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Proof of Proposition 1. Recall that µi is the current matching in Round i for the KTTC
algorithm. We first verify that the output of the KTTC mechanism does not violate any
capacity constraint; that is, for all ℓ ∈ L, ℓ can accommodate µKTTC(ℓ). This holds trivially
for the null. For any non-null locality ℓ ̸= ∅, in any Round i ≥ 1, ℓ permanently rejects
any family that ℓ cannot accommodate alongside µi(ℓ). Therefore, if ℓ can accommodate
µi(ℓ), then ℓ can accommodate µi+1(ℓ). Since ℓ can accommodate µ1(ℓ) = ∅, it follows by
induction that ℓ can accommodate the families currently matched to ℓ in every Round i ≥ 1.
As µKTTC is the current matching in the last round, ℓ can accommodate µKTTC(ℓ). We next
show that the KTTC mechanism is Pareto-efficient (PE) and strategy-proof (SP).

Proof of (PE). For each Round i = 1, . . . , N , let F i be the set of families that have been
permanently matched by the end of Round i − 1. (Note that F 1 = ∅ and FN+1 = F .) If
the algorithm ends in Round N by matching all remaining families to the null, we use the
convention that µN+1 = µN .

The proof proceeds by induction, with the following hypothesis: there does not exist any
matching µ such that µ(f) ⪰f µi(f) for all f ∈ F i and µ(f) ≻f µi(f) for some f ∈ F i.
Our induction hypothesis trivially holds for i = 1 since F 1 = ∅. We now show that if our
induction hypothesis holds for some i = 1, . . . , N , then it also holds for i+ 1.

Towards a contradiction, suppose there exists a matching µ such that µ(f) ⪰f µi+1(f)

for all f ∈ F i+1 and µ(f) ≻f µi+1(f) for some f ∈ F i+1. Note that, for all f ∈ F i,
µi(f) = µi+1(f). If, for some f ∈ F i, µ(f) ≻f µi+1(f), the induction hypothesis implies
that there exists a family f ′ ∈ F i such that µi+1(f ′) ≻f ′ µ(f ′), a contradiction. Therefore,
µi+1(f) = µ(f) for all f ∈ F i. Note that, for all f ∈ F i+1 \ F i, f is permanently matched
to µi+1(f) in Round i; therefore µi+1(f) is the locality f prefers among those that have
not permanently rejected f . If, for some f ∈ F i+1 \ F i, µ(f) ≻f µi+1(f), then µ(f) has
permanently rejected f so it must be that µ(f) cannot accommodate f alongside µi(µ(f)).
Therefore, there exists a family f ′ ∈ F i such that µi(f ′) ̸= µ(f ′), a contradiction of the fact
that for all f ∈ F i, µi(f) = µi+1(f).
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Figure A.1. Counterexample for the proof of Theorem 1. f → ℓ: ℓ is f ’s first
choice. f ⇢ ℓ: ℓ is f ’s second choice and f prefers ℓ to its endowment. ℓ → f :
ℓ is f ’s endowment. Superscripts denote sizes and capacities, respectively.

By induction, there does not exist any matching µ such that µ(f) ⪰f µN+1(f) for all
f ∈ FN+1 and µ(f) ≻f µN+1(f) for some f ∈ FN+1. As µN+1 = µKTTC and FN+1 = F , this
implies that µKTTC is Pareto-efficient.

Proof of (SP). The result is implied by the fact that the KTTCE mechanism is strategy-
proof (Theorem 3) and the fact that µKTTCE = µKTTC when every family is endowed with ∅
(Proposition 2). □

Proof of Theorem 1. The proof is by counterexample. There are four families, four
localities, and one dimension. The endowment is

µE =

(
f1 f2 f3 f4

ℓ2 ℓ2 ℓ3 ℓ4

)
.

The preferences of families are as follows:

≻f1 : ℓ3, ℓ1, ℓ2, . . . ≻f2 : ℓ4, ℓ1, ℓ2, . . . ≻f3 : ℓ2, ℓ3, . . . ≻f4 : ℓ2, ℓ4, . . . ,

where a family’s endowment locality is denoted in boldface. The family sizes and locality
capacities are

ν =
( f1 f2 f3 f4

d1 1 1 2 2
)

κ =
( ℓ1 ℓ2 ℓ3 ℓ4

d1 1 2 2 2
)
.

For ease of exposition, we illustrate this counterexample in Figure A.1.
We show that there are two individually rational (IR) and chain-efficient (CE) matchings:

µ =

(
f1 f2 f3 f4

ℓ1 ℓ4 ℓ3 ℓ2

)
and µ′ =

(
f1 f2 f3 f4

ℓ3 ℓ1 ℓ2 ℓ4

)
.

It is easy to check that matchings µ and µ′ are IR and Pareto-efficient; hence they are IR
and CE. It remains to show that no other IR matching is CE.

First, consider the case where f1 is matched to ℓ3. Then, f3 must be matched to ℓ2 and
f4 must be matched to ℓ4. Therefore, ℓ1 must be matched to f2, yielding µ′; hence µ′ is the
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only IR (and CE) matching where f1 is matched to ℓ3. Analogous reasoning allows us to
conclude that µ is the only IR (and CE) matching where f2 is matched to ℓ4.

Second, consider the case where f1 is matched to its endowment locality ℓ2. Then, f3
and f4 must also be matched to their respective endowments, ℓ3 and ℓ4. Hence, f2 must be
matched to either ℓ2 or ℓ1. Matching f2 to ℓ2 yields µE. Since f2 prefers ℓ1 to ℓ2 and ℓ1 is not
matched to any family, µE is wasteful, hence not CE. Matching f2 to ℓ1 yields a matching
that is not CE as it contains the Pareto-improving chain f1 → ℓ3 → f3 → ℓ2. Therefore,
there is no IR and CE matching where f1 is matched to ℓ2. Analogous reasoning allows us
to reach the same conclusion for f2.

Third, consider the case where f1 is matched to ℓ1. Then, f2 must be matched to either
ℓ4 or ℓ2, which by our previous argument yields either µ or µE. We therefore conclude that
µ and µ′ are the only two IR and CE matchings.

Suppose now that f1 misreports its preferences by ranking ℓ1 below ℓ2, i.e., reporting
≻′

f1
: ℓ3, ℓ2, . . .. Using analogous reasoning as for the true preference profile, it is easy to check

that µ′ is the only IR and CE matching for the manipulated preference profile (≻′
f1
,≻−f1).

Similarly, µ is the only IR and CE matching for the manipulated preference profile (≻′
f2
,≻−f2)

where f2 misreports its preferences by ranking ℓ1 below ℓ2, i.e., ≻′
f2
: ℓ4, ℓ2, . . ..

We can now show that no IR and CE mechanism is strategy-proof. Let φ be an IR and
CE mechanism. If all families report their preferences truthfully, then either φ(≻) = µ or
φ(≻) = µ′ because µ and µ′ are the only two IR and CE matchings. If f1 reports ≻′

f1
,

then φ(≻′
f1
,≻−f1) = µ′. Similarly, if f2 reports ≻′

f2
, then φ(≻′

f2
,≻−f2) = µ. If φ(≻) = µ,

then φ(≻′
f1
,≻−f1)(f1) ≻f1 φ(≻)(f1) but if φ(≻) = µ′, then φ(≻′

f2
,≻−f2)(f2) ≻f2 φ(≻)(f2).

Therefore φ is not strategy-proof. □

Proof of Theorem 2. The proof is by counterexample. There are four families, three
localities, and two dimensions. The endowment is

µE =

(
f1 f2 f3 f4

ℓ2 ℓ2 ℓ3 ℓ4

)
.

The preferences of families are as follows:

≻f1 : ℓ3, ℓ2, . . . ≻f2 : ℓ4, ℓ2, . . . ≻f3 : ℓ2, ℓ4, ℓ3, . . . ≻f4 : ℓ2, ℓ3, ℓ4, . . . ,

where a family’s endowment locality is denoted in boldface. The family sizes and locality
capacities are

ν =

( f1 f2 f3 f4

d1 2 1 2 3

d2 1 2 3 2

)
κ =

( ℓ2 ℓ3 ℓ4

d1 4 3 3

d2 4 3 3

)
.

For ease of exposition, we illustrate this counterexample in Figure A.2.
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Figure A.2. Counterexample for the proof of Theorem 2. f → ℓ: ℓ is f ’s first
choice. f ⇢ ℓ: ℓ is f ’s second choice and f prefers ℓ to its endowment. ℓ → f :
ℓ is f ’s endowment. Superscripts denote sizes and capacities, respectively.

Observe that µE is non-wasteful but not chain-efficient, as it has three Pareto-improving
chains:

(f2, ℓ4, f4, ℓ3, f3, ℓ2), (f1, ℓ3, f3, ℓ4, f4, ℓ2), and (f3, ℓ4, f4, ℓ3).

Executing these chains yields the following three matchings, respectively:

µ =

(
f1 f2 f3 f4

ℓ2 ℓ4 ℓ2 ℓ3

)
, µ′ =

(
f1 f2 f3 f4

ℓ3 ℓ2 ℓ4 ℓ2

)
, and µ′′ =

(
f1 f2 f3 f4

ℓ2 ℓ2 ℓ4 ℓ3

)
.

We first show that µ, µ′, and µ′′ are the only matchings that Pareto dominate the endowment
µE.

Suppose towards a contradiction that there exists a matching µ̃ that Pareto dominates
µE. There are three cases:

First, consider the case where µ̃(f3) = ℓ3. Then, neither f1 nor f4 can be matched to ℓ3;
hence µ̃(f1) = ℓ2 and µ̃(f4) = ℓ4. Therefore, we must have that µ̃(f2) = ℓ2. It follows that
µ̃ = µE, a contradiction.

Second, consider the case where µ̃(f3) = ℓ2. Then, f2 cannot be matched to ℓ2 so µ̃(f2) =

ℓ4. As a result, f4 cannot be matched to either ℓ2 or ℓ4; hence, µ̃(f4) = ℓ3. It follows that f1
cannot be matched to ℓ3; therefore µ̃(f3) = ℓ2 and µ̃ = µ, a contradiction.

Third, consider the case where µ̃(f3) = ℓ4. Neither f2 nor f4 can be matched to ℓ4;
therefore, µ̃(f2) = ℓ2 and we must have that either µ̃(f4) = ℓ2 or µ̃(f4) = ℓ3. If µ̃(f4) = ℓ2,
then µ̃(f1) = ℓ3 and µ̃ = µ′. If µ̃(f4) = ℓ3, then µ̃(f1) = ℓ2 and µ̃ = µ′′, a contradiction.

We have established that µ, µ′, and µ′′ are the only matchings that Pareto dominate
µE. Suppose that f3 misreports its preferences by ranking ℓ4 below ℓ3, i.e., by reporting
≻′

f3
: ℓ2, ℓ3, . . .; then µ is the unique matching that Pareto dominates µE for the manipulated

preference profile (≻′
f3
,≻−f3). Similarly, suppose that f4 misreports its preferences by rank-

ing ℓ3 below ℓ4, i.e., by reporting ≻′
f4
: ℓ2, ℓ4, . . ., then µ′ is the unique matching that Pareto

dominates µE for the manipulated preference profile (≻′
f4
,≻−f4).
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We can now show that there is no strategy-proof mechanism that Pareto improves upon
µE. Let φ be a mechanism that Pareto improves upon µE. If all families report their
preferences truthfully, then φ(≻) ∈ {µ, µ′, µ′′} because µ, µ′, and µ′′ are the only three
matchings that Pareto dominate µE for the true preference profile. If f3 reports ≻′

f3
, then

φ(≻′
f3
,≻−f3) = µ. If f4 reports ≻′

f4
, then φ(≻′

f4
,≻−f4) = µ′. If φ(≻) ∈ {µ, µ′′}, then

φ(≻′
f4
,≻−f4)(f4) ≻f4 φ(≻)(f4). If φ(≻) ∈ {µ′, µ′′}, then φ(≻′

f3
,≻−f3)(f3) ≻f3 φ(≻)(f3).

Therefore, φ is not strategy-proof. □

Proof of Theorem 3. We first verify that the output of the KTTCE mechanism does
not violate any capacity constraint; that is, for all ℓ ∈ L, ℓ can accommodate µKTTCE(ℓ).
This holds trivially for the null. For a non-null locality ℓ ̸= ∅, in any Round i, if there
exists a family f ∈ µi+1(ℓ) \ µi(ℓ), then f moves to ℓ as part of a feasible cycle, and
therefore ℓ can accommodate f alongside the families that remain at ℓ after the cycle is
carried out. If follows that if ℓ can accommodate µi(ℓ), then ℓ can accommodate µi+1(ℓ). By
assumption, the endowment does not violate any capacity constraint; hence, by induction, ℓ
can accommodate the families currently matched to ℓ in every Round i ≥ 1. As µKTTCE is
obtained by carrying out feasible cycles from the current matching in the last round of the
KTTCE algorithm, ℓ can accommodate µKTTCE(ℓ).

We next show that the KTTCE mechanism is individually rational (IR) and strategy-proof
(SP).

Proof of (IR). Consider a family f , its endowment ℓ, and let i be the round of the KTTCE
algorithm in which f is permanently matched. We need to show that µKTTCE(f) ⪰f ℓ.
By construction, any family that is not permanently matched is currently matched to its
endowment; thus f is currently matched to ℓ at the start of Round i, i.e., f ∈ µi(ℓ). Recall
that in any round, locality ℓ can accommodate families currently matched to ℓ, in particular
ℓ can accommodate µi(ℓ). As a result, ℓ has not permanently rejected f . By definition, f
points at its most preferred locality that has not permanently rejected f yet. Therefore, f
points at a locality that f weakly prefers to ℓ. As f is permanently matched in Round i, f
points at µKTTCE(f). Therefore, µKTTCE(f) ⪰f ℓ, which is what IR requires.

Proof of (SP). Consider a family f with true preferences ≻f , let ≻′
f be an alternative

report, and fix the reports of all other families to ≻−f . Denote by ℓ = φKTTCE(≻f ,≻−f )(f),
respectively ℓ′ = φKTTCE(≻′

f ,≻−f )(f), the locality with which f is matched if it reports ≻f ,
respectively ≻′

f . We need to show that ℓ ⪰f ℓ′. Let m and m′ be the rounds in which f gets
permanently matched with reports ≻f and ≻′

f , respectively.
Case 1: m ≤ m′. Whether it reports ≻f or ≻′

f , f is not permanently matched at the
start of Round m. Let Lm

f be the set of localities that have not permanently rejected f at
the start of Round m (this set is nonempty as we have already shown that a family is never
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permanently rejected by its endowment). Notice that, in any given round, f ’s report does
not impact whether or not a given locality permanently rejects f ; therefore Lm

f is the same
whether f reports ≻f or ≻′

f . In addition, permanent rejections are irreversible; therefore,
with either report, f will be matched to a locality in Lm

f , i.e., ℓ, ℓ′ ∈ Lm
f . If f reports

truthfully, it points at its most preferred locality in Lm
f and is permanently matched to it.

Hence, ℓ is f ’s most preferred locality in Lm
f , which implies that ℓ ⪰f ℓ′.

Case 2: m > m′. If f reports ≻′
f , f points at and is permanently matched to ℓ′ in

Round m′. If ℓ′ = ∅, then ℓ ⪰f ℓ′ since every family prefers every locality to the null. The
remainder of the proof assumes that ℓ′ ̸= ∅. In that case, if f reports ≻′

f , a feasible cycle
f → ℓ′ → f2 → ℓ2 → . . . → fn → ℓn → f appears in Round m′ (with n = 1, 2, . . .).

Suppose now that f reports ≻f . For any i = m′, . . . ,m, denote by Li
f the set of localities

that have not permanently rejected f at the start of Round i. We proceed by induction
with the following hypothesis: In Round i = m′, . . . ,m, ℓ′ ∈ Li

f , ℓ′ points at f2, each fj with
j = 2, . . . , n points at ℓj, each ℓj with j = 2, . . . , n− 1 points at fj+1, and ℓn points at f .

We first show that our inductive hypothesis holds for i = m′. By construction, how family
f points does not affect how other families point and which families each locality rejects until
after f is permanently matched. Therefore, irrespective of whether f reports ≻f or ≻′

f , ℓ′

has not rejected f at the start of Round m′ (hence ℓ′ ∈ Lm′

f ) and, in Round m′, ℓ′ points at
f2, each fj with j = 2, . . . , n points at ℓj, each ℓj with j = 2, . . . , n − 1 points at fj+1, and
ℓn points at f .

We now suppose that our induction hypothesis holds for some i = m′, . . . ,m − 1 and
show that it holds for i + 1. As f is not matched until Round m > i and each family and
locality can be part of at most one cycle, none of f2, . . . , fn and ℓ′, ℓ2, . . . , ℓn are in a cycle
in Round m′, hence none of them are permanently matched in Round i. Moreover, as the
cycle f → ℓ′ → f2 → ℓ2 → . . . → fn → ℓn → f is feasible, each ℓj with j = 2, . . . , n − 1 can
accommodate fj alongside µi(ℓj) \ {fj+1}. Therefore, ℓj does not permanently reject fj in
Round i. Analogously, ℓ′ does not permanently reject f in Round i (hence ℓ′ ∈ Li+1

f ) and ℓn

does not permanently reject fn in Round i. It follows that, in Round i + 1, ℓ′ continues to
point at f2, each fj with j = 2, . . . , n continues to point at ℓj, each ℓj with j = 2, . . . , n− 1

continues to point at fj+1, and ℓn continues to point at f .
By induction, we conclude that ℓ′ ∈ Lm

f . Hence, since ℓ is f ’s most preferred family in Lm
f

by construction, we have that ℓ ⪰f ℓ′. □

Proof of Proposition 2. We first show that all cycles that appear in the KTTCE algorithm
are feasible. Towards a contradiction, suppose that an infeasible cycle f1 → ℓ1 → f2 → ℓ2 →
. . . → fn → ℓn → f1 appears in some Round i. Then, there exists j = 1, . . . , n such that ℓj
cannot accommodate fj alongside µi(ℓj) \ {fj+1} (letting fn+1 = f1). As the null does not
point (and therefore is not in any cycles), where ℓj ̸= ∅, so µE(ℓj) = ∅; hence fj+1 is not
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in ℓj’s endowment. Moreover, fj+1 is not permanently matched at the start of Round i as
otherwise ℓj would not point at fj+1; therefore f ∈ µi(∅), which implies f /∈ µi(ℓj). Then,
µi(ℓj) \ {fj+1} = µi(ℓj); hence ℓj cannot accommodate fj alongside µi(ℓj). As µE(ℓj) = ∅,
by construction all families in µi(ℓj) have been permanently matched to ℓj before the start
of Round i. Therefore, at the start of Round i, ℓj permanently rejects fj as ℓj cannot
accommodate fj alongside all the families permanently matched to ℓj. We conclude that fj
does not point to ℓj in Round i, a contradiction.

We have shown that all cycles that appear in the KTTCE algorithm are feasible, which
implies that the KTTCE algorithm does not enter the Rejection Stage in any round. As a
result, each round of the KTTCE algorithm coincides with the corresponding round of the
KTTC algorithm. □

Proof of Theorem 4. Consider an instance in which the sizes of families are monotonic,
the priorities of localities are lexicographic, and the endowment is µE. Suppose that for
this instance the KTTCE mechanism produces the endowment, i.e., µKTTCE = µE. Since
the KTTCE mechanism does not Pareto improve upon this endowment, we need to show
that µE is chain-efficient. Let N be the total number of rounds of the KTTCE algorithm.
The fact that the KTTCE algorithm produces µE implies that the current matching is the
same in every round: µE = µ1 = µ2 = . . . = µN = µN+1 = µKTTCE. (If the algorithm
ends in Round N by matching all remaining families to the null, we use the convention that
µN+1 = µN .) Let M∗ be the set of matchings that can be obtained by starting from µE and
carrying out exactly one Pareto-improving chain. Now µE is chain-efficient if and only if
M∗ = ∅; therefore it remains to show that M∗ = ∅.

We proceed by induction with the following hypothesis: if a locality ℓ has permanently
rejected a family f by the start of Round i, then for all µ∗ ∈ M∗, µ∗(f) ̸= ℓ. Our inductive
hypothesis trivially holds for i = 1 since no permanent rejection occurs before the start of
Round 1. Assuming that the inductive hypothesis holds for some i = 1, . . . , N , we show that
it holds for i+ 1.

Consider a family f that has been permanently matched before the start of Round i.
Recall that µE = µi, so f is permanently matched to its endowment µE(f); therefore, f
has been permanently rejected by all localities that f prefers to µE(f). By the induction
hypothesis, we have that, for all µ∗ ∈ M∗, µ∗(f) = µE(f). We can therefore conclude that
all families that are permanently matched before the start of Round i are matched to their
endowment in all matchings contained in M∗.

Now consider a locality ℓ that permanently rejects a family f in Round i. (As the null
never permanently rejects any family, ℓ ̸= ∅.) We need to show that µ∗(f) ̸= ℓ for all
µ∗ ∈ M∗. The fact that ℓ permanently rejects f in Round i implies that, at the start of
Round i, f is not permanently matched and ℓ has not permanently rejected f yet. There
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are two cases in which ℓ can permanently reject f : (1) at the beginning of Round i, or (2)
in the Rejection Stage of Round i.

Case 1: ℓ permanently rejects f at the beginning of Round i. By definition, ℓ cannot
accommodate f alongside all the families permanently matched to ℓ. Since all families that
are permanently matched before the start of Round i are matched to their endowment in all
matchings contained in M∗, we have that all the families that are permanently matched to
ℓ at the start of Round i are also matched to ℓ in all matchings contained in M∗. Therefore,
µ∗(f) ̸= ℓ for all µ∗ ∈ M∗.

Case 2: ℓ permanently rejects f in the Rejection Stage of Round i. By definition, ℓ cannot
accommodate f alongside µE(ℓ) \ {f ′} (where f ′ is the family at which ℓ is pointing). Since
a family is never permanently rejected by its endowment, we have that ℓ ̸= µE(f). By
construction, f ′ has the highest priority at ℓ among all families that are not permanently
matched. We consider two sub-cases: (2.1) f ′ /∈ µE(ℓ), and (2.2) f ∈ µE(ℓ).

Sub-case 2.1: f ′ /∈ µE(ℓ). As priorities are lexicographic, all families in µE(ℓ) have a
higher priority than f ′. The fact that ℓ points at f ′ implies that all families in µE(ℓ) have
been permanently matched to ℓ at the start of Round i. Recall that ℓ cannot accommodate
f alongside µi(ℓ) \ {f ′}. Since µi(ℓ) = µE(ℓ) and f ′ /∈ µE(ℓ), ℓ cannot accommodate f

alongside µE(ℓ). As all families in µE(ℓ) are permanently matched to ℓ at the start of
Round i, ℓ permanently rejects f at the beginning of Round i, contradicting our assumption
that the permanent rejection occurs in the Rejection Stage.

Sub-case 2.2: f ′ ∈ µE(ℓ). Towards a contradiction, suppose there exists a matching
µ∗ ∈ M∗ such that µ∗(f) = ℓ. Recall that ℓ cannot accommodate f alongside µE(ℓ) \ {f ′};
therefore ℓ cannot accommodate f alongside µE(ℓ). This implies the existence of a family
f̃ ∈ µE(ℓ) such that µ∗(f̃) ̸= ℓ. In fact, because µ∗ is obtained by carrying out exactly one
Pareto-improving chain, there exists exactly one such family f̃ . If f̃ ▷ℓ f ′, then the fact that ℓ
points at f ′ implies that f̃ is permanently matched to ℓ at the start of Round i. Following the
argument in Sub-case 2.1, we must therefore have that µ∗(f̃) = µE(f̃) = ℓ, a contradiction.
Therefore, we have that f ′ ▷ℓ f̃ or f ′ = f . Since f ′, f̃ ∈ µE(ℓ), sizes are monotonic and
priorities are lexicographic, by definition we have that νf ′

d ≥ ν f̃
d for all d ∈ D. Therefore, the

fact that ℓ cannot accommodate f alongside µE(ℓ)\{f ′} implies that ℓ cannot accommodate
f alongside µE(ℓ) \ {f̃}, a contradiction. We conclude that µ∗(f) ̸= ℓ for all µ∗ ∈ M∗.

We can now conclude that our induction hypothesis holds at the beginning of Round i+1.
By induction, if a locality ℓ permanently rejects a family f at some point in the KTTCE
algorithm, then, for all µ∗ ∈ M∗, µ∗(f) ̸= ℓ. Therefore, every family matched to its endow-
ment at the end of the algorithm is matched to its endowment under any matching µ∗ ∈ M∗.
By assumption, all families are matched to their respective endowments at the end of the
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KTTCE algorithm, meaning that M∗ does not contain any matching other than µE. As
µE /∈ M∗ by definition, we conclude that M∗ = ∅, as desired. □

Proof of Theorem 5. Denote by N the last round of the KDA algorithm. Now, for any
family f ∈ F , any locality ℓ ∈ L, and any Round i = 1, . . . , N , let R̂f

i (ℓ) be the set of families
that have a higher priority than f at ℓ and propose in Round i to either ℓ or a less preferred
locality (because they have already been permanently rejected by ℓ in a previous round).

We first verify that the output of the KDA algorithm does not violate any capacity con-
straints; that is, we show that every locality ℓ ∈ L can accommodate µKDA(ℓ). By con-
struction, all families in µKDA(ℓ) propose to and are tentatively accepted by ℓ in Round N .
Therefore, ℓ can weakly accommodate every family f ∈ µKDA(ℓ) alongside µKDA(ℓ) ∩ F̂ f

ℓ .
Towards a contradiction, suppose that ℓ cannot accommodate µKDA(ℓ). Then, there exists
d ∈ D such that

∑
f∈µKDA(ℓ) ν

f
d > κℓ

d. Let g ∈ F be the lowest-priority family such that
g ∈ µKDA(ℓ) and νg

d > 0. (Such a family exists since
∑

f∈µKDA(ℓ) ν
f
d > κℓ

d ≥ 0.) Then,

νg
d > 0 and νg

d +
∑

f∈µKDA(ℓ)∩F̂ g
ℓ

νf
d > κℓ

d;

therefore, ℓ cannot weakly accommodate g alongside µKDA(ℓ) ∩ F̂ g
ℓ , a contradiction.

We next show that µKDA is interference-free. Consider any family f ; we need to show
that f does not interfere with µ. By construction, f proposes to and is tentatively ac-
cepted by µKDA(f) in the last round; therefore, µ(f) can weakly accommodate f alongside
R̂f

N(µ
KDA(f)). Again by construction, the families in R̂f

N(µ
KDA(f)) are exactly those that

end up matched to either µKDA(f) or a less preferred locality. It follows that R̂f
N(µ

KDA(f)) =

F̂ f
µKDA , which implies that f does not interfere with µKDA.
We finally show that µKDA dominates all other interference-free matchings. Towards a

contradiction, suppose that there exists an interference-free matching µ such that µ(f1) ≻f1

µKDA(f1) for some f1 ∈ F . We proceed by induction. Our assumption implies that µ(f1)

permanently rejects f1 in some Round i1 of the KDA algorithm. For the induction argument,
suppose that for some n ∈ Z>0, there exists a family fn such that µ(fn) permanently rejects
fn in some Round in of the KDA algorithm. We want to show that there exists a family
fn+1 such that µ(fn+1) permanently rejects fn+1 in some Round in+1 < in. By construction,
µ(fn) cannot weakly accommodate fn alongside R̂fn

in
(µ(fn)). If all families in R̂fn

in
(µ(fn))

were matched at µ to either µ(fn) or a less preferred locality, then fn would interfere with µ,
a contradiction. Therefore, there exists a family fn+1 ∈ R̂fn

in
(µ(fn)) such that µ(fn+1) ≻fn+1

µ(fn). By construction, as fn+1 proposes in Round in of the KDA algorithm to either µ(fn)
or a less preferred locality, µ(fn+1) permanently rejects fn+1 in some Round in+1 < in.
Iterating this argument inductively, we find that some family fm is permanently rejected by
µ(fm) in Round im such that im < 1, which is impossible. □
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Proof of Theorem 6. We first verify that the output of the TKDA mechanism does not
violate any capacity constraint; that is, for all ℓ ∈ L, ℓ can accommodate µTKDA(ℓ). Consider
a locality ℓ ∈ L. By construction, all families in µTKDA(ℓ) propose to and are tentatively
accepted by ℓ in the last round of the TKDA algorithm. Hence, for any f ∈ µTKDA(ℓ),

θfℓ ≥ |µTKDA(ℓ) ∩ F̂ f
ℓ |+ 1 ≥ 1.

If ℓ cannot weakly accommodate f alongside µTKDA(ℓ) ∩ F̂ f
ℓ , then by construction (see

Algorithm 5) θfℓ = 0, which contradicts the fact that θfℓ ≥ 1. Therefore, ℓ can weakly
accommodate every family f ∈ µTKDA(ℓ) alongside µTKDA(ℓ) ∩ F̂ f

ℓ . As we showed in the
proof of Theorem 5, this implies that ℓ can accommodate µTKDA(ℓ).

We now prove that the TKDA mechanism is strategy-proof and interference-free.
Proof that TKDA is strategy-proof. Consider a locality ℓ ∈ L and a subset of families

G ⊆ F . To simplify notation, let us define, for each f ∈ F , Ĝf
ℓ = G ∩ F̂ f

ℓ to be the families
in G that have a higher priority at ℓ than f . We also denote by θfℓ (G) the threshold of
family f at locality ℓ if, in some round of the TKDA algorithm, families in G propose to
ℓ. (That is, θfℓ (G) is obtained by running the Threshold Calculator defined in Algorithm 5
with Πℓ = G.)

We define the choice function of locality ℓ, Cℓ : 2
F → 2F , as follows: for every G ⊆ F ,

Cℓ(G) = {f ∈ G : |Ĝf
ℓ |+ 1 ≤ θfℓ (G)}.

That is, Cℓ(G) is a function that selects the families that ℓ does not permanently reject if
families in G propose to ℓ in some round of the TKDA algorithm. One way to interpret the
choice function is that locality ℓ “chooses” the families in Cℓ(G) when it receives proposals
from all families in G.

We now fix a locality ℓ ∈ L and two subsets of families G ⊆ H ⊆ F and define two
properties of the choice function:

• Substitutability (S): Cℓ(H) ∩G ⊆ Cℓ(G), and
• Cardinal Monotonicity (CM): |Cℓ(G)| ≤ |Cℓ(H)|.

Hatfield and Milgrom (2005) analyze properties of the Deferred Acceptance (DA) algo-
rithm, in which localities (“hospitals” in their terminology) have choice functions. In each
round of the DA algorithm, families propose to their most preferred locality that has not yet
permanently rejected them. Localities tentatively accept or permanently reject proposals
based on their choice functions, i.e., if locality ℓ receives proposals from families in G, then
families in Cℓ(G) are tentatively accepted and families in G\Cℓ(G) are permanently rejected.

Theorems 3 and 11 of Hatfield and Milgrom (2005) imply that the DA mechanism is
strategy-proof for families if the choice function of every locality satisfies the (S) and (CM)
conditions. By construction, the TKDA algorithm in our setting corresponds to deferred
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acceptance in the Hatfield and Milgrom (2005) setting with the choice function we have just
defined. Therefore, in order to show that the TKDA mechanism is strategy-proof, it remains
to prove that the choice function of every locality satisfies the (S) and (CM) conditions.

The following lemma—which we prove at the very end of the current proof—shows three
properties of the choice function, which we subsequently use to prove that the choice function
satisfies the (S) and (CM) conditions.

Lemma A.1. For every G ⊆ H ⊆ F ; f, g ∈ F ; and ℓ ∈ L:
(i) θfℓ (G) = ∞ if and only if θfℓ (H) = ∞;
(ii) if θfℓ (H) ∈ Z>0, then θfℓ (G) ≤ θfℓ (H) ≤ θfℓ (G) + |Ĥf

ℓ | − |Ĝf
ℓ |; and

(iii) if g ▷ℓ f and θfℓ (G) ̸= ∞, then
◦ θgℓ (G) ≥ θfℓ (G), and
◦ f ∈ Cℓ(G) implies that g ∈ G ⇔ g ∈ Cℓ(G).

Part (i) of Lemma A.1 states that if the threshold of family f at ℓ is infinite, then it
remains so no matter which families are proposing to ℓ. Part (ii) states that if the threshold
of family f at ℓ is non-zero and finite, then removing some families from the set of families
proposing to ℓ may reduce f ’s threshold at ℓ by at most the number of proposing families
that were removed. Part (iii) states that if the threshold of family f at ℓ is finite, then any
family g with a higher priority than f at ℓ has a weakly larger threshold than f and is chosen
by ℓ whenever f is chosen by ℓ.

Proof of (S). Consider any family f ∈ Cℓ(H) ∩G; we need to show that f ∈ Cℓ(G). The
fact that f ∈ Cℓ(H) implies that θfℓ (H) ̸= 0 and, if θfℓ (H) = ∞, Lemma A.1(i) implies that
θfℓ (G) = ∞, hence f ∈ Cℓ(G). It remains to show that f ∈ Cℓ(H) whenever θfℓ (H) ∈ Z>0.
In that case, using Lemma A.1(ii), we have that

θfℓ (H) ≤ θfℓ (G) + |Ĥf
ℓ | − |Ĝf

ℓ |.

Since f ∈ Cℓ(G), the definition of a choice function implies that

θfℓ (H) ≥ |Ĥf
ℓ |+ 1.

Combining the two inequalities yields θfℓ (G) ≥ |Ĝf
ℓ |+ 1 so f ∈ Cℓ(G), as required.

Proof of (CM). We need to show that |Cℓ(G)| ≤ |Cℓ(H)|. Let m = |H \G| and arbitrarily
label the families in H \G such that H = G ∪ {f1, . . . , fm}.

Claim A.1. For each i = 1, . . . ,m, |Cℓ(G ∪ {f1, . . . , fi−1})| ≤ |Cℓ(G ∪ {f1, . . . , fi−1, fi})|.

Claim A.1 implies that

|Cℓ(G)| ≤ |Cℓ(G ∪ {f1})| ≤ |Cℓ(G ∪ {f1, f2})| ≤ . . . ≤ |Cℓ(G ∪ {f1, . . . , fm})| = |Cℓ(H)|,

which implies the desired result. Therefore, it remains to prove Claim A.1.
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Proof of Claim A.1. Fix some i ≤ m and defineG′ = G∪{f1, . . . , fi−1} andH ′ = {f1, . . . , fi−1, fi}.
We need to show that |Cℓ(G

′)| ≤ |Cℓ(H
′)|. We have that

|Cℓ(H
′)| − |Cℓ(G

′)| = |Cℓ(H
′) \ Cℓ(G

′)| − |Cℓ(G
′) \ Cℓ(H

′)|,

so we need to show that

(1) |Cℓ(H
′) \ Cℓ(G

′)| ≥ |Cℓ(G
′) \ Cℓ(H

′)|.

By definition, H ′ = G′ ∪ {fi} and, by (S), Cℓ(H
′) ∩G′ ⊆ Cℓ(G

′); therefore,

Cℓ(H
′) \ Cℓ(G

′) ⊆ {fi}.

There are two cases: fi /∈ Cℓ(H
′) and fi ∈ Cℓ(H

′).
Case 1: fi /∈ Cℓ(H

′). In this case, Cℓ(H
′) \ Cℓ(G

′) = ∅; hence, by inequality (1), we need
to show that Cℓ(G

′) \ Cℓ(H
′) = ∅. Towards a contradiction, suppose to the contrary that

there exists a family g ∈ Cℓ(G
′) \ Cℓ(H

′). Since g ∈ Cℓ(G
′), by the definition of the choice

function Cℓ, we have that

(2) θgℓ (G
′) ≥ |Ĝ′g

ℓ |+ 1;

but, since g /∈ Cℓ(H
′), we also have that

(3) θgℓ (H
′) < |Ĥ ′g

ℓ |+ 1.

We now consider two subcases: g ▷ℓ fi and fi ▷ℓ g.
Sub-case 1.1: g ▷ℓ fi. In this case, as H ′ = G′ ∪ {fi}, Ĝ′g

ℓ = Ĥ ′g
ℓ so |Ĝ′g

ℓ | = |Ĥ ′g
ℓ | and, as a

family’s threshold only depends on higher-priority families (Algorithm 5), θgℓ (G′) = θgℓ (H
′).

Combining these observations with inequalities (2) and (3) yields

θgℓ (G
′) ≥ |Ĝ′g

ℓ |+ 1 = |Ĥ ′g
ℓ |+ 1 > θgℓ (H

′) = θgℓ (G
′),

a contradiction.
Sub-case 1.2: fi ▷ℓ g. On the one hand, inequality (3) implies that θgℓ (H ′) ̸= ∞, so we can

apply Lemma A.1(i) to obtain that θgℓ (G′) ̸= ∞ and Lemma A.1(iii) to obtain that

(4) θfiℓ (G
′) ≥ θgℓ (G

′).

On the other hand, by the assumption that fi /∈ Cℓ(H
′) in Case 1, we have that

(5) θfiℓ (H
′) < |Ĥ ′fi

ℓ |+ 1.

As H ′ = G′ ∪ {fi}, Ĝ′fi
ℓ = Ĥ ′fi

ℓ so |Ĝ′fi
ℓ | = |Ĥ ′fi

ℓ | and, as a family’s threshold only depends
on higher-priority families (Algorithm 5), θfiℓ (G′) = θfiℓ (H

′). Combining these observations
with inequality (5) yields

(6) θfiℓ (G
′) = θfiℓ (H

′) < |Ĥ ′fi
ℓ |+ 1 = |Ĝ′fi

ℓ |+ 1.
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Combining inequality (6) with the fact that |Ĝ′fi
ℓ | ≤ |Ĝ′g

ℓ | (as fi ▷ g) and inequality (2) yields

θfiℓ (G
′) < |Ĝ′fi

ℓ |+ 1 ≤ |Ĝ′g
ℓ |+ 1 ≤ θgℓ (G

′).

We conclude that θfiℓ (G′) < θgℓ (G
′), which contradicts inequality (4).

Case 2: fi ∈ Cℓ(H
′). In this case, we have that Cℓ(H

′) \ Cℓ(G
′) = {fi}; hence, by

inequality (1), we need to show that |Cℓ(G
′)\Cℓ(H

′)| ≤ 1. Towards a contradiction, suppose
that there exist two distinct families g1, g2 ∈ Cℓ(G

′) \Cℓ(H
′). Without loss of generality, we

assume that g1 ▷ℓ g2. Since g1, g2 ∈ Cℓ(G
′), by the definition of the choice function, we have

that

(7) θg1ℓ (G′) ≥ |Ĝ′g1
ℓ |+ 1 and θg2ℓ (G′) ≥ |Ĝ′g2

ℓ |+ 1,

but, since g1, g2 /∈ Cℓ(H
′), we also have that

(8) θg1ℓ (H ′) < |Ĥ ′g1
ℓ |+ 1 and θg2ℓ (H ′) < |Ĥ ′g2

ℓ |+ 1.

We now consider two subcases: g1 ▷ℓ fi and fi ▷ℓ g1.
Sub-case 2.1: g1▷ℓfi. In this case, as H ′ = G′∪{fi}, Ĝ′g1

ℓ = Ĥ ′g1
ℓ so |Ĝ′g1

ℓ | = |Ĥ ′g1
ℓ | and, as a

family’s threshold only depends on higher-priority families (Algorithm 5), θg1ℓ (G′) = θg1ℓ (H ′).
Combining these observations with inequalities (7) and (8) yields

θg1ℓ (G′) ≥ |Ĝ′g1
ℓ |+ 1 = |Ĥ ′g1

ℓ |+ 1 > θg1ℓ (H ′) = θg1ℓ (G′),

a contradiction.
Sub-case 2.2: fi▷ℓg1. Inequality (8) implies that θg2ℓ (H ′) ̸= ∞ so we can apply Lemma A.1(i)

to obtain that θg2ℓ (G′) ̸= ∞ and Lemma A.1(iii) to obtain that θg1ℓ (G′) ≥ θg2ℓ (G′). Moreover,
as g1▷ℓg2 and g1 ∈ G, we have that Ĝg1

ℓ ⊂ Ĝg2
ℓ so |Ĝg1

ℓ | < |Ĝg2
ℓ |. Combining these observations

with inequality (7) yields

θg1ℓ (G′) ≥ θg2ℓ (G′) ≥ |Ĝ′g2
ℓ |+ 1 > |Ĝ′g1

ℓ |+ 1.

We therefore conclude that

(9) θg1ℓ (G′) ≥ |Ĝ′g1
ℓ |+ 2.

Since θg1ℓ (H ′) ̸= ∞, we have two cases to consider: θg1ℓ (H ′) = 0 and θg1ℓ (H ′) ∈ Z>0.
Sub-sub-case 2.2.1: θg1ℓ (H ′) = 0. In this case, by the definition of thresholds (Algorithm 5),

there exists a family h ∈ F such that (i) either h = g1 or h ▷ℓ g1 and (ii) ℓ cannot weakly
accommodate h alongside Ĥ ′h

ℓ . First, as h has a weakly higher priority than g1 and θg1ℓ (G′) ̸=
∞ (by inequality (8) and Lemma A.1(i)), we can apply Lemma A.1(iii) to obtain that
θg1ℓ (G′) ≤ θhℓ (G

′). Second, as G′ ⊆ H ′, we have that Ĝ′h
ℓ ⊆ Ĥ ′h

ℓ ; therefore, Ĥ ′h
ℓ is a subset

of F̂ h
ℓ that contains all families in Ĝ′h

ℓ and alongside which ℓ cannot weakly accommodate
h. By the definition of thresholds (Algorithm 5), it follows that θhℓ (G

′) ≤ |Ĥ ′h
ℓ |. Third, as
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H ′ = G′ ∪ {fi}, we have that |Ĥ ′h
ℓ | ≤ |Ĝ′h

ℓ | + 1. Fourth, as h has a weakly higher priority
than g1, we have that |Ĝ′h

ℓ | ≤ |Ĝ′g1
ℓ |. Combining these four observations yields

θg1ℓ (G′) ≤ θhℓ (G
′) ≤ |Ĥ ′h

ℓ | ≤ |Ĝ′h
ℓ |+ 1 ≤ |Ĝ′g1

ℓ |+ 1,

which contradicts inequality (9).
Sub-sub-case 2.2.2: θg1ℓ (H ′) ∈ Z>0. In this case, we can apply Lemma A.1(ii) to obtain

that θg1ℓ (H ′) ≥ θg1ℓ (G′). Moreover, as H ′ = G′ ∪ {fi} and fi ∈ Ĥ ′g1
ℓ (by the assumption of

Sub-case 2.2), fi ▷ℓ g1), we have that |Ĥ ′g1
ℓ | = |Ĝ′g1

ℓ |+ 1. Combining these observations with
inequality (9) yields

θg1ℓ (H ′) ≥ θg1ℓ (G′) ≥ |G′g1
ℓ |+ 2 = |H ′g1

ℓ |+ 1,

which contradicts inequality (8) and completes the proof of Claim A.1. □

Proof that TKDA is interference-free.
Let N be the number of rounds after which the TKDA algorithm terminates. For each

family f ∈ F , each locality ℓ ∈ L, and each Round i = 1, . . . , N , denote by Πi
ℓ the set of

families that propose to ℓ and by θfℓ (Π
i
ℓ) the threshold of f for ℓ in Round i.

Fix a family f ∈ F and, for notational simplicity, let ℓ = µTKDA(f). We need to show that
f does not interfere with µTKDA, i.e., that ℓ can weakly accommodate f alongside F̂ f

µTKDA .
If θfℓ (ΠN

ℓ ) = ∞, then by definition ℓ can weakly accommodate f alongside F̂ f
ℓ , hence

alongside F̂ f
µTKDA . The remainder of the proof considers the case in which θfℓ (Π

N
ℓ ) ̸= ∞.

By construction, ℓ tentatively accepts f in Round N . By definition, it follows that
θfℓ (Π

N
ℓ ) > 0; hence, ℓ can weakly accommodate f alongside ΠN

ℓ ∩ F̂ f
ℓ . We complete the proof

by showing that (ΠN
ℓ ∩ F̂ f

ℓ ) = F̂ f
µTKDA . Observing that, by construction, (ΠN

ℓ ∩ F̂ f
ℓ ) ⊆ F̂ f

µTKDA ,
it remains to show that the case where (ΠN

ℓ ∩ F̂ f
ℓ ) ⊂ F̂ f

µTKDA leads to a contradiction.
Towards a contradiction, suppose that (ΠN

ℓ ∩ F̂ f
ℓ ) ⊂ F̂ f

µTKDA . Let g be the highest-priority
family in F̂ f

µTKDA \(ΠN
ℓ ∩ F̂ f

ℓ ); g is then the highest-priority family to be permanently rejected
by ℓ in the TKDA algorithm. Let i be the round in which that permanent rejection occurs.
Then, g’s threshold in Round i is smaller than its priority rank. As a family’s threshold only
depends on higher-priority families, we have that

(10) θgℓ (Π
i
ℓ ∩ F̂ g

ℓ ) = θgℓ (Π
i
ℓ) < |Πi

ℓ ∩ F̂ g
ℓ |+ 1.

As g is the highest-priority family to be permanently rejected by ℓ, every family with a
higher priority than g that proposes to ℓ in Round i also proposes to ℓ in Round N , hence
(Πi

ℓ∩F̂
g
ℓ ) ⊆ (ΠN

ℓ ∩F̂ g
ℓ ). Moreover, (10) implies that θgℓ (Πi

ℓ∩F̂
g
ℓ ) ̸= ∞, which by Lemma A.1(i)

yields θgℓ (ΠN
ℓ ∩ F̂ g

ℓ ) ̸= ∞. Therefore, Lemma A.1(ii) applies and we have that

(11) θgℓ (Π
N
ℓ ∩ F̂ g

ℓ ) ≤ θgℓ (Π
i
ℓ ∩ F̂ g

ℓ ) + |ΠN
ℓ ∩ F̂ g

ℓ | − |Πi
ℓ ∩ F̂ g

ℓ |.
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Combining (10) and (11) yields

(12) θgℓ (Π
N
ℓ ∩ F̂ g

ℓ ) < |ΠN
ℓ ∩ F̂ g

ℓ |+ 1.

By assumption (and as a family’s threshold only depends on higher-priority families),
we have that θfℓ (Π

N
ℓ ∩ F̂ f

ℓ ) = θfℓ (Π
N
ℓ ) ̸= ∞. Then, as g ▷ℓ f , Lemma A.1(iii) applies and

yields θfℓ (Π
N
ℓ ∩ F̂ f

ℓ ) ≤ θgℓ (Π
N
ℓ ∩ F̂ g

ℓ ). Combining that inequality with (12), using again the
property that a family’s threshold only depends on higher-priority families, and observing
that, because g ▷ℓ f , (ΠN

ℓ ∩ F̂ g
ℓ ) ⊆ (ΠN

ℓ ∩ F̂ f
ℓ ), we obtain that

θfℓ (Π
N
ℓ ) = θfℓ (Π

N
ℓ ∩ F̂ f

ℓ ) ≤ θgℓ (Π
N
ℓ ∩ F̂ g

ℓ ) < |ΠN
ℓ ∩ F̂ g

ℓ |+ 1 ≤ |ΠN
ℓ ∩ F̂ f

ℓ |+ 1.

If follows that ℓ rejects f in Round N , a contradiction. □
It therefore remains only to prove Lemma A.1 in order to complete the proof of Theorem 6.

Proof of Lemma A.1. We prove each case in turn.

Proof of (i). If θfℓ (G) = ∞, then ℓ can weakly accommodate f alongside F̂ f
ℓ , which implies

θfℓ (H) = ∞. The converse is proved analogously.

Proof of (ii). We have assumed that θfℓ (H) ∈ Z>0. We first show that θ̃fℓ (H), θ̃fℓ (G), θfℓ (G) ∈
Z>0. If either θ̃fℓ (H) = ∞, θ̃fℓ (G) = ∞, or θfℓ (G) = ∞, then ℓ can weakly accommodate f

alongside F̂ f
ℓ , which implies that θfℓ (H) = ∞, a contradiction. It remains to show that none

of θ̃fℓ (H), θ̃fℓ (G), or θfℓ (G) are equal to 0. Since θ̃fℓ (H) ̸= ∞, θfℓ (H) ≤ θ̃fℓ (H) by definition
(Algorithm 5); therefore θ̃fℓ (H) = 0 implies θfℓ (H) = 0, a contradiction. If θ̃fℓ (G) = 0, then ℓ

cannot weakly accommodate f alongside Ĝf
ℓ . Since Ĝ

f
ℓ ⊆ Ĥf

ℓ , ℓ cannot weakly accommodate
f alongside Ĥf

ℓ so θ̃fℓ (H) = 0, a contradiction. If θfℓ (G) = 0 and θ̃fℓ (G) ̸= 0, then there exists
g ∈ F̂ f

ℓ such that θ̃gℓ (G) = 0. Since G ⊆ H, we have that θ̃gℓ (H) = 0. Hence, as g ∈ F̂ f
ℓ , we

have that θfℓ (H) = 0, a contradiction.
Having established that θ̃fℓ (H), θ̃fℓ (G), θfℓ (G) ∈ Z>0, we next show that θ̃fℓ (G) ≤ θ̃fℓ (H).

As θ̃fℓ (H) ∈ Z>0, there exists a subset of families F̃ such that Ĥf
ℓ ⊆ F̃ ⊆ F̂ f

ℓ and |F̃ | = θ̃fℓ (H)

alongside which ℓ cannot weakly accommodate f . Since G ⊆ H, we have that Ĝf
ℓ ⊆ Ĥf

ℓ and
therefore Ĝf

ℓ ⊆ Ĥf
ℓ ⊆ F̃ . Hence, we obtain that θ̃fℓ (G) ≤ |F̃ | = θ̃fℓ (H) as required.

We next show that θ̃fℓ (H) ≤ θ̃fℓ (G) + |Ĥf
ℓ | − |Ĝf

ℓ |. As θ̃fℓ (G) ∈ Z>0, there exists a subset
of families F̃ such that Ĝf

ℓ ⊆ F̃ ⊆ F̂ f
ℓ and |F̃ | = θ̃fℓ (G) alongside which ℓ cannot weakly

accommodate f . Therefore, ℓ cannot weakly accommodate f alongside F̃ ∪ Ĥf
ℓ so θ̃fℓ (H) ≤

|F̃ ∪ Ĥf
ℓ |. By construction, |F̃ ∪ Ĥf

ℓ | = |F̃ | + |Ĥf
ℓ | − |F̃ ∩ Ĥf

ℓ | and Ĝf
ℓ ⊆ (F̃ ∩ Ĥf

ℓ ) so
|Ĝf

ℓ | ≤ |F̃ ∩ Ĥf
ℓ |. Combining the preceding results with the fact that |F̃ | = θ̃fℓ (G) yields

θ̃fℓ (H) ≤ |F̃ ∪ Ĥf
ℓ | = |F̃ |+ |Ĥf

ℓ | − |F̃ ∩ Ĥf
ℓ | ≤ |F̃ |+ |Ĥf

ℓ | − |Ĝf
ℓ | = θ̃fℓ (G) + |Ĥf

ℓ | − |Ĝf
ℓ |.
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We have now established that θ̃fℓ (G) ≤ θ̃fℓ (H) ≤ θ̃fℓ (G) + |Ĥf
ℓ | − |Ĝf

ℓ |. Since f was chosen
arbitrarily, we have

(13) min
g∈F̂ f

ℓ ∪{f}

{
θ̃gℓ (G)

}
≤ min

g∈F̂ f
ℓ ∪{f}

{
θ̃gℓ (H)

}
≤ min

g∈F̂ f
ℓ ∪{f}

{
θ̃gℓ (G) + |Ĥg

ℓ | − |Ĝg
ℓ |
}
.

Let h = argming∈F̂ f
ℓ ∪{f}

{
θ̃gℓ (G)

}
. Then, we have that

(14) min
g∈F̂ f

ℓ ∪{f}

{
θ̃gℓ (G) + |Ĥg

ℓ | − |Ĝg
ℓ |
}
≤ θ̃hℓ (G) + |Ĥh

ℓ | − |Ĝh
ℓ |.

In addition, we have that

(15) |Ĥh
ℓ | − |Ĝh

ℓ | = |Ĥh
ℓ \ Ĝh

ℓ | ≤ |Ĥf
ℓ \ Ĝf

ℓ | = |Ĥf
ℓ | − |Ĝf

ℓ |,

where the two equalities follow from the fact that Ĝh
ℓ ⊆ Ĥh

ℓ and Ĝf
ℓ ⊆ Ĥf

ℓ while the fact
that (Ĥh

ℓ \ Ĝh
ℓ ) ⊆ (Ĥf

ℓ \ Ĝf
ℓ ) (as h ∈ F̂ f

ℓ ) implies the inequality. Combining (13), (14), and
(15), we obtain

(16) min
g∈F̂ f

ℓ ∪{f}

{
θ̃gℓ (G)

}
≤ min

g∈F̂ f
ℓ ∪{f}

{
θ̃gℓ (H)

}
≤ θ̃hℓ (G) + |Ĥf

ℓ | − |Ĝf
ℓ |.

Finally, using the fact that θfℓ (G), θfℓ (H) ∈ Z>0 and the definition of θfℓ from Algorithm 5,
we obtain that

(17) θfℓ (G) = min
g∈F̂ f

ℓ ∪{f}

{
θ̃gℓ (G)

}
θ̃hℓ (G) and θfℓ (H) = min

g∈F̂ f
ℓ ∪{f}

{
θ̃gℓ (H)

}
.

Combining (16) and (17) yields

θfℓ (G) ≤ θfℓ (H) ≤ θfℓ (G) + |Ĥf
ℓ | − |Ĝf

ℓ |,

as required.

Proof of (iii). We have assumed that g ▷ℓ f and θfℓ (G) ̸= ∞. To prove the first part of
the statement, we need to show that θgℓ (G) ≥ θfℓ (G). If θgℓ (G) = ∞, the result is immediate
since θfℓ (G) is finite. If θgℓ (G) ̸= ∞, the definition of thresholds in Algorithm 5 implies that

θfℓ (G) = min
h∈Ĝf

ℓ

{
θ̃hℓ

}
and θgℓ (G) = min

h∈Ĝg
ℓ

{
θ̃hℓ

}
.

Then, the fact that g ▷ℓ f implies Ĝg
ℓ ⊆ Ĝf

ℓ ; therefore

θgℓ (G) = min
h∈Ĝg

ℓ

{
θ̃hℓ

}
≥ min

h∈Ĝf
ℓ

{
θ̃hℓ

}
= θfℓ (G),

as required.
To prove the second part of the statement, we need to show that g ∈ G ⇔ g ∈ Cℓ(G) under

the additional assumption that f ∈ Cℓ(G). By definition of a choice function, if g ∈ Cℓ(G),
then g ∈ G. It remains to show that f ∈ Cℓ(G) and g ∈ G imply that g ∈ Cℓ(G).
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By definition of a choice function, g ∈ Cℓ(G) whenever θgℓ (G) ≥ |Ĝg
ℓ |+ 1 or, equivalently,

whenever θgℓ (G) − |Ĝg
ℓ | ≥ 1. We have already established in the first part of the statement

that θgℓ (G) ≥ θfℓ (G). Additionally, since g ▷ℓ f and g ∈ G, we have that Ĝg
ℓ ⊂ Ĝf

ℓ , and
therefore |Ĝg

ℓ | < |Ĝf
ℓ |. Taken together, these results imply that

(18) θgℓ (G)− |Ĝg
ℓ | > θfℓ (G)− |Ĝf

ℓ |.

Since f ∈ Cℓ(G) by assumption, we have that θfℓ (G) ≥ |Ĝf
ℓ | + 1 (by definition of a choice

function). Combining θfℓ (G)− |Ĝf
ℓ | ≥ 1 with (18) yields

θgℓ (G)− |Ĝg
ℓ | > θfℓ (G)− |Ĝf

ℓ | ≥ 1.

We can conclude that θgℓ (G) > |Ĝg
ℓ | + 1. By definition of a choice function, we have that

g ∈ Cℓ(G), which completes the proof of the Lemma A.1. □
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Figure B.1. Counterexample for the proof of Proposition B.1. f → ℓ: ℓ is f ’s
first choice. f ⇢ ℓ: ℓ is f ’s second choice and f prefers ℓ to its endowment. ℓ →
f : ℓ is f ’s endowment. Superscripts denote sizes and capacities, respectively.

Appendix B. Pareto Improvement from a Pareto-inefficient Endowment

Proposition B.1. There is no strategy-proof mechanism that Pareto improves upon every
endowment that is not Pareto-efficient.

Proof. The proof is by counterexample. There are four families, three localities, and one
dimension. The endowment is

µE =

(
f1 f2 f3 f4

ℓ2 ℓ2 ℓ3 ℓ4

)
.

The preferences of families are as follows:

≻f1 : ℓ3, ℓ4, ℓ2, . . . ≻f2 : ℓ4, ℓ3, ℓ2, . . . ≻f3 : ℓ2, ℓ3, . . . ≻f4 : ℓ2, ℓ4, . . . ,

where a family’s endowment locality is denoted in boldface. The family sizes and locality
capacities are

ν =
( f1 f2 f3 f4

d1 1 1 2 2
)

κ =
( ℓ2 ℓ3 ℓ4

d1 2 2 2
)
.

For ease of exposition, we illustrate this counterexample in Figure B.1.
We show that there are exactly two matchings that Pareto dominate µE:

µ =

(
f1 f2 f3 f4

ℓ3 ℓ3 ℓ2 ℓ4

)
and µ′ =

(
f1 f2 f3 f4

ℓ4 ℓ4 ℓ3 ℓ2

)
.

Matching µ (resp. µ′) Pareto dominates µE since it matches family f4 (resp. f3) to its
endowment and makes the other three families better off. We now show that no other
matching Pareto dominates µE. Towards a contradiction, suppose there exists a matching
µ̃ that Pareto dominates µE and is different from both µ and µ′. Consider the case where
µ̃(f3) ≻f3 µE(f3). Then we must have that µ̃(f3) = ℓ2. Therefore, locality ℓ2 cannot
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accommodate any other family so µ̃(f4) = ℓ4. In turn, locality ℓ4 cannot accommodate any
other family so µ̃(f1) = µ̃(f2) = ℓ3 and µ̃ = µ. Analogously, we have that µ̃(f4) ≻f4 µE(f4)

implies µ̃ = µ′. Therefore, µ̃(f3) = ℓ3 and µ̃(f4) = ℓ4. Hence, neither ℓ3 nor ℓ4 can
accommodate another family so µ̃(f1) = µ̃(f2) = ℓ2 and µ̃ = µE, a contradiction.

We have established that µ and µ′ are the only two matchings that Pareto dominate
µE with respect to the true preferences. We now consider a preference manipulation by
f1. Suppose that f1 misreports its true preferences by ranking ℓ4 below ℓ2, i.e., f1 reports
≻′

f1
: ℓ3, ℓ2, . . .. We claim that if all other families report truthfully, then µ is the only

matching that Pareto dominates µE with respect to the manipulated preference profile (≻′
f1

,≻−f1). Suppose again towards a contradiction that there exists a matching µ̃ that Pareto
dominates µE and is different from µ. There are three cases: First, if µ̃(f3) ≻f3 µ

E(f3), then
µ̃(f3) = ℓ2 and µ̃(f4) = ℓ4. Therefore, we must have that µ̃(f1) = µ̃(f2) = ℓ3 so µ̃ = µ, a
contradiction. Second, if µ̃(f4) ≻f4 µE(f4), then µ̃(f4) = ℓ2 and µ̃(f3) = ℓ3. Since neither
ℓ2 nor ℓ3 can accommodate another family, f1 must be matched to a less preferred locality
than µE(f1) = ℓ2 (according to f1’s manipulated report) hence µ̃ does not Pareto dominate
µE, a contradiction. Third, if µ̃(f3) = ℓ3 and µ̃(f4) = ℓ4, then µ̃ = µE, a contradiction. We
therefore conclude that there is no matching that Pareto dominates µE for the preference
profile (≻′

f1
,≻−f1) and that is different from µ. By analogous reasoning, one can verify that

if f2 manipulates its preferences by reporting ≻′
f2
: ℓ4, ℓ2, . . . and all other families report

truthfully, then µ′ is the only matching that Pareto dominates µE for the preference profile
(≻′

f2
,≻−f2).

We can now show that there is no strategy-proof mechanism that Pareto improves upon
µE. Let φ be a mechanism that Pareto improves upon µE. If all families report their
preferences truthfully, then either φ(≻) = µ or φ(≻) = µ′ because µ and µ′ are the only
two matchings that Pareto dominate µE for the true preference profile. If f1 reports ≻′

f1
,

then φ(≻′
f1
,≻−f1) = µ. Similarly, if f2 reports ≻′

f2
, then φ(≻′

f2
,≻−f2) = µ′. If φ(≻) = µ,

then φ(≻′
f2
,≻−f2)(f2) ≻f2 φ(≻)(f2) but if φ(≻) = µ′, then φ(≻′

f1
,≻−f1)(f1) ≻f1 φ(≻)(f1).

Therefore, φ is not strategy-proof. □
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Appendix C. Envy-freeness and Stability

In this online appendix, we expand on Section 5.1 and detail how interference-freeness
relates to existing solution concepts for respecting priorities: envy-freeness and stability. We
discuss the logical relationship among the three solution concepts in Online Appendix C.1;
the relationship between interference-freeness and envy-freeness in the special case where
there is only one dimension in Online Appendix C.2; and the existence of stable matchings
in Online Appendix C.3. Online Appendix C.4 contains the proofs of the results presented.

C.1. Logical relationships between solution concepts. We begin by formally defining
envy-freeness (in the sense of elimination of justified envy).

Definition C.1. Given a matching µ, f ∈ F envies family f ′ ̸= f if
(i) f prefers f ′’s locality to its current match, i.e., µ(f ′) ≻f µ(f); and
(ii) f has a higher priority at f ′’s locality, i.e., f ▷µ(f ′) f

′.
A matching µ is envy-free if, under µ, no family envies another family.

Like interference-free matchings, envy-free matchings respect priorities but may be waste-
ful. However, the criterion is more extreme because it precludes any priority violation: if a
family prefers a locality to its own, then only lower-priority family may be matched to that
locality. In contrast, interference-freeness allows priority violations that are innocuous in the
sense that the envying family does not have a claim to any unit used by the envied family.
Therefore, if a family misses out on a more preferred locality, lower-priority families are not
to blame. Therefore, interference-freeness still constitutes a strong criterion when it comes
to respecting priorities; however, the relaxation it provides allows making families better off
and reducing waste. We illustrate with an example.

Example C.1 (Inadequacy of envy-freeness in matching with multidimensional constraints).
There are three families f1, f2, and f3 and one locality ℓ1. The priority list of ℓ1 is f1▷ℓ1f2▷ℓ1f3.
There are two dimensions and the sizes and capacities are displayed below:

ν =

( f1 f2 f3

d1 1 1 0

d2 0 0 1

)
κ =

( ℓ1

d1 1

d2 1

)
.

The most efficient envy-free matching assigns f1 to ℓ1 and leaves the other two families
unmatched.20 Envy-freeness precludes assigning f3 to ℓ1 because f2 would then envy f3.
However, f2 and f3 are not really in competition since the units they require are in different
dimensions. It is f1 that prevents matching f2 to ℓ1, not f3. Therefore, the matching in which
20If f1 is unmatched, matching one or both of the other families to ℓ1 would violate f1’s priority; therefore,
the only other envy-free matching leaves all three families unmatched.
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both f1 and f3 are matched to ℓ1 appears to be a natural solution: it is more efficient and
has no meaningful priority violations. That matching is interference-free since ℓ1 can weakly
accommodate f3 alongside f1 and f2; in other words, the unit required by f3 is claimed by
neither f1 nor f2.

As interference-freeness allows for (innocuous) priority violation and envy-freeness does
not, it is natural to think of interference-freeness as a relaxation of envy-freeness. Our first
result formalizes this intuition.

Proposition C.1. Every envy-free matching is interference-free.

We next turn to stability and begin by formally defining it in our model.

Definition C.2. A matching µ is (pairwise) stable if there are no f ∈ F and ℓ ∈ L such
that

(i) f prefers ℓ to its current match, i.e., ℓ ≻f µ(f); and
(ii) ℓ can accommodate f alongside F̂ f

ℓ ∩µ(ℓ), i.e., all families matched to ℓ with a higher
priority than f .

In words, family f and locality ℓ are a blocking pair under a matching µ if f prefers ℓ to its
current match and it is possible to accommodate f in ℓ without removing any higher-priority
family. A matching is stable if it does not have any blocking pairs. Our definition extends
the concept of stability to a setting with possibly multidimensional knapsack constraints.21

If |D| = 1 and νf
d1

= 1 for all f ∈ F , Definition C.2 collapses to the “elimination of justified
envy” used in school choice and other object allocation settings (Abdulkadiroğlu and Sönmez,
2003).

Envy-freeness and stability are logically independent: Envy-freeness allows waste, which
stability precludes; however, stability allows for some waste-eliminating priority violations.
By Proposition C.1, it follows that stability does not imply interference-freeness. As interference-
freeness allows waste but stability does not, we conclude that interference-freeness and sta-
bility are also logically independent. In contrast, stability only fails due to the presence of
waste or via a priority violation so non-wasteful and envy-free matchings are always stable.22

Perhaps surprisingly, although interference-freeness allows for some priority violations, we
can establish an analogous relationship among stability, non-wastefulness, and interference-
freeness.

Proposition C.2. If a matching is non-wasteful and interference-free, then it is stable.

21Our definition is in line with the way stability is defined in similar models (see, e.g., McDermid and Manlove
(2010); Biró and McDermid (2014); Delacrétaz (2019)).
22Kamada and Kojima (forthcoming) define stability to be the combination of envy-freeness and non-
wastefulness, making their definition more restrictive than ours.
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Interference-Free

Envy-Free Stable

Non-Wasteful

Figure C.2. Logical relationships among our solution concepts.

Proposition C.2, combined with the possible nonexistence of a stable matching (see Online
Appendix C.3), formally establishes that an interference-free and non-wasteful matching may
not exist. Figure C.2 summarizes the relationships among the solution concepts.

We present a small example to illustrate how stability and interference-freeness differ.

Example C.2. There are three families f1, f2, and f3, one locality ℓ such that f1 ▷ℓ f2 ▷ℓ f3,
and one dimension d such that νf1

d = 1, νf2
d = 2, νf3

d = 1, and κℓ
d = 2.

The family-optimal interference-free matching assigns f1 to ℓ and the other two families
to the null. That matching is not stable since f3 would prefer to be matched to ℓ and one
unit of ℓ is not used. In fact, the unique stable matching assigns both f1 and f3 to ℓ (and f2

to the null), but f3 interferes with this matching so it is not interference-free. The example
illustrates that a family can interfere even when higher-priority families could not make use
of the capacity it uses: f3 interferes with the unique stable matching because the unit it
uses can be claimed by f2, even though f2 could not actually use that unit since ℓ cannot
accommodate f2 alongside f1.

C.2. Relationship between interference-freeness and envy-freeness with one di-
mension. Example C.1 shows that the family-optimal interference-free matching—which
assigns f1 and f3 to ℓ1—may not be envy-free, and may therefore strictly dominate the
family-optimal envy-free matching—which only assigns f1 to ℓ1. However, because Exam-
ple C.1 has two dimensions, it leaves open the question of whether there exists a tighter
relationship when |D| = 1. The following example shows that interference-freeness consti-
tutes a relaxation of envy-freeness even when there is only one dimension.

Example C.3. There are two families f1 and f2, one locality ℓ such that f1 ▷ℓ f2, and one
dimension d such that νf1

d = νf2
d = 1 and κℓ

d = 2. There are four possible matchings:

µ1 =

(
f1 f2

ℓ1 ℓ2

)
µ2 =

(
f1 f2

ℓ1 ∅

)
µ3 =

(
f1 f2

∅ ℓ2

)
µ4 =

(
f1 f2

∅ ∅

)
.
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Matchings µ1, µ2, and µ4 are envy-free but matching µ3 is not because f1 envies f2.
However, µ3 is interference-free because ℓ can accommodate both f1 and f2; hence f1 does
not have a claim to the unit of capacity used by f2.

In Example C.3, the family-optimal envy-free and interference-free matchings are identical
and match both f1 and f2 to ℓ. As our next result formalizes, this is not a coincidence.

Proposition C.3. If |D| = 1, then the KDA and TKDA mechanisms are envy-free.

As the KDA mechanism outputs the family-optimal interference-free matching (Theo-
rem 5) and every interference-free matching is envy-free (Proposition C.1), Proposition C.3
implies the following corollary.

Corollary C.1. If |D| = 1, the family-optimal envy-free and interference-free matchings
coincide.

Taken together, our results show that interference-freeness constitutes a relaxation of
envy-freeness even when there is only one dimension; however, that relaxation does not have
practical consequences since in that case, both our mechanisms output envy-free matchings.
In contrast, using interference-freeness rather than envy-freeness matters when there are
multiple dimensions. In Example C.1, both the KDA and TKDA algorithm match f1 and
f3 to ℓ1, which envy-freeness would preclude. More generally, our simulation results suggest
that the efficiency gains associated with using interference-freeness instead of envy-freeness
as a criterion for respecting priorities can be large (see Figure F.2).

C.3. (Non-)existence of stable matchings. While stable matchings always exist in school
choice models, they do not exist in ours (even when |D| = 1). In fact, determining whether
a stable matching exists in our model (even when |D| = 1) is a computationally intractable
problem (McDermid and Manlove, 2010). We first reproduce an example from McDermid
and Manlove (2010) in which no stable matching exists and then provide a condition on the
priority profile for the existence of a stable matching.

Example C.4 (McDermid and Manlove (2010)). There are three families, two localities,
and one dimension. The family sizes and locality capacities are

ν =
( f1 f2 f3

d1 1 1 2
)

and κ =
( ℓ1 ℓ2

d1 2 1
)
.

The preferences and priorities are:

≻f1 : ℓ2, ℓ1, ∅ ≻f2 : ℓ1, ℓ2, ∅ ≻f3 : ℓ1, ∅, ℓ2 ▷ℓ1 : f1, f3, f2 ▷ℓ2 f2, f1, f3.

Suppose, towards a contradiction, that there exists a stable matching µ in this example.
Since ℓ2 cannot accommodate f3, either µ(f3) = ℓ1 or µ(f3) = ∅. If µ(f3) = ℓ1, then
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µ(f2) = ℓ2 as otherwise f2 and ℓ2 form a blocking pair. Then, µ(f1) = ∅ so f1 and ℓ1 form a
blocking pair and µ is not stable. If µ(f3) = ∅, then µ(f1) = ℓ1 as otherwise f3 and ℓ1 form
a blocking pair. In turn, f2 and ℓ1 form a blocking pair unless µ(f2) = ℓ1. However, this
matching is not stable since f2 and ℓ2 form a blocking pair.

One way to understand why stable matchings might not exist is that the choice function
induced by ℓ1’s priorities is not substitutable (Roth, 1984) because of a complementarity
between f1 and f2. If only f2 and f3 compete for ℓ1, stability dictates that f3 be accepted
and f2 rejected. If f1 is also competing, stability dictates that f1 and f2 be accepted and f3

rejected. Thus, there is a complementarity between f1 and f2 in the sense that f2 is accepted
when f1 is also considered but not otherwise.

We next provide a condition on the priority profile for the existence of a stable matching.

Definition C.3. A priority profile ▷ is aligned if for any f, g ∈ F such that νf ̸= νg and
any ℓ, ℓ′ ∈ L \ {∅}, f ▷ℓ g if and only if f ▷ℓ′ g.

The aligned priorities condition generalizes the second part in the definition of lexico-
graphic priorities (Definition 4). Under the aligned priorities condition, any two families
with different sizes are ranked identically by all localities, but families with the same size
can be ranked arbitrarily. The case of identical priorities is therefore a special case of the
aligned priorities condition. If sizes are monotonic, aligned priorities also include the case
where all localities give a higher priority to larger families and, symmetrically, the case where
all localities give a higher priority to smaller families.

Proposition C.4. If sizes are monotonic and the priority profile is aligned, then a stable
matching exists.

The monotonicity of sizes and alignment of the priority profile ensures that the set of
families can be partitioned into {F1, F2, . . . , Fn} such that for any i = 1, . . . , n, all families
in Fi have the same size and for all j < i, all families in Fj have a higher priority at all
localities than all families in Fi. A stable matching then can be obtained in polynomial
time by running sequentially the (family-proposing) Deferred Acceptance algorithm for each
subset, starting with F1. In a school choice setting, all families have the same size (νf = 1

for all f ∈ F ) and priority profile is (trivially) aligned; therefore the existence of stable
matchings follows immediately from Proposition C.4. As in school choice, stable matchings
under size monotonicty and priority alignment can be found in polynomial time in our model.

C.4. Proofs of results in Online Appendix C.

Proof of Proposition C.1. We prove the contrapositive: Consider a matching µ that is not
interference-free, we need to show that µ is not envy-free. By definition, there exists a family
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f such that µ(f) cannot weakly accommodate f alongside the set

G = {g ∈ F : g ▷µ(f) f and µ(f) ⪰g µ(g)}.

It follows that there exists a dimension d such that νf
d +

∑
g∈G νg

d > κ
µ(f)
d . If G \ µ(f) = ∅,

then µ(f) cannot accommodate all families matched to it, a contradiction. Therefore, there
exists a family f ′ ∈ G \ µ(f) and by definition f ′ ▷µ(f) f and µ(f) ≻f ′ µ(f ′). We conclude
that f ′ envies f , so µ is not envy-free. □

Proof of Proposition C.2. We prove the contrapositive. Let µ be a matching that is non-
wasteful and not stable. We need to show that µ is not interference-free. As µ is not stable,
there exists a family f and a locality ℓ such that ℓ ≻f µ(f) and ℓ can accommodate f

alongside F̂ f
ℓ ∩ µ(ℓ); that is, for all d ∈ D,

(19) νf
d +

∑
g∈(F̂ f

ℓ ∩µ(ℓ))

νg
d ≤ κℓ

d.

However, as µ is non-wasteful, there exists a dimension d′ ∈ D such that

(20) νf
d′ +

∑
g∈µ(ℓ)

νg
d′ > κℓ

d′ .

Consider now the families in µ(ℓ) \ F̂ f
ℓ whose size in dimension d′ is at least 1. Inequali-

ties (19) and (20) imply that the set of such families is nonempty. Let f ′ be the lowest-priority
family in µ(ℓ) \ F̂ f

ℓ whose size in dimension d′ is at least 1 (equivalently, f ′ is the lowest-
priority family in µ(ℓ) such that νf ′

d′ > 0). We show that f ′ interferes with µ; that is, we show
that ℓ cannot weakly accommodate f ′ alongside F̂ f ′

µ = {g ∈ F : g ▷ℓ f
′ and ℓ ⪰g µ(g)}. By

the definition of f ′, νf ′

d′ +
∑

g∈(F̂ f ′
ℓ ∩µ(ℓ)) ν

g
d′ =

∑
g∈µ(ℓ) ν

g
d′ , which combined with (20) implies

that

(21) νf
d′ + νf ′

d′ +
∑

g∈(F̂ f ′
ℓ ∩µ(ℓ))

νg
d′ = νf

d′ +
∑
g∈µ(ℓ)

νg
d′ > κℓ

d′ .

Inequality (21) and the fact that νf ′

d′ > 0 imply that ℓ cannot weakly accommodate f ′

alongside {f} ∪ (F̂ f ′

ℓ ∩ µ(ℓ)). Note that all families in {f} ∪ (F̂ f ′

ℓ ∩ µ(ℓ)) have a higher
priority at ℓ than f ′ and weakly prefer ℓ to the locality to which they are matched, i.e.,

({f} ∪ (F̂ f ′

ℓ ∩ µ(ℓ))) ⊆ {g ∈ F : g ▷ℓ f
′ and ℓ ⪰g µ(g)} = F̂ f ′

µ ,

so ℓ cannot weakly accommodate f ′ alongside F̂ f ′
µ and µ is not interference-free. □

Proof of Proposition C.3. We denote by d the unique dimension (i.e., D = {d}), and consider
each mechanism separately.
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Proof that the KDA mechanism is envy-free. Let N be the number of rounds after which
the KDA algorithm ends and let µ be the outcome of the KDA algorithm. We use a piece of
notation that was introduced in the proof of Theorem 5. For any family f ∈ F , any locality
ℓ ∈ L, and any Round i = 1, . . . , N , R̂i

f (ℓ) denotes the set of families that have a higher
priority than f at ℓ and propose in Round i either to ℓ or to a less-preferred locality.

Towards a contradiction, suppose that µ is not envy-free. Then, by definition, there exist
two families f and f ′ such that f envies f ′. Letting ℓ′ = µ(f ′), we have that ℓ′ ≻f µ(f) and
f ▷ℓ′ f

′. By construction, there exists a Round i in which ℓ′ rejects f ; hence ℓ′ cannot weakly
accommodate f alongside R̂i

f (ℓ
′). Again by construction, we have that R̂i

f (ℓ
′) ⊆ R̂N

f (ℓ
′) so

we conclude that ℓ′ cannot weakly accommodate f alongside R̂N
f (ℓ

′).
As d is the only dimension, it must be that νf

d > 0, and therefore the fact that ℓ′ cannot
weakly accommodate f alongside R̂N

f (ℓ
′) implies by definition that νf

d +
∑

g∈R̂N
f (ℓ′) ν

g
d > κℓ′

d .
As f ▷ f ′, it follows that νf ′

d +
∑

g∈R̂N
f ′ (ℓ

′) ν
g
d > κℓ′

d . Therefore, ℓ′ cannot weakly accommodate

f ′ alongside R̂N
f ′(ℓ′) and we conclude that in Round N , either f ′ does not propose to ℓ′

or ℓ′ permanently rejects f ′; either conclusion contradicts the assumption that ℓ′ = µ(f ′),
completing the proof.

Proof that the TKDA mechanism is envy-free. Let N be the number of rounds after
which the TKDA algorithm ends and let µ be the outcome of the TKDA algorithm. We
use two pieces of notation that were introduced in the proof of Theorem 6. First, for any
Round i = 1, . . . , N and any locality ℓ ∈ L, Πi

ℓ denotes set of families that propose to
locality ℓ in Round i. Second, for any family f ∈ F , any locality ℓ ∈ L, and any set of
families G ⊆ F , θfℓ (G) denotes f ’s threshold for ℓ (calculated by Algorithm 5) when the
families in G propose to ℓ. Moreover, we will invoke Lemma A.1, which was also introduced
in the proof of Theorem 6.

Towards a contradiction, suppose that µ is not envy-free. Then, by definition, there
exist two families f and f ′ such that f envies f ′. Without loss of generality, let f be the
highest-priority family among those that envy f ′. Formally, letting ℓ′ = µ(f ′), we have that
ℓ′ ≻f µ(f), that f ▷ℓ′ f

′, and that for any f̃ ̸= f such that ℓ′ ≻f̃ µ(f̃), f ▷ℓ′ f̃ . As ℓ′ ≻f µ(f),
by construction there exists a Round i in which ℓ′ permanently rejects f so we have that

(22) θfℓ′(Π
i
ℓ′) < |Πi

ℓ′ ∩ F̂ f
ℓ′ |+ 1.

The next step consists of showing that the following inequality holds:

(23) θfℓ′(Π
N
ℓ′ ) < |ΠN

ℓ′ ∩ F̂ f
ℓ′ |+ 1.

If θfℓ′(Π
N
ℓ′ ) = ∞, then by Lemma A.1(i), θfℓ′(Π

i
ℓ′) = ∞, which contradicts (22) and, if

θfℓ′(Π
N
ℓ′ ) = 0, (23) holds trivially. Therefore, it remains to show that (23) holds in the

case where θfℓ′(ΠN
ℓ′ ) ∈ Z>0. As f has the highest-priority among the families that envy f ′, by
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construction f is also the highest-priority family that ℓ′ permanently rejects throughout the
TKDA algorithm; hence we have that Πi

ℓ′ ∩ F̂ f
ℓ′ ⊆ ΠN

ℓ′ ∩ F̂ f
ℓ′ . By Lemma A.1(ii), it follows

that
θfℓ′(Π

N
ℓ′ ∩ F̂ f

ℓ′ ) ≤ θfℓ′(Π
i
ℓ′ ∩ F̂ f

ℓ′ ) + |ΠN
ℓ′ ∩ F̂ f

ℓ′ | − |Πi
ℓ′ ∩ F̂ f

ℓ′ |.

By construction (see Algorithm 5), f ’s threshold at ℓ′ only depends on higher-priority families
so θfℓ′(Π

N
ℓ′ ∩ F̂ f

ℓ′ ) = θfℓ′(Π
N
ℓ′ ) and θfℓ′(Π

i
ℓ′ ∩ F̂ f

ℓ′ ) = θfℓ′(Π
i
ℓ′); hence we have that

θfℓ′(Π
N
ℓ′ ) ≤ θfℓ′(Π

i
ℓ′) + |ΠN

ℓ′ ∩ F̂ f
ℓ′ | − |Πi

ℓ′ ∩ F̂ f
ℓ′ |,

which, combined with (22), implies (23).
Having established that inequality (23) holds, we now use it to reach the contradiction.

We consider separately two cases: θf
′

ℓ′ (Π
N
ℓ′ ) ̸= ∞ and θf

′

ℓ′ (Π
N
ℓ′ ) = ∞.

Case 1: θf
′

ℓ′ (Π
N
ℓ′ ) ̸= ∞. As f▷ℓ′f ′, we have that ΠN

ℓ′ ∩F̂
f
ℓ′ ⊆ ΠN

ℓ′ ∩F̂
f ′

ℓ′ and, by Lemma A.1(iii),
θf

′

ℓ′ (Π
N
ℓ′ ) ≤ θfℓ′(Π

N
ℓ′ ). Then, (23) implies that θf

′

ℓ′ (Π
N
ℓ′ ) < |ΠN

ℓ′ ∩ F̂ f ′

ℓ′ | + 1. It follows that, in
Round N , either f ′ does not propose to ℓ′ or ℓ′ permanently rejects f ′, both of which
contradict the assumption that ℓ′ = µ(f ′).

Case 2: θf
′

ℓ′ (Π
N
ℓ′ ) = ∞. By definition (see Algorithm 5), the case assumption implies that

ℓ′ can weakly accommodate f ′ alongside F̂ f ′

ℓ′ . As d is the only dimension, we have that
νf ′

d > 0 so, by definition: νf ′

d +
∑

g∈F̂ f ′
ℓ′
νg
d ≤ κℓ′

d . It follows that νf
d +

∑
g∈F̂ f

ℓ′
νg
d < κℓ′

d ; hence

ℓ′ can (weakly) accommodate f alongside F̂ f
ℓ′ . By definition (see Algorithm 5), we conclude

that θfℓ′(ΠN
ℓ′ ) = ∞, which contradicts (23). □

Proof of Proposition C.4. Suppose that sizes are monotonic and the priority profile is aligned.
We introduce the Sequential Deferred Acceptance (SDA) algorithm (Algorithm C.1) and
show that it produces a stable matching. We show that the alignment of the priority profile
allows us to divide the families into groups such that (i) all families in the same group have
the same size and (ii) any two groups can be compared in terms of priority in the sense
that all families in one group have a higher priority at all localities than all families in the
other group. The SDA algorithm considers one of these groups at a time in order of priority
and runs the family-proposing Deferred Acceptance (DA) algorithm for the families in that
group, considering the capacities that remain after families in higher-priority groups have
been permanently matched.

We first show that the SDA algorithm ends after finitely many rounds. If there is a
directed cycle (f1, f2, . . . , fn) in graph G1, then, for every ℓ ∈ L\{∅}, f1 ▷ℓ f2 ▷ℓ . . . ▷ℓ fn ▷ℓ f1,
a contradiction. Therefore, G1 is a directed acyclic graph. By construction, for all i > 1,
Gi is a directed acyclic graph since Gi is constructed from Gi−1 by removing some vertices
(families) and edges. Therefore, in every Round i, the set of families F̃ i at which no family
is pointing is nonempty. It follows that at least one family gets permanently matched in
each round; hence the algorithm ends after at most |F | rounds.
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Algorithm C.1. Sequential Deferred Acceptance
Construct a directed graph G1 as follows. Each of the |F | vertices represents a
family. For each pair of families (f, f ′), let there be a directed edge from f to f ′

if νf ̸= νf ′and f ▷ℓ f
′ for all ℓ ∈ L.

For each locality ℓ, set a counter c1ℓ = κℓ.
Round i ≥ 1

Let F̃ i be the set of families at which no other family is pointing in graph Gi.
Permanently match the families in F̃ i to the localities using the family-

proposing Deferred Acceptance algorithm setting the capacity of each locality
ℓ to its counter ciℓ.

If all families have been permanently matched, end.
Otherwise, constructGi+1 by removing fromGi all vertices representing families

in F̃ i and all edges adjacent to them. For each locality ℓ ∈ L, let F̃ i
ℓ be the set of

families that have been permanently matched to ℓ in Round i. Update the counter
of each locality ℓ as follows: ci+1

ℓ = ciℓ −
∑

f∈F̃ i
ℓ
νf . Continue to Round i+ 1.

We now complete the proof by showing that the matching µSDA produced by the SDA
algorithm is stable. Consider any family f and any locality ℓ such that ℓ ≻f µSDA(f). We
need to show that ℓ cannot accommodate f alongside F̂ f

ℓ ∩ µSDA(ℓ).
Let Round i be the round in which family f is permanently matched to µSDA(f), i.e.,

f ∈ F̃ i. Consider the Round i “submarket,” in which the DA algorithm permanently matches
the families in F̃ i to the localities and the counter of each locality ℓ is ciℓ. By construction, all
families in the Round i submarket have the same size, i.e., νf ′

= νf for all f ′ ∈ F̃ i. (If this
were not the case, then, as the priority profile is aligned, one of f or f ′ would have a higher
priority at all localities and would point at the other, a contradiction.) Therefore, for each
locality, there is a maximum number of families that the locality can accommodate, which
makes the submarket isomorphic to a school choice problem. As the DA algorithm produces
a stable matching in the school choice problem (Abdulkadiroğlu and Sönmez, 2003), the
DA algorithm produces a stable matching in the Round i submarket. Therefore, f and ℓ

do not form a blocking pair in the Round i submarket. As ℓ ≻f µSDA(f) by assumption, it
follows that ℓ’s Round i counter does not allow ℓ to accommodate f alongside higher-priority
families permanently matched to ℓ in Round i, i.e., alongside F̂ f

ℓ ∩ F̃ i
ℓ . By construction, all

families that have been permanently matched to ℓ before Round i, i.e., all families in ∪i−1
j=1F̃

j,
have a higher priority at ℓ than f . Hence, ℓ cannot accommodate f alongside all families
that have a higher priority than f and with which ℓ has been permanently matched by the
end of Round i, i.e., ℓ cannot accommodate f alongside F̂ f

ℓ ∩ (∪i
j=1F̃

j
ℓ ). By construction, all

families that are permanently matched to ℓ in any round of the SDA algorithm are matched
to ℓ at µSDA, which implies that ∪i

j=1F̃
j
ℓ ⊆ µSDA(ℓ). We therefore conclude that ℓ cannot

accommodate f alongside F̂ f
ℓ ∩ µSDA(ℓ), as required. □
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Appendix D. Efficiency of the TKDA Algorithm

In Online Appendix D.1, we show that the TKDA algorithm is more efficient than any
envy-free mechanism that satisfies the cardinal monotonicity condition. A similar result
replacing envy-freeness interference-freeness holds when |D| = 1. In Online Appendix D.2,
we provide a lower bound for the efficiency of the KDA and TKDA algorithms. We introduce
a solution to improve the efficiency of the TKDA algorithm in Online Appendix D.3 and show
in Online Appendix D.4 that it cannot be generalized. All proofs are in Online Appendix D.5.

D.1. TKDA and cardinal monotonicity. As noted in Section 5.2, a key condition for a
deferred-acceptance-type procedure to be strategy-proof is that its associated choice function
satisfies the cardinal monotonicity condition. In this section, we show that the choice function
of the TKDA algorithm tentatively accepts every family that is tentatively accepted by
any choice function satisfying envy-freeness and cardinal monotonicity conditions. When
|D| = 1, we show that the choice function of the TKDA algorithm maximizes the number of
tentatively accepted families among choice functions that satisfy the interference-freeness and
cardinal monotonicity conditions. When |D| > 1, we argue that the problem of maximizing
the number of tentatively accepted families subject to the interference-freeness and cardinal
monotonicity conditions is computationally intractable.

Fixing a locality ℓ, recall from the proof of Theorem 6 that a choice function Cℓ : F →
F determines, for any subset G ⊆ F of proposition families, which families the locality
tentatively accepts (Cℓ(G)) or permanently rejects (G\Cℓ(G)). We now define four properties
of a choice function:

(1) Cℓ is feasible if, for every G ⊆ F , ℓ can accommodate Cℓ(G);
(2) Cℓ is envy-free if, for every G ⊆ F , every family in Cℓ(G) has a higher priority than

any family in G \ Cℓ(G);
(3) Cℓ is interference-free if, for every G ⊆ F , ℓ can weakly accommodate any family

f ∈ Cℓ(G) alongside G ∩ F̂ f
ℓ ;

(4) Cℓ satisfies the cardinal monotonicity condition if |Cℓ(G)| ≤ |Cℓ(H)| for every G ⊆
H ⊆ F .

Denote by CT
ℓ the choice function of any locality ℓ in the TKDA algorithm: For each family,

a threshold is calculated by Algorithm 5 and the family is tentatively accepted if its threshold
does not exceed its priority rank among proposing families, otherwise the family is perma-
nently rejected. We first assess that choice function against the four properties previously
defined.

Proposition D.1. The choice function CT
ℓ is feasible, interference-free, and satisfies the

cardinal monotonicity condition. Moreover, if |D| = 1, then CT
ℓ is envy-free.
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Proposition D.1 is closely related to the properties of the TKDA mechanism (Theorem 6
and Proposition C.3). We now compare CT

ℓ to other choice functions that have similar
properties.

Proposition D.2. For any feasible and envy-free choice function Cℓ that satisfies the
cardinal monotonicity condition, and for any subset of families G ⊆ F , we have that
Cℓ(G) ⊆ CT

ℓ (G).

Proposition D.2 provides a lower bound for the efficiency of the TKDA mechanism as
its choice function is at least as efficient as any envy-free choice function that satisfies the
cardinal monotonicity condition: any family that is accepted by such a choice function is
accepted by the TKDA choice function. Moreover, the TKDA mechanism can do even better
by allowing families that can be weakly accommodated alongside all higher-priority families
to be tentatively accepted even when some higher-priority families are permanently rejected.

However, Proposition D.2 leaves open the question of what can be said about feasible and
interference-free choice functions that satisfy the cardinal monotonicity condition. Our next
result provides an answer for the case where there is only one dimension.

Proposition D.3. If |D| = 1, then for any feasible and interference-free choice function Cℓ

that satisfies the cardinal monotonicity condition, and for any subset of families G ⊆ F , we
have that |Cℓ(G)| ≤ |CT

ℓ (G)|. Moreover, every family in CT
ℓ (G)\Cℓ(G) has a higher priority

than any family in Cℓ(G) \ CT
ℓ (G).

When |D| = 1, the TKDA choice function is envy-free (Proposition D.1) and accepts the
highest-priority families until accepting the next family would violate either the locality’s
capacity or the cardinal monotonicity condition. Other feasible interference-free choice func-
tions satisfying the cardinal monotonicity condition might not accept a larger number of
families but might accept lower-priority families. The next example illustrates this.

Example D.1. There are four families f1, f2, f3, and f4 and one locality ℓ. The priority list
of ℓ is f1 ▷ℓ f2 ▷ℓ f3 ▷ℓ f4. There is one dimension and the sizes and capacities are displayed
below:

ν =
( f1 f2 f3 f4

d1 2 1 1 1
)

κ =
( ℓ

d1 3
)
.

One can verify that CT
ℓ ({f2, f3, f4}) = {f2, f3}: the rank of f2 is ∞ while the rank of both

f3 and f4 is 2. Therefore, f4 is rejected even though ℓ can accommodate all three families.
This occurs because of the cardinal monotonicity condition: when all four families propose,
only f1 and f2 can be accepted; therefore, the cardinal monotonicity condition dictates
that at most two families be accepted when f2, f3, and f4 propose. Then, any feasible and
interference-free choice function that satisfies the cardinal monotonicity condition can accept
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at most two families, i.e., no more than the TKDA choice function. However, not every such
choice function needs to accept the same two families: f4 could be accepted instead of either
f2 or f3. □

Proposition D.3 provides a strong efficiency result for the TKDA mechanism when there
is only one dimension: its choice function cannot accept more families without violating the
interference-freeness or cardinal monotonicity property. When there are multiple dimensions,
Proposition D.2 continues to provide a lower bound for the efficiency of the TKDAmechanism
but Proposition D.3 breaks down: there may be feasible and interference-free choice functions
that satisfy the cardinal monotonicity condition and accept more families than CT

ℓ .

Example D.2. There are four families f1, f2, f3, and f4 and one locality ℓ. The priority list
of ℓ is f1 ▷ℓ f2 ▷ℓ f3 ▷ℓ f4. There are two dimensions and the sizes and capacities are displayed
below:

ν =

( f1 f2 f3 f4

d1 1 0 1 1

d2 0 1 1 0

)
κ =

( ℓ

d1 2

d2 1

)
.

Locality ℓ cannot accommodate {f2, f3}; therefore, when f3 and f4 propose, f3 and f4’s
thresholds are 1 so CT

ℓ ({f3, f4}) = {f3}. When f2 proposes alongside f3 and f4, f3 and f4’s
thresholds are 0 so CT

ℓ ({f2, f3, f4}) = {f2}. Consider the alternative choice function Cℓ such
that Cℓ({f3, f4}) = {f3, f4}, Cℓ({f2, f3, f4}) = {f2, f4}, and Cℓ(G) = CT

ℓ (G) for every other
subset of families G. First, Cℓ is feasible since ℓ can accommodate {f3, f4} and {f2, f4}.
Second, Cℓ is interference-free as νf4

d2
= 0 < νf3

d2
and ℓ can weakly accommodate f4 alongside

{f2, f3} (hence alongside {f3}). Third, Cℓ satisfies the cardinal monotonicity condition since
|Cℓ({f1, f3, f4})| = |{f1, f3}| = 2 and |Cℓ({f1, f2, f3, f4})| = |{f1, f2}| = 2. □

Therefore, Example D.2 shows that Proposition D.3 does not hold when there are multiple
dimensions. Unfortunately, as the next example shows, improving the efficiency of the TKDA
choice function is computationally difficult.

Example D.3. There are three families f12, f3, and f4 and one locality ℓ. The priority list
of ℓ is f12 ▷ℓ f3 ▷ℓ f4. There are two dimensions and the sizes and capacities are displayed
below:

ν =

( f12 f3 f4

d1 1 1 1

d2 1 1 0

)
κ =

( ℓ

d1 2

d2 1

)
.

This example is identical to Example D.2 except that the families f1 and f2 are merged
into family f12. For any feasible and interference-free choice function Cℓ that satisfies the
cardinal monotonicity condition, Cℓ({f12, f3, f4}) ⊆ {f12} as ℓ can weakly accommodate
neither f3 alongside f12 nor f4 alongside {f12, f3}. Therefore, in contrast to Example D.2, if
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f3 and f4 propose to ℓ the cardinal monotonicity condition precludes ℓ from accepting both
families. This difference occurs even though the sizes of f3 and f4 as well as the number of
units required by higher-priority families have not changed. □

The TKDA algorithm is computationally simple because it relies exclusively on the aggre-
gate sizes of the higher-priority families to determine a family’s threshold. Making the choice
function more efficient requires considering the sizes of all higher-priority families and check-
ing what occurs when any subset of them proposes, which is computationally challenging as
the number of subsets grows exponentially with the number of families.

For a small enough problem, such a choice function can be constructed as follow. Start
with the choice function CK

ℓ of the KDA algorithm, which tentatively accepts each family f

if ℓ can weakly accommodate f alongside all higher-priority families and permanently rejects
f otherwise. That choice function is feasible and interference-free but may not satisfy the
cardinal monotonicity condition. Let CM

ℓ (G) = {f ∈ G | |Ĝf
ℓ | < minH⊇G{|CK

ℓ (H)|}}. If
CK

ℓ satisfies the cardinal monotonicity condition, then CM
ℓ and CK

ℓ are identical. Other-
wise, every time the cardinal monotonicity condition is violated, i.e., for every two subsets
of families G ⊆ H ⊆ F such that |CK

ℓ (G)| > |CK
ℓ (H)|, the lowest-priority families in CK

ℓ (G)

are permanently rejected, until the violation is resolved. CM
ℓ is efficient as it maximizes the

number of families that are tentatively accepted subject to satisfying the cardinal monotonic-
ity condition; however, computing CM

ℓ is demanding as it requires looking at each subset of
families. Essentially, the choice function CT

ℓ in our TKDA algorithm is a greedy version of
CM

ℓ although CM
ℓ and CT

ℓ are equivalent when |D| = 1 (by Proposition D.3).
Finally, our analysis leaves open the question of what strategy-proof and interference-free

mechanisms can be constructed beyond the cardinal monotonicity condition. The cardinal
monotonicity condition is sufficient for a deferred-acceptance-type procedure to be strategy-
proof. Hatfield and Milgrom (2005) showed that if the cardinal monotonicity condition is
not satisfied, then there are instances in which a deferred-acceptance-type procedure is not
strategy-proof. However, our TKDA with Clinches (TKDAC), which we introduce in Online
Appendix D.3, shows that it is possible to identify violations of the cardinal monotonicity
condition that do not affect strategy-proofness. We leave for future research the question of
whether and how this can be done beyond clinches.

D.2. Lower bound on the efficiency of KDA and TKDA mechanisms. We now show
the lower bound on the efficiency of the KDA and TKDA mechanisms.

Proposition D.4. The KDA and TKDA mechanisms match at least one family to a locality
in L \ {∅}. If all families can be accommodated on their own at all localities, then the KDA
and TKDA mechanisms match at least min{|F |, |L| − 1} families to localities in L \ {∅}.



MATCHING MECHANISMS FOR REFUGEE RESETTLEMENT 33

The intuition for Proposition D.4 is as follows. First, if a family f that can be accommo-
dated at some locality ℓ is matched to the null locality, then f has been permanently rejected
by ℓ. Therefore, there exists a family f ′ with a higher priority than f at ℓ that (i) can be
accommodated on its own at ℓ and (ii) proposes to ℓ in some round of the KDA or TKDA
algorithm. In turn, family f ′ would only be matched to the null locality if there is yet another
higher priority family f ′′ and, by induction, it is not possible that all families be matched
to the null locality. Second, consider the case where all families can be accommodated on
their own at all localities. If fewer than |L| − 1 families are matched to non-null localities,
then either there are fewer than |L| − 1 families in the market or at least one family f is
matched to the null locality while a non-null locality ℓ is not matched to any family. This
yields a contradiction since f proposes to and is permanently rejected by ℓ in some round of
the KDA or TKDA algorithms.

D.3. TKDA with Clinching. In this section, we present a modification of the TKDA
algorithm that improves its efficiency without affecting its properties. The TKDA with
Clinching (TKDAC) algorithm (Algorithm D.1) starts with a Clinching Round that creates
a new priority profile. The TKDA algorithm is then run using the new priority profile.

Proposition D.5. The TKDAC mechanism is strategy-proof and interference-free. More-
over, µTKDAC ⪰ µTKDA.

The idea of the TKDAC algorithm is to identify family-locality pairs that will necessarily
be matched together by the TKDA algorithm. If locality ℓ is family f ’s first preference and
ℓ can weakly accommodate f alongside all higher-priority families, then µTKDA(f) = ℓ: f

proposes to ℓ and ℓ tentatively accepts f ’s proposal throughout the algorithm because f ’s
threshold at ℓ is ∞. In the Clinching Round of the TKDAC algorithm, family f clinches
locality ℓ. Then we construct a new priority profile in which f moves to the bottom of
the priority list of each locality ℓ′ such that ℓ ≻f ℓ′. The change in the priority profile
does not affect f ’s match in the TKDA algorithm, since f will be matched to ℓ, no matter
what f ’s priority at less preferred localities. However, the change in the priority profile may
positively affect families that propose to f ’s less preferred localities since their thresholds at
these localities are no longer affected by f .

To illustrate how clinching can improve families’ welfare, consider a locality ℓ1 and three
families f1, f2, and f3 such that ▷ℓ1 : f1, f2, f3, . . .. There is only one dimension d1 and the
sizes and capacities are ( f1 f2 f3 ℓ1

d1 2 1 1 2
)
.

Consider what happens if f2 and f3 both propose to ℓ1 in some round of the TKDA algorithm.
The thresholds are θf1ℓ1 = ∞ (since f1 has the highest priority at ℓ1 and ℓ1 can accommodate
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Algorithm D.1. TKDA with Clinching (TKDAC)
Clinching Round

Step 0
No locality rejects or proposes to any family and no family clinches any locality.
Set ▷̃1 = ▷ and continue to Step 1.
Step j ≥ 1
(a) Each locality ℓ rejects family f if ℓ cannot weakly accommodate f alongside

the families that (i) clinched ℓ in Step j − 1 and (ii) are higher than f on ▷̃jℓ.
(b) Each locality ℓ proposes to family f if ℓ can weakly accommodate f along-

side all families that are higher than f on ▷̃jℓ.
(c) Family f clinches locality ℓ if (i) ℓ proposed to f in part (b) and (ii) ℓ is

f ’s most preferred locality that did not reject f in part (a).
(d) If at least one clinch occurred in part (c) that did not occur in Step j − 1,

continue to part (e). Otherwise, set ▷̃ = ▷̃j and continue to the TKDA algorithm.
(e) Construct ▷̃j+1 as follows, then continue to Step j + 1. For each ℓ ∈ L and

each f, f ′ ∈ F with f ▷ℓ f
′,

• f ′ ▷̃j+1
ℓ f if, in part (c), (i) f clinched a locality that f strictly prefers to ℓ

and (ii) f ′ did not clinch a locality that f ′ strictly prefers to ℓ;
• f ▷̃j+1

ℓ f ′ otherwise.
TKDA
Run the TKDA algorithm with the priority profile ▷̃.

f1 on its own) and θf2ℓ1 = θf3ℓ1 = 1 (since ℓ1 can (weakly) accommodate each of f2 or f3 on its
own but not alongside f1). Therefore, ℓ1 tentatively accepts f2’s proposal (since f2’s priority
rank among proposing families is 1 = θf2ℓ1 ) and permanently rejects f3’s proposal (since f3’s
priority rank among proposing families is 2 > 1 = θf3ℓ1 ). Observe that ℓ1 permanently rejects
f3 even though ℓ1 can (weakly) accommodate both proposing families.

Suppose, however, that f1’s first preference is another locality ℓ2 and that ℓ2 can (weakly)
accommodate f1 alongside all higher-priority families. Then, the clinching round identifies
this pair and f1 clinches ℓ2. The Clinching Round produces a priority profile ▷̃ such that
f2 ▷̃ℓ1f3 ▷̃ℓ1f1. If the TKDA algorithm is run with the new priority profile ▷̃ and f2 and f3

both propose to ℓ1, we have that θf2ℓ1 = θf3ℓ1 = ∞ since f2 and f3 now have the two highest
priorities at ℓ1 and therefore ℓ1 can accommodate both f2 and f3. As a consequence, following
the Clinching Round, ℓ1 no longer permanently rejects f3 resulting in a Pareto improvement
over the original TKDA mechanism.

The TKDAC algorithm also allows families to clinch localities that are not their first pref-
erences. In Step 1 of the Clinching Round, locality ℓ rejects family f if ℓ cannot accommodate
f on its own (as no clinches have occurred before the start of Step 1). If ℓ rejects f and f

receives a proposal from its second-preference locality ℓ′, i.e., if ℓ′ can weakly accommodate
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Round 1 Round 2 Round 3 Round 4
f1 → ℓ1 [1] 3 ℓ1 [0] 7 ℓ2 [∞] 3 ℓ2 [∞] 3
f2 → ℓ2 [1] 3 ℓ2 [1] 3 ℓ2 [0] 7 ℓ1 [∞] 3
f3 → ℓ2 [1] 7 ℓ1 [∞] 3 ℓ1 [∞] 3 ℓ1 [∞] 3

Table D.1. TKDAC* algorithm applied to Example D.4.

f alongside all higher-priority families, then it can be established that the TKDA algorithm
would match f to ℓ′. Therefore, f clinches ℓ′, i.e., f goes to the bottom of the priority list
of all of f ’s less preferred localities. In Step 2, these localities may propose to new families
as a result. In addition, ℓ′ now rejects every family with a lower priority than f at ℓ′ that
ℓ′ cannot weakly accommodate alongside f . The Clinching Round continues until there is a
step in which no family clinches any locality. Online Appendix E.3 provides an example of
the TKDAC algorithm.

D.4. Why clinching any proposing locality affects incentives for truth-telling. As
clinching improves efficiency, one might consider allowing families to clinch any locality that
proposes to them (whether or not they have been rejected by all of their more preferred
localities). Suppose we allowed family f to clinch a locality ℓ as long as ℓ can weakly
accommodate f alongside all higher-priority families, even if there are other localities that
f prefers and that have not rejected f .

Formally, consider the following modification to the Clinching Round in Algorithm D.1:
remove condition (ii) of part (c) in every Step j. We call TKDAC* algorithm the TKDAC
algorithm with the modified Clinching Round. Therefore, the TKDAC* algorithm differs
from the TKDAC algorithm by the fact that, in the Clinching Round, a family f clinches
any locality that proposes to f .

Unfortunately, the TKDAC* algorithm is not strategy-proof, as the following example
shows.

Example D.4. There are three families, three localities, and one dimension. The prefer-
ences, priorities, family sizes, and locality capacities are

≻f1 : ℓ1, ℓ2, ℓ3 ≻f2 : ℓ2, ℓ1, ℓ3 ≻f3 : ℓ1, ℓ2, ℓ3

▷ℓ1 : f2, f3, f1 ▷ℓ2 : f1, f2, f3 ▷ℓ3 : f1, f2, f3

ν =
( f1 f2 f3

d1 2 1 1
)

κ =
( ℓ1 ℓ2 ℓ3

d1 2 2 2
)
.

Suppose that all families report truthfully. In the modified Clinching Round, every family
receives a proposal from its second-preference locality. Since ℓ3 is every family’s third- and
last-preference locality, the modified Clinching Round does not affect the localities’ priorities.
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As a result, the priority profile ▷̃ that is used in the TKDA algorithm is the same as the
original priority profile ▷.23

The TKDA algorithm—summarized in Table D.4—yields the following matching:(
f1 f2 f3

ℓ2 ℓ1 ℓ1

)
.

Suppose now that family f1 reports ≻′
f1
: ℓ1, ℓ3, ℓ2 while the other two families report their

true preferences. In the modified Clinching Round, f1 clinches ℓ3 and drops to the bottom
of ℓ2’s priority list; therefore, we have a new priority list ▷̃ℓ2 : f2, f3, f1.24 Families f2 and
f3 clinch locality f1, but this proposal is inconsequential since f3 already has the highest
priority at ℓ3. Therefore, the modified Clinching Round does not modify the priorities of ℓ1
and ℓ3, i.e., ▷̃ℓ1 = ▷ℓ1 and ▷̃ℓ3 = ▷ℓ3 .

The TKDA algorithm is then run with the priority profile ▷̃. In the first round, f1 proposes
to ℓ1 and is tentatively accepted as θf1ℓ1 = 1 and no other family proposes to ℓ1. Families f2
and f3 both propose to ℓ2. Since f2 and f3 both now have a higher priority than f1 and ℓ2

can accommodate them together and ℓ2 tentatively accepts both families (as θf2ℓ2 = θf3ℓ2 = ∞).
The TKDA algorithm ends and yields the matching(

f1 f2 f3

ℓ1 ℓ2 ℓ2

)
.

Clearly, f1’s manipulation has been successful since f1 is now matched to its first-preference
locality ℓ1 instead of its second-preferences locality ℓ2. The reason why f can successfully
manipulate is that by clinching ℓ3, f1 allows f3 to be tentatively accepted by ℓ2; as a result,
f3 does not compete with f1 for ℓ1.

Note that the TKDAC algorithm precludes f1’s manipulation opportunity in Example D.4
because the TKDAC algorithm only allows f1 to clinch a ℓ3 when it has been established
that the TKDA algorithm will not match f1 to any locality that f1 prefers to ℓ3 (i.e., ℓ1).

D.5. Proofs of results in Online Appendix D. Throughout, for any family f ∈ F , any
locality ℓ, and any subset of families G ⊆ F , we denote by Ĝf

ℓ = G∩F̂ f
ℓ the subset of families

in G that have a higher priority for ℓ than f . We also denote by θ̃fℓ (G) (resp. θfℓ (G)) the
temporary threshold (resp. the threshold) of f for ℓ when all families in G propose to ℓ, as
determined by Algorithm 5.

23Family f1 also receives a proposal from ℓ3, but this proposal is inconsequential since ℓ3 is f1’s least preferred
locality.
24Family f1 also receives a proposal from ℓ2, but this proposal is inconsequential since ℓ2 is f1’s reported
least preferred locality.
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Proof of Proposition D.1. We have already shown in the proof of Theorem 6 that CT
ℓ is

feasible and satisfies the cardinal monotonicity condition. It remains to show that CT
ℓ is

interference-free and, when |D| = 1, envy-free.

Interference-freeness. Consider a subset of families G and a family f ∈ CT
ℓ (G). We need

to show that ℓ can weakly accommodate f alongside Ĝf
ℓ . Suppose towards a contradiction

that this is not the case. Then, by definition (see Algorithm 5), θfℓ (G) = 0 and so f /∈ CT
ℓ (G),

a contradiction.

Envy-freeness when |D| = 1. Suppose that |D| = 1 and consider a subset of families G as
well as two families f ∈ CT

ℓ (G) and g ∈ G \ CT
ℓ (G). We need to show that f ▷ℓ g. Suppose

towards a contradiction that g ▷ℓ f .
If θfℓ (G) = ∞, then by definition (see Algorithm 5), ℓ can weakly accommodate f alongside

Ĝf
ℓ . As g ▷ℓ f and |D| = 1, it follows that ℓ can weakly accommodate g alongside Ĝg

ℓ so
g ∈ CT

ℓ (G), a contradiction.
If θfℓ (G) ̸= ∞, then by definition (see Algorithm 5) θfℓ (G) ≤ θgℓ (G) (since g ▷ℓ f). As

f ∈ CT
ℓ (G) and g ▷ℓ f , it follows that θgℓ (G) ≥ θfℓ (G) ≥ |Ĝf

ℓ |+ 1 ≥ |Ĝg
ℓ |+ 1 so g ∈ CT

ℓ (G), a
contradiction. □

Proof of Proposition D.2. We need to show that Cℓ(G) ⊆ CT
ℓ (G). The result holds trivially

if CT
ℓ (G) = G; otherwise, let f be the highest-priority family in G \ CT

ℓ (G). As Cℓ is envy-
free, it is sufficient to show that f /∈ Cℓ(G). If ℓ cannot accommodate Ĝf

ℓ ∪ {f}, then
f /∈ Cℓ(G) since Cℓ is feasible and envy-free. If ℓ can accommodate Ĝf

ℓ ∪ {f}, then ℓ can
weakly accommodate f alongside Ĝf

ℓ ; hence, f ’s temporary threshold θ̃fℓ (G) (as calculated
by Algorithm 5) is at least |Ĝf

ℓ | + 1. As f has the (|Ĝf
ℓ | + 1)-st highest priority among the

families in G and f /∈ CT
ℓ (G), f ’s threshold θfℓ is at most |Ĝf

ℓ |. Therefore, we have that
θfℓ < θ̃fℓ (G) so there exists a family g ∈ F̂ f

ℓ such that θ̃gℓ (G) ≤ |Ĝf
ℓ |. Then, there exists

a subset of families H ⊆ F̂ g
ℓ with |H| = |Ĝf

ℓ | and Ĝg
ℓ ⊆ H such that ℓ cannot weakly

accommodate g alongside H, which implies that ℓ cannot accommodate H ∪ {g}. Then, all
families in Cℓ(G ∪H ∪ {g}) have a higher priority than g at ℓ, as otherwise the assumption
that Cℓ is envy-free would imply that (H ∪ {g}) ⊆ Cℓ(G ∪ H ∪ {g}), which would violate
the assumption that Cℓ is feasible. As Ĝg

ℓ ⊆ H, it follows that Cℓ(G∪H ∪ {g}) ⊆ H, which
combined with the fact that |Ĝf

ℓ | = |H| implies that |Cℓ(G ∪H ∪ {g})| ≤ |Ĝf
ℓ |. Finally, as

Cℓ satisfies the cardinal monotonicity condition, we have that |Cℓ(G)| ≤ |Ĝf
ℓ |; hence, the

assumption that Cℓ is envy-free yields f /∈ Cℓ(G). □

Proof of Proposition D.3. Recall that, by assumption, there is only one dimension, which we
denote throughout by d. Therefore, weak accommodation is equivalent to accommodation.

Denote by CK
ℓ the choice function of the KDA algorithm: for any subset of families G ⊆ F

and any family f ∈ G, f ∈ CK
ℓ (G) if and only if ℓ can weakly accommodate f alongside Ĝf

ℓ .
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Claim D.1. CK
ℓ is envy-free, Cℓ ⊆ CK

ℓ , and CT
ℓ ⊆ CK

ℓ .

Proof of Claim D.1. We first show that CK
ℓ is envy-free. Towards a contradiction, suppose

that there exists a subset of families G ⊆ F and two families f ∈ CK
ℓ (G) and g ∈ G\CK

ℓ (G)

such that g ▷ℓ f . Locality ℓ can (weakly) accommodate f alongside Ĝf
ℓ but cannot (weakly)

accommodate g alongside Ĝg
ℓ . It follows that νf

d +
∑

h∈Ĝf
ℓ
νh
d ≤ κd

ℓ < νg
d +

∑
h∈Ĝg

ℓ
νh
d , a

contradiction since g ▷ℓ f implies that ({g} ∪ Ĝg
ℓ) ⊆ Ĝf

ℓ .
We next show that Cℓ ⊆ CK

ℓ . Towards a contradiction, suppose that there exists a family
f ∈ Cℓ(G) \CK

ℓ (G). As f /∈ CK
ℓ (G), ℓ cannot (weakly) accommodate f alongside Ĝf

ℓ . Then,
f ∈ Cℓ(G) implies that Cℓ(G) is not interference-free, a contradiction.

The proof that CT
ℓ ⊆ CK

ℓ is analogous, one simply needs to replace Cℓ(G) by CT
ℓ (G) in

the preceding paragraph. □

Letting G ⊆ F be any subset of families, we show that |Cℓ(G)| ≤ |CT
ℓ (G)|. A direct

implication of Claim D.1 is that the proof is complete if CT
ℓ (G) = CK

ℓ (G) so we focus on the
case in which CT

ℓ (G) ⊂ CK
ℓ (G). Let f be the highest-priority family in G \CT

ℓ (G). As CT
ℓ is

envy-free (Proposition D.1), we have that CT
ℓ (G) = Ĝf

ℓ . Moreover, as CT
ℓ (G) ⊂ CK

ℓ (G) by
assumption and CK

ℓ (G) is envy-free by Claim D.1, f ∈ CK
ℓ (G). It follows that ℓ can (weakly)

accommodate f alongside Ĝf
ℓ ; hence, θ̃

f
ℓ (G) ≥ |Ĝf

ℓ (G)| + 1 (see Algorithm 5). However, as
f /∈ CT

ℓ (G), we know that θfℓ < |Ĝℓ| + 1; therefore, there exists a family g ∈ F̂ f
ℓ such that

θ̃gℓ (G) = θfℓ (G). We consider two cases separately.
Case 1: θ̃gℓ (G) = θfℓ (G) = 0. By definition (see Algorithm 5), ℓ cannot (weakly) accom-

modate g alongside Ĝg
ℓ . It follows that g /∈ CK

ℓ (G∪{g}), which implies that CK
ℓ (G∪{g}) ⊆

Ĝg
ℓ since CK

ℓ is envy-free. Then, by Claim D.1, we have that Cℓ(G ∪ {g}) ⊆ Ĝg
ℓ so

|Cℓ(G ∪ {g})| ≤ |Ĝg
ℓ |. As Cℓ satisfies the cardinal monotonicity condition, it follows that

|Cℓ(G)| ≤ |Ĝg
ℓ |. As CT

ℓ (G) = Ĝf
ℓ and g ▷ℓ f , we have that Ĝg

ℓ ⊆ CT
ℓ (G); hence, we conclude

that |Cℓ(G)| ≤ |Ĝg
ℓ | ≤ |CT

ℓ (G)|.
Case 2: θ̃gℓ (G) = θfℓ (G) > 0. By definition (see Algorithm 5), there exists a subset of

families G∗ such that Ĝg
ℓ ⊆ G∗ ⊆ F̂ f

ℓ and |G∗| = θfℓ (G) alongside which ℓ cannot (weakly)
accommodate g. Let us define the set H = G∗ ∪G ∪ {g} and observe that, by construction,
G∗ = Ĥg

ℓ . As ℓ cannot (weakly) accommodate g alongside G∗ = Ĥg
ℓ , we have that g /∈

CK
ℓ (H), which implies that CK

ℓ (H) ⊆ Ĥg
ℓ = G∗ since CK

ℓ is envy-free (Claim D.1). By
Claim D.1, Cℓ(H) ⊆ G∗ so |Cℓ(H)| ≤ |G∗| = θfℓ (G), which implies that |Cℓ(G)| ≤ θfℓ (G)

since Cℓ satisfies the cardinal monotonicity condition. As θfℓ (G) < |Ĝf
ℓ | + 1 (equivalently,

θfℓ (G) ≤ |Ĝf
ℓ |) and CT

ℓ (G) = Ĝf
ℓ , we conclude that |Cℓ(G)| ≤ θfℓ (G) ≤ |CT

ℓ (G)|.
Having established that |Cℓ(G)| ≤ |CT

ℓ (G)|, we now show that every family in CT
ℓ (G) \

Cℓ(G) has a higher priority than any family in Cℓ(G) \CT
ℓ (G). Considering any two families

f ∈ CT
ℓ (G) \ Cℓ(G) and g ∈ Cℓ(G) \ CT

ℓ (G), it is immediate that f ▷ℓ g since f ∈ CT
ℓ (G),

g ∈ G \ CT
ℓ (G), and CT

ℓ (G) is envy-free (Proposition D.1). □
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Proof of Proposition D.4. We first show that the TKDA mechanism matches at least one
family to a locality. Recall that we assume throughout that for each family f ∈ F , there exists
a locality ℓ ∈ L \ {∅} such that ℓ can accommodate f on its own (see Section 3). Without
loss of generality, let f be the highest-priority family among those that ℓ can accommodate
on their own. Recall that we assume throughout that localities prioritize families they can
accommodate on their own over families that they cannot accommodate (see Section 3) so f

has the highest priority at ℓ among all families. Therefore, θfℓ = ∞ throughout the TKDA
algorithm, which means that ℓ does not permanently reject f in any round of the TKDA
algorithm. If f proposes to ℓ, µTKDA(f) = ℓ ≻f ∅; otherwise, f does not propose to ℓ, so
µTKDA(f) ≻f ℓ ≻f ∅. In both cases, f is matched to a locality that is not the null.

We next show that if all families can be accommodated on their own at all localities
then the TKDA mechanism matches at least min{|F |, |L| − 1} families to a locality other
than the null. Towards a contradiction, suppose that |F \ µTKDA(∅)| < min{|F |, |L| − 1}.
Then, µTKDA(∅) ̸= ∅ and there exists ℓ ∈ L \ {∅} such that µTKDA(ℓ) = ∅. Since we
assume that ∅ is every family’s last preference and µTKDA(ℓ) = ∅, ℓ receives at least one
proposal. Let f be the highest-priority family among those that propose to ℓ at least once
in the TKDA algorithm. Since the hypothesis states that ℓ can accommodate f on its own,
θfℓ ≥ 1 throughout the TKDA algorithm. In every round in which f proposes to ℓ, f has
the highest priority among proposing families so ℓ never permanently rejects f . This means
that f ∈ µTKDA(ℓ), which contradicts µTKDA(ℓ) = ∅.

Since the KDA mechanism is family optimal, we have that µKDA ⪰ µTKDA. Moreover, ∅
is every family’s last preference. Hence, the result also holds for the KDA mechanism. □

Proof of Proposition D.5. First notice that the TKDAC algorithm simply runs the TKDA
algorithm with a different priority profile. Since the matching produced by the TKDA
algorithm does not violate any matching constraints (see the proof of Theorem 6), the same
is true of the TKDAC algorithm, i.e., for every ℓ ∈ L, ℓ can accommodate µTKDAC(ℓ).

We next introduce some notation, which we use throughout the proof. Consider the
Clinching Round and let N be its total number of steps. We use throughout the convention
that ▷̃0 = ▷. For each Step j = 0, 1, . . . , N , each family f ∈ F , and each locality ℓ ∈ L, let

• F̂ f
ℓ (▷̃

j) be the set of families that are higher than f on ▷̃jℓ;
• ∆j

f be the set of localities that reject f in Step j;
• Γj

f be the set of localities that propose to f in Step j; and
• Θj

ℓ be the set of families that clinch ℓ in Step j.
Note that F̂ f

ℓ (▷̃
0) = F̂ f

ℓ (▷̃
1) = F̂ f

ℓ (▷) = F̂ f
ℓ and F̂ f

ℓ (▷̃
N) = F̂ f

ℓ (▷̃). Since no rejections,
proposals, or clinches occur in Step 0, we also have ∆0

f = Γ0
f = Θ0

ℓ = ∅.
The following two lemmata are key to our analysis. Their proofs can be found directly

after the current proof.
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Lemma D.1. For each Step j = 1, . . . , N , each family f ∈ F , and each locality ℓ ∈ L:
(i) If f /∈ Θj−1

ℓ′ for all ℓ′ ∈ L such that ℓ′ ≻f ℓ, then F̂ f
ℓ (▷̃

j) ⊆ F̂ f
ℓ (▷̃

j−1);
(ii) ∆j−1

f ⊆ ∆j
f ;

(iii) If ℓ ∈ Γj−1
f \ Γj

f , then there exists ℓ′ ∈ L such that ℓ′ ≻f ℓ and f ∈ Θj−1
ℓ′ ; and

(iv) Θj−1
ℓ ⊆ Θj

ℓ.

(The proof of Lemma D.3 follows at the end of the proof of Proposition D.5.) Part (i) of
Lemma D.1 says that if family f has not clinched a locality that f prefers to ℓ, then the set
of families that are higher than f at ℓ shrinks throughout the Clinching Round. Part (ii)
says that the set of localities that are rejecting f grows throughout the Clinching Round.
Part (iii) says that if ℓ stops proposing to f , then f has clinched a more preferred locality.
Part (iv) says that the set of families that have cliched ℓ grows throughout the Clinching
Round.

Lemma D.2. For each Step j = 1, . . . , N , each family f ∈ F , and each locality ℓ ∈ L:
(i) If ℓ ∈ ∆j

f , then µTKDAC(f) ̸= ℓ;
(ii) If ℓ ∈ Γj

f , then µTKDAC(f) ⪰f ℓ; and
(iii) If f ∈ Θj

ℓ, then µTKDAC(f) = ℓ.

(The proof of Lemma D.3 follows at the end of the proof of Proposition D.5.) Part (i)
of Lemma D.2 says that if a locality ℓ rejects a family f in the Clinching Round, then
the TKDAC algorithm will not match f to ℓ. Part (ii) says that if ℓ proposes to f in
the Clinching Round, then f will be matched to ℓ or a more preferred locality under the
TKDAC algorithm. Part (iii) says that if f clinches ℓ in the Clinching Round, then the
TKDAC algorithm will match f to ℓ.

We now use Lemmata D.1 and D.2 to show that the TKDAC mechanism is strategy-proof
and interference-free and that µTKDAC ⪰ µTKDA.

Proof that TKDAC is strategy-proof. We consider a family f and a report ≻′
f . We need

to show that
φTKDAC(≻)(f) ⪰ φTKDAC(≻′

f ,≻−f )(f).

We use our usual notation—N , ▷̃j, ∆j
f , Γ

j
f , and Θj

ℓ—for the TKDAC algorithm run with the
preference profile ≻, i.e., when f reports truthfully. We denote by N , ▷j, ∆j

f , Γ
j

f , and Θ
j

ℓ the
counterparts in the TKDAC algorithm run with the preference profile (≻′

f ,≻−f ), i.e., when
f misreports its preferences.

Consider the Clinching Round when the preference profile is ≻. If f clinches a locality,
let Step m be the first step in which f clinches the locality; formally, f /∈ ∪ℓ∈L{Θj

ℓ} for
all j = 1, . . . ,m − 1 and f ∈ ∪ℓ∈L{Θj

ℓ} for all j = m, . . . , N . (By Lemma D.1(iv), once a
family clinches a locality, it continues to clinch the same locality in all remaining steps so
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m is well defined.) If f does not clinch any locality, let m = ∞; formally, m = ∞ whenever
f /∈ ∪ℓ∈L{ΘN

ℓ }. We define m analogously for the preference profile (≻′
f ,≻−f ). The following

lemma guarantees that the Clinching Round is unaffected by f ’s report until f clinches a
locality.

Lemma D.3. Let q = min{m,m,N,N}. For each j = 1, . . . , q, each g ∈ F , and each ℓ ∈ L,

Θj
ℓ \ {f} = Θ

j

ℓ \ {f}, ∆j
g = ∆

j

g, Γj
g = Γ

j

g, and ▷̃j = ▷j.

Moreover, if j < min{m,m}, then Θj
ℓ = Θ

j

ℓ for all ℓ ∈ L.

(The proof of Lemma D.3 follows at the end of the proof of Proposition D.5.) There are
four cases to consider.

Case 1: m = ∞ and m = ∞. In this case, f does not clinch any locality in the Clinching
Round, irrespective of whether f reports ≻f or ≻′

f . Then, q = min{N,N} < min{m,m}.
If N ≤ N , then q = N and ΘN−1

ℓ = ΘN
ℓ for all ℓ ∈ L since, by construction, the Clinching

Round ends when the same clinches occur in two consecutive steps. By Lemma D.3, ΘN−1
ℓ =

Θ
N−1

ℓ and ΘN
ℓ = Θ

N

ℓ for all ℓ ∈ L; therefore, ΘN−1

ℓ = Θ
N

ℓ for all ℓ ∈ L, which means that
N = N . Then, since ▷̃N = ▷N by Lemma D.3, we conclude that ▷̃ = ▷. We have established
that, whether f reports ≻f or ≻′

f , the Clinching Round ends in the same step and produces
the same adjusted priority profile. Then, φTKDAC(≻)(f) is the matching produced by the
TKDA algorithm when the preference and priority profiles are ≻ and ▷̃ respectively while
φTKDAC(≻′

f ,≻−f )(f) is the matching produced by the TKDA algorithm when the preference
and priority profiles are (≻′

f ,≻−f ) and ▷ = ▷̃ respectively. Since the TKDA mechanism is
strategy-proof (Theorem 6), we conclude that φTKDAC(≻)(f) ⪰f φTKDAC(≻′

f ,≻−f )(f), as
required. Analogous reasoning yields the same result for the case where N ≥ N .

Case 2: m ≤ min{m,N}. In this case, if f reports truthfully, then f clinches a locality
in Step m of the Clinching Round and, if f reports ≻′

f , then f either clinches a locality
in Step m ≥ m or does not clinch any locality. Since m ≤ min{m,N}, q = min{m,N}.
Towards a contradiction, suppose that m > N . Then, q = N < min{m,m}. As the
Clinching Round ends whenever the same clinches occur in two consecutive rounds, we have
that ΘN−1

ℓ = ΘN
ℓ for all ℓ ∈ L. Moreover, Lemma D.3 implies that ΘN−1

ℓ = Θ
N−1

ℓ and
ΘN

ℓ = Θ
N

ℓ for all ℓ ∈ L. It follows that Θ
N−1

ℓ = Θ
N

ℓ , so N = N , which contradicts our
assumption that N < m ≤ N .

We have established that m ≤ N ; hence q = m. When f reports truthfully, f clinches a
locality denoted by ℓ in Step m of the Clinching Round, i.e., f ∈ Θm

ℓ . By Lemma D.2(iii), we
have that φTKDAC(≻)(f) = ℓ. By construction (Step m(c) of the Clinching Round), f ∈ Θm

ℓ

implies that, for all ℓ′ ∈ L with ℓ′ ≻f ℓ, ℓ′ ∈ ∆m
f . By Lemma D.3, ∆m

f = ∆
m

f ; therefore
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ℓ′ ∈ ∆
m

f for all ℓ′ ∈ L such that ℓ′ ≻f ℓ. By Lemma D.2(i), it follows that φTKDAC(≻′
f ,≻−f

)(f) ̸= ℓ′ for all ℓ′ ∈ L such that ℓ′ ≻f ℓ; therefore ℓ ⪰f φTKDAC(≻′
f ,≻−f )(f), as required.

Case 3: m ≤ min{m,N}. In this case, if f reports ≻′
f , then f clinches a locality in

Step m of the Clinching Round and, if f reports truthfully, then f either clinches a locality
in Step m ≥ m or does not clinch any locality. Since m ≤ {m,N}, q = min{m,N}. Using
analogous reasoning to Case 2, we establish that m ≤ N ; hence q = m. When f reports
≻′

f , f clinches a locality denoted by ℓ in Step m of the Clinching Round, i.e., f ∈ Θ
m

ℓ . By
Lemma D.2(iii), we have that φTKDAC(≻′

f ,≻−f ) = ℓ. By construction (Step m(c) of the
Clinching Round), f ∈ Θ

m

ℓ implies that ℓ ∈ Γ
m

f . By Lemma D.3, Γm
f = Γ

m

f so ℓ ∈ Γm
f ;

therefore, by Lemma D.2(ii), φTKDAC(≻)(f) ⪰f ℓ, as required.

Proof that TKDAC is interference-free. Arbitrarily fix a family f ∈ F and, for ease of nota-
tion, let ℓ = µTKDAC(f). We need to show that f does not interfere with µTKDAC. Towards a
contradiction, suppose that f interferes with µTKDAC; that is, ℓ cannot weakly accommodate
f alongside F̂ f

µTKDAC = {g ∈ F : g▷ℓf and ℓ ⪰g µ
TKDAC(g)}. As µTKDAC is the outcome of the

TKDA mechanism with the priority profile ▷̃ and the TKDA mechanism is interference-free,
ℓ can weakly accommodate f alongside {g ∈ F : g ▷̃ℓf and ℓ ⪰g µTKDAC(g)}. Therefore,
there exists a family

h ∈ {g ∈ F : g ▷ℓ f and ℓ ⪰g µ
TKDAC(g)} \ {g ∈ F : g ▷̃ℓf and ℓ ⪰g µ

TKDAC(g)}.

By assumption, h ▷ℓ f and f ▷̃ℓ h; equivalently, f ∈ F̂ h
ℓ (▷̃) \ F̂ h

ℓ . Therefore, there exists
a Step j = 1, . . . , N of the Clinching Round such that f ∈ F̂ h

ℓ (▷̃
j) \ F̂ h

ℓ (▷̃
j−1). By the

contrapositive of Lemma D.1(i), it follows that h ∈ Θj−1
ℓ′ for some ℓ′ ∈ L such that ℓ′ ≻h ℓ.

By Lemma D.2(iii), we have that µTKDAC(h) = ℓ′. We conclude that µTKDAC(h) ≻h ℓ, a
contradiction since, by definition, ℓ ⪰h µTKDAC(h).

Proof that TKDAC is weakly more efficient than TKDA (µTKDAC ⪰ µTKDA).
We first introduce some additional notation. Let M be the number of rounds of the TKDA

algorithm and, for each Round i = 1, . . . ,M and each locality ℓ ∈ L, let Πi
ℓ be the set of

families that propose to ℓ in Round i. Similarly, let M̃ be the number of rounds of the
TKDAC algorithm; that is, the TKDAC algorithm consists of a Clinching Round, which
lasts N steps, and then the TKDA algorithm is run with the constructed priority profile
▷̃ and lasts M̃ rounds. For each Round i = 1, . . . , M̃ and each locality ℓ ∈ L, let Π̃i

ℓ be
the set of families that propose to ℓ in Round i of the TKDAC algorithm. By definition
(Algorithm 5), the threshold of a family f at a locality ℓ only depends on higher-priority
families; therefore, θfℓ (Πi

ℓ ∩ F̂ f
ℓ ) is the threshold of family f for locality ℓ in Round i of the

TKDA algorithm and θfℓ (Π̃
i
ℓ ∩ F̂ f

ℓ (▷̃)) is the threshold of family f for locality ℓ in Round i

of the TKDAC algorithm.
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Claim D.2. In every Round i = 1, . . . , M̃ of the TKDAC algorithm, every family f ∈ F

proposes to a locality that f weakly prefers to µTKDA(f).

By construction, for every family f ∈ F , µTKDAC(f) is the locality to which f proposes
in Round M̃ of the TKDAC algorithm. Therefore, Claim D.2 implies that µTKDAC(f) ⪰f

µTKDA(f) for all f ∈ F , as required. To complete the proof of Proposition D.5 it only
remains to prove Claim D.2 as well as Lemmata D.1, D.2 and D.3. □

Proof of Claim D.2. In Round 1 of the TKDAC algorithm, every family proposes to its most
preferred locality; therefore Claim D.2 holds for i = 1. The remainder of the proof is by
induction. We suppose that Claim D.2 holds for some i = 1, . . . , M̃−1 (induction hypothesis)
and show that Claim D.2 holds for i+ 1.

Consider any family f ∈ F and, for ease of notation, let ℓ = µTKDA(f). We need to show
that, in Round i+1 of the TKDAC algorithm, f proposes to a locality that f weakly prefers
to ℓ. By our induction hypothesis, f proposes to a locality that f weakly prefers to ℓ in
Round i. If f proposes to a locality that f strictly prefers to ℓ in Round i, then ℓ does not
permanently reject f in Round i so f proposes to a locality that f weakly prefers to ℓ in
Round i + 1, as required. We therefore focus on the case where f proposes to ℓ in Round i

of the TKDAC algorithm and need to show that ℓ tentatively accepts f ’s proposal. That is,
by the construction of the TKDA part of the TKDAC algorithm, we need to show that

(24) θfℓ (Π̃
i
ℓ ∩ F̂ f

ℓ ) ≥ |Π̃i
ℓ ∩ F̂ f

ℓ |+ 1.

First, as f proposes to ℓ in Round i, ℓ ⪰f µTKDAC(f) by construction. Then, by
Lemma D.2(iii), f does not clinch any locality that f strictly prefers to ℓ in the Clinch-
ing Round. By Lemma D.1(i), it follows that F̂ f

ℓ (▷̃) ⊆ F̂ f
ℓ .

Second, by construction, family f proposes to and is tentatively accepted by ℓ in the last
round of the TKDA algorithm; hence

(25) θfℓ (Π
M
ℓ ∩ F̂ f

ℓ ) ≥ |ΠM
ℓ ∩ F̂ f

ℓ |+ 1.

There are two cases: θfℓ (ΠM ∩ F̂ f
ℓ ) = ∞ and θfℓ (Π

M ∩ F̂ f
ℓ ) ̸= ∞.

Case 1: θfℓ (Π
M ∩ F̂ f

ℓ ) = ∞. In this case, by the definition of thresholds (Algorithm 5),
ℓ can weakly accommodate f alongside F̂ f

ℓ . As F̂ f
ℓ (▷̃) ⊆ F̂ f

ℓ , ℓ can weakly accommodate
f alongside F̂ f

ℓ (▷̃). Again, by the definition of thresholds (Algorithm 5), we have that
θfℓ (Π̃

i ∩ F̂ f
ℓ (▷̃)) = ∞; hence inequality (24) is satisfied, as required.

Case 2: θfℓ (Π
M ∩ F̂ f

ℓ ) ̸= ∞. There are two sub-cases: ℓ permanently rejects at least one
family with a higher priority than f at ℓ in the TKDA algorithm and ℓ does not permanently
reject any family with a higher priority than f at ℓ in the TKDA algorithm.
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Sub-case 2.1: Locality ℓ permanently rejects at least one family with a higher priority than
f at ℓ in the TKDA algorithm. In this case, let g ∈ F be the highest-priority family that ℓ
permanently rejects in the TKDA algorithm. Therefore, there exists a Round j = 1, . . . ,M

of the TKDA algorithm, g ∈ Πj
ℓ and

(26) θgℓ (Π
j
ℓ ∩ F̂ g

ℓ ) < |Πj
ℓ ∩ F̂ g

ℓ |+ 1.

As g is the highest-priority family that ℓ permanently rejects in the TKDA algorithm, any
family with a higher priority that proposes to ℓ in Round j continues to propose to ℓ until
the end of the algorithm; therefore, Πj

ℓ ∩ F̂ g
ℓ ⊆ ΠM

ℓ ∩ F̂ g
ℓ .

We next show that the following inequality holds:

(27) θgℓ (Π
M
ℓ ∩ F̂ g

ℓ ) < |ΠM
ℓ ∩ F̂ g

ℓ |+ 1.

First, inequality (27) holds trivially if θgℓ (ΠM
ℓ ∩ F̂ g

ℓ ) = 0. Second, inequality (26) implies
that θgℓ (Π

j
ℓ ∩ F̂ g

ℓ ) ̸= ∞; hence Lemma A.1(i) implies that θgℓ (Π
M
ℓ ∩ F̂ g

ℓ ) ̸= ∞. Third, if
θgℓ (Π

M
ℓ ∩ F̂ g

ℓ ) ∈ Z>0, then, as Πj
ℓ ∩ F̂ g

ℓ ⊆ ΠM
ℓ ∩ F̂ g

ℓ , we can apply Lemma A.1(ii) to obtain
that

(28) θgℓ (Π
M
ℓ ∩ F̂ g

ℓ ) ≤ θgℓ (Π
j
ℓ ∩ F̂ g

ℓ ) + |ΠM
ℓ ∩ F̂ g

ℓ | − |Πj
ℓ ∩ F̂ g

ℓ |.

Combined with inequality (26), inequality (28) implies inequality (27).
As g ▷ℓ f , we have that ΠM

ℓ ∩ F̂ g
ℓ ⊆ ΠM

ℓ ∩ F̂ f
ℓ . Moreover, as a family’s threshold only

depends on higher-priority families (Algorithm 5), θgℓ (ΠM
ℓ ∩ F̂ f

ℓ ) = θgℓ (Π
M
ℓ ∩ F̂ g

ℓ ). Combining
these observations with inequalities (27) and (25) yields

(29) θgℓ (Π
M
ℓ ∩ F̂ f

ℓ ) = θgℓ (Π
M
ℓ ∩ F̂ g

ℓ ) < |ΠM
ℓ ∩ F̂ g

ℓ |+ 1 ≤ |ΠM
ℓ ∩ F̂ f

ℓ |+ 1 ≤ θfℓ (Π
M
ℓ ∩ F̂ f

ℓ ).

By inequality (26), θgℓ (ΠM
ℓ ∩ F̂ f

ℓ ) ̸= ∞; hence θgℓ (Π
M
ℓ ∩ F̂ g

ℓ ) ̸= ∞. Hence, we can apply
Lemma A.1(iii) to obtain that

θgℓ (Π
M
ℓ ∩ F̂ f

ℓ ) ≥ θfℓ (Π
M
ℓ ∩ F̂ f

ℓ ),

which contradicts inequality (29). We therefore conclude that Sub-case 2.1 cannot occur.

Sub-case 2.2: Locality ℓ does not permanently reject any family with a higher priority
than f at ℓ in the TKDA algorithm. In this case, we first show that Π̃i

ℓ ∩ F̂ f
ℓ ⊆ ΠM

ℓ ∩ F̂ f
ℓ .

Towards a contradiction, suppose that there exists a family g ∈ (Π̃i
ℓ ∩ F̂ f

ℓ ) \ (ΠM
ℓ ∩ F̂ f

ℓ ). As
(Π̃i

ℓ ∩ F̂ f
ℓ ) \ (ΠM

ℓ ∩ F̂ f
ℓ ) = (Π̃i

ℓ \ ΠM
ℓ ) ∩ F̂ f

ℓ , we have that g ∈ Π̃i
ℓ, g /∈ ΠM

ℓ , and g ∈ F̂ f
ℓ .

First, by our induction hypothesis, g proposes in Round i of the TKDAC algorithm to
a locality that g weakly prefers to µTKDA(g); therefore, the fact that g ∈ Π̃i

ℓ implies that
ℓ ⪰g µTKDA(g). Second, as the TKDA algorithm matches g to the last locality to which g

proposes, the fact that g /∈ ΠM
ℓ implies that ℓ ̸= µTKDA(g). Third, by the assumption of

Sub-case 2.2, the fact that g ∈ F̂ f
ℓ implies that ℓ does not permanently reject g in the TKDA
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algorithm, hence µTKDA(g) ⪰g ℓ. Combining these observations, we have that ℓ ⪰g µ
TKDA(g),

ℓ ̸= µTKDA(g), and µTKDA(g) ⪰g ℓ, a contradiction.
Having established that Π̃i

ℓ ∩ F̂ f
ℓ ⊆ ΠM

ℓ ∩ F̂ f
ℓ and that F̂ f

ℓ (▷̃) ⊆ F̂ f
ℓ , we conclude that

Π̃i
ℓ∩F̂

f
ℓ (▷̃) ⊆ ΠM

ℓ ∩F̂ f
ℓ . It follows that |Π̃i

ℓ∩F̂
f
ℓ (▷̃)| ≤ |ΠM

ℓ ∩F̂ f
ℓ |. Moreover, as θfℓ (ΠM

ℓ ∩F̂ f
ℓ ) ̸=

∞ by the assumption of Case 2, and as θfℓ (ΠM
ℓ ∩ F̂ f

ℓ ) ̸= 0 by inequality (25), we have that
θfℓ (Π

M
ℓ ∩ F̂ f

ℓ ) ∈ Z>0 so we can apply Lemma A.1(ii) to obtain that

(30) θfℓ (Π
M
ℓ ∩ F̂ f

ℓ ) ≤ θfℓ (Π̃
i
ℓ ∩ F̂ f

ℓ (▷̃)) + |ΠM
ℓ ∩ F̂ f

ℓ | − |Π̃i
ℓ ∩ F̂ f

ℓ (▷̃)|.

Combining inequality (30) with inequality (25) yields inequality (24), as required. □

Proof of Lemma D.1. We prove the lemma by a single induction argument. To show that
the lemma holds for j = 1, note that (i) ▷̃0 = ▷̃1 = ▷, (ii) ∅ = ∆0

f ⊆ ∆1
f for every f ∈ F ,

(iii) ∅ = Γ0
f ⊆ Γ1

f for every f ∈ F , and (iv) ∅ = Θ0
ℓ ⊆ Θ1

ℓ for every ℓ ∈ L.
For the induction step, let us assume that part (iv) of the lemma holds for some j =

1, . . . , N , i.e., Θj−1
ℓ ⊆ Θj

ℓ for every ℓ ∈ L and every j = 1, . . . , N . We will show that the
assumption implies parts (i)-(iv) of the lemma in Step j+1. That is, we consider an arbitrary
family f ∈ F and an arbitrary locality ℓ ∈ L and show the following:

(i) If f /∈ Θj
ℓ′ for all ℓ′ ∈ L such that ℓ′ ≻f ℓ, then F̂ f

ℓ (▷̃
j+1) ⊆ F̂ f

ℓ (▷̃
j);

(ii) ∆j
f ⊆ ∆j+1

f ;
(iii) If ℓ ∈ Γj

f \ Γ
j+1
f , then there exists ℓ′ ∈ L such that ℓ′ ≻f ℓ and f ∈ Θj

ℓ′ ; and
(iv) Θj

ℓ ⊆ Θj+1
ℓ .

Proof of (i). We prove the contrapositive. Suppose there exists a family g ∈ F̂ f
ℓ (▷̃

j+1) \
F̂ f
ℓ (▷̃

j), then f ▷̃jℓg and g ▷̃j+1
ℓ f . We need to show that f clinches a locality that f strictly

prefers to ℓ in Step j. There are two cases: f ▷ℓ g and g ▷ℓ f .
Case 1: f ▷ℓ g. Since g ▷̃j+1

ℓ f , then by construction (Step j(e) of the Clinching Round)
we have that f clinches a locality that f strictly prefers to ℓ in Step j(c) of the Clinching
Round.

Case 2: g ▷ℓ f . Since f ▷̃jℓg, then by construction (Step j(e) of the Clinching Round), g
clinches a locality that g strictly prefers to ℓ in Step j − 1(c) of the Clinching Round. Since
we have assumed that Θj−1

ℓ ⊆ Θj
ℓ, g continues to clinch that locality in Step j(c) of the

Clinching Round. Since g ▷̃j+1
ℓ f , we have that f clinches a locality that f strictly prefers to

ℓ in Step j(c) of the Clinching Round.

Proof of (ii). Suppose that ℓ ∈ ∆j
f , we need to show that ℓ ∈ ∆j+1

f . As ℓ ∈ ∆j
f , ℓ cannot

weakly accommodate f alongside Θj−1
ℓ ∩ F̂ f

ℓ (▷̃
j). Similarly, ℓ ∈ ∆j+1

f if ℓ cannot weakly
accommodate f alongside Θj

ℓ ∩ F̂ f
ℓ (▷̃

j+1). Therefore, it is sufficient to show that

(Θj−1
ℓ ∩ F̂ f

ℓ (▷̃
j)) ⊆ (Θj

ℓ ∩ F̂ f
ℓ (▷̃

j+1)).
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Towards a contradiction, suppose that there exists a family

g ∈ (Θj−1
ℓ ∩ F̂ f

ℓ (▷̃
j)) \ (Θj

ℓ ∩ F̂ f
ℓ (▷̃

j+1)).

Since we have assumed that Θj−1
ℓ ⊆ Θj

ℓ, we have that

g ∈ (Θj−1
ℓ ∩ F̂ f

ℓ (▷̃
j)) \ F̂ f

ℓ (▷̃
j+1) = Θj−1

ℓ ∩ (F̂ f
ℓ (▷̃

j) \ F̂ f
ℓ (▷̃

j+1)).

Since g ∈ F̂ f
ℓ (▷̃

j
ℓ)\F̂

f
ℓ (▷̃

j+1), we have that g ▷̃jℓf and f ▷̃j+1
ℓ g. Therefore, f ∈ F̂ g

ℓ (▷̃
j+1
ℓ )\F̂ g

ℓ (▷̃
j)

and, as a result, F̂ g
ℓ (▷̃

j+1
ℓ ) ̸⊆ F̂ g

ℓ (▷̃
j). Then, the contrapositive of (i) implies that g ∈ Θj

ℓ′ for
some ℓ′ ∈ L such that ℓ′ ≻g ℓ. Since g ∈ Θj−1

ℓ and we have assumed that Θj−1
ℓ ⊆ Θj

ℓ, it
follows that g clinches both ℓ and ℓ′ in Step j. This is a contradiction since, by construction
(Step j(c) of the Clinching Round), a family can clinch at most one locality in any given
step of the Clinching Round.

Proof of (iii). Suppose that ℓ ∈ Γj
f \ Γj+1

f . Then, ℓ can weakly accommodate f along-
side F̂ f

ℓ (▷̃
j) but not alongside F̂ f

ℓ (▷̃
j+1), which implies that F̂ f

ℓ (▷̃
j+1) ̸⊆ F̂ f

ℓ (▷̃
j). By the

contrapositive of (i), we have that f ∈ Θj
ℓ′ for some ℓ′ ∈ L such that ℓ′ ≻f ℓ.

Proof of (iv). Suppose that f ∈ Θj
ℓ, we need to show that f ∈ Θj+1

ℓ . By construction
(Step j(c) of Clinching Round), ℓ proposes to f in Step j(b) and all localities that f prefers
to ℓ reject f in Step j(a); that is, ℓ ∈ Γj

f and, for all ℓ′ ∈ L such that ℓ′ ≻f ℓ, ℓ′ ∈ ∆j
f . Since

a family can clinch at most one locality in each step, f /∈ Θj
ℓ′ for all ℓ′ ∈ L such that ℓ′ ≻f ℓ.

By the contrapositive of (iii), ℓ /∈ Γj
f \ Γ

j+1
f ; therefore ℓ ∈ Γj+1

f . Moreover, by (ii), ℓ′ ∈ ∆j+1
f

for all ℓ′ ∈ L such that ℓ′ ≻f ℓ. Therefore, ℓ proposes to f in Step j + 1 and all localities
that f prefers to ℓ reject f in Step j + 1, which means that f clinches ℓ in Step j + 1, i.e.,
f ∈ Θj+1

ℓ . □

Proof of Lemma D.2. For ease of notation, let µ = µTKDAC. We consider a Step j = 1, . . . , N

of the Clinching Round, a family f ∈ F , and a locality ℓ ∈ L. We prove each part of the
lemma in turn.

Proof of (i). We first show that if a family g is rejected by µ(g) in Step i = 2, . . . , N of
the Clinching Round, then a family h is rejected by µ(h) in Step i− 1.

Suppose that a family g ∈ F is rejected by µ(g) in Step i = 2, . . . , N of the Clinching
Round. Since µ(g) rejects g in Step i(a) of the Clinching Round, µ(g) cannot weakly accom-
modate g alongside Θi−1

µ(g) ∩ F̂ g
µ(g)(▷̃

i). If all families in Θi−1
µ(g) ∩ F̂ g

µ(g)(▷̃
i) are matched to µ(g)

at the end of the TKDAC algorithm (i.e., if (Θi−1
µ(g) ∩ F̂ g

µ(g)(▷̃
i)) ⊆ µ(µ(g))), then µ(g) can

accommodate (Θi−1
µ(g)∩ F̂ g

µ(g)(▷̃
i))∪{g}. Therefore, µ(g) can weakly accommodate g alongside

Θi−1
µ(g)∩ F̂ g

µ(g)(▷̃
i), a contradiction. We conclude that there exists a family h ∈ Θi−1

µ(g)∩ F̂ g
µ(g)(▷̃

i)

such that µ(h) ̸= µ(g). Since h ∈ Θi−1
µ(g), we have that h ∈ ΘN

µ(g) by Lemma D.1(iv). It
follows that µ(g) proposes to h in Step N of the Clinching Round, which in turn implies
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that µ(g) can weakly accommodate h alongside F̂ h
ℓ (▷̃

N) = F̂ h
ℓ (▷̃). Then, in every round of

the TKDAC algorithm, h’s threshold at µ(g) is ∞ (see Algorithm 5). It follows that µ(g)

tentatively accepts any proposal from h so the fact that µ(h) ̸= µ(g) implies that h does not
propose to µ(g) in the TKDAC algorithm, hence µ(h) ≻h µ(g). Finally, since h ∈ Θi−1

µ(g) and
µ(h) ≻f µ(g), µ(h) rejects h in Step i− 1(c) of the Clinching Round, as required.

Now, suppose towards a contradiction that µ(f) ∈ ∆j
f . The preceding argument implies,

by induction, that there exists a family f ′ such that µ(f ′) ∈ ∆1
f ′ , i.e., µ(f ′) rejects f ′

in Step 1 of the Clinching Round. Then, µ(f ′) cannot weakly accommodate f ′ alongside
Θ0

µ(f ′) ∩ F̂ f ′

µ(f ′)(▷̃
1). Since Θ0

µ(f ′) = ∅, it follows that µ(f ′) cannot weakly accommodate f ′ on
its own. Therefore, the threshold of f ′ at µ(f ′) is 0 in every round of the TKDAC algorithm.
We conclude that µ(f ′) permanently rejects any proposal from f ′, which contradicts the
assumption that f ′ is matched to µ(f ′) at the end of the TKDAC algorithm.

Proof of (ii). Suppose that ℓ ∈ Γj
f . We need to show that µ(f) ⪰f ℓ. Then, by

Lemma D.1(iii), ℓ ∈ Γj
f implies that one of the following two cases holds: either ℓ ∈ ΓN

f

or f ∈ Θj−1
ℓ′ for some ℓ′ ∈ L such that ℓ′ ≻f ℓ.

Case 1: ℓ ∈ ΓN
f . In this case, by construction (Step N(c) of the Clinching Round), ℓ

can weakly accommodate f alongside F̂ f
ℓ (▷̃

N) = F̂ f
ℓ (▷̃). Therefore, in every round of the

TKDAC algorithm, f ’s threshold at ℓ is ∞ (see Algorithm 5). It follows that ℓ tentatively
accepts any proposal from f in the TKDAC algorithm, hence µ(f) ⪰f ℓ, as required.

Case 2: f ∈ Θj−1
ℓ′ for some ℓ′ ∈ L such that ℓ′ ≻f ℓ. In this case, Lemma D.1(iv), we have

that f ∈ ΘN
ℓ′ for some ℓ′ ∈ L such that ℓ′ ≻f ℓ. Then, by construction (Step N(c) of the

Clinching Round), ℓ′ proposes to f in Step N of the Clinching Round, i.e., ℓ′ ∈ ΓN
f . Then,

f ’s threshold at ℓ′ is ∞ in every round of the TKDAC algorithm, hence µ(f) ⪰f ℓ′ ≻f ℓ, as
required.

Proof of (iii). Suppose that f ∈ Θj
ℓ. Then, by construction (Step j(c) of the Clinching

Round) we have that ℓ ∈ Γj
f and, for all ℓ′ ∈ L such that ℓ′ ≻f ℓ, it is the case that ℓ′ ∈ ∆j

f .
From parts (i) and (ii) of the lemma, we obtain that µ(f) ⪰f ℓ and that µ(f) ̸= ℓ′ for all
ℓ′ ∈ L such that ℓ′ ≻f ℓ. We conclude that µ(f) = ℓ, as required. □

Proof of Lemma D.3. We prove the first part of the lemma by a single induction argument.
For the initial step, we have that Θ0

ℓ = Θ
0

ℓ = ∅ for all ℓ ∈ L.
For the induction step, let us assume that Θj−1

ℓ \ {f} = Θ
j−1

ℓ \ {f} holds for some j =

1, . . . , q and all ℓ ∈ L. We will show that ▷̃j = ▷j, ∆̃j
g = ∆

j

g, Γ̃j
g = Γ

j

g, and, finally, that
Θj

ℓ \ {f} = Θ
j

ℓ \ {f} for all g ∈ F and ℓ ∈ L.
Since j ≤ q, we have that j − 1 < min{m,m}. Therefore, f does not clinch any locality

in Step j − 1 of the Clinching Round with either report; therefore, Θj−1
ℓ \ {f} = Θ

j−1

ℓ \ {f}
for all ℓ ∈ L implies that Θj−1

ℓ = Θ
j−1

ℓ for all ℓ ∈ L. In Step j− 1(e) of the Clinching Round
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the construction of ▷̃j only depends on which families have clinched which localities, hence
Θj−1

ℓ = Θ
j−1

ℓ for all ℓ ∈ L implies that ▷̃j = ▷j. In Step j(a), the fact that Θj−1
ℓ = Θ

j−1

ℓ

for all ℓ ∈ L and ▷̃j = ▷j implies that every locality rejects the same families under both
reports so ∆j

g = ∆
j

g for all g ∈ F . Similarly, in Step j(b), ▷̃j = ▷j implies that Γj
g = Γ

j

g for all
g ∈ F . Finally, consider any family h ̸= f in Step j(c). As ∆j

h = ∆
j

h, Γ
j
h = Γ

j

h, and h does
not misreport its preferences (only f ’s report changes from ≻f to ≻′

f ), h clinches the same
locality (if any), whether f reports ≻f or ≻′

f . We therefore conclude that Θj
ℓ \{f} = Θ

j

ℓ \{f}
for all ℓ ∈ L, as required.

We now turn to the second part of the lemma. Consider any j = 1, . . . , q with j < {m,m}.
We have established that Θj

ℓ \ {f} = Θ
j

ℓ \ {f} for all ℓ ∈ L. As j < {m,m}, whether f

reports ≻f or ≻′
f , f does not clinch any locality in Step j of the Clinching Round. Therefore

Θj
ℓ = Θ

j

ℓ for all ℓ ∈ L, as required. □
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Appendix E. Additional Examples

We present an illustrative example of the KTTCE algorithm in Online Appendix E.1 and
of the TKDA algorithm in Online Appendix E.2. In Online Appendix E.3, we revisit the
latter example to show how clinching can improve the efficiency of the TKDA algorithm.

E.1. Knapsack Top Trading Cycles with Endowment. We illustrate the KTTCE al-
gorithm using the example from the proof of Theorem 1. We add the following lexicographic
priorities:

▷ℓ1 : f1, f2, . . . ▷ℓ2 : f1,f2, . . . ▷ℓ3 : f3, . . . ▷ℓ4 : f4, . . . .

The KTTCE algorithm also depends on the order in which families are picked, should the
algorithm enter the Rejection Stage. With four families, there are 4! = 24 such orderings;
however, we will see that the only part of that ordering that matters for the outcome is
whether f3 or f4 is picked first. Therefore, we describe the KTTCE algorithm under two
different orderings: KTTCE3 picks f3 before f4 and KTTCE4 picks f4 before f3.

KTTCE3. The workings of KTTCE3 are displayed in Figure E.1. In Round 1, the unique
trading cycle is f1 → ℓ3 → f3 → ℓ2 → f1. That trading cycle is not feasible since ℓ2 cannot
accommodate f3 alongside f2. Therefore, the algorithm enters the Rejection Stage. As f1

and f2 require only one unit of capacity, they can replace any family at any locality; hence
no permanent rejection occurs if one of these families is picked. In contrast, neither f3 nor
f4 can replace f1 at ℓ2. By assumption, f3 is picked before f4 and permanently rejected by
ℓ2.

In Round 2, f3 points at its second preference ℓ3 and the feasible (and trivial) cycle
f3 → ℓ3 → f3 appears so f3 is permanently matched to ℓ3. As a result, ℓ3 is “full” and
permanently rejects all other families, including f1. In Round 3, f1 points at its second
preference ℓ1 and is permanently matched to it, effectively taking advantage of ℓ1’s unassigned
unit of capacity. In Round 4, since f1 has been permanently matched, ℓ2 points at its second-
priority family f2. In addition, µ4(ℓ2) = ∅ since f1 has left ℓ2 to be permanently matched to
ℓ1. As a result, the cycle f2 → ℓ4 → f4 → ℓ2 → f2 is feasible so both families are permanently
matched to the locality at which they are pointing. Since all families are permanently
matched, the algorithm ends and produces the following matching:(

f1 f2 f3 f4

ℓ1 ℓ4 ℓ3 ℓ2

)
.

KTTCE4. The workings of KTTCE4 are displayed in Figure E.2. As for KTTCE3, the
unique cycle in Round 1 is f1 → ℓ3 → f3 → ℓ2 → f1, which is not feasible. The difference in
KTTCE4 compared to KTTCE3 is that in the Rejection Stage f4 is picked and permanently
rejected by ℓ2. In Round 2, f4 points at its second preference ℓ4 (which points back at f4) so f4
is permanently matched to ℓ4. In Round 3, the unique cycle is again f1 → ℓ3 → f3 → ℓ2 → f1,



50 D. DELACRÉTAZ, S. D. KOMINERS, AND A. TEYTELBOYM

which is still infeasible. This time, ℓ2 permanently rejects f3 (because f3 must be picked in
the Rejection Stage). In Round 4, f3 points at and is permanently matched to ℓ3. In Round 5,
ℓ3 is “full” and permanently rejects f1, which points at and is permanently matched to ℓ1.
In Round 6 (not displayed), f2 and ℓ2 point at one another and are permanently matched.
The algorithm ends and produces the following matching:(

f1 f2 f3 f4

ℓ1 ℓ2 ℓ3 ℓ4

)
.

Discussion. Observe first that both matchings Pareto dominate the endowment. This is
not surprising since there is only one dimension and the priorities are lexicographic, hence
Theorem 4 applies. Perhaps more surprising is the fact that KTTCE3 produces a chain-
efficient matching, which may appear at odds with Theorem 1. What is more, we showed
in the proof of Theorem 1 that no individually rational, chain-efficient, and strategy-proof
mechanism exists in this specific market. However, the fact that KTTCE3 produces a chain-
efficient matching in this instance does not mean it is a chain-efficient mechanism. In fact,
one can show that, if f1 reports its preferences to be ℓ3, ℓ2, . . ., KTTCE3 produces(

f1 f2 f3 f4

ℓ2 ℓ1 ℓ3 ℓ4

)
,

which is not chain-efficient.
Second, the matching produced by KTTCE3 Pareto dominates the one produced by

KTTCE4. This is due to the fact that picking f3 allows the algorithm to match f1 to
ℓ1 in Round 3, which makes the cycle f2 → ℓ4 → f4 → ℓ2 → f2 feasible in Round 4. In
contrast, picking f4 in KTTCE4 does not allow matching f2 to ℓ1 in Round 3 (since ℓ1

points at f1), and therefore the cycle f1 → ℓ3 → f3 → ℓ2 → f1 remains infeasible. One might
therefore wonder whether the picking order can be designed in a way that maximizes the
efficiency of the mechanism. This would require picking the “best family” (from an efficiency
point of view) every time the algorithm enters the Rejection Stage. Unfortunately, what
constitutes the best family depends on preferences; therefore such a mechanism would violate
strategy-proofness. In order for the mechanism to be strategy-proof, the picking order must
be entirely independent of preferences, which has an efficiency cost. Third, the KTTCE
mechanism may produce different outcomes with different priorities. If the priorities are
▷ℓ1 : f1, f2, . . . and ▷ℓ2 : f2, f1, . . . (without changing the priorities of ℓ3 and ℓ4 so that pri-
orities remain lexicographic), KTTCE3 and KTTCE4 produce the same matchings as they
do in our example above. If the priorities are either ▷ℓ1 : f2, f1, . . . and ▷ℓ2 : f2, f1, . . . or
▷ℓ1 : f2, f1, . . . and ▷ℓ2 : f1, f2, . . ., KTTCE3 and KTTCE4 respectively produce the following
matchings: (

f1 f2 f3 f4

ℓ2 ℓ1 ℓ3 ℓ4

)
and

(
f1 f2 f3 f4

ℓ3 ℓ1 ℓ2 ℓ4

)
.
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Round 1
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(2)
4
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Figure E.1. Workings of KTTC3.
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Round 2
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Round 5
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Figure E.2. Workings of KTTCE4.
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E.2. Threshold Knapsack Deferred Acceptance. We illustrate the TKDA algorithm
with the following example. There are seven families, four localities, and two dimensions.

Preferences:
≻f1 : ℓ2, ℓ3, . . . ≻f2 : ℓ4, ℓ1, . . . ≻f3 : ℓ2, ℓ1, . . . ≻f4 : ℓ1, . . .

≻f5 : ℓ1, ℓ2, . . . ≻f6 : ℓ1, ℓ2, ℓ3, . . . ≻f7 : ℓ4, . . . .

Priorities:
▷ℓ1 : f1, f2, f3, f4, f5, f6, f7 ▷ℓ2 : f5, f1, f2, f7, f6, f3, f4

▷ℓ3 : f4, f6, f1, . . . ▷ℓ4 : f7, f2, . . . .

Sizes and capacities:

ν =

( f1 f2 f3 f4 f5 f6 f7

d1 2 1 1 2 1 1 1

d2 1 0 0 0 1 0 0

)
κ =

( ℓ1 ℓ2 ℓ3 ℓ4

d1 4 4 3 1

d2 2 1 1 0

)
.

We show that, in this example, the TKDA algorithm produces the following matching:

µTKDA =

(
f1 f2 f3 f4 f5 f6 f7

ℓ3 ℓ1 ℓ1 ℓ1 ℓ2 ℓ3 ℓ4

)
.

The TKDA algorithm lasts four rounds. The first three rounds are displayed in Table E.1.
In Round 1, every family proposes to its first-preference locality. Families f4, f5, and f6

propose to ℓ1. The threshold at ℓ1 of f1, f2, and f3 is ∞ since ℓ1 can accommodate all three
families together. Family f4’s threshold at ℓ1 is 2 because ℓ1 can weakly accommodate f4

alongside any one of f1, f2, or f3, but not alongside {f1, f2} or {f1, f3}. Family f5’s threshold
at ℓ1 is also 2 since ℓ1 can weakly accommodate f5 alongside f4 but not alongside {f1, f4}.
Family f6’s temporary threshold at ℓ1 is 3 since ℓ1 can weakly accommodate f6 alongside
{f4, f5} but not alongside {f1, f4, f5}. However, f6’s threshold at ℓ1 is 2 since f6’s thresh-
old at ℓ1 cannot exceed f5’s because f5 has a higher priority and f6’s temporary threshold
is finite. Finally, f7’s threshold at ℓ1 is 0 since ℓ1 cannot weakly accommodate f7 along-
side {f4, f5, f6}. All three proposing families—f4, f5, and f6—have a threshold of 2 at ℓ1;
therefore, ℓ1 tentatively accepts the two higher-priority proposing families—f4 and f5—and
permanently rejects the lowest-priority proposing family—f6. As ℓ1 is able to accommo-
date {f4, f5, f6}, one might be tempted to allow ℓ1 to tentatively accept f6’s proposal (as
it would in the KDA algorithm). However, an interference-free choice function that allowed
this would violate the cardinal monotonicity condition. Suppose that f1, f2, f4, f5, and f6

propose to ℓ1. Locality ℓ1 cannot weakly accommodate f4 alongside {f1, f2}, f5 alongside
{f1, f2, f4}, and f6 alongside {f1, f2, f4, f5}; therefore, interference-freeness dictates that ℓ1
must only tentatively accept two families: f1 and f2. However, the cardinal monotonicity
condition dictates that at most two families can be tentatively accepted when f4, f5, and f6

propose.
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TKDA – Round 1
ℓ1 (4, 2) θ

... ℓ2 (4, 1) θ
... ℓ3 (3, 1) θ

... ℓ4 (1, 0) θ

f1 (2, 1) ∞ ... f5 (1, 1) ∞ ... f4 (2, 0) ∞ ... f7 (1, 0) ∞

f2 (1, 0) ∞ ... f1 (2, 1) 1
... f6 (1, 0) ∞ ... ��@@f2 (1, 0) 0

f3 (1, 0) ∞ ... f2 (1, 0) ∞ ... f1 (2, 1) 1
... ...

f4 (2, 0) 2
... f7 (1, 0) 1

... ... ...
f5 (1, 1) 2

... f6 (1, 0) 1
... ...

��@@f6 (1, 0) 2
... ��@@f3 (1, 0) 1

... ...
f7 (1, 0) 0

... f4 (2, 0) 0
... ...

TKDA – Round 2
ℓ1 (4, 2) θ

... ℓ2 (4, 1) θ
... ℓ3 (3, 1) θ

... ℓ4 (1, 0) θ

f1 (2, 1) ∞ ... f5 (1, 1) ∞ ... f4 (2, 0) ∞ ... f7 (1, 0) ∞

f2 (1, 0) ∞ ... f1 (2, 1) 1
... f6 (1, 0) ∞ ... f2 (1, 0) 0

f3 (1, 0) ∞ ... f2 (1, 0) ∞ ... f1 (2, 1) 1
... ...

f4 (2, 0) 3
... f7 (1, 0) 1

... ... ...

��@@f5 (1, 1) 0
... ��@@f6 (1, 0) 1

... ...
f6 (1, 0) 0

... f3 (1, 0) 1
... ...

f7 (1, 0) 0
... f4 (2, 0) 0

... ...

TKDA – Round 3
ℓ1 (4, 2) θ

... ℓ2 (4, 1) θ
... ℓ3 (3, 1) θ

... ℓ4 (1, 0) θ

f1 (2, 1) ∞ ... f5 (1, 1) ∞ ... f4 (2, 0) ∞ ... f7 (1, 0) ∞

f2 (1, 0) ∞ ... ��@@f1 (2, 1) 0
... f6 (1, 0) ∞ ... f2 (1, 0) 0

f3 (1, 0) ∞ ... f2 (1, 0) ∞ ... f1 (2, 1) 2
... ...

f4 (2, 0) 3
... f7 (1, 0) 0

... ... ...
f5 (1, 1) 0

... f6 (1, 0) 0
... ...

f6 (1, 0) 0
... f3 (1, 0) 0

... ...
f7 (1, 0) 0

... f4 (2, 0) 0
... ...

Table E.1. Rounds 1-3 of the TKDA algorithm. Sizes and capacities in
parentheses. fi : fi proposes and is tentatively accepted. ��SSfi : fi proposes
and is permanently rejected.
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Families f1 and f3 propose to ℓ2. Family f5’s threshold at ℓ2 is ∞ since f5 has the highest
priority and ℓ2 can accommodate f5 on its own. However, ℓ2 cannot weakly accommodate
f1 alongside f5 as this would require two units of d2 and ℓ2 has only one unit available;
therefore, f1’s threshold at ℓ2 is 1. In contrast, f2’s threshold at ℓ2 is∞ because ℓ2 can weakly
accommodate f2 alongside {f1, f5}. (Recall from Algorithm 5 that if a family’s threshold
is ∞, then it is allowed to exceed the thresholds of higher-priority families.) This situation
illustrates how interference-freeness can improve efficiency over envy-freeness. Locality ℓ2

cannot accommodate f2 alongside {f1, f5} as this would violate ℓ2’s capacity for d2; however,
as f2 does not require any unit of d2, ℓ2 can weakly accommodate f2 alongside {f1, f5}. The
temporary threshold of f7 at ℓ2 is 3 since ℓ2 can weakly accommodate f7 alongside either
one of {f1, f5} or {f1, f2}, but not alongside {f1, f2, f5}. However, since f1’s threshold is
1, we set f7’s threshold to 1 as well. The same reasoning applies to f6 and f3 while f4’s
threshold at ℓ2 is 0 because ℓ2 cannot weakly accommodate f4 alongside {f1, f3}. Locality
ℓ2 tentatively accepts f1 but permanently rejects f3.

No family proposes to ℓ3. The threshold of both f4 and f6 at ℓ3 is ∞ since ℓ3 can
accommodate {f4, f6}. Family f1’s threshold at ℓ3 is 1 since ℓ3 cannot weakly accommodate
f1 alongside f4. Finally, f2 and f7 propose to ℓ4. As f7 has the highest priority at ℓ4

and ℓ4 can accommodate f7 on its own, f7’s threshold at ℓ4 is ∞, which means that ℓ4

tentatively accepts f7. In contrast, ℓ4 cannot weakly accommodate f2 alongside f7; therefore
f2’s threshold at ℓ4 is 0 and ℓ4 permanently rejects f2.

In Round 2, f2 and f3 both propose to ℓ1 after having been permanently rejected by their
respective first preferences (ℓ4 and ℓ2) in Round 1. As a result, f4’s threshold at ℓ1 rises
to 3. This situation illustrates how a family’s threshold can increase from one round to
the next. In Round 1, f4’s threshold at ℓ1 is 2 because ℓ1 cannot weakly accommodate f4

alongside either one of {f1, f2} or {f1, f3}. However, in Round 2, f2 and f3 propose to ℓ1

but f1 does not. As ℓ1 can weakly accommodate f4 alongside {f2, f3}, f4’s threshold at ℓ1
is 3. It follows that ℓ1 continues to tentatively accept f4. In contrast, ℓ4 cannot weakly
accommodate f5 alongside {f2, f3, f4}; therefore, f5’s threshold at ℓ1 is 0 and ℓ1 permanently
rejects f5. The third family that was permanently rejected in Round 1, f6, proposes to ℓ2 in
Round 2. As f6’s threshold at ℓ2 remains 1 and f6 has the second-highest priority (after f1)
among proposing families, ℓ2 permanently rejects f6.

In Round 3, f5 proposes to ℓ2 and is tentatively accepted since f5’s threshold at ℓ2 is ∞.
As a result, however, ℓ2 permanently rejects f1 which now has a threshold of 0. Family f6

proposes to ℓ3 and is also tentatively accepted since f6’s threshold at ℓ3 is ∞. A consequence
of f6’s proposal to ℓ3 is that f1’s threshold at ℓ3 rises to 2 because ℓ3 can weakly accommodate
f1 alongside f6. Therefore, in Round 4, ℓ3 tentatively accepts f1’s proposal and the algorithm
ends.
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E.3. Threshold Knapsack Deferred Acceptance with Clinching. We use the example
introduced in Online Appendix E.2 to illustrate the TKDAC algorithm. We show that

µTKDAC =

(
f1 f2 f3 f4 f5 f6 f7

ℓ3 ℓ1 ℓ1 ℓ1 ℓ2 ℓ2 ℓ4

)
.

The only difference between µTKDA and µTKDAC is that µTKDA(f6) = ℓ3 while µTKDAC(f6)

= ℓ2. Since ℓ2 ≻f6 ℓ3, µTKDAC ≻ µTKDA.
The three steps of the Clinching Round are displayed in Table E.2. In Step 1(a), localities

ℓ1, ℓ2 and ℓ3 do not reject any family since they can accommodate every family on its own.
Locality ℓ4 rejects every family that requires either two units of d1 or one unit of d2, i.e.,
ℓ4 rejects f1, f4, and f5. In Step 1(b), ℓ1 is able to accommodate its three highest-priority
families, which all receive a proposal. Locality ℓ1 cannot weakly accommodate any other
family alongside {f1, f2, f3} since every family takes up at least one unit of capacity in the
first dimension; therefore none of the other families receive a proposal from ℓ1. Locality
ℓ2 can accommodate f5 on its own but cannot weakly accommodate f1 alongside f5 since
both families require a unit of d2 and only one unit is available. In contrast, ℓ2 can weakly
accommodate f2 alongside {f1, f5} because f2 does not require any units of d2. Therefore, ℓ2
proposes to both f5 and f2. None of the other families receive a proposal as this would violate
the capacity of d1. Locality ℓ3 is able to accommodate its two highest-priority families while ℓ4
is only able to accommodate its highest-priority family. No other family receives a proposal
from either ℓ3 or ℓ4 as this would violate their respective capacities in both dimensions.
Family f7 is the only family to receive a proposal from its first-preference locality, ℓ4. As
a result, f7 clinches ℓ4 in Step 1(c). In Step 1(e), ▷̃2 is constructed by giving f7 the lowest
priority at ℓ1, ℓ2, ℓ3. In particular, ℓ2’s priority list is updated to

▷̃2ℓ2 : f5, f1, f2, f6, f3, f4, f7.

In Step 2(a), ℓ4 rejects all families except f7 because f7 has clinched ℓ4 and ℓ4 cannot
weakly accommodate any family alongside f7. In particular, ℓ4 rejects its second-priority
family f2. In Step 2(b), the same proposals occur as in Step 1; however, the fact that ℓ4 has
rejected f2 means that ℓ1 is now f2’s most preferred locality that has not rejected f2. As ℓ1,
proposes to f2, f2 clinches ℓ1 in Step 2(c). In Step 2(e), ▷̃3 is constructed by moving f2 to
the bottom of ℓ2 and ℓ3’s priorities. f2’s priority list is updated to

▷̃3ℓ2 : f5, f1, f6, f3, f4, f2, f7.

In Step 3(a), there are no new rejections as ℓ1 can weakly accommodate any family along-
side f2. In Step 3(b), there is one new proposal: ℓ2 proposes to f6 as ℓ2 can weakly accom-
modate f6 alongside {f1, f5}. This proposal was made possible by the fact that f2 and f7

have both moved below f6 in ℓ2’s priority list. However, ℓ2 is f6’s second preference and f6’s
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Clinching Round – Step 1
ℓ1 (4, 2)

... ℓ2 (4, 1)
... ℓ3 (3, 1)

... ℓ4 (1, 0)

f1 (2, 1) 3
... f5 (1, 1) 3

... f4 (2, 0) 3
... f7 (1, 0) 3

f2 (1, 0) 3
... f1 (2, 1)

... f6 (1, 0) 3
... f2 (1, 0)

f3 (1, 0) 3
... f2 (1, 0) 3

... f1 (2, 1)
... ...

f4 (2, 0)
... f7 (1, 0)

... ... ...
f5 (1, 1)

... f6 (1, 0)
... ...

f6 (1, 0)
... f3 (1, 0)

... ...
f7 (1, 0)

... f4 (2, 0)
... ...

Clinching Round – Step 2
ℓ1 (4, 2)

... ℓ2 (4, 1)
... ℓ3 (3, 1)

... ℓ4 (1, 0)

f1 (2, 1) 3
... f5 (1, 1) 3

... f4 (2, 0) 3
... f7 (1, 0) 3

f2 (1, 0) 3
... f1 (2, 1)

... f6 (1, 0) 3
... f2 (1, 0) 7

f3 (1, 0) 3
... f2 (1, 0) 3

... f1 (2, 1)
... ...

f4 (2, 0)
... f6 (1, 0)

... ... ...
f5 (1, 1)

... f3 (1, 0)
... ...

f6 (1, 0)
... f4 (2, 0)

... ...
f7 (1, 0)

... f7 (1, 0)
... ...

Clinching Round – Step 3
ℓ1 (4, 2)

... ℓ2 (4, 1)
... ℓ3 (3, 1)

... ℓ4 (1, 0)

f1 (2, 1) 3
... f5 (1, 1) 3

... f4 (2, 0) 3
... f7 (1, 0) 3

f2 (1, 0) 3
... f1 (2, 1)

... f6 (1, 0) 3
... f2 (1, 0) 7

f3 (1, 0) 3
... f6 (1, 0) 3

... f1 (2, 1)
... ...

f4 (2, 0)
... f3 (1, 0)

... ... ...
f5 (1, 1)

... f4 (2, 0)
... ...

f6 (1, 0)
... f2 (1, 0)

... ...
f7 (1, 0)

... f7 (1, 0)
... ...

Table E.2. Clinching Round of the TKDAC algorithm. Sizes and capacities
in parentheses. 3: a locality proposes to a family. 7: a locality rejects a
family. fi : family fi clinches a locality.



58 D. DELACRÉTAZ, S. D. KOMINERS, AND A. TEYTELBOYM

first preference, ℓ1, has not rejected f6. It follows that no new clinch occurs in Step 3(c) so
the Clinching Round ends in Step 3(d) and outputs ▷̃ = ▷̃3 such that

▷ℓ1 : f1, f2, f3, f4, f5, f6, f7 ▷ℓ2 : f5, f1, f6, f3, f4, f2, f7

▷ℓ3 : f4, f6, f1, . . . ▷ℓ4 : f7, f2, . . .

With the priority profile ▷̃ constructed in the Clinching Round, the TKDA algorithm lasts
four rounds. The first three rounds are displayed in Table E.3. Changing the priority profile
from ▷ to ▷̃ affects the TKDA algorithm in one important way. With the constructed priority
profile ▷̃, f6 is the third highest-priority family at ℓ2. Since ℓ2 can accommodate f6 alongside
{f1, f5}, f6’s threshold at ℓ2 is ∞. It follows that ℓ2 tentatively accepts ℓ6’s proposal in
Rounds 2-4, which is why µTKDAC(f6) = ℓ2.

When the TKDA algorithm is run with the true priority profile ▷, f6 does not get a
threshold of ∞ at ℓ2 because f2 and f7 remain above f6 on ℓ2’s priority list. The Clinching
Round’s contribution in this example is to identify that f2 and f7 will necessarily be matched
to a more preferred locality, i.e., f2 will be matched to ℓ1 (with ℓ1 ≻f2 ℓ2) and f7 will be
matched to ℓ4 (with ℓ4 ≻f7 ℓ2). Thus, the Clinching Round identifies that f2 and f7 cannot
cause a violation of the interference-freeness or cardinal monotonicity conditions when f6 is
matched to ℓ2.

While the preceding example has two categories, clinching can also yield efficiency gains
when |D| = 1. Consider a simple example with three families f1 (size 2), f2 (size 1), and f3

(size 1) and two localities ℓ1 (capacity 2) and ℓ2 (capacity 2). All families prefer ℓ1 to ℓ2 and
ℓ2 to the null. Both localities prioritize f1 over f2 and f2 over f3.

It is easy to verify that the TKDA algorithm matches f1 to ℓ1, f2 to ℓ2, and f3 to the null.
The reason f3 is matched to the null is that the cardinal monotonicity condition forces ℓ2

to permanently reject f3 when f2 and f3 propose, as both families would be rejected if f1
also proposed. However, in the TKDAC algorithm, f1 clinches ℓ1 and goes to the bottom of
ℓ2’s priority; as a result, f2 and f3 clinch ℓ2. Therefore, clinching allows identifying that f1
will not propose to ℓ2; hence, ℓ2 can accept both f2 and f3 as the violation of the cardinal
monotonicity condition created will not materialize.
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TKDAC – Round 1
ℓ1 (4, 2) θ

... ℓ2 (4, 1) θ
... ℓ3 (3, 1) θ

... ℓ4 (1, 0) θ

f1 (2, 1) ∞ ... f5 (1, 1) ∞ ... f4 (2, 0) ∞ ... f7 (1, 0) ∞

f2 (1, 0) ∞ ... f1 (2, 1) 1
... f6 (1, 0) ∞ ... ��@@f2 (1, 0) 0

f3 (1, 0) ∞ ... f6 (1, 0) ∞ ... f1 (2, 1) 1
... ...

f4 (2, 0) 2
... ��@@f3 (1, 0) 1

... ... ...
f5 (1, 1) 2

... f4 (2, 0) 0
... ...

��@@f6 (1, 0) 2
... f2 (1, 0) 0

... ...
f7 (1, 0) 0

... f7 (1, 0) 0
... ...

TKDAC – Round 2
ℓ1 (4, 2) θ

... ℓ2 (4, 1) θ
... ℓ3 (3, 1) θ

... ℓ4 (1, 0) θ

f1 (2, 1) ∞ ... f5 (1, 1) ∞ ... f4 (2, 0) ∞ ... f7 (1, 0) ∞

f2 (1, 0) ∞ ... f1 (2, 1) 1
... f6 (1, 0) ∞ ... f2 (1, 0) 0

f3 (1, 0) ∞ ... f6 (1, 0) ∞ ... f1 (2, 1) 1
... ...

f4 (2, 0) 3
... f3 (1, 0) 1

... ... ...

��@@f5 (1, 1) 0
... f4 (2, 0) 0

... ...
f6 (1, 0) 0

... f2 (1, 0) 0
... ...

f7 (1, 0) 0
... f7 (1, 0) 0

... ...

TKDAC – Round 3
ℓ1 (4, 2) θ

... ℓ2 (4, 1) θ
... ℓ3 (3, 1) θ

... ℓ4 (1, 0) θ

f1 (2, 1) ∞ ... f5 (1, 1) ∞ ... f4 (2, 0) ∞ ... f7 (1, 0) ∞

f2 (1, 0) ∞ ... ��@@f1 (2, 1) 0
... f6 (1, 0) ∞ ... f2 (1, 0) 0

f3 (1, 0) ∞ ... f6 (1, 0) ∞ ... f1 (2, 1) 2
... ...

f4 (2, 0) 3
... f3 (1, 0) 0

... ... ...
f5 (1, 1) 0

... f4 (2, 0) 0
... ...

f6 (1, 0) 0
... f2 (1, 0) 0

... ...
f7 (1, 0) 0

... f7 (1, 0) 0
... ...

Table E.3. Rounds 1-3 of the TKDAC algorithm. Sizes and capacities in
parentheses. fi : fi proposes and is tentatively accepted. ��SSfi : fi proposes
and is permanently rejected.
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Preference type Type 1 Type 2 Type 3 Type 4
Largest-to-smallest family 5.9

(1.8)
50.0
(15.2)

49.5
(15.0)

23.7
(7.2)

Smallest-to-largest family 6.6
(2.0)

44.6
(13.5)

46.0
(14.0)

23.3
(7.1)

Table F.1. Number (percentage) of families made better off for different
orderings in the Rejection Stage of the KTTCE (one-dimensional constraints).
Averages over 100 simulation rounds. Numbers are rounded to 1 d.p.

Preference type Type 1 Type 2 Type 3 Type 4
Families made better off 6.8

(2.1%)
10.7
(3.3%)

11.7
(3.6%)

9.7
(3.0%)

Table F.2. Number (fraction) of families made better off by the KTTCE
mechanism (three-dimensionsional constraints). Averages over 100 simulation
rounds.

Appendix F. Further Simulation Results

F.1. Effect of the order of families in the Rejection Stage in the KTTCE algo-
rithm. A part of the design of the KTTCE mechanism that we leave open is the order
in which families are picked in the Rejection Stage. In our main simulations, that order
is determined randomly (with an equal probability for each possible order). We also test
two alternative rules: ordering families from largest to smallest and from smallest to largest
(same-size families continue to be ordered randomly). The results of the two alternative
family orderings in the Rejection Stage are displayed in Table F.1. We see that the largest-
to-smallest ordering is at least as efficient as the smallest-to-largest ordering: the differences
are pronounced for Type 2 and Type 3 preferences which generate the most improvements
and are not significant for Type 1 and Type 4 preferences. Intuitively, larger families are
more likely to cause a cycle not to be feasible (see Algorithm 2) as the locality at which they
are pointing may not be able to accommodate them. Therefore, by rejecting larger families
first, the algorithm needs to reject fewer families before finding a feasible cycle. Compared
to a random order, one would then naturally expect rejecting larger families first to have a
positive impact on efficiency and rejecting smaller families first to have a negative one. Why
is the efficiency gain of the largest-to-smallest ordering small relative to a random ordering?
The reason is that families that can be rejected in the Rejection Stage tend to be large,
meaning that, when families are ordered randomly, it is likely that larger families will be
picked first and the algorithm will find a feasible cycle before picking one of the few small
families. Consequently, a random ordering does not result in large efficiency losses compared
to the largest-to-smallest ordering.
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Preference type Type 1 Type 2 Type 3 Type 4
Interference violations

KTTCE 18888
(17.4%)

18225
(16.8%)

18378
(17.0%)

18617
(17.2%)

KTTC 603
(0.6%)

1302
(1.2%)

1306
(1.2%)

4390
(4.1%)

KDA 0 0 0 0
TKDA 0 0 0 0

Average priority rank
KTTCE 108 108 108 108
KTTC 36 97 96 78
KDA 25 27 27 26
TKDA 14 13 14 14

Number of matched families
KTTCE 315

(95.8%)
315

(95.8%)
315

(95.8%)
315

(95.8%)

KTTC 303
(92.1%)

307
(93.4%)

308
(93.4%)

302
(91.9%)

KDA 286
(86.7%)

287
(87.1%)

289
(86.1%)

286
(86.9%)

TKDA 234
(71.1%)

230
(70.0%)

231
(70.2%)

232
(70.7%)

Fraction of unfilled capacity
KTTCE 9.5% 9.4% 9.4% 9.4%
KTTC 11.6% 12.3% 12.3% 13.1%
KDA 17.8% 15.8% 15.9% 16.8%
TKDA 26.6% 27.3% 27.5% 27.1%

Table F.3. Outcomes of KTTCE, KTTC, KDA, and TKDA algorithms (one-
dimensional constraints). Averages over 100 simulation rounds (and, for aver-
age priority rank, over all localities). Numbers (percentages) are rounded to
the nearest integer (to 1 d.p.).

F.2. Performance of KTTC, KTTCE, KDA, and TKDA algorithms in the three-
dimensional setting. Table F.2 summarizes the performance of the KTTCE mechanism
in the three-dimensional environment. Compared to the one-dimensional case, fewer families
are made better off on average. This finding is not surprising since the families’ needs can
differ across three dimensions, which makes feasible trades harder to find. However, despite
our result that no mechanism is guaranteed to improve upon an endowment when there
are multiple services (Theorem 2), we see that the KTTCE mechanism continues to find a
significant number of improvements.25

Table F.3 and Figure F.1 display the results for the KTTC, KDA, and TKDA algorithms
in the three-dimensional environment. The results are consistent with the one-dimensional
environment (Table 6) across preference types and mechanisms. The second panel of Ta-
ble F.3 shows that the average rank of matched families across different algorithms in the
25Sizes are not monotonic because a family can have more adults but fewer children than another family.
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three-dimensional setting is similar to that of the one-dimensional setting. Figure F.1 shows
that the ranking of the mechanisms by efficiency in the one-dimensional setting (Figure 2) is
preserved in the three-dimensional setting. Comparing Table 6 and Table F.3, we see that our
mechanisms tend not to perform as well in the three-dimensional environment as in the one-
dimensional environment: the KTTC mechanism generates more interference violations and
all three mechanisms are less efficient. These findings are intuitive in the sense that having
three dimensions in effect increases the heterogeneity among families’ sizes. Therefore, the
KTTC mechanism has more difficulty finding Pareto-improving trades and those trades are
more likely to create interference violations; moreover, in the KDA and TKDA mechanism,
localities may have to reject more families in order to prevent interference violations.

Finally, we assess the efficiency gain associated with using our solution concept of interference-
freeness as opposed to envy-freeness. We modify the KDA algorithm so that it produces the
family-optimal envy-free matching and the TKDA algorithm so that it produces an envy-free
matching (that is, by only replacing “weak accommodation” with “accommodation” in Algo-
rithms 3 and 5). With one dimension, there is no impact on the outcome of either algorithm
(see Proposition C.3 and Corollary C.1). However, in the presence of multidimensional con-
straints, Figure F.2 shows that the impact on efficiency of using interference-freeness over
envy-freeness is substantial both for the KDA and the TKDA algorithms.
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Appendix G. Relationships to Prior Models

Our model generalizes a number of existing matching models, including the following:

• School choice (Abdulkadiroğlu and Sönmez, 2003): Each student takes up a single
seat at any school. Let us relabel a student as a family and a school as a locality.
In our model, this corresponds to having only one dimension d (|D| = 1) and any
family f ∈ F having size νf

d = 1.
• Controlled school choice or college admissions with affirmative action and m type-
specific quotas (Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu, 2005; Westkamp,
2013): Each student is one of m types and each school has a quota for each of the m
types. Let us again relabel a student as a family, a school as a locality and a type
as a dimension. In our model, this corresponds to having m dimensions (|D| = m).
Each family takes up one unit of capacity in exactly one of the dimensions (νf is a
m-dimensional unit vectors for every f ∈ F ).

• School choice with majority quotas (Kojima, 2012; Hafalir et al., 2013): Each student
is either a majority or a minority student. Each school has an overall cap on the
number of students, which includes a cap for majority students. Let us again relabel
a majority/minority student as a majority/minority family and a school as a locality.
Let us also relabel “any student seats” as dimension d1 and “majority student seats”
as dimension d2 (|D| = 2). In our model, the capacity of any locality for d1 is greater
than the capacity for d2 (κℓ

d1
> κℓ

d2
for all ℓ ∈ L). A majority family f takes up one

unit of capacity in each dimension (νf = (1, 1)) whereas a minority family f ′ only
takes up a unit of capacity in d1 (νf ′

= (1, 0)).
• Hungarian college admissions (Biró et al., 2010): Students take up a college seat as
well as a faculty seat. Both colleges and faculties have their own capacities. Let us
relabel a student as a family and a college as a locality. Let us also relabel “college
capacity” as the capacity of the locality in dimension d1 (κℓ

d1
). Let us relabel the

faculties as the remaining dimensions D \ {d1}. Therefore, each family f ’s size is
νf = (1, 0, 0, . . . , 1, . . . , 0, 0) where the second “1” is the unit of capacity taken up in
d ∈ D \ {d1}.

• Allocation of trainee teachers to schools in Slovakia and Czechia (Cechlárová et al.,
2015): Teachers are required to teach two out of three subjects and each school has
a capacity for all three subjects. Let us relabel a teacher as a family, a school as
a locality, and a subject as a dimension. In our model, this corresponds to having
three dimensions (|D| = 3) and the size of every family f being either νf = (0, 1, 1),
νf = (1, 0, 1), or νf = (1, 1, 0).

• College admission with multidimensional privileges in Brazil (Aygün and Bó, 2020):
Students can claim any combination of three privileges. Colleges have quotas for



66 D. DELACRÉTAZ, S. D. KOMINERS, AND A. TEYTELBOYM

each privilege, but a single student can claim more than one privilege. Let us relabel
a student as a family, a college as a locality, and a privilege as a dimension. In our
model, this corresponds to having three dimensions (|D| = 3) and the size of every
family being an element of {0, 1}3.

• Resident-hospital matching with sizes (McDermid and Manlove, 2010): Doctors apply
to hospitals, but the doctors can take up more than one seat at a hospital, e.g.,
because they arrive as couples. Let us relabel doctors as families and hospitals as
localities. In our model, this corresponds to having one dimension (|D| = 1) and
families having an arbitrary size.26

Most of the models described above use further assumptions and develop solution ap-
proaches that suit their particular contexts but differ substantially from ours. Nevertheless,
as we note throughout the paper, several impossibility and complexity results established in
these papers will apply immediately to our framework.
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