions ∆̃, ψ̃ and ε̃. Intuitively, these assumptions are sufficient conditions to
guarantee that a and b are complements.

We can still prove the crowded trades result, namely, p∗∗ < p∗. Define k = (a, b),
W (k, p) = UF (k, p, x(k, p), e∗(k, x(k, p))) + UM(k, p, x(k, p), e∗(k, x(k, p))). The fund in-
vestor’s problem is to maximize W (k, p) with respect to k taking p as given. Since we
cancel out the distributive effects in the social planner’s problem, it is equivalent to maxi-
mizing W (k, p(k)) with respect to k.

Denote the optimal solutions in the privately and socially optimal cases by k∗ and k∗∗,
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respectively. Notice that

W (k∗∗, p(k∗∗)) > W (k∗, p(k∗)) > W (k∗∗, p(k∗))

implying

W (k∗∗, p(k∗∗)) > W (k∗∗, p(k∗)). (E.9)

Differentiating W with respect to p (and canceling the distributive effects),

dW

dp
= ∂UF

∂x

dx

dp
= (1− a)

{
γσ2 [(2a− 1)x(p)− 2b] + 1

a

dψ̃

dx
+ γ

2 (2a− 1)dε̃
dx

}
dx

dp
< 0.

Differentiating with respect to p one more time,

d2W

dp2 = dWs

dx

(
dx

dp

)2

+Ws
d2x

dp2︸︷︷︸
=0

=
[
γσ2(2a− 1)x+ 1

a

d2ψ̃

dx2 + γ

2 (2a− 1)d
2ε̃

dx2

](
dx

dp

)2

> 0

by Assumption 1. Since dW (k∗∗, p)/dp < 0 at p = p∗∗, this implies that W (k∗∗, p(k∗∗)) <
W (k∗∗, p) for p < p(k∗∗). Given inequality (E.9), it must be the case p(k∗∗) < p(k∗). It
then also follows that x(k∗∗) < x(k∗). So the crowded trade results from the main text
extends to the case with unobservable effort.

E.2 Endogenous ∆

In this appendix we consider the case in which ∆ is determined in equilibrium in the market
for securities lending. We include a new class of investors who seek to borrow the stock
from fund managers so that they could sell them short. These investors therefore incur a
borrowing cost of ∆ per share, which allows the fund managers to earn revenue of ∆ per
share. Typical motives for shorting considered in the literature are (i) hedging and (ii)
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speculation. We choose the first one, so that the resulting model is not too far from our
baseline setting. We believe that the insights of this appendix go through in alternative
settings, so long as one is not adding market frictions together with additional classes of
agents.

We consider a new group of agents, hedgers, H (measure λH), endowed with eD̃ units of
consumption in period 1.45 They engage in short selling in period 0 for hedging purposes.
Their utility (converted into the mean-variance form) is

max
x

(x+ e)µ− xp+ x∆1x≤0 −
γ

2 (x+ e)2σ2,

where ∆ is the borrowing cost and it is incurred only when the hedgers’ demand is negative.
It is easy to show that the hedgers’ portfolio demand is given by

xH = µ− p+ ∆
γσ2 − e. (E.10)

We focus on the case when e is large enough so that xH .
In practice, a fund manager would not be permitted to lend out the entire portfolio

and would lend out only a fraction of it. We assume that the number of shares lent out by
the manager is `xM , where ` ∈ (0, 1] is exogenous. The fund’s augmented return is now
`∆xM and the manager’s cost is `ψxM . The manager’s portfolio is then

xM = µ− p+ `∆− `ψ/a
aγσ2 + b

a
. (E.11)

Substituting (E.10) and (E.11) into the securities-lending market-clearing condition,

`λMx
M + λHx

H = 0, (E.12)

45Without loss of generality, we assume that the hedgers are endowed with zero shares at time zero.
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leads to the following expression for p− `∆:

p− `∆ = µ− 1
λH + `λM/a

[
γσ2

(
λHe− `λM

b

a

)
+ `λM

`ψ

a2 − (1− `)λH∆
]
. (E.13)

With the new class of agents, the market-clearing condition in the asset market becomes

λMx
M + λHx

H + λDx
D = x̄,

which, using (E.12), can be written as

(1− `)λMxM + λDx
D = x̄. (E.14)

Substituting (3) and (E.11) and solving for p− `∆ yields

p− `∆ = µ− 1
λD + (1− `)λM/a

[
γσ2

(
x̄− (1− `)λM

b

a

)
+ λD`∆−

(1− `)λM
a

`
ψ

a

]
.

(E.15)

Next, we compare the privately and socially optimal contracts. To do this, we consider
first-order conditions with respect to b/a and a. The first-order condition for the privately
optimal case with respect to b/a and a are

`∆− `ψ + µ− p− γσ2z = 0 (E.16)

and

0 = −(2a− 1)γσ2
ε + 1− a

a
(`∆ + µ− p− γσ2z)∂y

∂a

= −(2a− 1)γσ2
ε + (1− a)`ψ

2σ2

γa3 , (E.17)

respectively.
Now consider the socially optimal case. Define UH = xH(∆+µ−p)+eµ−γ

2

(
xH + e

)2
σ2.
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The social planner’s problem is

max
a,b,c

ωFU
F + ωDU

D + ωHU
H

subject to (3), (7), (E.10), (E.11), (E.13), and (E.15). Denote

y = axM − b = µ− p+ `∆− `ψ/a
γσ2 .

The social planner’s first-order condition with respect to b/a is

0 =
[
ωF

(
xF−1 − xM

)
+ ωD

(
xD−1 − xD

)
− ωHxH

] ∂p

∂(b/a) +
[
ωF `x

M + ωHx
H
] ∂∆
∂(b/a)

+ `∆− `ψ + µ− p− γσ2z +
(
`∆ + µ− p− γσ2z

) [1
a
− 1

]
∂y

∂(p− `∆)
∂(p− `∆)
∂(b/a) .

As in the main text, we choose the Pareto weights to eliminate the distributive effect.
Specifically, if ωF = λM , ωD = λD, and ωH = λH , then the terms in the first line of (E.18)
are zero by market clearing. Thus the planner’s first-order with respect to b/a becomes

`∆− `ψ + µ− p− γσ2z +
(
`∆ + µ− p− γσ2z

) [1
a
− 1

]
∂y

∂(p− `∆)
∂(p− `∆)
∂(b/a) = 0.

(E.18)

Differentiating (E.13) and (E.15) with respect to b/a, we can solve for ∂(p− `∆)/∂(b/a):

∂(p− `∆)
∂(b/a) = Γγσ2,

where

Γ = [`2λD + (1− `)2λH ]λM
λDλH + [`2λD + (1− `)2λH ]λM/a

∈ (0, 1).

and using ∂y/∂(p− `∆) = −1/(γσ2), we can rewrite the social planner’s first-order condi-
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tion with respect to b/a as

`∆− `ψ

1− (1/a− 1) Γ + µ− p− γσ2z = 0. (E.19)

The planner’s first-order condition with respect to a (after canceling out the distributive
effect) is

0 = −(2a− 1)γσ2
ε −

[
`∆− `ψ + µ− p− γσ2z

] y
a2

+ 1− a
a

(`∆ + µ− p− γσ2z)
[
∂y

∂a
+ ∂y

∂(p− `∆)
∂(p− `∆)

∂a

]
,

which, using (E.18), becomes

0 = −(2a− 1)γσ2
ε

+ 1− a
a

(`∆ + µ− p− γσ2z)
[
∂y

∂a
+ ∂y

∂(p− `∆)
∂(p− `∆)

∂a
+ y

a2
∂y

∂(p− `∆)
∂(p− `∆)
∂(b/a)

]
.

As in the main model, differentiating (E.14) with respect to b/a and a, we can show that

∂y

∂(p− `∆)
∂(p− `∆)

∂a
+ y

a2
∂y

∂(p− `∆)
∂(p− `∆)
∂(b/a) = 1

a

∂y

∂a

∂y

∂(p− `∆)
∂(p− `∆)
∂(b/a) = −Γ

a

∂y

∂a
.

Thus the planner’s first-order condition with respect to a is

0 = −(2a− 1)γσ2
ε + 1− a

a
(`∆ + µ− p− γσ2z)

(
1− Γ

a

)
∂y

∂a

= −(2a− 1)γσ2
ε + (1− a)` ψ2

γσ2a3
1− Γ/a

1− Γ/a+ Γ . (E.20)

Comparing (E.19) with (E.16) and (E.20) with (E.17), we can see that the benefit of
incentive provision is lower for the planner than for private agents, just as in the main
text. The same proofs as in the main model go through for this case and thus our main
results continue to hold.

The intuition for why our results go through in this setting is the following. First,
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all the frictions from the main model are still present. Second, the addition of hedgers
and the motive for short selling do not create any additional sources of inefficiency. In
particular, adding the hedgers does not complicate the contracting problem. Just as with
direct investors, contracts only affect hedgers through the distributive effect. The pecu-
niary externality occurs because prices (now both p and ∆) enter the manager’s incentive
constraint. So all the forces are the same as in the main model. The mechanism for alle-
viating the friction is the same as in the main text, i.e., it involves using skin-in-the-game
and benchmarking. The comparison of the privately and socially optimal contracts is also
the same.

23


