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Online Appendix

B Nonlinear Waiting Costs

This appendix extends the model to allow for discounting. Agents pay a linear waiting

cost c per period until they are assigned, and discount waiting costs and the value of the

assigned item by δ < 1 per period. Formally, the period t0 utility of an agent of type θ

who is assigned item xt item in period t ≥ t0 is

ut0θ (X, t) = −
t−1∑
τ=t0

δτ−t0c+ δt−t0vθ(x).

where the valuation vθ (x) is v > 0 for a matching item and 0 for mismatched items:

vθ(x) =

v (θ,X) ∈ {(α,A) , (β,B)}

0 (θ,X) ∈ {(α,B) , (β,A)}
.

Note that past waiting costs are sunk costs, and that ut0θ is independent of the time when

the agent joined the waiting-list.

To analyze the misallocation rate under the FCFS buffer-queue policy, denote by

Uα(A(k)) the utility of an α agent who receives the k-th future A item to arrive. The

probability that the k-th item will arrive in exactly t periods is (pA)k(1−pA)t−k
(
t−1
k−1

)
, and

we have that

Uα(A(k)) =
∞∑
t=k

(pA)k(1− pA)t−k
(
t− 1

k − 1

)
ut0α (A, t0 + t)

=
1

1− δ

(
(c+ v(1− δ))

(
δpA

1− δ(1− pA)

)k
− c

)
.

Thus, an α agent will be willing to decline a B item if(
δpA

1− δ (1− pA)

)k
≥ c

c+ v(1− δ)
,
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or, equivalently,

k ≤
log
(

c
c+v(1−δ)

)
log
(

δpA
1−δ(1−pA)

) .
These derivations allow us to extend our results from Section 3 to settings in which agents

discount future periods.

Theorem 5. Let agents have a linear cost of waiting of c ≥ 0 per period and discount

the value of assigned items by δ < 1 per period. Assume pA = pα. The misallocation rate

under the FCFS buffer-queue mechanism is

ξFCFS =
2pApB

pBKA + pAKB + 1
,

where KA =
⌊

log( c
c+v(1−δ))/log

(
δpA

1−δ(1−pA)

)⌋
and KB =

⌊
log( c

c+v(1−δ))/log

(
δpB

1−δ(1−pB)

)⌋
.

C The Disjoint-Queues Mechanism

This section considers the disjoint-queues (DQ) mechanism, which asks agents to report

their preferences as soon as they join the waiting-list. The mechanism holds two separate

queues, one for A items and one for B items, and asks agents to select and join a single

queue. Agents observe the length of both queues when they make their choice. Both

queues follow an FCFS policy. Once agents join a queue, they wait in that queue until

they are assigned to the item of that queue.49

Misallocation happens under the DQ mechanism for similar reasons that misallocation

happens under the FCFS buffer-queue mechanism: the random arrivals of agents and

items may result in a temporary imbalance between the demand from agents and the

available supply of items. Under the DQ mechanism, this imbalance is realized in the

form of a difference between the expected wait in the two queues. When this difference

grows too large, agents will join the queue with a shorter wait regardless of their type,

possibly resulting in misallocation.

In contrast to buffer-queue mechanisms, the analysis of the DQ mechanism requires a

specification of the agent arrival process. For simplicity, we assume that in each period,

one new agent joins the waiting-list and then one item arrives. In addition, assume that

49This mechanism is a simplified version of mechanisms commonly used by public housing authorities,
where applicants are asked to select a single project-specific waiting-list they would like to join (e.g., the
New York City Housing Authority (New York City Public Housing Authority, 2015)).
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initially both queues are of equal length.

We capture the dynamics of the DQ mechanism using techniques similar to those used

in section 5 and Appendix A. Denote by `A the number of agents in the A queue and by

`B the number of agents in the B queue. By assumption, each period one agent joins one

of the queues and one agent is assigned, and therefore the total number of agents remains

a constant we denote by 2M . We assume 2M is sufficiently large so that neither queue

is ever empty. The Markov chain used to capture the dynamics of the DQ mechanism is

described within the proof of the following Lemma.

Lemma 11. Assume pA = pα = p. For all sufficiently large M , the misallocation rate

under the disjoint-queues mechanism is

ξDQ =
2p(1− p)

bp (1− p) w̄ − (1− 2p)Mc+ bp (1− p) w̄ + (1− 2p)Mc+ 2
.

Notice ξDQ ≈ 2p(1−p)
2p(1−p)w̄+2

(by ignoring the integer constraints), which is similar to the

misallocation rate under an FCFS buffer-queue mechanism. The difference is due to the

assumption that in each period, one item and one agent arrive. A different arrival process

can lead to a different misallocation probability.

Proof. When an agent joins the waiting-list, he observes the length of both queues. The

number of misallocated items is equal to the number of agents who join their mismatched

queue. To calculate the latter, we establish a Markov chain that captures the dynamics

of this system.

Let ∆ = `A/p − `B/ (1− p) be the difference between the expected wait of the two

queues. An α agent will prefer to join the A queue if

v − c · `A
p
≥ −c · `B

1− p
,

or

∆ ≤ v/c = w̄.

Similarly, a β agent will prefer to join the B queue if −∆ ≤ w̄. Thus, for sufficiently large

M , neither queue is ever empty.

We can capture the dynamics of the mechanism using a Markov chain whose states are

possible values of ∆. The value of ∆ changes when either an agent joins the waiting-list

or an item arrives and an agent is assigned. If a period begins with ∆ ∈ [−w̄, w̄] with

probability pα, the new agent joins the A queue, increasing `A by 1, and with probability

pβ, the new agent joins the B queue, increasing `B by 1. If ∆ /∈ [−w̄, w̄], the new agent

always joins the shorter queue. Immediately after the agent joins, the item arrives; with
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probability pA, an A arrives and `A decreases by 1, and with probability pB, a B arrives

and `B decreases by 1. Thus, in every period, the value of ∆ can change by 0,−γ, or +γ

where γ = 1
p

+ 1
1−p = 1

p(1−p) . We assume that initially both queues hold the same number

of agents, and therefore the initial value of ∆ is given by ∆0 = M
p
− M

1−p .

We have that ∆−∆0 is always a multiple of γ and write ∆ = ∆0 + k · γ. Denote the

maximal value of k such that ∆ ∈ [−w̄, w̄] by

kA = max {k ∈ Z | ∆0 + k · γ ≤ w̄}

= max {k ∈ Z | k ≤ (w̄ −∆0) /γ}

= b(w̄ −∆0) /γc ,

and denote the minimal value of k such that ∆ ∈ [−w̄, w̄] by

kB = min

{
k ∈ Z | v − c · `B

pB
≥ −c · `A

pA

}
= min {k ∈ Z | −∆0 − k · γ ≤ w̄}

= min {k ∈ Z | k ≥ (−w̄ −∆0) /γ}

= d(−w̄ −∆0) /γe

= −b(w̄ + ∆0) /γc .

We capture the dynamics of the system by a Markov chain whose states S are possible

values of k at the beginning of a period

S = {kB − 1, kB, . . . , . . . , kA, kA + 1},

and transition probabilities are given by

P (st|st−1) =



pαpB st−1 ∈
[
kB, kA

]
, st = st−1 + 1

pβpA st−1 ∈
[
kB, kA

]
, st = st−1 − 1

pαpA + pβpB st−1 ∈
[
kB, kA

]
, st = st−1

pA st−1 = kB − 1, st = st−1

pB st−1 = kB − 1, st = st−1 + 1

pB st−1 = kA + 1, st = st−1

pA st−1 = kA + 1, st = st−1 − 1 ,

We next solve for the stationary distribution π. Equating the flow between s = k and

4



s′ = (k + 1) for k, (k + 1) ∈
[
kB, kA

]
, we get that

π(k)pαpB = π (k + 1) pβpA,

and given that pα = pA, we get

π(k) = π (k + 1) .

Denote τ = π(k) for any k ∈
[
kB, kA

]
. For s = kA + 1 we get the flow equation

π(kA + 1)pA = π(kA)pαpB,

giving

π(kA + 1) = (1− p)τ

π(kB − 1) = pτ .

Equating the sum of probabilities to 1, we get that

1 =
∑

k∈[kB ,kA]

π(k) + π(kA + 1) + π(kB − 1)

=
(
kA − kB + 1

)
τ + (1− p)τ + pτ

=
(
kA − kB + 2

)
τ,

and therefore

τ =
1

kA − kB + 2
.

Misallocation happens when the state is either kA + 1 or kB − 1 and the new agent is

mismatched; therefore, the misallocation rate is

ξDQ = pαπ(kA + 1) + pβπ(kB − 1)

=
2p(1− p)
kA − kB + 2

=
2p(1− p)

b(w̄ −∆0) /γc+ b(w̄ + ∆0) /γc+ 2

=
2p(1− p)

bp (1− p) w̄ − (1− 2p)Mc+ bp (1− p) w̄ + (1− 2p)Mc+ 2
.
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D Omitted Proofs

This appendix includes omitted proofs in the order of their appearance in the main text.

Sections 5 and Appendix A develop the technical tools that are used throughout the

paper, and proofs of results from Section 3 and Section 6 rely on results from these

sections. The proof of Lemma 2 from Section 2 uses Corollary 1. The proof of Theorem

2 is a generalization of the proofs of Lemma 7 and Corollary 3. The proof of Theorem 1

from Section 3 relies on results from Section 5.

D.1 Proofs from Section 2

Proof of Lemma 1. Consider an arbitrary assignment µ and an arrival process specified

by χ : I → {t ≥ 0} where χ(i) is the arrival time of agent i ∈ I. Assume the world ends

after period T and let IT = {i ∈ I|χ(i) ≤ T} denote the set of agents that arrive before

period T , and let IT (µ) = {µ(t) | t ≤ T} denote the set of agents that were assigned under

µ before period T . Let ξt ∈ {0, 1} be an indicator equal to 1 if the item xt is misallocated

under µ. The sum of agents utilities up to time T under µ is

WFT =
T∑
t=0

((1− ξt) · v + ξt · 0− c · (t− χ (µ(t))))−
∑

i∈IT \IT (µ)

c · (T − χ(i))

where the first summation gives the total utility of agents in IT (µ) and the second sum-

mation gives the total utility of the remaining unassigned agents. Rewriting, we have

that

WFT = v ·

(
T −

T∑
t=0

ξt

)
+

T∑
t=0

c · (T − t)−
∑
i∈IT

c · (T − χ(i))

Since the last two arguments do not depend on µ, they will cancel out when we take the

difference between the welfare under the two assignments µ, µ′. Therefore the relative

welfare of an assignment depends only on the number of misallocations
∑T

t=0 ξt.

Proof of Lemma 2. The lemma follows from the observation that the full information

mechanism is equivalent to a buffer-queue mechanism with Kα = Kβ = M − 1 together

with Corollary 1.

6



D.2 Proofs from Section 3

Proof of Lemma 3. Consider an α agent in position k. The α agent always accepts an A

item. If the α agent is offered a B item, it must be that the agents in positions 1, . . . , k−1

declined the B item and are waiting for an A.50 Thus, the agent’s expected wait for an A

is the expected number of periods until k copies of A arrive, which is k/pA. Thus, the α

agent will decline a B if and only if v− c ·k/pA ≥ 0 , or k ≤ pAv/c = pAw̄. Symmetrically,

a β agent in position k declines an A item if and only if k ≤ pBw̄.

Proof of Theorem 1. Theorem 1 is a direct corollary of Theorem 3 and Lemma 5.

The expressions for the WFL are obtained by substituting in the expression for the

misallocation rate and the formulas for the maximal BQ sizes. When the system is

balanced, the WFL is

WFLWLWD = vξWLWD

= v
2p(1− p)

(1− p)KA + pKB + 1

= v
2p(1− p)

(1− p) bpw̄c+ p b(1− p)w̄c+ 1
.

When the system is unbalanced, the WFL is

WFLWLWD = v
(
ξWLWD − |pA − pα|

)
= v · (pA − pα)

(pβ/pB)K
B+1 + (pα/pA)K

A+1

(pβ/pB)K
B+1 − (pα/pA)K

A+1
− v · |pA − pα| .

If pα < pA,

v · (pA − pα)
(pβ/pB)K

B+1 + (pα/pA)K
A+1

(pβ/pB)K
B+1 − (pα/pA)K

A+1
− v · (pA − pα)

=v · (pA − pα)
2 (pα/pA)K

A+1

(pβ/pB)K
B+1 − (pα/pA)K

A+1

=
2v · |pA − pα|

(pα/pA)−(KA+1) (pβ/pB)K
B+1 − 1

.

50To see this claim is true, observe that the problem of the agent in the first position is stationary, and
he will either immediately take a mismatched B or wait for an A (by assumption, the agent waits for
an A when both options give the same utility). This argument implies the problem of the agent in the
second position is stationary, and the claim follows by induction.
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If pα > pA, we perform similar operations and obtain

v · (pA − pα)
(pβ/pB)K

B+1 + (pα/pA)K
A+1

(pβ/pB)K
B+1 − (pα/pA)K

A+1
+ v · (pA − pα)

=
2v · |pA − pα|

(pα/pA)K
A+1 (pβ/pB)−(KB+1) − 1

.

We can combine the results from these two cases into one expression:

WFLWLWD =
2v |pA − pα|(

(pα/pA)K
A+1 (pβ/pB)−(KB+1)

)sgn(pα−pA)

− 1

.

Proof of Corollary 1. The maximal sizes in the FCFS BQ system are KA = bpAw̄c =

bpAv/cc and KB = bpBw̄c = bpBv/cc. As c → 0, we have that KA, KB → ∞. The

waiting cost c affects ξ and WFL only through KA and KB. Hence, by Theorem 3 we

have that

lim
c→0

ξWLWD = lim
KA,KB→∞

ξWLWD = |pA − pα| ,

and

lim
c→0

WFLWLWD = lim
KA,KB→∞

v
(
ξWLWD − |pA − pα|

)
= 0 .

Proof of Corollary 2. If the system is balanced, we have that

lim
v→∞

WFLWLWD = lim
v→∞

v
2p(1− p)

(1− p) bpv/cc+ p b(1− p)v/cc+ 1
.

Because x− 1 ≤ bxc ≤ x+ 1, we have that

(1− p) bpv/cc+ p b(1− p)v/cc+ 1 = 2p(1− p)v/c+ r (v)

for r (v) satisfying −10 ≤ r (v) ≤ 10 for all v > 0. Therefore,
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lim
v→∞

WFLWLWD = lim
v→∞

v
2p(1− p)

2p(1− p)v/c+ r (v)

= lim
v→∞

c · 2p(1− p)
2p(1− p) + r(v) · c/v

=c .

If pα > pA, we have that

WFLWLWD =
2v · (pα − pA)

(pα/pA)K
A+1 (pβ/pB)−K

B−1 − 1

= 2 · (pα − pA)
v · bKB+1

aKA+1 − bKB+1

= 2 · (pα − pA)
v · bbpBv/cc+1

abpAv/cc+1 − bbpBv/cc+1
,

where a = pα/pA > 1 and b = pβ/pB < 1. Because limv→∞ v · bbpBv/cc+1 = 0 and

limv→∞ a
bpAv/cc+1 − bbpBv/cc+1 =∞, we have that

lim
v→∞

WFLWLWD = lim
v→∞

2 · (pα − pA)
v · bbpBv/cc+1

abpAv/cc+1 − bbpBv/cc+1

= 0.

A symmetric argument shows that if pα < pA, we have limv→∞WFLWLWD = 0.

D.3 Proofs from Section 4

Proof of Theorem 2. In the unique equilibrium under the information disclosure Υ∗, an α

agent joins the buffer-queue if he is offered a B and informed that k ∈ {1, . . . , 2pAw̄ − 1},
and takes the current item otherwise. To see that this is an equilibrium, observe that

k ≥ 2pAw̄ implies the expected wait is above w̄, and therefore any α agent best responds

by taking the current item. By Lemma 10 in Appendix A, in equilibrium an α agent who is

informed that k < 2pAw̄ is equally likely to be in either of the positions 1, . . . , b2pAw̄c−1.

Thus, the agent believes his expected wait is b2pAw̄c /2pA ≤ w̄ and best responds by

waiting for an A. By Little’s Law, the expected wait conditional on being informed that

k < 2pAw̄ is lower than w̄ if some agents do not join the buffer-queue after being informed

that k < 2pAw̄. Therefore, it is a dominant strategy for an α agent to join the buffer-queue

if offered a B and informed that k < 2pAw̄.

Next, we show that information disclosure Υ∗ gives the minimal welfare loss.51 With-

51This part of the proof follows from the proof of Theorem 7 in online appendix D of the working paper
version which extends Lemma 7 and Corollary 3. For completeness, we provide a proof here.
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out loss we can restrict attention to information disclosures which send a recommendation

whether mismatched agents should take the item or join the buffer-queue, and equilib-

ria in which the agents follow the recommended action. To constitute an equilibrium,

the expected wait conditional on receiving a recommendation to join the buffer-queue

must be less than w̄. To formally specify this IC constraint, we calculate the stationary

distribution of the system.

As in Lemma 4, because agents join the buffer-queue only if they are offered a mis-

matched item, the possible states are k ∈ Z where k > 0 corresponds to k agents of type α

waiting in the A buffer-queue and k ≤ 0 corresponds to |k| agents of type β waiting in the

B buffer-queue. As in Appendix A, we used an extended state space Z× {φ,A,B} that

includes within-period states that indicate whether an item is currently being offered.

Let f(k) denote the probability that a mismatched agent is given the recommendation

to join the buffer-queue in state k. It will be helpful to denote FB(k) =
∏k−1

i=0 f(i) for

k > 0, FA(k) =
∏|k|−1

i=0 f(−i) for k < 0, and FB(0) = FA(0) = 1.

Denote the stationary distribution by π, where π(k) = πφ(k) is the stationary prob-

ability of state (k, φ), and πB(k) is the stationary probability of (k,B) (and likewise for

πA). We follow the same steps as in Lemma 10 to calculate the stationary distribution π.

For any k > 0, the mechanism must visit state (k,B) between every two visits to (k, φ),

and vice versa. Therefore, we have that

πB(k) = πφ(k).

For k = 0, we have that the state (0, B) can only be reached from the state (0, φ) by an

arrival of a B item. Therefore,

πB(0) = pBπ
φ(0) = (1− p)πφ(0).

Because the flow through the cut between s ≤ k and s ≥ k + 1 must be zero (see Figure

11) we have that for k ≥ 0

pAπ
φ(k + 1) = pαf(k)πB(k) ,

or

πφ(k + 1) = f(k)πB(k) .

For k = 0 we have

πφ(1) = f(0)πB(0)

= f(0)(1− p)π(0).
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By induction, for any k > 0 we have

πφ(k) = πB(k) = (1− p)π(0)FB(k).

We solve for π(0) using that the total probability is equal to 1 to get that

πφ(0) =
1

2
· 1

1 + (1− p)
∑∞

k=1 F
B(k) + p

∑∞
k=1 F

A(−k)
.

We can now formulate the IC constraint, which requires that the expected wait con-

ditional on the current item and on receiving a recommendation to join the buffer-queue

wA,wB must be less than w̄. We calculate wA by using Little’s Law (which states that

the average wait is equal to the average number of agents in the system divided by the

arrival rate). Observe that if all agents follow the mechanism’s recommendation, then

wA is the expected wait for a randomly approached α agent who joins the buffer-queue.

Consider states in which α agents are waiting. The arrival rate of α approached agents is

equal to the rate at which α approached agents are assigned (otherwise, wA is infinite),

which is pA. We calculate the average number of agents in the buffer-queue by taking the

stationary distribution restricted to the states in which α agents are waiting. Therefore,

the expected wait of a random α agent is

wA =
1

pA

∑∞
k=1 π

B(k) · k∑∞
k=1 π

B(k)

=
1

p

∑∞
k=1 F

B(k) · k∑∞
k=1 F

B(k)
,

and that the IC constraint can be written as:
∞∑
k=1

FB(k) · k ≤ w̄ · p
∞∑
k=1

FB(k).

Given the stationary distribution, we can calculate the misallocation rate. Agents are

approached in states (k,A) or (k,B). Transitions from these states result in misallocation

if the current item is offered to a mismatched agent and the agent does not join the buffer-

queue. Therefore,

ξ =

∑∞
k=0 pα

(
1− fB(k)

)
πB(k) +

∑∞
k=0 pβ

(
1− fA(−k)

)
πA(−k)∑∞

k=0 π
B(k) +

∑∞
k=0 π

A(k)
.
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To simplify this expression, note

∞∑
k=0

pα
(
1− fB(k)

)
πB(k) =

∞∑
k=0

p
(
1− fB(k)

)
(1− p)π(0)

k−1∏
i=0

fB(i)

= p(1− p)π(0) ·
∞∑
k=0

(
k−1∏
i=0

fB(i)−
k∏
i=0

fB(i)

)
= p(1− p)π(0) ·

(
1− lim

k→∞
FB(k)

)
.

The denominator, which is the probability that the next transition will approach a new

agent, is equal to 1/2 by the previous derivation. The IC constraint together with the

monotonicity of FB imply that limk→∞ F
B(k) = 0. Thus, for any IC information disclo-

sure we have

ξ =
2p(1− p)

1 + (1− p)
∑∞

k=1 F
B(k) + p

∑∞
k=1 F

A(−k)
.

Taking these results together, we find the minimal misallocation rate out of all IC

information disclosure policies is bounded by the solution to the following optimization

problem:

MinimizeFA,FB
2p(1−p)

1+(1−p)
∑∞
k=1 F

B(k)+p
∑∞
k=1 F

A(−k)

s.t.
∑∞

k=1 (k − w̄p) · FB(k) ≤ 0∑∞
k=1 (k − w̄(1− p)) · FA(−k) ≤ 0

1 ≥ FB(k) ≥ FB(k + 1) ≥ 0 ∀k > 0

1 ≥ FA(−k) ≥ FA(−k − 1) ≥ 0 ∀k > 0 .

This optimization problem can be decomposed to two separate optimization problems,

one for the domain where α approached agents are present:

Maximize
FB

∑KA

k=1 F
B(k) (1)

s.t.
∑∞

k=1 (k − w̄p) · FB(k) ≤ 0

1 ≥ FB(k) ≥ FB(k + 1) ≥ 0 ∀k > 0

and the analogous problem for the domain in which β approached agents are present.
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The optimal solution to (1) is given by

F ∗(k) =

1 k < L∗

x∗ k = L∗

for L∗ ∈ N and x∗ ∈ [0, 1), and the first constraint must bind. Thus, the optimal solution

corresponds to L∗ = b2pw̄c − 1 and x∗ = [2pw̄] = 2pw̄ − b2pw̄c. In particular, when

2pw̄−1 is an integer we have that L∗ = KA and x∗ = 0, which is equivalent to information

disclosure Υ∗. Therefore, we find that any information disclosure policy achieves a weakly

worse misallocation rate than information disclosure Υ∗, proving the result.

D.4 Proofs from Section 5

Proof of Lemma 4. Follows from Appendix A.

Proof of Theorem 3. Note that every agent is approached exactly once, and every agent

who declines an item will eventually receive his preferred item (after waiting in the BQ).

Therefore, the misallocation rate is equal to the fraction of offers in which a mismatched

agents takes the current item.

An α agent takes a B item if the system is in state (KA, B) and the approached

agent is of type α. Symmetrically, a β agent takes an A item if the system is in state

(−KB, A) and the approached agent is of type β. To obtain the probability of these events

conditional on the system making an offer to an agent, we use the stationary distribution

calculated in Lemma 10 in Appendix A. Denote the conditional probability of a state

where the system makes an offer to an agent by

π̂X (k) =
πX (k)∑

k π
B (k) +

∑
k π

A (k)

= 2πX (k)

forX ∈ {A,B}. From Lemma 10, we have that if the system is balanced, the misallocation

rate is

ξ = p · π̂B(KA) + (1− p) · π̂A(−KB)

=
2p(1− p)

(1− p)KA + pKB + 1
.

If pα 6= pA, the misallocation rate is
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ξ = pα · π̂B(KA) + pβ · π̂A(−KB)

= pα · pB
(
pα
pA

)KA

· pA − pα

pApβ

(
pβ
pB

)KB

− pBpα
(
pα
pA

)KA

+ pβ · pA
(
pβ
pB

)KB

· pA − pα

pApβ

(
pβ
pB

)KB

− pBpα
(
pα
pA

)KA

= (pA − pα)
pApβ

(
pβ
pB

)KB

+ pBpα

(
pα
pA

)KA

pApβ

(
pβ
pB

)KB

− pBpα
(
pα
pA

)KA

= (pA − pα)

(
pβ
pB

)KB+1

+
(
pα
pA

)KA+1

(
pβ
pB

)KB+1

−
(
pα
pA

)KA+1
.

We now show that the misallocation rate ξ is monotonically decreasing in KA, KB.

This is immediate if the system is balanced. If pα 6= pA, consider the derivatives dξ
dKA and

dξ
dKB . To simplify notation, we substitute a = pα/pA and b = pβ/pB:

dξ

dKA
=

d

dKA

[
(pA − pα)

bK
B+1 + aK

A+1

bKB+1 − aKA+1

]

=
2 (pA − pα) · (log a) · aKA+1bK

B+1(
bKB+1 − aKA+1

)2

dξ

dKB
=
−2 (pA − pα) · (log b) · aKA+1bK

B+1(
bKB+1 − aKA+1

)2 .

If pA > pα (or a < 1), we have that pA− pα > 0 and log a < 0, which implies dξ
dKA < 0.

If pA < pα (or a > 1), pA − pα < 0 and log a > 0, which again implies dξ
dKA < 0. A

symmetric argument shows dξ
dKB < 0.

We next show the misallocation rate ξ converges to |pA−pα| as KA →∞ or KB →∞.

If the system is balanced, this is immediate. For an unbalanced system, first consider the

case in which pA > pα, a < 1, and therefore pB < pβ, b > 1:

14



lim
KA→∞

ξ = lim
KA→∞

(pA − pα)
bK

B+1 + aK
A+1

bKB+1 − aKA+1

= (pA − pα)
bK

B+1 + 0

bKB+1 − 0

= pA − pα = |pA − pα|

lim
KB→∞

ξ = lim
KB→∞

(pA − pα)
bK

B+1 + aK
A+1

bKB+1 − aKA+1

= (pA − pα) · 1 = |pA − pα| .

If pA < pα, a > 1 and pB > pβ, b > 1, we have that

lim
KA→∞

ξ = (pA − pα) · −1

= pα − pA = |pA − pα|

lim
KB→∞

ξ = (pA − pα) · 0 + aK
A+1

0− aKA+1

= pα − pA = |pA − pα| .

Hence,

lim
KA→∞

ξ = lim
KB→∞

ξ = |pA − pα| .

Proof of Lemma 5. To characterize equilibrium behavior, consider an α agent in position

k. The α agent always accepts an A item. If the α agent is offered a B item, it must be

that the agents in positions 1, . . . , k − 1 declined the B item and are waiting for an A.52

Thus, the agent faces expected wait for an A equal to wk = k/pA, which is the expected

number of periods until k copies of A arrive. Thus, the α agent will decline a B if and

only if wk ≤ w̄, or k ≤ pAv/c = pAw̄. Symmetrically, a β agent in position k declines an

A item if and only if k ≤ pBw̄.

Observe that we can equivalently describe the waiting list with declines as an IC BQ

mechanism with a FCFS BQ policy. The choice of an α agent in position k to decline a

B item is equivalent to that agent choosing to join the k-th position in the A FCFS BQ,

52To see this claim is true, observe that the problem of the agent in the first position is stationary, and
he will either immediately take a mismatched B or wait for an A (by assumption, the agent waits for
an A when both options give the same utility). This argument implies the problem of the agent in the
second position is stationary, and the claim follows by induction.
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because under both the agent faces an expected wait of wk = k/pA, as for an A item they

need to wait until k copies of A items arrive. The maximal size of the A BQ is given by

the maximal KA satisfying the IC constraint wAK = KA/pA ≤ w̄.

D.5 Proofs from Section 6

Proof of Lemma 6 and Lemma 6’. Observe that α agents must all be assigned before any

agent joins the B BQ, and therefore their expected wait cannot be affected by the B BQ

policy or the decisions of β agents to join the B BQ.

Proof of Lemma 7. Consider the dynamics of the BQ, restricting attention to periods

when the BQ is not empty. Little’s Law (Little 1961) states that if L is the long-term

average number of agents in the BQ (conditional on the BQ being non-empty), λ is the

long-term average rate at which agents join the BQ, and w is the average time that an

agent waits in the BQ, then it holds that

L = λw.

Because the number of agents in the BQ is independent of ϕ (i.e., independent of which

agent is selected to receive an item and leave the BQ), we have that L is independent of

ϕ. Using Lemma 10 of Appendix A, we can calculate that

L =
K∑
k=1

k · π (k, φ)∑K
k=1 π (k, φ)

=

K+1
2

pα = pA

K + pA
pA−pα

+ K
(pα/pA)K−1

pα 6= pA ,

where π (k, φ) /
∑K

k=1 π (k, φ) is the conditional probability that the BQ holds k agents.

We have that λ = pA, because the average number of agents that leave the BQ in a

period is equal to the probability that an A item arrives (and one agent leaves). Because

the number of agents in the BQ is bounded by a constant, the long run average rate at

which agents join the BQ is equal to the long-run average rate at which agents leave the

BQ. Thus, we have that

W (K) = E[wk̃] =
L

pA
=

K+1
2p

if pα = pA = p

K
pA

+ 1
pA−pα

+ 1
pA

K
(pα/pA)K−1

if pα 6= pA .

Last, we show that if (K,ϕ) is a IC buffer-queue policy, then it must be W (K) ≤ w̄.

To do so, we calculate E[wk̃] from {wk}Kk=1. Let k̃ be a random variable whose support is

16



1, . . . , K and P (k̃ = k) > 0 is equal to the probability that an agent in the BQ initially

joined at position k. Because each agent who joins the BQ does so in some state (k,B),

we have that

P (k̃ = k) =
π (k,B)∑K
k=1 π (k,B)

.

By the law of iterated expectation, we have that

E [wk̃] =
K∑
k=1

wk · P (k̃ = k).

If a BQ policy 〈K,ϕ〉 is IC, we have that wk ≤ w̄ for all k ≤ K, and therefore W (K) =

E [wk̃] ≤ w̄.

Proof of Corollary 3. By Lemma 7, if M =
(
KA, ϕA, KB, ϕB

)
is IC, then

W (KA) =
KA + 1

2pA
≤ w̄,

or

KA ≤ b2pAw̄c − 1.

Similarly, we have that

KB ≤ b2pBw̄c − 1.

By Theorem 3, the misallocation rate is decreasing in KA, KB, and the bound follows.

Proof of Theorem 4. By Theorem 3, the misallocation rate is decreasing in KA, KB.

Therefore, welfare is increasing in KA, KB. The sizes KA, KB are constrained by the

BF-IC requirement, which can be decomposed by Lemma 6’ to requiring separately that(
KA, ϕA

)
and

(
KB, ϕB

)
are each BF-IC. This argument reduces the problem to charac-

terizing the maximal K ′ for which some ϕ′ exists such that (K ′, ϕ′) is BF-IC.

For ease of notation, we consider the policy for the A BQ and use pA for the item arrival

probability. Let (K,ϕ) be the policy of the BQ, and let wk,σ be the implied expected waits

under the belief σ (note these expected waits are independent of pα).

We establish an upper bound on K for any BF-IC (K,ϕ) by looking at the expected

wait wk,σ̂ under the belief σ̂ ≡ 1. That is, wk,σ̂ is the expected wait when every agent

who is offered a B item declines the B item and joins the A BQ. Equivalently, wk,σ̂ is the

expected wait when pα = 1 and all agents are truthful. As in the proof of Lemma 7, we
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have that the average number of agents in the BQ is given by

L =
K∑
k=1

k · π (k, φ)∑K
k=1 π (k, φ)

=
K

1− pKA
− pA

1− pA
,

which is monotonically increasing in K. Let wσ̂ denote the average time an agent waits

in the BQ. Using Little’s Law, we have that

wσ̂ = L/pA.

=
K

pA (1− pKA )
− 1

1− pA
.

Let K∗ be defined by

K∗ = max {K | wσ̂ ≤ w̄}

= κ∗ (w̄, 1, pA) .

By the law of iterated expectation, we have

wσ̂ = E
[
wk̃,σ̂

]
=

K∑
k=1

wk,σ̂ · P (k̃ = k).

Therefore, if (K,ϕ) is a BF-IC policy, we have that wσ̂ ≤ w̄ and K ≤ K∗.

We proceed to show that
(
K∗, ϕSIRO

)
is BF-IC. First, observe that under the belief

σ̂ ≡ 1 for any positions k, k′ ≤ K∗, we have that wk,σ̂ = wk′,σ̂ = wσ̂. Because SIRO treats

agents at all positions equally, the expected wait at the end of the period under SIRO is

independent of the agent’s position in the BQ. Under σ̂, any agent joining the BQ believes

the BQ will hold K∗ agents at the end of the period. Therefore, all agents who join the

BQ receive the same expected wait, and because wk,σ̂ = wk′,σ̂ for any k, k′ ≤ K∗, we have

that wk,σ̂ = wσ̂ ≤ w̄.

Second, we show that under the BQ policy
(
K,ϕSIRO

)
for any belief σ and position

k, we have that wk,σ ≤ wk,σ̂. To see that this inequality holds, consider an agent joining

the BQ at position k, and fix the realized sequence of items arriving in future periods.

Given the sequence, let ` (n) be the number of agents in the BQ when the n-th A item

in the sequence arrives. The agent waits until an assignment, and conditional on not

being assigned earlier, he is assigned the n-th item with probability 1/` (n). The agent’s

expected wait increases as 1/` (n) decreases, and therefore as ` (n) increases. The belief

σ̂ implies the maximal possible ` (n) for each n, regardless of the item process, as the

number of agents ` (n) is maximized when the BQ reaches its maximal size each time a
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B item arrives. Averaging over all item arrival sequences, we thus have that wk,σ ≤ wk,σ̂.

In summary, we have that
(
KA, ϕSIRO

)
with KA = κ∗ (w̄, 1, pA) is BF-IC, and for any

BF-IC BQ policy (K ′, ϕ′), it holds that K ′ ≤ κ∗ (w̄, 1, pA).

Proof of Lemma 8. Consider a symmetric equilibrium in which an α agent who is offered

position k in the A BQ joins with probability s(k) ∈ [0, 1]. Let σ (k) = pα · s (k) denote

the correct equilibrium beliefs. We first show that for any s, the expected wait wk,σ is

increasing in k. Fix the sequence of items arriving in future periods and compare two

trajectories starting in period t, the first starting with k agents and the second with k′ > k

agents. We couple the two trajectories and consider the number of agents in the BQ in

each period until the BQ empties under the first trajectory. Let t̂ > t+1 be the first period

in which the two trajectories have an equal number of agents, or the BQ empties under

the first trajectory. Note that in every period from t + 1 to t̂, the BQ has strictly fewer

agents under the first trajectory. The probability that a given agent in the BQ is assigned

the n-th arriving A item is 1/` (n) if ` (n) agents are in the BQ at the beginning of period

when the n-th item arrives, which is strictly decreasing in ` (n). If an A item arrives

between t + 1 and t̂, a given agent in the BQ has higher assignment probability under

the first trajectory. If any agents remain in the BQ under the first trajectory in period

t̂, their future assignment probabilities are equal under the two trajectories. Averaging

over all sequences of item arrivals, we find that under the first trajectory, a given agent

in the BQ has a weakly higher probability of getting assigned in all periods under the

first trajectory, and a strictly higher probability in some periods. Therefore, agents face

a higher expected wait under the second trajectory, and the expected wait wk,σ is strictly

monotonically decreasing in k.

The agent’s best response implies s (k) > 0 only if wk,σ ≤ w̄ and s (k) < 1 only if

wk,σ ≥ w̄. Together with the monotonicity of wk,σ, the best response implies the existence

of x∗ such that53 s (k) = 1{k≤x∗} + 1{bx∗c<k<bx∗c+1} [x∗], that is, s (k) = 1 for k ≤ bx∗c,
s (k) = 0 for k > bx∗c+ 1 and s (k) = [x∗] = x∗ − bx∗c for k = bx∗c+ 1.

The same coupling argument shows wk,σ is strictly increasing in x∗ (and therefore,

a unique equilibrium exists). Let
(
K∗, ϕSIRO

)
be the BF-IC SIRO BQ policy with the

maximal K∗ = κ∗ (w̄, 1, pA), and let wk,σ̂ be the implied wait under the belief σ̂ ≡ 1. Let

σ′ (k) = pα · 1{k≤K∗} be the belief that agents join position 1 to K∗. From the proof of

Theorem 4, we have that

wk,σ′ ≤ wk,σ̂ ≤ w̄ ,

53The fractional part of x∗ is denoted by [x∗] = x∗ − bx∗c.
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and therefore we must have that x∗ ≥ K∗.

Proof of Lemma 9. At the end of a period, all agents in the BQ have the same expected

utility. The monotonicity arguments used in the proof of Lemma 8 show an agent is

weakly better off if no agents join after him. Thus, the last agent would have chosen to

join the BQ if he knew no agents would join after him. Because the last agent prefers

joining the BQ to being assigned immediately to a mismatched item, all other agents

prefer to stay in the BQ as well.
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