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A. Mechanism design foundations

In this appendix, we first define and develop the mechanism design concepts
relevant for our analysis (Appendix A.1) and then apply these concepts to derive
the Myerson-Satterthwaite impossibility result and the second-best mechanism
(Appendix A.2).

1. Concepts and derivations

Take as given a direct mechanism ⟨Q,M⟩, where for i ∈ NB and j ∈ N S ,

QB
i : [v, v]n

B × [c, c]n
S → {0, . . . , kBi }, QS

j : [v, v]n
B × [c, c]n

S → {0, . . . , kSj }, and
MB

i ,MS
j : [v, v]n

B × [c, c]n
S → R. Given reports (v, c), QB

i (v, c) is the quantity

received by buyer i, QS
j (v, c) is the quantity provided by supplier j, MB

i (v, c) is

the payment from buyer i to the mechanism, and MS
j (v, c) is the payment from

the mechanism to supplier j. By the Revelation Principle, the focus on direct
mechanisms is without loss of generality.

Let q̂Bi (z) be the buyer i’s expected quantity if it reports z and all other agents
report truthfully, and let m̂B

i (z) be buyer i’s expected payment if it reports z and
all other agents report truthfully:

(A.1) q̂Bi (z) = Ev−i,c[Q
B
i (z,v−i, c)] and m̂B

i (z) = Ev−i,c[M
B
i (z,v−i, c)].

Define q̂Sj and m̂S
j analogously, where m̂S

j is the expected payment to supplier
j. Because we assume independent draws, these interim expected quantities and
payments depend only on the report z and not on the reporting agent’s true type.
The expected payoff of buyer i with type v that reports z is then q̂Bi (z)v−m̂B

i (z),
and the expected payoff of supplier j with type c that reports z is m̂S

j (z)− q̂Sj (z)c.

a. Key constraints. — The mechanism is Bayesian incentive compatible for
buyer i if for all v, z ∈ [v, v],

(A.2) ûBi (v) ≡ q̂Bi (v)v − m̂B
i (v) ≥ q̂Bi (z)v − m̂B

i (z),

and is Bayesian incentive compatible for supplier j if for all c, z ∈ [c, c],

(A.3) ûSj (c) ≡ m̂S
j (c)− q̂Sj (c)c ≥ m̂S

j (z)− q̂Sj (z)c.

Interim individual rationality is satisfied for buyer i if for all v ∈ [v, v], ûBi (v) ≥ 0,
and for supplier j if for all c ∈ [c, c], ûSj (c) ≥ 0. The mechanism satisfies the no-
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deficit condition if

Ev,c

 ∑
i∈NB

MB
i (v, c)−

∑
j∈NS

MS
j (v, c)

 ≥ 0.

b. Interim expected payoffs. — Standard arguments (see, e.g., Krishna, 2010,
Chapter 5.1) proceed as follows:
Focusing on buyer i, incentive compatibility implies that

ûBi (v) = max
z∈[v,v]

q̂Bi (z)v − m̂B
i (z),

i.e., ûBi is a maximum of a family of affine functions, which implies that ûBi
is convex and so absolutely continuous and differentiable almost everywhere in
the interior of its domain.1 In addition, incentive compatibility implies that
ûBi (z) ≥ q̂Bi (v)z − m̂B

i (v) = ûBi (v) + q̂Bi (v)(z − v), which for ε > 0 implies

ûBi (v + ε)− ûBi (v)

ε
≥ q̂Bi (v)

and for ε < 0 implies
ûBi (v + ε)− ûBi (v)

ε
≤ q̂Bi (v),

so taking the limit as ε goes to zero, at every point v where ûBi is differentiable,
ûB′
i (v) = q̂Bi (v). Because ûBi is convex, this implies that q̂Bi (v) is nondecreasing.

Every absolutely continuous function is the definite integral of its derivative,

ûBi (v) = ûBi (v) +

∫ v

v
q̂Bi (t)dt.

This implies that, up to an additive constant, buyer i’s expected payoff in an
incentive-compatible direct mechanism depends only on the allocation rule. By
an analogous argument, ûS′j (c) = −q̂Sj (c), q̂

S
j (c) is nonincreasing, and

ûSj (c) = ûSj (c) +

∫ c

c
q̂Sj (t)dt.

1A function h : [v, v] → R is absolutely continuous if for all ε > 0 there exists δ > 0 such that
whenever a finite sequence of pairwise disjoint sub-intervals (vk, v

′
k) of [v, v] satisfies

∑
k(v

′
k − vk) < δ,

then
∑

k

∣∣h(v′k)− h (vk)
∣∣ < ε. One can show that absolute continuity on compact interval [a, b] implies

that h has a derivative h′ almost everywhere, the derivative is Lebesgue integrable, and that h(x) =
h(a) +

∫ x
a h′(t)dt for all x ∈ [a, b].
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c. Mechanism budget surplus. — Using the definitions of ûBi and ûSj in (A.2)
and (A.3), we can rewrite these as

(A.4) m̂B
i (v) = q̂Bi (v)v −

∫ v

v
q̂Bi (t)dt− ûBi (v)

and

(A.5) m̂S
j (c) = q̂Sj (c)c+

∫ c

c
q̂Sj (t)dt+ ûSj (c).

The expected payment by buyer i is then

Ev

[
m̂B

i (v)
]

=

∫ v

v
m̂B

i (v)fi(v)dv

=

∫ v

v

(
q̂Bi (v)v −

∫ v

v
q̂Bi (t)dt

)
fi(v)dv − ûBi (v)

=

∫ v

v
q̂Bi (v)vfi(v)dv −

∫ v

v

∫ v

t
q̂Bi (t)fi(v)dvdt− ûBi (v)

=

∫ v

v
q̂Bi (v)vfi(v)dv −

∫ v

v
q̂Bi (t) (1− Fi(t)) dt− ûBi (v)

=

∫ v

v
q̂Bi (v)

(
v − 1− Fi(v)

fi(v)

)
fi(v)dv − ûBi (v)

=

∫ v

v
q̂Bi (v)Φi(v)fi(v)dv − ûBi (v)

= Ev

[
q̂Bi (v)Φi(v)

]
− ûBi (v),

where the first equality uses the definition of the expectation, the second uses
(A.4), the third switches the order of integration, the fourth integrates, the fifth
collects terms, the sixth uses the definition of the virtual value Φi, and the last
equality uses the definition of the expectation. Similarly, using (A.5), the expected
payment to supplier j is

Ec

[
m̂S

j (c)
]
=

∫ c

c
m̂S

j (c)gj(c)dc = Ec

[
q̂Sj (c)Γj(c)

]
+ ûSj (c).

Thus, we have the result that in any incentive-compatible, interim individually-
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rational direct mechanism ⟨Q,M⟩, the mechanism’s expected budget surplus is

Ev,c

∑
i∈NB

Φi(vi)Q
B
i (v, c)−

∑
j∈NS

Γj(cj)Q
S
j (v, c)

−
∑
i∈NB

ûBi (v)−
∑
j∈NS

ûSj (c).

2. Myerson-Satterthwaite redux

Consistent with the setup of Myerson and Satterthwaite (1983), this subsection
focuses on the case of one seller and one buyer.

a. Impossibility result. — For the purpose of making the paper self-contained,
we provide a statement and proof of the impossibility theorem of Myerson and
Satterthwaite (1983). Under the assumption of independent private values and
the assumption that v < c, Myerson and Satterthwaite (1983) show that there is
no mechanism satisfying incentive compatibility and individual rationality that
allocates ex post efficiently and that does not run a deficit. Their result depends
on v < c because, without this assumption, ex post efficiency subject to incentive
compatibility and individual rationality can easily be achieved without running
a deficit. For example, the posted price mechanism that has the buyer pay p =
(v + c)/2 to the supplier achieves this.
By now, the proof of this result can be provided in a couple of lines (see, e.g, Kr-

ishna, 2010). Consider the dominant strategy implementation in which the buyer
pays pB = max{c, v} and the supplier receives pS = min{v, c} whenever there
is trade, and no payments are made otherwise. Notice that ûB(v) = 0 = ûS(c).
Thus, the individual rationality constraints are satisfied. Further, notice that
pB − pS ≤ 0, with a strict inequality for almost all type realizations. This im-
plies that the mechanism runs a deficit in expectation. By the payoff equivalence
theorem, any other ex post efficient mechanism satisfying incentive compatibility
and individual rationality will run a deficit of at least that size (and a larger one
if one or both of the individual rationality constraints are slack).

b. Second-best mechanism. — The impossibility result in the bilateral trade
problem of Myerson and Satterthwaite raises the question as to what is the
second-best mechanism, that is, the mechanism that maximizes equally weighted
social surplus subject to incentive compatibility and individual rationality con-
straints and the constraint of no deficit. Denoting by F and G the buyer’s and
seller’s distributions, which are assumed to exhibit increasing virtual type func-

tions Φ(v) = v − 1−F (v)
f(v) and Γ(c) = c + G(c)

g(c) , and using incentive compatibility,

the second-best mechanism maximizes the equally weighted surplus of the buyer
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and the seller,2∫ v

v

∫ c

c
(v − Φ(v) + Γ(c)− c)Q(v, c)g(c)f(v)dcdv + ûB(v) + ûS(c),

subject to the no-deficit constraint,∫ v

v

∫ c

c
(Φ(v)− Γ(c))Q(v, c)g(c)f(v)dcdv − ûB(v)− ûS(c) ≥ 0,

and the individual rationality constraints

ûB(v) ≥ 0 and ûS(c) ≥ 0.

Letting ρ denote the Lagrange multiplier associated with the no-deficit con-
straint, which must be positive because of the Myerson-Satterthwaite impos-
sibility result, and µB and µS be the multipliers on the individual rationality
constraints, the Lagrangian can be written as

ρ

∫ v

v

∫ c

c

[
v − ρ− 1

ρ

1− F (v)

f(v)
− c− ρ− 1

ρ

G(c)

g(c)

]
Q(v, c)g(c)f(v)dcdv

+ (1− ρ+ µB)ûB(v) + (1− ρ+ µS)ûS(c).

The Lagrange multipliers, ρ, µB, and µS , must be nonnegative, and optimiza-
tion with respect to ûB(v) and ûS(c) requires that 1−ρ+µB = 0 and 1−ρ+µS = 0,
which cannot be satisfied if ρ < 1. Therefore, we conclude that ρ ≥ 1. Intuitively,
if the shadow price of the no-deficit constraint is less than 1, then the Lagrangian
is maximized by running an infinite budget deficit and paying that out to the
agents in fixed payments, violating primal feasibility.

Recalling that for a ∈ [0, 1] we define Φa(v) ≡ v − (1 − a)1−F (v)
f(v) and Γa(c) ≡

c+ (1− a)G(c)
g(c) , we can rewrite the Lagrangian as

ρ

∫ v

v

∫ c

c

[
Φ1/ρ(v)− Γ1/ρ(c)

]
Q(v, c)g(c)f(v)dcdv+(1−ρ+µB)ûB(v)+(1−ρ+µS)ûS(c).

It follows that for a given ρ, the Lagrangian is maximized with respect to Q
pointwise by setting Q(v, c) = 1 if Φ1/ρ(v) ≥ Γ1/ρ(c) and Q(v, c) = 0 other-

2Myerson and Satterthwaite (1983) write the objective as
∫ v
v

∫ c
c (v − c)Q(v, c)g(c)f(v)dcdv, that is,

without accounting for the payments from the buyer and to the supplier, but that does not affect the
conclusions for the case that they consider because the budget surplus, not including fixed payments, is
0.
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wise. Because the virtual types are increasing, this pointwise maximizer, denoted
Qρ(v, c), is increasing in v and decreasing in c for any ρ ≥ 1. Hence, there is an
incentive compatible implementation.
Putting this together, the allocation rule of the second-best mechanism is given

by Qρ with the smallest distortion, i.e., the smallest value of ρ ∈ [1,∞), such that
the no-deficit constraint can be satisfied for some nonnegative fixed payments,

i.e., such that
∫ v
v

∫ c
c (Φ(v)− Γ(c))Qρ(v, c)g(c)f(v)dcdv ≥ 0.
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B. Proofs

Proof of Lemma 1. We can write (6) as

Ev,c

 ∑
i∈NB

𝑤B
i (vi − Φi(vi))Q

B
i (v, c) +

∑
j∈NS

𝑤S
j (Γj(cj)− cj)Q

S
j (v, c)


+ρEv,c

 ∑
i∈NB

Φi(vi)Q
B
i (v, c)−

∑
j∈NS

Γj(cj)Q
S
j (v, c)


= Ev,c

 ∑
i∈NB

[
𝑤B
i vi + (ρ− 𝑤B

i )Φi(vi)
]
QB

i (v, c)

+
∑
j∈NS

[
−𝑤S

j cj − (ρ− 𝑤S
j )Γj(cj)

]
QS

j (v, c)


= ρEv,c

 ∑
i∈NB

[
vi −

ρ− 𝑤B
i

ρ

1− Fi(vi)

fi(vi)

]
QB

i (v, c)

−
∑
j∈NS

[
cj +

ρ− 𝑤S
j

ρ

Gj(cj)

gj(cj)
)

]
QS

j (v, c)


= ρEv,c

 ∑
i∈NB

Φ
𝑤B
i /ρ

i (vi)Q
B
i (v, c)−

∑
j∈NS

Γ
𝑤S
j /ρ

j (cj)Q
S
j (v, c)

 .

It is then clear that the allocation rule defined in the statement of the lemma
maximizes the Lagrangian pointwise subject to the feasibility constraints. Com-
bining this with the optimized Langrange multiplier, ρw, completes the proof.
■

Proof of Proposition 2. Recall that M is the set of incentive compatible, indi-

vidually rational, no-deficit mechanisms. Let C ⊂RnS+nB
be the induced space of

expected payoffs associated with M. Note that M is convex,3 and correspond-

3Given (Q0,M0), (Q1,M1) ∈ M and λ ∈ [0, 1] and defining (Qλ,Mλ) by for j ∈ NS , Qλ,S
j (v, c) ≡

(1 − λ)Q0,S
j (v, c) + λQ1,S

j (v, c) and Mλ,S
j (v, c) ≡ (1 − λ)M0,S

j (v, c) + λM1,S
j (v, c), and similarly for

Qλ,B
i and Mλ,B

i with i ∈ NB , we have (Qλ,Mλ) ∈ M. That is, each supplier j’s expected payoff

under (Qλ,Mλ), Ev,c[M
λ,S
j (v, c) − cjQ

λ,S
j (v, c)], is the convex combination of its payoffs under the

two component mechanisms, and analogously for buyer i. Consequently, incentive compatibility and
individual rationality are satisfied, and the no-deficit constraint continues to be satisfied.
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ingly C is also convex. The incomplete information bargaining mechanism solves

(B.1) max
u∈C

∑
j∈NS

𝑤S
j u

S
j +

∑
i∈NB

𝑤B
i u

B
i .

The solution to (B.1) is Pareto optimal and, by the dual characterization of
maximal elements (see, e.g., Boyd and Vandenberghe, 2004, Chapter 2.6.3), any
Pareto optimal ũ solves maxu∈C w̃

Tu for some nonzero w̃ satisfying w̃ ≥ 0.

Because we can rescale w̃ by 1/max w̃, there exists w ∈[0, 1]nS+nB
with w ̸=

0 such that ũ solves maxu∈C w
Tu. Because ũ ∈ C, there exists a mechanism

⟨Q̃, M̃⟩ ∈ M that generates payoffs ũ. Letting

π̃ ≡ Ev,c

[ ∑
i∈NB

Φi(vi)Q̃
B
i (v, c)−

∑
j∈NS

Γj(cj)Q̃
S
j (v, c)

]
,

which is nonnegative by virtue of ⟨Q̃, M̃⟩ satisfying individual rationality and

having no deficit, we can define η ∈ [0, 1]n
S+nB

with
∑

j∈NS ηSj +
∑

i∈NB ηBi = 1

by, for j ∈ N S ,

ũSj = Ev,c

[
(Γj(cj)− cj)Q̃

S
j (v, c)

]
+ ηSj π̃

and for i ∈ NB,

ũBi = Ev,c

[
(vi − Φi(vi))Q̃

B
i (v, c)

]
+ ηBi π̃.

If 𝑤x
i < maxw, we have ηxi = 0 for else ũ would not maximize wTu over C, which

would be a contradiction. Thus, w and η satisfy the conditions to be bargaining
weights and tie-breaking shares, and uSj (w,η) = ũSj and uBi (w,η) = ũBi . This
completes the proof. ■

Proof of Proposition 3. The discussion in the text shows that the planner’s and
the market’s outcomes coincide (up to fixed payments) if (i)–(iv) hold, implying
that Ww = W ∗, and so there is no benefit from equalization of bargaining power.
It remains to show that Ww < W ∗ if any one of these conditions fails.

Case 1. Suppose that KB ≤ KS and (9) fails to hold. (Analogous arguments
apply if KB > KS and (9) fails.) Then for an open set of types, not all of the nB

buyers trade under Qw. Thus, in order for Qw and Q∗ to coincide, they must
agree on not only the ranking within buyers and within suppliers, but also the
ranking across buyers and suppliers. Consistent with (ii)–(iv), suppose that all
buyers have the same bargaining weight 𝑤B, all suppliers have the same bargain-
ing weight 𝑤S , 𝑤S < 𝑤B, and all suppliers have the same distribution. (Analogous
analysis applies if 𝑤S > 𝑤B and all buyers have the same distribution.) Then the
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planner and market both rank the buyers the same and rank the suppliers the
same, but they evaluate the buyers’ virtual values using weight 𝑤B/ρw and the
suppliers’ virtual costs using weight 𝑤S/ρw, where 𝑤B/ρw > 𝑤S/ρw. Because
either 𝑤B/ρw ̸= 1/ρ1 or 𝑤S/ρw ̸= 1/ρ1 or both, Qw(v, c) ̸= Q∗(v, c) for all

(v, c) in an open subset of [v, v]n
B × [c, c]n

S
.

Case 2. If either the buyers’ weights are not equal or the suppliers’ weights
are not equal, then the planner and market rank the agents differently on that
side of the market and so Qw(v, c) ̸= Q∗(v, c) for all (v, c) in an open subset of

[v, v]n
B × [c, c]n

S
.

Case 3. Suppose that (i) and (ii) hold and that 𝑤S < 𝑤B, but that G1 ̸= G2,
so that (iii) fails. It follows that 1 ≥ 𝑤B/ρw > 𝑤S/ρw. Because 𝑤S/ρw < 1 and
G1 ̸= G2, the market’s ranking of suppliers 1 and 2 based on their virtual costs
differs from the ranking of their costs for (c1, c2) in an open subset of [c, c]2. Thus,

Qw(v, c) ̸= Q∗(v, c) for all (v, c) in an open subset of [v, v]n
B × [c, c]n

S
.

Case 4. Suppose that (i) and (ii) hold and that 𝑤B < 𝑤S , but that F1 ̸= F2,
so that (iv) fails. It follows that 1 ≥ 𝑤S/ρw > 𝑤B/ρw. Because 𝑤B/ρw < 1 and
F1 ̸= F2, the market’s ranking of buyers 1 and 2 based on their virtual values
differs from the ranking of their values for (v1, v2) in an open subset of [v, v]2.

Thus, Qw(v, c) ̸= Q∗(v, c) for all (v, c) in an open subset of [v, v]n
B × [c, c]n

S
. ■

Proof of Lemma 2. Given u ∈ [uS , uS ], ω(u) is defined by the mechanism that
maximizes ∑

i∈NB

Ev,c

[
(vi − Φi(vi))Q

B
i (v, c) + ûBi (v)

]
=

∑
i∈NB

(∫
[v,v]nB

∫
[c,c]nS

(vi − Φi(vi))Q
B
i (v, c)dG(c)dF (v) + ûBi (v)

)
,

where dG(c) ≡ dG1(c1) · · · dGnS (cnS ) and dF (v) ≡ dF1(v1) · · · dFnB (vnB ), sub-
ject to the no-deficit constraint

∑
i∈NB

(∫
[v,v]nB

∫
[c,c]nS

Φi(vi)Q
B
i (v, c)dG(c)dF (v)−ûBi (v)

)

−
∑
j∈NS

(∫
[v,v]nB

∫
[c,c]nS

Γj(cj)Q
S
j (v, c)dG(c)dF (v)+ûSj (c)

)
≥ 0,

the individual rationality constraints

for all i ∈ NB, ûBi (v) ≥ 0 and for all j ∈ N S , ûS(c) ≥ 0,
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and the constraint that total supplier surplus is at least u,

∑
j∈NS

(∫
[v,v]n

B

∫
[c,c]nS

(Γj(cj)− cj)Q
S
j (v, c)dG(c)dF (v) + ûSj (c)

)
≥ u.

Letting ρ denote the Lagrange multiplier associated with the no-deficit con-
straint, µB

i and µS
j be the multipliers on the individual rationality constraints,

and γ be the multiplier on the constraint that total supplier surplus is at least u,
the Lagrangian is

∑
i∈NB

(∫
[v,v]nB

∫
[c,c]nS

(vi − Φi(vi))Q
B
i (v, c)dG(c)dF (v) + ûBi (v)

)

+ρ
∑
i∈NB

(∫
[v,v]nB

∫
[c,c]nS

Φi(vi)Q
B
i (v, c)dG(c)dF (v)−ûBi (v)

)

−ρ
∑
j∈NS

(∫
[v,v]nB

∫
[c,c]nS

Γj(cj)Q
S
j (v, c)dG(c)dF (v)+ûSj (c)

)

+
∑
i∈NB

µB
i û

B
i (v) +

∑
j∈NS

µS
j û

S
j (c)

+γ
∑
j∈NS

(∫
[v,v]nB

∫
[c,c]nS

(Γj(cj)− cj)Q
S
j (v, c)dG(c)dF (v) + ûSj (c)

)
− γu,

which we can rewrite as

ρ
∑
i∈NB

(∫
[v,v]nB

∫
[c,c]nS

(
vi −

ρ− 1

ρ

1− Fi(vi)

fi(vi)

)
QB

i (v, c)dG(c)dF (v)

)

−ρ
∑
j∈NS

(∫
[v,v]nB

∫
[c,c]nS

(
cj +

ρ− γ

ρ

Gj(cj)

gj(cj)

)
QS

j (v, c)dG(c)dF (v)

)

+
∑
i∈NB

(1− ρ+ µB
i )û

B
i (v) +

∑
j∈NS

(γ − ρ+ µS
j )û

S
j (c)− γu.

The Lagrange multipliers, ρ, µB
i , µ

S
j , and γ must be nonnegative, and opti-

mization with respect to ûB(v) and ûS(c) requires that 1 − ρ + µB
i = 0 and

γ − ρ + µS
j = 0, which cannot be satisfied if ρ < max{1, γ}. Therefore, we

conclude that ρ ≥ max{1, γ}. In addition, because a positive expected budget
surplus is always possible given our assumption that v > c, the shadow price ρ is
finite.
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Recalling that for a ∈ [0, 1] we define Φa
i (v) ≡ v − (1 − a)1−Fi(v)

fi(v)
and Γa

j (c) ≡

c+ (1− a)
Gj(c)
gj(c)

, we can rewrite the Lagrangian as

ρ

∫
[v,v]nB

∫
[c,c]nS

 ∑
i∈NB

Φ
1/ρ
i (vi)Q

B
i (v, c)−

∑
j∈NS

Γ
γ/ρ
j (cj)Q

S
j (v, c)

 dG(c)dF (v)

+
∑
i∈NB

(1− ρ+ µB
i )û

B
i (v) +

∑
j∈NS

(γ − ρ+ µS
j )û

S
j (c)− γu.

If the frontier has finite slope (i.e., for u < uS), then constraint qualification
is satisfied (and γ is finite) and for given ρ and γ, the Lagrangian is maximized
with respect to Q pointwise by setting Q equal to Qŵ defined in Lemma 1 for ŵ
defined by 𝑤̂S

j ≡ min{γ, 1} for all j ∈ N S and 𝑤̂B
i ≡ 1/max{1, γ} for all i ∈ NB

(essentially we use weight γ for all suppliers and weight 1 for all buyers, but
rescaled so that the weights are all in [0, 1]). If the frontier has infinite slope (i.e.,
u = uS), then we can instead define the frontier as maximizing total expected
supplier surplus subject to a lower bound on total expected buyer surplus, in
which case constraint qualification is satisfied, and the analogous analysis gives
𝑤S
j = 1 for all j ∈ N S and 𝑤B

i = 0 for all i ∈ NB. Thus, we conclude that for any
given u the bargaining weights that maximize the sum of buyers’ utilities over
the set of mechanisms in M such that the sellers’ utilities sum to at least u must
be uniform across buyers and uniform across suppliers. Because one can always
rescale bargaining weights, for example by the sum of the buyer weight and the
supplier weight, it is without loss of generality to restrict attention to bargaining
weights with buyer weight ∆ ∈ [0, 1] and supplier weight 1−∆. ■

Proof of Proposition 4. First note that ω(u) is decreasing in u because a decrease
in u relaxes a binding constraint. Thus, the frontier F is decreasing in (uS , uB)
space. Turning to the question of concavity, we show that ω(u) is concave, that
is, ω(uλ) ≥ λω(u0) + (1 − λ)ω(u1), where uλ = λu0 + (1 − λ)u1 and λ ∈ [0, 1].
Let P (u) be the problem of maximizing the sum of the buyers’ utilities over
the set of mechanisms in M such that the sellers’ utilities sum to at least u,
which is a convex set. Denote the corresponding mechanism by ⟨Qu,Mu⟩ and the
associated sum of buyers’ utilities by UB(u). Because the mechanisms ⟨Qu0 ,Mu0⟩
and ⟨Qu1 ,Mu1⟩ are feasible for P (uλ), the designer could choose the mechanism
⟨Qu0 ,Mu0⟩ with probability λ and the mechanism ⟨Qu1 ,Mu1⟩ with probability
1−λ, thereby generating payoffs of uλ for the sellers and λUB(u0)+(1−λ)UB(u1)
for the buyers. Of course, the convex combination need not be optimal for P (uλ)
and so UB(uλ) ≥ λUB(u0) + (1− λ)UB(u1). That is, UB(u) is concave.

We are left to map this back to the original problem of maximizing over weights
w rather than mechanisms. Observe that the payoff profiles constructed in the
paragraph above are Pareto undominated. Hence, by Proposition 2, there exist
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weights associated with each of those such that they are the payoffs generated by
the incomplete information bargaining mechanism. Thus, ω(u) is concave.

We now turn to the issue of strict concavity. Given u ∈ [uS , uS ], let w(u)
be bargaining weights that solve P (u). By Lemma 2, wB(u) and wS(u) are
symmetric. Assume that the first-best is achieved at most at one point on the
frontier, which is necessarily the point associated with all buyers and suppliers
having the same bargaining weight. This implies that

(B.2) v ≤ c.

We have shown that the frontier is concave to the origin. If it is not strictly
concave, then there exists a linear portion of the frontier. We assume that the
linear portion lies in the region in which the buyers’ common bargaining weight
is greater than the suppliers’ common bargaining weight (an analogous argument
applies if it lies in the region in which the suppliers’ bargaining weight is greater).
Without loss of generality, let the buyers’ bargaining weight be 1 and the suppliers’
weight be (1 −∆)/∆ for ∆ ∈ (1/2, 1] (essentially, we let the buyer weight be ∆
and the supplier weight be 1 − ∆ and rescale so that the maximum bargaining
weight is 1). Thus, letting uSj (∆) and uBi (∆) denote supplier j’s and buyer i’s

expected payoffs as a function of ∆, respectively, there exist ∆′ and ∆′′ with
1/2 < ∆′′ < ∆′ < 1 and λ ∈ (0, 1) such that, letting ∆λ ≡ λ∆′ + (1 − λ)∆′′, we
have

(B.3)
∑
j∈NS

uSj (∆λ) = λ
∑
j∈NS

uSj (∆
′) + (1− λ)

∑
j∈NS

uSj (∆
′′),

and

(B.4)
∑
i∈NB

uBi (∆λ) = λ
∑
i∈NB

uBi (∆
′) + (1− λ)

∑
i∈NB

uBi (∆
′′).

Denote the Lagrange multipliers on the no-deficit constraint in the incomplete
information bargaining mechanism associated with ∆′, ∆λ, and ∆′′ by ρ′, ρλ, and
ρ′′, respectively. It follows from the assumption that the buyer weight is fixed at
1 and that we are away from the first-best that the multipliers are greater than
or equal to 1 and decreasing in ∆, i.e., 1 ≤ ρ′ < ρλ < ρ′′, which implies that

1

ρ′
>

1

ρλ
>

1

ρ′′
.

Define y ≡ max{c, v}. Then y ∈ [v, v) and, using (B.2), y ∈ [c, c], which says that
y is in the range of the buyers’ weighted virtual values and suppliers’ weighted
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virtual costs. We have for all i ∈ NB,

Φ
1/ρ′−1

i (y) < Φ
1/ρλ

−1

i (y) < Φ
1/ρ′′−1

i (y).

Thus, for

(B.5) vi ∈
(
Φ
1/ρ′−1

i (y),Φ
1/ρλ

−1

i (y)
)
,

we have
Φ
1/ρ′′

i (vi) < Φ
1/ρλ
i (vi) < y < Φ

1/ρ′

i (vi).

Using the continuity of the weighted virtual cost functions, it follows that for an
open set of types (v, c) such that for all i ∈ NB, vi satisfies (B.5) and for all

j ∈ N S , cj is in a sufficiently tight neighborhood of Γ
1−∆′
∆′ /ρ′

−1

j (y), we have for all

i ∈ NB and j ∈ N S ,

(B.6) Φ
1/ρ′′

i (vi) < Φ
1/ρλ
i (vi) < Γ

1−∆′
∆′ /ρ′

j (cj) < Φ
1/ρ′

i (vi).

Recalling from Proposition 1 the incomplete information bargaining allocation
rule and letting Q∆ denote the unique incomplete information bargaining allo-
cation rule associated with ∆, (B.6) implies that for an open set of type, Q∆′′

and Q∆λ specify no trade, while Q∆′
has trade. Hence, the allocation rule Q∆λ

is not a convex combination of the allocation rules Q∆′
and Q∆′′

. Because a
convex combination of Q∆′

and Q∆′′
implies a convex combination of the pay-

offs, it follows that Q∆λ does not induce a convex combination of the payoffs, a
contradiction. Hence, the Williams frontier must be strictly concave.

If the Williams frontier coincides with the first-best frontier for ∆′ and ∆′′ with
∆′ < ∆′′, then the mechanism that is a convex combination of the mechanism
corresponding to ∆′ and the mechanism corresponding to ∆′′ also achieves the
first-best. By the definition of the first-best, no mechanism achieves greater social
surplus, so for ∆ ∈ (∆

′
,∆

′′
), the frontier must be linear, coinciding with the first-

best frontier. ■

Proof of Proposition 5. Assume that kS1 = kS2 = KB and 𝑤S
1 = 𝑤S

2 = 𝑤, and
consider a merger of suppliers 1 and 2, where 𝑤 is also the bargaining weight of
the merged entity. (Analogous analysis applies to a merger of buyers 1 and 2 with
kB1 = kB2 = KS and 𝑤B

1 = 𝑤B
2 = 𝑤B

1,2 = 𝑤.) LetNB andN S denote the set of pre-
merger buyers and suppliers, respectively. The merged entity draws its constant
marginal cost c1,2 for up to KB units from G1,2(c) ≡ 1− (1−G1(c))(1−G2(c)),
which is the distribution of min{c1, c2}. Denote the associated density by g1,2

and weighted virtual cost function by Γa
1,2(x) ≡ x+ (1− a)

G1,2(x)
g1,2(x)

.
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Let ⟨Q̂, M̂⟩ be the incomplete information bargaining mechanism in the post-
merger market following the merger of suppliers 1 and 2, and let ρ̂ be the as-
sociated Lagrange multiplier and η̂ be the shares. As described in Lemma 1, Q̂

allocates trades to the buyers with the greatest weighted virtual values, Φ
𝑤B
i /ρ̂

i (vi)

for i ∈ NB, and the suppliers with the smallest weighted virtual costs, Γ
𝑤/ρ̂
1,2 (c1,2)

and for j ∈ N S\{1, 2}, Γ
𝑤S
j /ρ̂

j (cj), and has the greatest number of trades such
that the cutoff weighted virtual cost is less than or equal to the cutoff weighted
virtual value.

Let π̂ denote the expected budget surplus for the post-merger mechanism, not
including fixed payments:

π̂ ≡ Ev,c1,2,c−{1,2}

 ∑
i∈NB

Φi(vi)Q̂
B
i −

∑
j∈NS\{1,2}

Γj(cj)Q̂
S
j − Γ1,2(c1,2)Q̂

S
1,2

 ,

where we drop the argument (v, c1,2, c−{1,2}) on the allocation rule.

By the payoff equivalence theorem, we can, without loss, focus on payment rules
based on threshold payments, which are the sum of an agent’s threshold types for
each unit traded, where the threshold type for a unit is the worst type (lowest
value for a buyer and highest cost for a supplier) that the agent could report
and still trade that unit. Specifically, for each buyer i ∈ NB, its payment to the
mechanism M̂B

i (v, c1,2, c−{1,2}) is the sum of the threshold types for each unit

that it trades (and zero if it does not trade) minus its fixed payment η̂Bi π̂. For

each supplier i ∈ N S\{1, 2}, its payment from the mechanism M̂S
i (v, c1,2, c−{1,2})

is the sum of the threshold types for each unit that it trades (and zero if it does
not trade) plus its fixed payment η̂Si π̂. For the merged entity, its payment from

the mechanism M̂S
1,2(v, c1,2, c−{1,2}) is the sum of the threshold types for each

unit that it trades (and zero if it does not trade) plus its fixed payment η̂S1,2π̂.

Next, we apply ⟨Q̂, M̂⟩ to the pre-merger market by defining a pre-merger
mechanism ⟨Q̃, M̃⟩ that mimics the allocation rule of the post-merger mechanism
and has threshold payments. Specifically, given reports for all of the pre-merger
agents (v, c), define the allocation rule for supplier j ∈ N S\{1, 2} by

Q̃S
j (v, c) ≡ Q̂S

j (v,min{c1, c2}, c−{1,2}),

and define buyer i’s allocation rule by

Q̃B
i (v, c) ≡ Q̂B

i (v,min{c1, c2}, c−{1,2}).
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For suppliers 1 and 2, define the allocation rule by

Q̃S
1 (v, c) ≡

{
Q̂S

1,2(v,min{c1, c2}, c−{1,2}) if c1 ≤ c2,
0 otherwise,

and

Q̃S
2 (v, c) ≡

{
Q̂S

1,2(v,min{c1, c2}, c−{1,2}) if c2 < c1,
0 otherwise,

which are nonincreasing in the supplier 1’s type and supplier 2’s type, respectively,
and so satisfy incentive compatibility.

We now show that the expected threshold payments of the nonmerging firms
are the same under Q̂ and Q̃.

LEMMA B.1: The expected threshold payments of nonmerging firms are the same
under Q̃ and Q̂.

Proof. Because the merged entity’s type is drawn from the distribution of
min{c1, c2}, to evaluate the expected threshold payments under the two mecha-
nisms, it suffices to compare threshold types between the two mechanisms for a
given pre-merger type vector (v, c) and the corresponding post-merger type vector
(v,min{c1, c2}, c−{1,2}). The threshold types for a trading buyer depend at most
on the weighted virtual cost of the cutoff supplier (the highest weighted virtual
cost supplier that trades) and the weighted virtual values of buyers with units
that do not trade. Analogously, the threshold types for a trading supplier depend
at most on the weighted virtual value of the cutoff buyer (the lowest weighted
virtual value buyer that trades) and the weighted virtual costs of suppliers with
units that do not trade.

First, consider the threshold types for trading buyers. It is never the case that
both supplier 1 and supplier 2 trade under Q̃. If supplier 1 or supplier 2 trades,

then using kS1 = kS2 = KB, the cutoff weighted virtual cost is Γ
𝑤/ρ̂
1,2 (min{c1, c2}).

Thus, trading buyers’ threshold types depend on the merging suppliers only

through Γ
𝑤/ρ̂
1,2 (min{c1, c2}), which is the same as under Q̂. If neither supplier

1 nor supplier 2 trades under Q̃, then the merged entity with type equal to
min{c1, c2} does not trade under Q̂, and again the buyer’s threshold payments
are the same under Q̂ and Q̃. This completes the demonstration that buyers’
expected threshold payments are the same under Q̃ and Q̂.

Second, consider the threshold types for trading nonmerging suppliers. Suppose
that nonmerging supplier i trades under Q̃. Then because kS1 = kS2 = KB, it must

be that supplier i has a lower weighted virtual cost than Γ
𝑤/ρ̂
1,2 (min{c1, c2}), i.e.,

ignoring ties between types,

Γ
𝑤S
i /ρ̂

i (ci) < Γ
𝑤/ρ̂
1,2 (min{c1, c2}).
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If supplier i were to report a type greater than x̂ ≡ Γ
𝑤S
i /ρ̂−1

i (Γ
𝑤/ρ̂
1,2 (min{c1, c2})), it

would trade zero units, so its threshold types are all less than or equal to x̂. This
implies that its threshold types only depend on c1 and c2 through min{c1, c2}.
Thus, nonmerging suppliers’ expected threshold payments are the same under Q̃
and Q̂. □

Using Lemma B.1 and defining the payments M̃ for the nonmerging agents to
be their threshold payments associated with Q̃ minus η̂Bi π̂ for buyer i ∈ NB and
plus η̂Sj π̂ for supplier j ∈ N S\{1, 2}, it follows that the buyers’ and nonmerging

suppliers’ expected payments are the same under M̃ as under M̂.
Now consider the payments of the merging suppliers. Suppose supplier 1 trades,

which implies that supplier 2 does not trade. Consider supplier 1’s threshold
payment for the q-th unit under Q̃. It is the worst type that supplier 1 could report
and still trade its q-th unit. The only difference in the calculation of supplier
1’s threshold payment under Q̃ versus the merged entity’s threshold payment
under Q̂ is that under Q̃, supplier 1’s threshold types are bounded above by c2
because then any report greater than c2 results in supplier 1’s trading zero units.
Thus, when supplier 1 trades (and supplier 2 does not), its expected threshold
payment under Q̃ is strictly less than the expected threshold payment of the
merged entity under Q̂. Similarly, when supplier 2 trades, its expected threshold
payment under Q̃ is less than the expected threshold payment of the merged
entity under Q̂. Thus, letting τ̃Sj (v, c) be the threshold payment of supplier j

under Q̃ and τ̂S(v, c1,2, c−{1,2}) be the threshold payment of the merged entity

under Q̂, we have

0 < Ev,c1,2,c−{1,2}

[
τ̂S(v, c1,2, c−{1,2})

]
− Ev,c

[
τ̃S1 (v, c) + τ̃S2 (v, c)

]
≡ ∆.

This implies that under Q̃, the budget surplus in the pre-merger market not
including fixed payments is π̂ +∆, where ∆ is the amount by which the merging
suppliers’ combined threshold payments are smaller in the pre-merger market
under Q̃ than in the post-merger market under Q̂.
Let η̃ be the pre-merger shares (recall that we assume that the merger does not

alter shares, so for nonmerging agents, the shares in η̃ are the same as in η̂, and
η̃S1 + η̃S2 = η̂S1,2). Define for each supplier j ∈ {1, 2},

M̃S
j (v, c) ≡ τ̃Sj (v, c) + η̃Sj π̂,

and note that

Ev,c

[
M̃S

1 (v, c) + M̃S
2 (v, c)

]
= Ev,c

[
τ̃S1 (v, c) + τ̃S2 (v, c) + η̂S1,2π̂

]
= Ev,c1,2,c−{1,2}

[
τ̂Si (v, c1,2, c−{1,2})

]
+ η̂S1,2π̂ −∆

= Ev,c1,2,c−{1,2}

[
M̂S

1,2(v, c1,2, c−{1,2})
]
−∆.
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It follows that ⟨Q̃, M̃⟩ is an incentive compatible, individually rational pre-
merger mechanism and satisfies the no-deficit constraint. In addition, there is
budget surplus ∆ to be allocated to the agents according to η̃.
Comparing expected weighted surpluses, we have (dropping the arguments

(v, c1,2, c−{1,2}) on ⟨Q̂, M̂⟩ and (v, c) on ⟨Q̃, M̃⟩):

Ev,c1,2,c−{1,2}

 ∑
i∈NB

𝑤B
i

(
Q̂B

i vi − M̂B
i

)
+

∑
j∈NS\{1,2}

𝑤S
j

(
M̂S

j − Q̂S
j cj

)
+ 𝑤

(
M̂S

1,2 − Q̂S
1,2c1,2

)
= Ev,c

 ∑
i∈NB

𝑤B
i

(
Q̃B

i vi − M̃B
i

)
+

∑
j∈NS\{1,2}

𝑤S
j

(
M̃S

j − Q̃S
j cj

)
+

∑
j∈{1,2}

𝑤

(
M̃S

j +∆− Q̃S
j cj

)
≤ Ev,c

 ∑
i∈NB

𝑤B
i

(
Q̃B

i vi − M̃B
i + η̃Bi ∆

)
+

∑
j∈NS\{1,2}

𝑤S
j

(
M̃S

j − Q̃S
j cj + η̃Sj ∆

)

+
∑

j∈{1,2}
𝑤

(
M̃S

j − Q̃S
j cj + η̃Sj ∆

) ,

where the inequality uses the fact that η̃xi > 0 only if 𝑤x
i = maxw and

∑
η̃ = 1,

which implies that∑
i∈NB

𝑤B
i η̃

B
i +

∑
j∈NS\{1,2}

𝑤S
j η̃

S
j +

∑
j∈{1,2}

𝑤η̃Sj = maxw ≥ 𝑤,

and where the inequality is strict if 𝑤 < maxw.

Thus, ⟨Q̃, M̃⟩ is a feasible incomplete information bargaining mechanism in the
pre-merger market and generates expected weighted surplus under that is weakly
greater (strictly if 𝑤 < maxw) than under ⟨Q̂, M̂⟩ in the post-merger market.
It follows that the optimized incomplete information bargaining mechanism in
the pre-merger market generates weakly greater expected weighted social surplus
(strictly if 𝑤 < maxw) than ⟨Q̂, M̂⟩ in the post-merger market. Further, if all
nonmerging agents have zero bargaining weight, then ρ̂ = maxw = 𝑤 and the pre-
merger mechanism has ρ̃ = maxw = 𝑤. It follows that no further optimization of
the mechanism is possible, and so expected weighted welfare, and indeed, expected
surplus for all agents, is the same before and after the merger. ■

Proof of Proposition 7. We begin by considering the first part of the statement.
Choosing v such that v ≥ c, we have nonoverlapping supports. Hence, with
symmetric bargaining weights, the pre-integration market achieves the first-best.
Consequently, vertical integration cannot increase social surplus. After integra-
tion between the buyer and supplier i, the buyer’s willingness to pay is the cost
realization of the integrated supplier, that is, ci, whose support is [c, c]. Thus, we
have a generalized Myerson-Satterthwaite problem (generalized insofar as there
is one buyer but nS − 1 ≥ 1 suppliers). For this setting, impossibility of first-best
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trade obtains (see, e.g., Delacrétaz et al., 2019), regardless of bargaining weights.
The second part follows from Theorem 4 (and Table 1) in Williams (1999), which
shows that v > c and nS sufficiently large is sufficient for first-best to be possible
when the suppliers draw their types from identical distributions. ■

Proof of Proposition 8. We have proved the first part in the text and are thus
left to prove the second part.

Let ûBi,Q(vi; e
B
−i, e

S) denote the interim expected payoff of buyer i with type vi,

not including the (constant) interim expected payment to the worst-off type and
not including investment costs, when the allocation rule is Q and other agents
investments are (eB−i, e

S). Define ûSi,Q(ci; e
B, eS−i) analogously. Let uBi,Q(e) and

uSi,Q(e) denote the expected payoffs of buyer i and supplier i, respectively, when
the allocation rule is Q and investments are e. For any allocation rule Q, let
qBi (vi; e

B
−i, e

S) ≡ Ev−i,c|eB−i,e
S

[
QB

i (v, c)
]
and qi(ci; e

B, eS−i) ≡ Ev,c−i|eB ,eS−i

[
QS

i (v, c)
]
.

As discussed in Appendix A.1, by the payoff equivalence theorem, we have, up to
a constant,

(B.7) ûBi,Q(vi; e
B
−i, e

S) =

∫ vi

v
qBi (x; e

B
−i, e

S)dx,

and, taking expectations with respect to vi, one obtains

(B.8) uBi,Q(e) =

∫ v

v
qBi (x; e

B
−i, e

S)(1− Fi(x; e
B
i ))dx

up to a constant, and, analogously,

(B.9) uSj,Q(e) =

∫ c

c
qSj (x; e

B, eS−j)Gj(x; e
S
j )dx

up to a constant.

By the definition of e as the vector of first-best investments, we have

e ∈ argmax
e

∑
i∈NB

uBi,QFB (e) +
∑
j∈NS

uSj,QFB (e)−
∑
i∈NB

ΨB
i (e

B
i )−

∑
j∈NS

ΨS
j (e

S
j ).

which implies that for all i ∈ NB and j ∈ N S ,

(B.10) eBi ∈ argmax
eBi

uBi,QFB (e
B
i , e

B
−i, e

S)−ΨB
i (e

B
i )
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and

(B.11) eSj ∈ argmax
eSj

uSj,QFB (e
B, eSj , e

S
−j)−ΨS

j (e
S
j ).

Assume that (10)–(11) hold. Let Qw,e denote the incomplete information bar-
gaining allocation rule given in Lemma 1, but with the virtual types defined in
terms of the type distributions associated with investment e, and let ρwe denote
the associated multiplier on the no-deficit constraint. Suppose that first-best in-
vestments e are Nash equilibrium investments, which implies that for all i ∈ NB

and j ∈ N S ,

(B.12) eBi ∈ argmax
eBi

uBi,Qw,e(e
B
i , e

B
−i, e

S)−ΨB
i (e

B
i )

and

(B.13) eSj ∈ argmax
eSj

uSj,Qw,e(e
B, eSj , e

S
−j)−ΨS

j (e
S
j ).

Assumptions (10)–(11) ensure that the first-best investments are characterized
by their first-order conditions. Thus, using (B.8) and (B.10), we have for all
i ∈ NB,

(B.14) −
∫ v

v
qFB,B
i (x; eB−i, e

S)
∂Fi(x; e

B
i )

∂e
dx−ΨB′

i (eBi ) = 0.

Similarly, using (B.8) and (B.12), we have

(B.15) −
∫ v

v
qw,e,B
i (x; eB−i, e

S)
∂Fi(x; e

B
i )

∂e
dx−ΨB′

i (eBi ) = 0.

Combining (B.14) and (B.15), we have

(B.16)

∫ v

v
(qFB,B

i (x; eB−i, e
S)− qw,e,B

i (x; eB−i, e
S))

∂Fi(x; e
B
i )

∂e
dx = 0.

Writing this in terms of the ex post allocation rules, we have for all i ∈ NB,

(B.17) Ev−i,c|eB−i,e
S

[∫ v
v (Q

FB,B
i (x,v−i, c)−Qw,e,B

i (x,v−i, c))
∂Fi(x;e

B
i )

∂e dx
]
= 0.
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Steps analogous to those leading to (B.16) imply that for all j ∈ N S ,

(B.18)

∫ c

c
(qFB,S

j (x; eB, eS−j)− qw,e,S
j (x; eB, eS−j))

∂Gj(x; e
S
j )

∂e
dx = 0.

By Lemma 1, we know that the total number of trades induced by Qw,e(v, c) is
the maximum such that the lowest weighted virtual value of any trading buyer is
greater than or equal to the highest weighted virtual cost of any trading supplier.
Further, the total number of trades induced by QFB(v, c) is the maximum such
that the lowest value of any trading buyer is greater than or equal to the highest
cost of any trading supplier. Because virtual costs are greater than or equal to
actual costs and virtual values are less than or equal to actual values, it follows
that

∑
i∈NB Qw,e,B

i (v, c) ≤
∑

i∈NB QFB,B
i (v, c) for all (v, c) (and similarly on

the supply side). Because we assume that ∂Fi(v;e)
∂e < 0 for all v ∈ (v, v), (B.17)

then implies that

(B.19)
∑
i∈NB

Qw,e,B
i (v, c) =

∑
i∈NB

QFB,B
i (v, c) ≡ ξ(v, c)

for all but a zero-measure set of types. By feasibility, the corresponding total
supplier-side quantities are also equal to ξ(v, c) for all but a zero-measure set of
types. Thus, it only remains to show that Qw,e always induces the same agents
to trade as does QFB.

We begin by considering the case with overlapping supports and then consider
the case in which (ii), (iii), or (iv) holds.

Case 1: v < c. Suppose, contrary to what we want to show, that Qw,e discrimi-
nates among agents based on virtual types for an open set of types—we then show
that this implies that the number of trades underQw,e must sometimes differ from
the number under the first-best, contradicting (B.19). That is, suppose that there
exist suppliers (an analogous argument applies for buyers), which we denote by

1 and 2, and types (v̂, ĉ) with ĉ1 ̸= ĉ2 such that QFB,S
1 (v̂, ĉ) > Qw,e,S

1 (v̂, ĉ) and

QFB,S
2 (v̂, ĉ) < Qw,e,S

2 (v̂, ĉ). Because supplier 1 trades under the first-best when
supplier 2 has excess capacity, this implies that ĉ1 < ĉ2; and because supplier 2
trades in the Nash equilibrium when supplier 1 has excess capacity, this implies

that Γ
𝑤S
2 /ρwe

2 (ĉ2; e
S
2 ) ≤ Γ

𝑤S
1 /ρwe

1 (ĉ1; e
S
1 ). It follows that

ĉ1 < ĉ2 ≤ Γ
𝑤S
2 /ρwe

2 (ĉ2; e
S
2 ) ≤ Γ

𝑤S
1 /ρwe

1 (ĉ1; e
S
1 ).

Because ĉ1 < Γ
𝑤S
1 /ρwe

1 (ĉ1; e
S
1 ), it follows that 𝑤

S
1 /ρ

w
e < 1 and so for all c ∈ (c, c),

c < Γ
𝑤S
1 /ρwe

1 (c; eS1 ). Thus, letting c̃1 ∈ (max{c, v}, c), ṽ1 ∈ (c̃1,min{c,Γ𝑤S
1 /ρwe

1 (c̃1; e1)}),
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for all i ∈ N S\{1}, c̃i = c, and for all i ∈ NB\{1}, ṽi = v, we have

c̃1 < ṽ1 < Γ
𝑤S
1 /ρwe

1 (c̃1; e
S
1 ) and max

i∈NB\{1}
ṽi < ṽ1 < min

i∈NS\{1}
c̃i,

which implies that no trades occur under Qw,e and only supplier 1 and buyer 1
trade under the first-best. By continuity, for all (v, c) in an open set of types

around (ṽ, c̃), we have
∑

i∈NB Qw,e,B
i (v, c) ̸=

∑
i∈NB QFB,B

i (v, c), which contra-

dicts (B.19). Thus, we conclude that Qw,e does not discriminate among suppliers
based on virtual types and so Qw,e induces the same suppliers to produce as does
QFB. An analogous argument shows that the set of trading buyers is the same
under Qw,e as under QFB.

Case 2: v ≥ c and either (ii), (iii), or (iv) holds. Note that v ≥ c implies that
under the first-best, the number of trades is min{KB,KS}. If (ii) holds, i.e.,
KB = KS , then all agents trade under the first-best and so (B.19) implies that
all agents also trade under Qw,e, which completes the proof. Suppose that (iii)
holds, so that KB < KS and (12) holds. (Analogous arguments apply to the case
with KB > KS and (13).) Then all buyers consume their full demands under the
first-best. By the argument given in the proof of Lemma 2, because bargaining is
efficient, we must have 𝑤S

1 = · · · = 𝑤S
nS . Given this, (12) implies that the ranking

of suppliers according to Γ
𝑤S
i /ρwe

i (ci; e
S
i ) is the same as the ranking according to

ci. Thus, using (B.19), Qw,e induces the same suppliers to produce as does QFB,
and again we are done. ■



22

C. Extensions

In Section C.1, we show how data on bargaining breakdown can be used for
estimation. In Section C.2, we extend the model to allow heterogeneous outside
options, and in Section C.3, we extend the model to allow buyers to have heteroge-
neous preferences over suppliers and provide a generalization of the one-to-many
setup that encompasses additional models.

1. Bargaining breakdown and estimation

A pervasive feature of real-world bargaining is that negotiations often break
down.4 Anecdotal examples range from the U.S. government shut down, to the
British coal miners’ and the U.S. air traffic controllers’ strikes in the 1980s, to
failures to form coalition governments in countries with proportional represen-
tation. Providing systematic evidence of bargaining breakdown, Backus et al.
(2020) analyze a data set covering 25 million observations of bilateral negotia-
tions on eBay and find a breakdown probability of roughly 55 percent. More
generally, when firms bargain over essential inputs, such as medical equipment
for hospitals or computer chips for manufacturers, bargaining breakdown will typ-
ically not mean that the firms stop trading with each other, but rather that the
latest, quality-improved version of the input is not traded.

Because with incomplete information, bargaining breakdown occurs on the equi-
librium path, one can use observed bargaining breakdown frequencies as a mo-
ment to match in empirical research rather than as an error.5 While in practical
applications specifics will, of course, depend on the available data and on the
econometric approach, we now provide an illustration of how, with incomplete in-
formation bargaining, one can use observed frequencies of negotiation breakdowns
to back out the parameters of the distributions from which the agents draw their
types.

Consider a market with one buyer and two suppliers with single-unit demand
and supply and types drawn from parameterized distributions

(C.1) F (v) = 1− (1− v)1/κ and Gj(c) = c1/κj ,

4As described by Crawford (2014), there are regular blackouts of broadcast television stations on cable
and satellite distribution platforms due to the breakdown of negotiations over the terms for retransmission
of the broadcast signal.

5With incomplete information, bilateral bargaining can break down on the equilibrium path for
three reasons. First, it may be that the buyer’s value is below the supplier’s cost, but because of private
information, the two parties do not know this before they sit down at the negotiating table, so bargaining
begins but then breaks down. Second, with unequal bargaining power, incentives for rent extraction
may lead more powerful agents to impose sufficiently aggressive thresholds for trade that breakdown
results. Third, because of impossibility theorems, even if the buyer’s value exceeds the supplier’s cost,
the constraints imposed by incentive compatibility, individual rationality, and no deficit may prevent ex
post efficient trade from taking place.
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with support [0, 1], where the parameters κ and κj are positive real numbers and
have the interpretation of “capacities” insofar as larger values of κ and κj imply
better distributions in the sense of first-order stochastic shifts. These distribu-
tions are analytically convenient because they imply linear virtual type functions.
Rather than treating negotiation breakdowns as measurement error, which is dif-
ficult to justify if breakdown occurs more than fifty percent of the time in 25
million observations, the frequency of those breakdowns is valuable information
that can be used for estimation in the incomplete information framework. Figure
C.1(a) provides an example of how the probability of bargaining breakdown can
be used to calibrate the model with parameterized distributions.
The model can also be used to predict the change in social surplus as result of

vertical integration, which is displayed in Figure C.1(b). As shown, when the rate
of bargaining breakdown in the pre-integration market is sufficiently low, i.e., the
pre-integration market is sufficiently efficient, the change in social surplus from
vertical integration is negative. In contrast, when the probability of breakdown
is sufficiently high prior to integration, the increased efficiency associated with
internal transactions dominates, and vertical integration increases social surplus.

mkt shares Pr(breakdown) (κ1, κ2, κ)

50-50 10% (1, 1, 11)
50-50 30% (1, 1, 3)
50-50 55% (1, 1, 1)

(a) Calibration of distributions to data

0.1 0.2 0.3 0.4 0.5 0.6
pre-VI Pr(bd)

-2%

-1%

1%

2%

3%

4%

5%
VI increases
social surplus

VI decreases
social surplus

(b) Change in expected social surplus following
vertical integration

Figure C.1. Pre-integration breakdown and effects of vertical integration on social surplus.

Notes: Interaction between the pre-integration breakdown probability and the effect of vertical integra-
tion on social surplus. Panel (a): Calibration of distributional parameters based on market shares and
breakdown probabilities assuming that nB = 1 and nS = 2 and that w and η are symmetric, F (v)
and Gj(c) are given by (C.1), and (κ1 + κ2)/2 = 1. Panel (b): Change in expected social surplus due
to vertical integration as the probability of breakdown in the pre-integration market, “pre-VI Pr(bd),”
varies, based on the calibration of Panel (a).

2. Heterogeneous outside options

The values of agents’ outside options are central for determining the division of
social surplus in complete information bargaining models. We now briefly discuss
how our model can be augmented or reinterpreted to account for similar features.
As we show, there are two types of outside options that can vary across agents: the
opportunity cost of participating in the mechanism and the opportunity cost of
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producing (or buying), which we address in turn. Some of the comparative statics
with respect to these costs are the same as with complete information bargaining,
while other aspects are novel relative to complete information models.

The comparative statics with respect to increasing an agent’s participation
cost (see Appendix C.2.a) are intuitive and largely the same as in models with
complete information because it increases the agent’s share of the surplus that
is created; in contrast to complete information models, it may decrease expected
social surplus because of distortions to the allocation rule required to cover larger
outside options.

The effects of changing an agent’s production-relevant outside option (see Ap-
pendix C.2.b) are more nuanced. For example, as a supplier’s outside option
improves, the support of its cost distribution shifts upwards by the amount of the
improvement, with the result that higher costs become more likely. Hence, the
supplier will tend to be less likely to trade. However, under the assumption of
monotone hazard rates, this effect is partly (but not completely) offset because,
for a given cost realization, the supplier’s weighted virtual cost is lower than be-
fore the increase in the outside option. This implies that, ex post, given the same
cost realization, the supplier is treated more favorably after the outside option in-
creases. This is in line with intuition gleaned from complete information models.
But from an ex ante perspective, the increase in the outside option reduces the
supplier’s expected payoff from incomplete information bargaining because over-
all it makes the supplier less likely to trade and thereby decreases the supplier’s
ex ante expected payoff. Moreover, as a supplier’s cost distribution worsens, the
revenue constraint faced by the mechanism becomes tighter, which further tends
to worsen the agent’s bargaining outcome.

a. Fixed costs of participating in the mechanism. — For the purposes of
this extension, we assume that nB = KB = 1 and drop the buyer subscripts.
Therefore, we can also assume, without further loss, that kSj = 1 for all j ∈ N S .

We first extend the model to allow the buyer and each supplier to have a
positive outside option, denoted by xB ≥ 0 for the buyer and xj ≥ 0 for supplier
j. These outside options are best thought of as fixed costs of participating in the
mechanism because they have to be borne regardless of whether an agent trades.
In this case, the incomplete information bargaining mechanism with weights w is
the solution to

max
⟨Q,M⟩∈M

Ev,c

[
Ww

Q,M(v, c)
]
s.t. ηBπw ≥ xB and for all j ∈ N S , ηSj π

w ≥ xj .

Similar to the case in which the value of the outside options was zero for all
agents, the allocation rule is as defined in Lemma 1, but now ρw is the smallest
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ρ ≥ maxw such that
(C.2)

Ev,c

 ∑
j∈NS

(Φ(v)− Γj(cj)) · 1
Φ𝑤B/ρ(v)≥Γ

𝑤j/ρ

j (cj)=min
ℓ∈NS Γ

𝑤ℓ/ρ

ℓ (cℓ)

 ≥ xB+
∑
j∈NS

xj ,

if such a ρ exists (if no such ρ exists, then the constraints cannot be met).

b. Production-relevant outside options. — Alternatively, one can think
of outside options as affecting a supplier’s cost of producing or as the buyer’s
best alternative to procuring the good. Typically, one would expect these to
be more sizeable than the costs of participating in the mechanism. To allow
for heterogeneity in these production-relevant outside options, we now relax the
assumption that all suppliers’ cost distributions have the identical support [c, c]
and assume instead that, with a commonly known outside option of value yj ≥
0, the support of supplier j’s cost distribution is [cj , cj ] with cj = c + yj and
cj = c + yj . If Gj(c) is j’s cost distribution without the outside option, then
given outside option yj , its cost distribution is Go

j(c) = Gj(c − yj), with density
goj (c) = gj(c − yj) and support [cj , cj ]. In other words, increasing a supplier’s
outside option shifts its distribution to the right without changing its shape.
Likewise, given outside option yB ≥ 0, the distribution of the buyer’s value v is
F o(v) = F (v + yB) with density fo(v) = f(v + yB) and support [v − yB, v − yB].
Increasing the value of an agent’s outside option has two effects. First, it

worsens its distribution in the sense that for yj > 0 and yB > 0, we have Go
j(c) ≤

Gj(c) for all c and F o(v) ≥ F (v) for all v. Hence, under the first-best, an agent
is less likely to trade the larger is the value of its outside option. While this effect
differs from what one would usually obtain in complete information models, it is
an immediate implication of the “worsening” of the agent’s distribution.
The second effect is less immediate and partly, but not completely, offsets the

first under the assumption that hazard rates are monotone, that is, assuming that
Gj(c)/gj(c) is increasing in c and (1− F (v))/f(v) is decreasing in v. To see this,
let us focus on supplier j. The arguments for the buyer (and of course all other
suppliers) are analogous. We denote the weighted virtual cost of supplier j when
it has outside option yj by

(C.3) Γo
j,a(c) ≡ c+ (1− a)

Gj(c− yj)

gj(c− yj)
= Γj,a(c− y) + y < Γj,a(c),

where the inequality holds for all a < 1 because the monotone hazard rate as-
sumption implies that Γ′

j,a(c) > 1 for all a < 1. This in turn has two, somewhat
subtle implications. Let z be the threshold for supplier j to trade when its outside
option is zero, i.e., keeping z fixed, supplier j trades if and only if Γj,a(c) ≤ z.
(Note that z will be the minimum of the buyer’s weighted virtual value and the



26

smallest weighted virtual cost of supplier j’s competitors, but this does not mat-
ter for the argument that follows.) Assuming that a < 1 and yj < c − c, which
implies that cj < c, it follows that there are costs c ∈ [cj , c] and thresholds z
such that supplier j trades when it has the outside option and not without it,
that is, Γo

j,a(c) < z < Γj,a(c). This reflects the reasonably well-known result that
optimal mechanisms tend to discriminate in favor of weaker agents (McAfee and
McMillan, 1987), which in this case is the agent with the positive outside option.
It also resonates with intuition from complete information models: keeping costs
fixed, the agent with the better outside option is treated more favorably, indeed,
it is evaluated according to a smaller weighted virtual cost. However, from an ex
ante perspective, the larger is the value of the outside option, the less likely is the
agent to trade. To see this, consider a fixed realization of z. (The distribution
of these thresholds is not affected by supplier j’s outside option and hence our
argument extends directly once one integrates over z and its density.) Given yj ,
supplier j trades if and only if its cost c is below τ(y) satisfying Γo

j,a(τ(y)) = z.
Using (C.3), this is equivalent to Γj,a(τ(y)−y)+y = z, which in turn is equivalent
to τ(y) = Γ−1

j,a(z − y) + y, whose derivative for a < 1 satisfies

0 < τ ′(y) = − 1

Γ′
j,a(Γ

−1
j,a(z − y))

+ 1 < 1,

where the inequalities follow because Γ′
j,a(c) > 1. This implies that, for a fixed

z, the probability that supplier j trades decreases in y. To see this, notice that
this probability is Go

j(τ(y)) = Gj(τ(y) − y), whose derivative with respect to y

is gj(τ(y)− y)(τ ′(y)− 1) < 0. In words, although the threshold τ(y) increases in
y, it does so with a slope that is less than 1, which implies that the probability
that supplier j trades decreases in y. This effect is not present in complete
information models, which in a sense take an ex post perspective by looking
at outcomes realization by realization. While improving the outside option yj
improves supplier j’s payoff after its value or cost has been realized, supplier
j’s ex ante expected payoff decreases in yj . Moreover, because an increase in yj
worsens supplier j’s distribution, the revenue constraint becomes (weakly) tighter,
implying an increase in ρw, which further reduces supplier j’s expected payoff.

3. Buyer preferences over suppliers and bargaining externalities

To allow for and investigate bargaining externalities, we restrict attention to the
case of one buyer, nB = 1, with demand for KB ≥ 1 units, and nS ≥ 2 suppliers,
but we generalize the setup to allow the buyer to have heterogeneous preferences
over the suppliers. To this end, we let θ = (θ1, . . . , θnS ) be a commonly known
vector of taste parameters of the buyer, with the meaning that the value to
the buyer of trade with supplier j when the buyer’s type is v is θjv. Thus,
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under (ex post) efficiency, trade should occur between the buyer and supplier
j if and only if θjv − cj is positive and among the KB highest values of (θℓv −
cℓ)ℓ∈NS . The problem is trivial if maxj∈NS θjv ≤ c because then it is never ex post
efficient to have trade with any supplier, so assume that maxi∈N θiv > c. This
setup encompasses (i) differentiated products by letting the supplier-specific taste
parameters differ; (ii) a one-buyer version of the Shapley and Shubik (1972) model
by setting KB = 1; and (iii) a version of the Shapley-Shubik model in which the
buyer has demand for multiple products of the suppliers by setting KB > 1. For
a generalization of the one-to-many setup that encompasses additional models,
see Section 3.b.
We define the virtual surplus Λw,θ

j associated with trade between the buyer and
supplier j, accounting for the agents’ bargaining weights w and the buyer’s prefer-

ences θ, with ρw,θ defined analogously to before as Λw,θ
j (v, cj) ≡ θjΦ

𝑤B/ρw,θ
(v)−

Γ
𝑤S
j /ρw,θ

j (cj). Let Λw,θ(v, c) ≡ (Λw,θ
j (v, cj))j∈NS and denote by Λw,θ(v, c)(KB)

the KB-highest element of Λw,θ(v, c). As before, in order to save notation, we
ignore ties.

LEMMA C.1: Assuming that nB = 1 and nS ≥ 2, in the generalized setup with
buyer preferences θ, incomplete information bargaining with weights w has the al-

location rule for j ∈ N S, Qw,θ
j (v, c) ≡ 1 if Λw,θ

j (v, cj) ≥ max{0,Λw,θ(v, c)(KB)},
and otherwise Qw,θ

j (v, c) ≡ 0.

Proof. The extension to allow supplier specific quality parameters follows by
analogous arguments to Lemma 1 noting that the buyer’s value for supplier j’s
good is θjv, whose distribution is F̂ (x) ≡ F (x/θj) on [θjv, θjv] with density

f̂(x) = 1
θj
f(v/θj). Thus, the virtual type when the buyer’s value is v is

θjv −
1− F̂ (θjv)

f̂(θjv)
= θjv − θj

1− F (v)

f(v)
= θjΦ(v).

Thus, the parameter θj “factors out” of the virtual type function. The extension
to multi-object demand follows by standard mechanism design arguments. ■

We can now use this generalized setup to analyze bargaining externalities be-
tween suppliers. If KB < n, then one effect of an increase in θi is that agents
other than i are less likely to be among the at-most KB agents that trade. In con-
trast, if KB ≥ n and ρw,θ > maxw, then the probability that supplier j trades,

Pr(θjΦ
𝑤B/ρw,θ

(v) ≥ Γ
𝑤S
j /ρw,θ

j (cj)), does not depend on the preference parameters

of the other suppliers except through their effect on ρw,θ. If ρw,θ > maxw, then
an increase in a rival supplier’s preference parameter causes an increase in ρw,θ,
which increases the probability of trade and so benefits the supplier. Thus, we
have the following result:
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PROPOSITION C.1: Assuming that nB = 1 and nS ≥ 2, in the generalized
setup with bargaining weights w and buyer preferences θ, if KB ≥ n and ρw,θ >
maxw, then an increase in the preference parameter for one supplier increases
the payoffs for all suppliers.

The result of Proposition C.1 does not necessarily extend to the case with
KB < n, as shown in the following example.

a. Example with bargaining externalities. — In Table C.1, we consider the
case of one buyer and two suppliers with symmetric bargaining weights. Assuming
that F , G1, and G2 are the uniform distribution on [0, 1] and that θ2 = 1, we
allow the buyer’s preference for supplier 1, θ1, and the buyer’s total demand, KB,
to vary.

Table C.1—Outcomes for one-to-many price formation.

KB = 1 KB = 2

θ1: 1 2 1 2

1/ρw,θ 0.73 0.76 0.67 0.72

uB 0.13 0.34 0.14 0.38

u1 0.05 0.21 0.07 0.22

u2 0.05 0.01 0.07 0.08

Notes: Outcomes for one-to-many price formation for the case of one buyer and two suppliers with
w = 1, symmetric η, types that are uniformly distributed on [0, 1], and θ2 = 1. The values of KB and
θ1 vary as indicated in the table.

As shown in Table C.1, focusing on the case with KB = 1, an increase in
the buyer’s preference for supplier 1 from θ1 = 1 to θ1 = 2 benefits supplier 1
(u1 increases) but harms supplier 2 (u2 decreases). The increase in the buyer’s
preference for supplier 1 means that supplier 2 is less likely to trade. As a result,
supplier 2 is harmed by the increase in the buyer’s preference for supplier 1. But
when KB = 2, the results differ. Supplier 1 again benefits from being preferred
by the buyer, but in this case supplier 2 also benefits, albeit less than supplier 1.
The increase in the buyer’s value from trade with supplier 1 means that the value
of ρw,θ decreases, so supplier 2 trades more often. As a result of the change from
θ1 = 1 to θ1 = 2, both u1 and u2 increase.

b. Generalization of buyer preferences over suppliers. — Here we provide
a further generalization of the setup with one buyer and multiple suppliers to allow
a more general structure for the buyer’s preferences over suppliers.
Let P be the set of subsets ofN S with no more thanKB elements (including the

empty set) and let θ = {θX}X∈P be a commonly known vector of taste parameters
of the buyer satisfying the “size-dependent discounts” condition of Delacrétaz
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et al. (2019). Specifically, let there be supplier-specific preferences {θ̂j}j∈NS and
size-dependent discounts {δj}j∈NS with 0 = δ0 = δ1 ≤ δ2 ≤ · · · ≤ δn such that

for all X ∈ P, θX =
∑

i∈X θ̂i − δ|X|. Thus, the buyer’s value for purchasing from
suppliers in X ∈ P when its type is v is θXv, which depends on the buyer’s value,
the buyer’s preferences for standalone purchases from the suppliers in X, and a
discount that depends on the total number of units purchased. Note that θ∅ = 0,
so that the value to the buyer of no trade is zero.
This setup encompasses (i) the homogeneous good model with constant marginal

value or decreasing marginal value by setting θ̂j = θ for some common θ and for
j ∈ N S , δj either all zero for constant marginal value or increasing in j for de-

creasing marginal value; (ii) differentiated products by letting θ̂j differ across j
and setting all δj to zero; (iii) a one-buyer version of the Shapley-Shubik model
by setting KB = 1; and (iv) a version of the Shapley-Shubik model in which the
buyer has demand for multiple products of the suppliers by setting KB > 1.
Define

X∗
ρ(v, c) ∈ argmax

X∈P
θXΦ1/ρ(v)−

∑
i∈X

Γ
1/ρ
i (ci),

i.e., X∗
ρ(v, c) is the set of trading partners for the buyer that maximizes the

difference between the weighted virtual value, scaled by θX∗
ρ (v,c)

, and the weighted

virtual costs of the trading partners. We then define ρ∗ to be the smallest ρ ≥ 1
such that

Ev,c

θX∗
ρ (v,c)

Φ(v)−
∑

i∈X∗
ρ (v,c)

Γi(ci)

 = 0.

Given the type realization (v, c), the one-to-many ρ∗-mechanism induces trade
between the buyer and suppliers in X∗

ρ∗(v, c). The expected payoff of the buyer
is

Ev

[
ûB(v) +

∫ v

v

∑
X∈P

θX Pr
c

(
X ∈ X∗

ρ∗(x, c)
)
dx

]
,

and the expected payoff of supplier j is

Ecj

[
ûj(c) +

∫ c

cj

Pr
v,c−j

(i ∈ X∗
ρ∗(v, x, c−j))dx

]
.
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D. Implementation

In many cases, economists have achieved greater comfort with models of price-
formation processes when the literature has shown that there exists a noncoopera-
tive game that, at least under some assumptions, has an equilibrium outcome that
is the same as the outcome delivered by the model under consideration. Indeed,
this comfort often extends well beyond the narrow confines of the foundational
game. For example, the existence of microfoundations are regularly invoked to
support empirical estimation of a model even when the data-generation process
does not conform to the extensive-form game providing the microfoundation.6

In light of this, it is perhaps useful to note that, as mentioned in the body
of the paper and discussed in Appendix D.1, for the case of one supplier, one
buyer, and uniformly distributed types, the k-double auction of Chatterjee and
Samuelson (1983) provides an extensive-form game that delivers the same out-
comes as incomplete information bargaining. In addition, as we show in Appendix
D.2, our approach has axiomatic foundations analogous to those that underpin
Nash bargaining. Further, intermediaries like eBay, Amazon, and Alibaba play a
prominent trade in organizing markets and, as we show in Appendix D.3, provide
micro-foundations for incomplete information bargaining. Specifically, building
on the model of Loertscher and Niedermayer (2019), for general distributions,
one buyer, and any number of suppliers, the incomplete information bargaining
outcome arises in equilibrium in an extensive-form game involving a buyer, sup-
pliers, and a fee-setting broker. This is reminiscent of the role of intermediaries
in the wholesale used car market as described by Larsen (2021). There, auction
houses run auctions, facilitate further bargaining in the substantial number of
cases in which the auction does not result in trade, and collect fees from traders.

1. k-double auction as a special case

In the k-double auction of Chatterjee and Samuelson (1983), given k ∈ [0, 1],
the buyer and supplier in a k-double auction simultaneously submit bids pB and
pS , and trade occurs at the price kpB + (1 − k)pS if and only if pB ≥ pS . By
construction, the k-double auction never incurs a deficit. If the agents’ types
are uniformly distributed on [0, 1], then the linear Bayes Nash equilibrium of the
k-double auction results in trade if and only if v ≥ c1+k

2−k +
1−k
2 .7 As first noted by

Myerson and Satterthwaite (1983), for k = 1/2 and uniformly distributed types,
the k-double auction yields the second-best outcome. Williams (1987) then gen-
eralized this insight by showing that, for uniformly distributed types and any

6For example, a model based on Nash bargaining might be estimated even when it is clear that
alternating-offers bargaining is not a good description of the bargaining process used in reality.

7In the linear Bayes Nash equilibrium, a buyer of type v bids pB(v) = (1−k)k/(2(1+k))+ v/(1+k)
and a supplier with cost c bids pS(c) = (1 − k)/2 + c/(2 − k). For k = 1, pB(v) = v/2 and pS(c) = c,
and for k = 0, pB(v) = v and pS(c) = (c + 1)/2. Thus, for k ∈ {0, 1}, the k-double auction reduces to
take-it-or-leave-it offers.
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k ∈ [0, 1], the k-double auction implements the outcomes of incomplete informa-
tion bargaining for some bargaining weights. These outcomes are illustrated in
Figure D.1.
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Figure D.1. Payoffs in the k-double auction.

Notes: Payoffs in the k-double auction for all k ∈ [0, 1]. Assumes that there is one single-unit supplier
and one single-unit buyer that the supplier’s cost and the buyer’s value are uniformly distributed on
[0, 1].

To see that incomplete information bargaining encompasses the k-double auc-
tion as a special case, note that for the case of one single-unit supplier, one
single-unit buyer, and uniformly distributed types, for all w, ρw is such that

0 = Ev,c [(Φ(v)− Γ(c)) ·Qw(v, c)] =

∫ 1

1−𝑤B/ρw

2−𝑤B/ρw

∫ v−(1−𝑤B/ρw)(1−v)

2−𝑤S/ρw

0
(2v − 1− 2c) dcdv,

where the second equality uses the expression for Qw(v, c) from Lemma 1 (we

write Qw instead of Qw,S
1 because for the case that we consider here, there is only

one relevant quantity, and to reduce notation, we drop the agent indices on 𝑤B

and 𝑤S). Solving this for ρw, we get

ρw =
1

2

(
𝑤B + 𝑤S +

√
𝑤B2 − 𝑤B𝑤S + 𝑤S2

)
.

Making the substitutions 𝑤S = 1−∆ and 𝑤B = ∆ and writing ρw as a function
of ∆, we have

(D.1) ρ∆ =
1

2

(
1 +

√
1− 3∆ + 3∆2

)
.



32

It is then straightforward to derive, for a given ∆, the conditions on (v, c) such
that there is trade. Equating this condition with the condition for trade in the
k-double auction allows one to identify the relation between ∆ and k as

(D.2) ∆k ≡ (2− k)k

1 + 2k − 2k2
,

where ∆k is increasing in k and varies from 0 to 1 as k varies from 0 to 1.
To see that the price-formation mechanism with bargaining differential ∆k is

equivalent to the k-double auction, substitute the expression for ρ∆ in place of
ρw into the expression derived from Lemma 1 for Q(1−∆,∆)(v, c) to get

Q(1−∆,∆)(v, c) ≡

{
1 if v ≥ 1−2∆(1−c)+(1+2c)

√
1−3∆+3∆2

2(1−∆)+2
√
1−3∆+3∆2

,

0 otherwise.

Using (D.2), it then follows that

Q(1−∆k,∆k)(v, c) =

{
1 if v ≥ c1+k

2−k + 1−k
2 ,

0 otherwise,

which is the same allocation rule as for the k-double auction.
To conclude, note that we can replicate the incomplete information bargaining

outcome with bargaining weights w by using bargaining weights (1−∆,∆) with

∆ = 𝑤B

𝑤B+𝑤S . Thus, for any bargaining weights w, there exists k ∈ [0, 1], namely k

such that ∆k = 𝑤B

𝑤B+𝑤S , such that the outcome of the k-double auction is the same
as the outcome of incomplete information bargaining with weights w. Conversely,
for any k ∈ [0, 1], there exist bargaining weightsw, namelyw = (1−∆k,∆k), such
that incomplete information bargaining with weights w yields the same outcome
as the k-double auction.

2. Axiomatic approach

In this appendix, we provide axiomatic foundations for incomplete information
bargaining. Just as the Nash bargaining solution (and cooperative game theory
more generally) abstracts away from specific bargaining protocols, our mechanism
design based approach does the same. Nash bargaining maps primitives to a bar-
gaining solution that specifies agents’ payoffs, and our approach maps primitives
(type distributions of the agents) to agents’ expected payoffs via the unique (or
essentially unique) mechanism that satisfies the axioms presented here.
We take a setup with incomplete information involving independent private

types as given and impose axioms on the mechanism that defines incomplete
information bargaining. This differs from the existing literature, which imposes
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axioms on outcomes. In light of the stringent discipline that the incomplete
information paradigm imposes, this point of departure is necessary. As Ausubel,
Cramton and Deneckere (2002) note, asking for efficient outcomes in bargaining is
“fruitless,” given the impossibility theorem of Myerson and Satterthwaite (1983).

As we now show, axioms of incentive compatibility, individual rationality, and
no deficit identify a set of feasible mechanisms. Additional axioms of constrained
efficiency and symmetry pin down a unique mechanism. Generalizing the effi-
ciency and symmetry axioms allows differential weights on agents’ welfare, anal-
ogous to generalized Nash bargaining.

Observe that the payoff equivalence theorem is distribution free (or detail free)
insofar as it holds for any distributions F1, . . . , FnB and G1, . . . , GnS that have
compact supports and positive densities on (v, v) and (c, c), respectively. In for-
mulating our axioms, we are therefore guided by the principle that the axioms
should make no reference to distributional assumptions and should make no pre-
sumptions beyond these foundational assumptions on the setup. That said, in
the body of the paper we assumed regularity (i.e., that virtual value and cost
functions are increasing) in order to avoid the technicalities of ironing. We do the
same here, although all results continue to hold without regularity assumptions
when the weighted and unweighted virtual value and cost functions are replaced
by their ironed counterparts.

The first three axioms ensure that the incomplete information bargaining mech-
anism is feasible, which means that beyond satisfying resource constraints, the
mechanism satisfies incentive compatibility, individual rationality, and does not
run a deficit.

Axiom 1: Incentive compatibility: The mechanism is incentive compatible.

Axiom 2: Individual rationality: The mechanism is individually rational.

Axiom 3: No deficit: The mechanism does not run a deficit.

Axioms 1–3 are, obviously, consistent with incomplete information bargaining
with any weights w. Axioms 1–3 constrain incomplete information bargaining,
but they also hold, in a sense, in the Nash bargaining framework (Nash, 1950).
In that complete information setup, incentive compatibility is trivially satisfied
because the “mechanism” already knows the agents’ types, and participation in
Nash bargaining is individually rational because the bargaining outcome gives
each agent a payoff of at least its disagreement payoff. In addition, there is no
scope for running a deficit. Thus, there is a sense in which Axioms 1–3 are implied
by the other aspects and axioms in the Nash bargaining setup.

Our fourth and fifth axioms ensure that social surplus is maximized, conditional
on the constraints imposed by the other axioms, and that when that maximizer is
not unique, the solution is one that treats the buyers and suppliers symmetrically.
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Axiom 4: Efficiency: The mechanism maximizes expected social surplus sub-
ject to the conditions of Axioms 1–3.

Axiom 5: Symmetry: Whenever positive surplus is available to be distributed
to agents while still respecting Axioms 1–4, it is distributed equally among the
agents.

Axioms 4 and 5 identify a unique mechanism within the class of direct mech-
anisms that maximize expected social surplus subject to incentive compatibility,
individually rationality, and no deficit, namely incomplete information bargaining
with symmetric bargaining weights w and symmetric η.
Axioms 4 and 5 have clear counterparts in the “efficiency” and “symmetry”

axioms that underlie the Nash bargaining solution. The efficiency axiom in Nash
bargaining requires efficiency for any realization of types, whereas Axiom 4 re-
quires efficiency subject to feasibility constraints. Axiom 5 requires that the
outcome treat the buyer and suppliers symmetrically whenever that can be done
within the context of the other axioms, which is similar to Nash’s requirement of
symmetry.
If for symmetric w, we have πw = 0, as is the case when ρw > maxw, then

Axioms 1–4 imply that ûB1 (v) = · · · = ûB
nB (v) = ûS1 (c) = · · · = ûS

nS (c) = 0,
and so the symmetry axiom has no additional bite beyond the other axioms.
But if πw > 0, then the symmetry axiom requires that this surplus be allocated
symmetrically among the agents, resulting in expected interim payoffs to the
worst-off types that are positive and equal.
In this case when nB = nS = 1 and v > c, all five axioms are satisfied using

the posted-price mechanism with p = (v + c)/2. Notice the similarity to Nash
bargaining here—the posted price is the same price at which a buyer with value
v and a supplier with cost c would trade under Nash’s axioms and assumptions.
Finally, Nash bargaining specifies, in addition to efficiency and symmetry, ax-

ioms of invariance to affine transformations of the utility functions and inde-
pendence of irrelevant alternatives. In incomplete information bargaining, the
assumption of risk neutrality (and the associated quasilinear preferences) means
that invariance to affine transformations of the utility functions is maintained.
And a restriction that certain allocations or transfer payments are not permit-
ted does not affect the outcome of incomplete information bargaining as long
as the optimal allocation and transfers remain available. Thus, the incomplete
information bargaining mechanism satisfies the additional axioms of Nash.
We now state our characterization result.

THEOREM D.1: The incomplete information bargaining mechanism with sym-
metric w and η, is the unique direct mechanism satisfying Axioms 1–5.

Proof of Theorem D.1. When w is symmetric, then by definition, the incomplete
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information bargaining mechanism maximizes welfare subject to incentive com-
patibility, individual rationality, and no deficit. Further, because the allocation
pins down the agents’ interim expected payoffs up to a constant, the mecha-
nism is unique up to the payoffs of the worst-off types, ûB1 (v), . . . , û

B
nB (v) and

ûS1 (c), . . . , û
S
nS (c), but these are uniquely pinned down by the assumption of sym-

metric η. ■

We extend our efficiency and symmetry axioms to allow for different bargaining
weights for the buyer and suppliers, with at least one of the weights being positive,
as follows:

Axiom 4′(w): Generalized efficiency with weights w: The mechanism
maximizes expected weighted welfare, Ev,c[W

w
Q,M(v, c)], subject to the conditions

of Axioms 1–3.

Axiom 5′(w): Generalized symmetry with weights w: Whenever positive
surplus is available to be distributed to agents while still respecting Axioms 1–3
and 4′(w), it is distributed among the agent(s) with the maximum bargaining
weight.

This leads us to the result that incomplete information bargaining is essentially
uniquely defined by the axioms and criteria described above, where the “essen-
tially” relates to the possibility of different tie-breaking rules when more than one
agent has the maximum bargaining weight. The proof is similar to that of Theo-
rem D.1, but with adjustments for the buyers’ and suppliers’ bargaining weights,
and so is omitted.

THEOREM D.2: The incomplete information bargaining mechanism with weights
w is the essentially unique direct mechanism satisfying Axioms 1–3, 4′(w), and
5′(w).

3. Extensive-form approach

Building on the model of Loertscher and Niedermayer (2019), we define the fee-
setting extensive-form game to have one buyer with single-unit demand, nS = n ≥
1 suppliers, and an intermediary that facilitates the buyer’s procurement of inputs
from the suppliers and that charges the buyer a fee for its service. Let N = N S

denote the set of suppliers. The buyer’s value and the suppliers’ costs are not
known by the intermediary, although the intermediary does know the distributions
F and G1, . . . , Gn from which those types are independently drawn. The timing
is as follows: 1. the intermediary announces (and commits to) a discriminatory
clock auction, which we define below, and fee schedule σ = (σ1, . . . , σn), where σi
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maps the price p paid by the buyer to supplier i to the fee σi(p) paid by the buyer
to the intermediary, should the buyer purchase from supplier i; 2. the buyer sets
a reserve r for the auction; 3. the intermediary holds the auction with reserve r,
which determines the winning supplier, if any, and the payment to that supplier;
4. given winner i and payment p, supplier i provides the good to the buyer, and
the buyer pays p to supplier i and σi(p) to the intermediary. If no supplier bids
below the reserve, then there is no trade and no payments are made, including
no payment to the intermediary.
Because this is a procurement, it is a descending clock auction, with the clock

price starting at the reserve r and descending from there. As in any standard
clock auction, participants choose when to exit, and when they exit, they become
inactive and remain so. The clock stops when only one active bidder remains, with
ties broken by randomization. A discriminatory clock auction specifies supplier-
specific discounts off the final clock price (δ1, . . . , δn), where δi maps the clock
price to supplier i’s discount—activity by supplier i at a clock price of p̂ obligates
supplier i to supply the product at the price p̂− δi(p̂). By the usual clock auction
logic, in the essentially unique equilibrium in non-weakly-dominated strategies,
supplier i with cost ci remains active in the auction until the clock price reaches p̂
such that p̂− δi(p̂) = ci, and then supplier i exits. We assume that the suppliers
follow these strategies.
Turning to the incentives of the buyer and intermediary, the buyer chooses the

reserve to maximize its expected payoff, and the intermediary chooses the auction
discounts and the fee structure to maximize the expected value of its objective.
To allow for the possibility that the intermediary has an interest in promoting the
surplus of the agents, we assume that the intermediary’s objective is to maximize
expected weighted welfare subject to no deficit, with surplus distributed according
to shares η, where we refer to w in this context as intermediary preference weights
and η as profit shares.
As we show in the following proposition, the outcome of incomplete information

bargaining arises as a Bayes Nash equilibrium of this game:

PROPOSITION D.1: The outcome of incomplete information bargaining with
bargaining weights w and shares η is a Bayes Nash equilibrium outcome of the
fee-setting extensive-form game with intermediary preference weights w and profit
shares η.

Proof. Consider the Bayes Nash equilibrium of the fee-setting game with interme-
diary preference weights w. To begin, we assume that πw ≡ Ev,c[

∑
i∈N (Φ(v) −

Γi(ci)) ·Qw
i (v, c)] = 0, and then we address the required adjustments for the case

with πw > 0 at the end.
Suppose that the intermediary sets auction discounts relative to the clock price

p̂ of δi(p̂) ≡ p̂− Γ
𝑤i/ρ

w

i

−1
(p̂) and a fee schedule given by, for all i ∈ N ,

σi(p) ≡ Φ𝑤B/ρw−1
(Γ

𝑤i/ρ
w

i (Γ−1
i (p)))− p,
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and suppose that the buyer sets a reserve of Φ𝑤B/ρw(v). Then, given our assump-
tion that each supplier i follows its weakly dominant strategy of remaining active
until a clock price p̂ such that p̂ − δi(p̂) = ci, supplier i remains active until a

price of Γ
𝑤i/ρ

w

i (ci), and so supplier i wins if and only if

Γ
𝑤i/ρ

w

i (ci) = min
j∈N

Γ
𝑤j/ρ

w

j (cj) ≤ Φ𝑤B/ρw(v),

which, by Lemma 1, corresponds to the intermediary’s optimal allocation rule,
Qw. In equilibrium, if supplier i wins the auction, then the auction ends with a
clock price of

p̂ ≡ min
j∈N\{i}

{Φ𝑤B/ρw(v),Γ
𝑤j/ρ

w

j (cj)},

and the buyer makes a payment p = p̂−δi(p̂) to supplier i and a payment of σi(p)
to the intermediary.

To summarize, given the suppliers’ optimal bidding strategies and a reserve set

by the buyer of Φ𝑤B/ρw(v), the intermediary’s choice of auction format and fee
schedule are optimal because they result in the allocation rule that maximizes
the weighted objective subject to no deficit and because the allocation rule pins
down the payoffs up to nonnegative constants that are zero under our assumption
that πw = 0. It remains to show that the best response to the intermediary’s
auction format and fee schedule for a buyer with value v is to choose a reserve of

Φ𝑤B/ρw(v).

To reduce notation, let xB ≡ 𝑤B/ρw and xi ≡ 𝑤i/ρ
w. Define the distribution

of supplier i’s weighted virtual type Γxi
i (ci) by G̃xi

i (z) = Gi(Γ
xi
i

−1(z)), and, letting
x ≡ (x1, . . . , xn), define the distribution of the minimum of the weighted virtual
types of suppliers other than i by

G̃x
−i(z) = 1−

∏
j∈N\{i}

(1− G̃
xj

j (z)).

The expected payment by the buyer to the suppliers given the reserve r can be
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written as ∑
i∈N

E
[
Γi(ci) · 1Γxi

i (ci)≤minj ̸=i

{
r,Γ

xj
j (cj)

}]

=
∑
i∈N

∫ max{c,Γxi
i

−1
(r)}

c

∫ ∞

Γ
xi
i (ci)

Γi(ci)dG̃
x
−i(z)dGi(ci)

=
∑
i∈N

∫ max{c,Γxi
i

−1
(r)}

c
Γi(ci)(1− G̃x

−i(Γ
xi
i (ci)))dGi(ci)

=
∑
i∈N

∫ max{c,Γi(Γ
xi
i

−1
(r))}

c
y

[
1− G̃x

−i(Γ
xi
i (Γ−1

i (y)))
]
gi(Γ

−1
i (y))

Γ′
i(Γ

−1
i (y))

dy,

where the final equality uses the change of variables y = Γi(ci). Thus, the buyer
with value v maximizes its interim expected payoff by choosing r to solve

max
r

∑
i∈N

∫ max{c,Γi(Γ
xi
i

−1
(r))}

c
(v − y − σi(y))

[
1− G̃x

−i(Γ
xi
i (Γ−1

i (y)))
]
gi(Γ

−1
i (y))

Γ′
i(Γ

−1
i (y))

dy

 ,

whose first-order condition when c < Γi(Γ
xi
i

−1(r)) is

0 =
∑
i∈N

Γ′
i(Γ

xi
i

−1(r))Γxi
i

−1′(r)
(
(v − Γi(Γ

xi
i

−1(r))− σi(Γi(Γ
xi
i

−1(r))))
)

·
(1− G̃x

−i(r))gi(Γ
xi
i

−1(r))

Γ′
i(Γ

xi
i

−1(r))

=
∑
i∈N

Γ′
i(Γ

xi
i

−1(r))Γxi
i

−1′(r)
(
v − ΦeB−1(r)

) (1− G̃x
−i(r))gi(Γ

xi
i

−1(r))

Γ′
i(Γ

xi
i

−1(r))
,

where the second equality uses the definition of the fee schedule σ. Given our
assumptions, the second-order condition is satisfied when the first-order condition

is, and so the buyer’s problem is solved by r = ΦxB (v) = Φ𝑤B/ρw(v), giving the
buyer nonnegative interim expected payoff, which completes the proof for the case
with πw = 0. If πw > 0, then this “excess profit” must be distributed via fixed
payments between the agents and the intermediary so that the worst-off type of
each agent i ∈ {B} ∪ N has interim expected payoff ηiπ

w. ■

Thus, the fee-setting extensive-form game, in which a fee-setting intermediary
procures an input for the buyer from competing suppliers, provides a microfoun-
dation for the price-formation mechanism. Reminiscent of Crémer and Riordan
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(1985), the sequential nature of the game allows an equilibrium that is Bayesian
incentive compatible for one agent, the buyer, and dominant-strategy incentive
compatible for the other agents, the suppliers. The equilibrium of the fee-setting
game satisfies ex post individual rationality for both the buyer and suppliers, but
only balances the intermediary’s budget in expectation. In contrast, in Crémer
and Riordan (1985), the budget is balanced ex post, but individual rationality is
no longer satisfied ex post for all agents.8

The fee-setting extensive-form game is, for example, a reasonable description of
the wholesale used car market analyzed by Larsen (2021). There, an intermediary
runs auctions, facilitates further bargaining in the substantial number of cases in
which the auction does not result in trade, and collects fees from traders.

8In the model of Crémer and Riordan (1985), individual rationality is satisfied ex post for the agent
that moves first (the buyer in our case) and only ex ante for the agents that move second (suppliers in
our case).
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E. Details for investment comparative statics

In this appendix, we provide details underlying the comparative statics anal-
ysis in Section V, which examines how equilibrium investments are affected by
bargaining power and by the extent to which the supports of the value and cost
distributions overlap.
As described in the body of the paper, we consider a bilateral trade setup with

linear virtual types. We hold fixed the support of the supplier’s distribution at
[0, 1] and let the support of the buyer’s distribution be [v, v+1], where we vary v
from 0 to 1. Specifically, we fix X > 0 and consider a supplier type distribution of
GeS (c) ≡ cX−eS with support [0, 1], where eS ∈ [0, X) is the supplier’s investment,
and a buyer type distribution of FeB (v) ≡ 1 − (1 + v − v)X−eB with support
[v, v + 1], where eB ∈ [0, X) is the buyer’s investment. We assume that each
agent’s investment e has cost e2/2.
In this setup, the first-best investment eFB is the same for the buyer and

supplier and satisfies

(eFB, eFB) ∈ arg max
eS ,eB

∫ v+1

v

∫ 1

0
(v − c) · 1c≤v · dGeS (c)dFeB (v)− e2B/2− e2S/2.

For example, if X = 1.25 and v = 1, then the first-best investment is eFB
S =

eFB
B = 0.25, implying that under the first-best investments, types are uniformly
distributed for both the supplier and the buyer.
Second-best investment is also the same for the buyer and suppler and satisfies:9

(eSB, eSB) ∈ arg max
eS ,eB

∫ v+1

v

∫ 1

0
(v − c)·1

Γ1/ρSB
(c;eS)≤Φ1/ρSB

(v;eB)
·dGeS (c)dFeB (v)−e2B/2−e2S/2,

where ρSB is the smallest ρ ≥ 1 such that π(1,1)(eB, eS ; ρ) ≥ 0, where

πw(eB, eS ; ρ) ≡
∫ v+1

v

∫ 1

0
(Φ(v; eB)− Γ(c; eS))·1Γ𝑤S/ρ(c;eS)≤Φ𝑤B/ρ(v;eB)·dGeS (c)dFeB (v).

Now consider the Nash equilibrium investments. Our assumption that invest-
ments are not observed implies that given Nash equilibrium investments (eNE

S , eNE
B ),

trade occurs if and only if Γ𝑤S/ρ
NE

(c; eNE
S ) ≤ Φ𝑤B/ρNE

(v; eNE
B ). Further, fixed

payments are determined by the agents’ shares (ηS , ηB) and the Nash equilibrium
budget surplus πNE ≡ π(eB, eS ; ρ

NE). The buyer’s Nash equilibrium investment

9The linear virtual type functions are given by

Φβ(v; eB) ≡ v
1− β +X − eB

X − eB
−

(1 + v)(1− β)

X − eB
and Γβ(c; eS) ≡ c

1− β +X − eS

X − eS
.
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solves

eNE
B ∈ argmaxx

∫ v+1

v

∫ 1

0
(v − Φ(v;x)) · 1

Γ𝑤S/ρNE
(c;eNE

S )≤Φ𝑤B/ρNE
(v;eNE

B )

·dGeNE
S

(c)dFe(v)− e2/2 + ηBπ
NE ,

the first-order condition of which is

(E.1) eNE
B = −

∫ v+1
v

∫ 1
0

∂Fe(v)
∂e

∣∣∣
e=eNE

B

· 1
Γ𝑤S/ρNE

(c;eNE
S )≤Φ𝑤B/ρNE

(v;eNE
B )

· geNE
S

(c)dcdv.

Analogously, the supplier’s Nash equilibrium investment solves

eNE
S ∈ argmaxx

∫ v+1

v

∫ 1

0
(Γ(c;x)− c) · 1

Γ𝑤S/ρNE
(c;eNE

S )≤Φ𝑤B/ρNE
(v;eNE

B )

·dGe(c)dFeNE
B

(v)− e2/2 + ηSπ
NE ,

whose first-order condition is

(E.2) eNE
S =

∫ v+1
v

∫ 1
0

∂Ge(c)
∂e

∣∣∣
e=eNE

S

· 1
Γ𝑤S/ρNE

(c;eNE
S )≤Φ𝑤B/ρNE

(v;eNE
B )

· feNE
B

(v)dcdv.

Solving for (eNE
S , eNE

B ) ∈ [0, X]2 and ρNE ≥ max{𝑤S ,𝑤B} that satisfy (E.1),
(E.2),

πw(eNE
B , eNE

S ; ρNE) ≥ 0, and (ρNE −max{𝑤S ,𝑤B})πw(eNE
B , eNE

S ; ρNE) = 0,

we obtain the Nash equilibrium investments and Lagrange multiplier on the no-
deficit constraint.
We illustrate the effects of bargaining power and the distributional supports on

equilibrium investment in Figure E.1, which expands upon Figure 3 in the body
of the paper.
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(d) Partially overlapping supports (v =
1/4)

NE buyer investment

NE supplier investment

0. 0.25 0.5 0.75 1.
Δ

FB

SB

0.2

0.25

0.05

0.1

(e) Partially overlapping supports (v =
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(f) Fully overlapping supports (v = 0)

Figure E.1. Nash equilibrium investments.

Notes: Nash equilibrium investments with bargaining weights (𝑤S ,𝑤B) = (1 − ∆,∆) for buyer dis-
tributions with varying supports. Assumes the linear virtual type setup for bilateral trade with
F (v) = 1 − (1 + v − v)1.25−eB , where eB ∈ [0, 1.25) is the buyer’s investment, and G(c) = c1.25−eS ,
where eS ∈ [0, 1.25) is the supplier’s investment. Investment e has cost e2/2. When v = 1, we obtain
eFB = eSB = 0.25, implying that first-best (and second-best) investment levels result in uniformly
distributed types. For v = 1, ρNE = max{𝑤S ,𝑤B} for all bargaining weights. For v ∈ {1/4, 1/8, 0},
ρNE > max{𝑤S ,𝑤B} for all bargaining weights. For v ∈ {1/2, 3/4}, ρNE = max{𝑤S ,𝑤B} for suffi-
ciently asymmetric bargaining weights and ρNE > max{𝑤S ,𝑤B} otherwise.
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F. Additional results

1. Horizontal mergers

a. Supplier mergers in the face of powerful buyers. — While antitrust
authorities seem inclined to look more favorably upon a supplier merger when
there are powerful buyers,10 one can build on Proposition 5 to show that in
the absence of bargaining power effects, a merger of suppliers that face powerful
buyers can actually be worse for social surplus than a merger of powerful suppliers:

PROPOSITION F.1: Consider a horizontal merger of suppliers i and j with
kSi = kSj = KB that does not alter bargaining weights. If the pre-merger market
is:
(i) efficient, then the merger decreases expected social surplus unless 𝑤i = 𝑤j =
maxw;
(ii) inefficient and Gi = Gj, then the merger decreases expected social surplus
by more if the buyers have all the bargaining power than if the merging suppliers
have all the bargaining power.

Proof of Proposition F.1. A supplier merger of the type considered results in a
merged entity with a weighted virtual cost function

Γa
i,j(c) ≡ c+ (1− a)

1− (1−Gi(c))(1−Gj(c))

gi(c)(1−Gj(c)) + gj(c)(1−Gi(c))
,

which satisfies Γa
i,j(c) = ∞ for all a ∈ [0, 1).

Part (i): Suppose that the pre-merger market is efficient. Let ρ̂w denote the
post-merger Lagrange multiplier on the no-deficit constraint and note that maxw ≤
ρ̂w. When 𝑤S

i,j < maxw, we have Γ
𝑤S
i,j/ρ̂

w

i,j (c) = ∞. This implies that the post-
merger market does not achieve the first-best because for an open set of types with

ci,j sufficiently close to c such that v < Γ
𝑤S
i,j/ρ

w

i,j (ci,j), we have ci,j < minℓ∈NB vℓ
and ci,j < minℓ∈NS\{i,j} cℓ, which implies that the merged entity trades under the

first-best, but maxℓ∈NB Φ
𝑤B
ℓ /ρw

ℓ (vℓ) ≤ v < Γ
𝑤S
i,j/ρ

w

i,j (ci,j), which implies that the
merged entity does not trade under incomplete information bargaining. Thus,
expected social surplus decreases as a result of the merger.
Part (ii): Suppose that the pre-merger market is not efficient. Proposition 5

implies that if the merging suppliers have all the bargaining weight, then the

10“The Agencies consider the possibility that powerful buyers may constrain the ability of the merging
parties to raise prices. ... However, the Agencies do not presume that the presence of powerful buyers
alone forestalls adverse competitive effects flowing from the merger” (U.S. Department of Justice and
the Federal Trade Commission, 2010, p. 27).
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merger does not affect social surplus, positively or negatively. In contrast, if the
buyers or a subset of buyers have all the bargaining weight, then the merger has no
effect on the Lagrange multiplier on the no-deficit constraint because the buyer-
optimal mechanism satisfies the no-deficit constraint when the multiplier is equal
to its minimum value of maxw. Thus, for a merger that does not alter bargaining
weights, the only effect on the allocation rule comes through the effect on the
merged entity’s virtual cost function. Thus, a merger reduces social surplus if the
merged entity’s weighted virtual cost function Γa

1,2 satisfies Γa
1,2(min{c1, c2}) >

min{Γa
1(c1),Γ

a
2(c2)} for all c1, c2 ∈ (c, c) and a ∈ [0, 1], which holds for symmetric

suppliers, because then trade occurs for a strictly smaller set of realized types in
the post-merger versus per-merger market. ■

Under the conditions of Proposition F.1, concerns regarding the welfare con-
sequences of a merger are heightened when merging suppliers face a powerful
buyer.

b. General conditions for weighted welfare reducing mergers. — In gen-
eral, a merger removes an independent firm and creates a merged entity that draws
its type from a distribution that can differ from the distributions of the pre-merger
firms. We now consider conditions on the merged entity’s type distribution that
are sufficient for the result, as in Proposition 5, that a merger reduces expected
weighted welfare. To develop intuition, consider the case of a supplier merger in
which, as in Proposition 5, the merged entity draws its constant marginal cost
from the distribution of the minimum of the two merging suppliers’ marginal
costs. Then one can essentially transfer to the pre-merger market the allocation
rule of any incentive compatible post-merger mechanism by replacing the type of
a merged entity that combines suppliers 1 and 2 with min{c1, c2} and allocating
the merged entity’s quantity to the merging supplier 1 or 2 with the lower cost.
Using threshold payments, the budget surplus, not accounting for fixed payments,
is then greater in the pre-merger market because the competition between suppli-
ers 1 and 2 reduces the threshold payments to those suppliers. This means that
the post-merger incomplete information bargaining mechanism is feasible in the
pre-merger market—indeed has strictly greater budget surplus not accounting for
fixed payments. If it also generates (weakly) greater expected weighted welfare,
then it follows by a form of revealed preference argument that expected weighted
welfare under the (optimized) pre-merger mechanism is (weakly) greater than
under the post-merger mechanism.11

11If the merging suppliers do not have the maximum bargaining weight, then pre-merger expected
weighted welfare can be increased by distributing the savings from reduced payments to the merging
suppliers to firms with higher bargaining weights, yielding the result that expected weighted welfare is
greater pre-merger. If the merging suppliers have the maximum bargaining weight and all other firms
have lower bargaining weights, then one can achieve the same expected weighted welfare in the pre-
merger market, and potentially greater expected weighted welfare once the mechanism is optimized for
the pre-merger market. If the merging suppliers have the maximum bargaining weight and all other
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We provide general conditions for this argument to apply in the following
lemma. As stated in the lemma, we require that the post-merger distribution,
G1,2 in the case of a merger of suppliers 1 and 2, is equal to the distribution
of some nondecreasing function of h the merging firms’ types. The remaining
conditions ensure that one can rank the threshold payments of the merging firms
relative to the threshold payment of the merged entity.

LEMMA F.1: A merger of suppliers 1 and 2 that does not alter bargaining
weights or shares weakly reduces expected weighted welfare if the merged entity’s
cost distribution G1,2 and capacity kS1,2 are such that there exists a continuous,

nondecreasing function h : [c, c]2 → [c, c] satisfying:

(i) for all z ∈ [c, c],
Pr
c1,c2

(h(c1, c2) ≤ z) = G1,2(z),

(ii) for all c1, c2 ∈ [c, c], min{c1, c2} ≤ h(c1, c2),

(iii) if kSi < kS1,2 for i ∈ {1, 2}, then for all c1, c2 ∈ [c, c], c3−i ≤ h(c1, c2);

and analogously for a merger of buyers.

Proof of Lemma F.1. The proof of the lemma proceeds along similar lines as the
proof of Proposition 5. That is, it starts with the mechanism that is optimal post
merger and constructs a mechanism that replicates the allocations and payments
for the nonmerging firms pre merger and shows that it generates weakly more
revenue from the merging firms. Because that mechanism is typically not optimal,
it then follows that the optimal mechanism pre merger must generate at least as
much weighted welfare as the optimal post-merger mechanism.
Consider a merger of suppliers 1 and 2. Let ⟨Q̂, M̂⟩ be the post-merger in-

complete information bargaining mechanism. Construct a pre-merger mechanism
⟨Q̃, M̃⟩ that mimics the allocation rule of the post-merger mechanism as follows:
define the allocation rule Q̃ such that for supplier j ∈ N S\{1, 2} and buyer
i ∈ NB,

Q̃S
j (v, c) ≡ Q̂S

j (v, h(c1, c2), c−{1,2}) and Q̃B
i (v, c) ≡ Q̂B

i (v, h(c1, c2), c−{1,2}).

By condition (i) of the lemma, the interim expected allocations of the nonmerging
agents are the same under Q̂ and Q̃, and so their expected thresholds payments
are the same as well.
For supplier 1, define the allocation rule by

Q̃S
1 (v, c) ≡ min

{
kS1 , Q̂

S
1,2(v, h(c1, c2), c−{1,2})

}
· 1c1≤c2(F.1)

+max
{
0, Q̂S

1,2(v, h(c1, c2), c−{1,2})− kS2

}
· 1c1>c2 ,

firms have a bargaining weight of zero, then no further optimization is possible, and so the merger has
no effect on expected weighted welfare.
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and for supplier 2, define

Q̃S
2 (v, c) ≡ min

{
kS2 , Q̂

S
1,2(v, h(c1, c2), c−{1,2})

}
· 1c2≤c1

+max
{
0, Q̂S

1,2(v, h(c1, c2), c−{1,2})− kS1

}
· 1c2>c1 ,

which implies that

(F.2) Q̃S
1 (v, c) + Q̃S

2 (v, c) ≡ Q̂S
1,2(v, h(c1, c2), c−{1,2}).

This allocation rule is monotone—the assumptions on h and the monotonicity of
Q̃ imply that Q̃S

1 is nonincreasing in c1 and Q̃S
2 is nonincreasing in c2.

Suppose that (v, c) is such that supplier 1 trades under Q̃, and let

q∗1 ≡ Q̃S
1 (v, c1, c2, c−{1,2}) > 0

denote the quantity traded by supplier 1 under Q̃. Thus, supplier 1 has q∗1
threshold types under Q̃. For q ∈ {1, . . . , q∗1}, let x∗q be supplier 1’s q-th lowest

threshold type unit under Q̃:

(F.3) x∗q(v, c−1) ≡ sup{x ∈ [c, c] | Q̃S
1 (v, x, c2, c−{1,2}) ≥ q∗1 + 1− q},

which implies that

x∗1(v, c−1) ≤ x∗2(v, c−1) ≤ · · · ≤ x∗q∗1 (v, c−1).

By (F.2), the merged entity’s quantity q∗1,2 ≡ Q̂S
1,2(v, h(c1, c2), c{1,2}) is such

that q∗1,2 ≥ q∗1. We can define q∗1,2 threshold types for the merged entity. That
is, for q ∈ {1, . . . , q∗1,2}, we can define z∗q to be the merged entity’s q-th lowest

threshold type under Q̂:

z∗q (v, c−{1,2}) ≡ sup{z ∈ [c, c] | Q̂S
1,2(v, z, c−{1,2}) ≥ q∗1,2 + 1− q},

where

z∗1(v, c−{1,2}) ≤ · · · ≤ z∗q∗1 (v, c−{1,2}) ≤ · · · ≤ z∗q∗1,2(v, c−{1,2}).

We now show that for all q ∈ {1, . . . , q∗1}, x∗q(v, c−1) ≤ z∗q (v, c−{1,2}). This

implies that the sum of the threshold types of supplier 1 under Q̃ are less than
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or equal to the sum of the merged entity’s smallest q∗1 threshold types under Q̂:

q∗1∑
q=1

x∗q(v, c−1) ≤
q∗1∑
q=1

z∗q (v, c−{1,2}).

Because the analogous result holds for supplier 2, it follows that the sum of both
suppliers’ threshold types under Q̃ is less than or equal to the sum of all of
the merged entity’s threshold types under Q̂. That is, letting q∗2 be supplier 2’s

quantity under Q̃ and y∗q (v, c−2) denote its q-th threshold type, we have

q∗1∑
q=1

x∗q(v, c−1) +

q∗2∑
q=1

y∗q (v, c−2) ≤
q∗1,2∑
q=1

z∗q (v, c−{1,2}).

To show that for all q ∈ {1, . . . , q∗1}, x∗q(v, c−1) ≤ z∗q (v, c−{1,2}), we proceed
by contradiction. That is, given q ∈ {1, . . . , q∗1}, suppose to the contrary that
x∗q(v, c−1) > z∗q (v, c−{1,2}). Then by the definition of z∗q (v, c−{1,2}), we have

(F.4) Q̂S
1,2(v, x

∗
q(v, c−1), c−{1,2}) < q∗1,2 + 1− q.

We next show that for all x < x∗q(v, c−1),

(F.5) Q̂S
1,2(v, h(x, c2), c−{1,2}) ≥ q∗1,2 + 1− q

and that

(F.6) x∗q(v, c−1) ≤ h(x∗q(v, c−1), c2)

hold. To do so, we distinguish between the following three possible cases:

Case 1: x∗1(v, c−1) ≤ x∗q(v, c−1) ≤ c2 with at least one inequality strict.

As an intermediate step, we show that x∗1(v, c−1) < c2, which holds by the
hypothesis of this case, implies that q∗1,2 = q∗1. To see this, note that using q∗1 =

Q̃S
1 (v, c1, c2, c−{1,2}) and the definition of x∗1(v, c−1), we have c1 ≤ x∗1(v, c−1).

Let ε ∈ (0, c2 − x∗1(v, c−1)). It follows from the definition of x∗1(v, c−1) that

Q̃S
1 (v, x

∗
1(v, c−1) + ε, c2, c−{1,2}) < q∗1 ≤ kS1 , which implies that for supplier 2,

we have Q̃S
2 (v, x

∗
1(v, c−1) + ε, c2, c−{1,2}) = 0. Using the monotonicity of Q̃S

2 in

c1, it follows that Q̃
S
2 (v, c1, c2, c−{1,2}) = 0. Thus,

q∗1,2 = Q̂S
1,2(v, h(c1, c2), c{1,2}) = Q̃S

1 (v, c1, c2, c−{1,2})+ Q̃S
2 (v, c1, c2, c−{1,2}) = q∗1.
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Using the hypothesis of this case that x∗q(v, c−1) ≤ c2 and the definition of Q̃S
1

in (F.1), we have

(F.7) x∗q(v, c−1) = sup
{
x ∈ [c, c] | min

{
kS1 , Q̂

S
1,2(v, h(x, c2), c−{1,2})

}
≥ q∗1 + 1− q

}
,

which implies that for all x < x∗q(v, c−1),

Q̂S
1,2(v, h(x, c2), c−{1,2}) ≥ q∗1 + 1− q = q∗1,2 + 1− q,

where the final equality uses q∗1,2 = q∗1. Hence, (F.5) holds. In addition, because
by the hypothesis of this case, we have x∗q(v, c−1) ≤ c2, it follows by condition
(ii) of the lemma that (F.6) holds.

Case 2: x∗1(v, c−1) = x∗q(v, c−1) = c2.

As mentioned in Case 1, using q∗1 = Q̃S
1 (v, c1, c2, c−{1,2}) and the definition

of x∗1(v, c−1), we have c1 ≤ x∗1(v, c−1). Thus, ignoring the possibility of a tie
between c1 and c2 (which is a zero probability event), the hypothesis of this case
implies that c1 < c2. In addition, the hypothesis of this case implies that for all
q′ ∈ {1, . . . , q},

x∗q′(v, c−1) = c2.

This implies that for ε ∈ (0,min{c2 − c1, ε̂}) with ε̂ > 0 sufficiently small,

q∗1 = Q̃S
1 (v, c1, c2, c−{1,2}) = Q̃S

1 (v, c2 − ε, c2, c−{1,2}) > Q̃S
1 (v, c2 + ε, c2, c−{1,2}).

That is, as supplier 1’s cost moves from just below c2 to just above c2, supplier
1’s quantity under Q̃S

1 is reduced from q∗1. Changes in supplier 1’s type, while
still remaining below c2, that do not affect supplier 1’s quantity, also do not affect
supplier 2’s quantity, so we have

q∗2 = Q̃S
2 (v, c1, c2, c−{1,2}) = Q̃S

2 (v, c2 − ε, c2, c−{1,2}).

Thus,

q∗1,2 = Q̂S
1,2(v, h(c1, c2), c−{1,2})

= Q̃S
1 (v, c1, c2, c−{1,2}) + Q̃S

2 (v, c1, c2, c−{1,2})

= Q̃S
1 (v, c2 − ε, c2, c−{1,2}) + Q̃S

2 (v, c2 − ε, c2, c−{1,2})

= Q̂S
1,2(v, h(c2 − ε, c2), c−{1,2})

= Q̂S
1,2(v, h(x

∗
q(v, c−1)− ε, c2), c−{1,2}),
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which implies that for all x < x∗q(v, c−1),

(F.8) Q̂S
1,2(v, h(x, c2), c−{1,2}) ≥ q∗1,2,

and hence (F.5) holds. In addition, because by the hypothesis of this case we
have x∗q(v, c−1) = c2, it follows by condition (ii) of the lemma that (F.6) holds.

Case 3: x∗q(v, c−1) > c2. In this case, using the definition of Q̃S
1 in (F.1), we have

(F.9) x∗q(v, c−1) = sup
{
x ∈ [c, c] | max

{
0, Q̂S

1,2(v, h(x, c2), c−{1,2})− kS2

}
≥ q∗1 + 1− q

}
.

Further, given that supplier 1 trades q∗1+1−q > 0 units when its cost is (arbitrarily
close to) x∗q(v, c−1), even though that cost is greater than c2, it follows that

Q̂S
1,2(v, h(x

∗
q(v, c−1), c2), c−{1,2})− kS2 ≥ q∗1 +1− q > 0. Thus, we can write (F.9)

as

x∗q(v, c−1) = sup
{
x ∈ [c, c] | Q̂S

1,2(v, h(x, c2), c−{1,2})− kS2 ≥ q∗1 + 1− q
}
,

which implies that for all x < x∗q(v, c−1), Q̂
S
1,2(v, h(x, c2), c−{1,2}) ≥ q∗1 + 1− q +

kS2 ≥ q∗1,2 + 1− q, where the final inequality uses q∗1 + kS2 ≥ q∗1 + q∗2 = q∗1,2. Hence,

(F.5) holds. In addition, because under Q̃ supplier 1 trades the positive quantity
q when its cost is x∗q(v, c−1) and supplier 2’s cost is c2 < x∗q(v, c−1), it must be

that kS2 < kS1,2. It then follows by condition (iii) of the lemma that (F.6) holds.

We have now shown that, under the supposition that x∗q(v, c−1) > z∗q (v, c−{1,2}),
(F.5) and (F.6) hold. We can combine (F.4) and (F.5), to get for all x <
x∗q(v, c−1),

Q̂S
1,2(v, x

∗
q(v, c−1), c−{1,2}) < Q̂S

1,2(v, h(x, c2), c−{1,2}),

which, since Q̂S
1,2 is nonincreasing in the merged entity’s type, implies that

x∗q(v, c−1) > h(x∗q(v, c−1), c2),

which contradicts (F.6), thereby allowing us to conclude that x∗q(v, c−1) ≤ z∗q (v, c−{1,2}).

It then follows that in the pre-merger market, the allocation rule Q̃ augmented
with a payment rule based on threshold payments (and the apportionment of
the expected budget surplus through fixed payments) is an incentive compatible,
individually rational, no-deficit mechanism and generates weakly greater expected
weighted surplus than does ⟨Q̂, M̂⟩ in the post-merger market. Optimizing the
mechanism for the pre-merger market reinforces the result. ■
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Under the conditions of Lemma F.1, one can construct a pre-merger mechanism
that mimics the post-merger allocation and payments, but with weakly lower
payments to merging suppliers (weakly higher payments to merging buyers), re-
sulting in an incentive compatible, individually rational, no-deficit mechanism for
the pre-merger market that has the same or greater expected weighted welfare.
Optimizing that mechanism for the pre-merger market only reinforces the result
that expected weighted welfare is greater pre merger than post merger.

2. Vertical integration

a. Maximum gain from vertical integration. — As noted, for v ≥ c and equal
bargaining weights pre-integration, vertical integration cannot possibly increase
social surplus. This suggests that, as the overlap of supports becomes smaller,
the social surplus gains from vertical integration may decrease as well.
To formalize and substantiate this notion, fix [c, c] = [0, 1] and v = 1, and

define the maximum gain from vertical integration associated with v ∈ [0, 1) by
G(v) ≡ (WFB(v)−WSB(v))/WFB(v), where WFB(v) and WSB(v) denote first-
best and second-best social surplus, respectively, as a function of v. The amount
G(v) provides only an upper bound for the gain from vertical integration because
vertical integration does not necessarily make the first-best possible when it is
not possible absent vertical integration. Then we have:12

PROPOSITION F.2: Assuming nB = 1 and symmetric suppliers, G(v) decreases
in v whenever G(v) > 0.

Proof of Proposition F.2. If v = 0, then the first-best is not possible without ver-
tical integration; for nB = nS = 1, see Myerson and Satterthwaite (1983), and for
nB = 1 < nS , see Williams (1999), whose results imply that a necessary condition
for first-best to be possible is that c is strictly smaller than the lower bound of the
support of the buyer’s distribution. Because the suppliers are assumed symmet-
ric, we drop the supplier subscripts on the distribution G and on the unweighted

and weighted virtual cost functions Γ and Γa. Let LnS (c) ≡ 1− (1−G(c))n
S
with

density lnS (c) denote the distribution of the lowest cost draw of a seller. Because
we assume 1 buyer, we drop the buyer subscript on the distribution F and on the
unweighted and weighted virtual value functions Φ and Φa.
For v ∈ [0, 1), define the truncated distribution and density

Fv(v) ≡
F (v)− F (v)

1− F (v)
and fv(v) ≡

f(v)

1− F (v)
.

12Not surprisingly, a result analogous to Proposition F.2 obtains for the case of one single-unit supplier
if one fixes the buyers’ support at [0, 1] and c = 0 and varies c ∈ (0, 1]. In that case, the maximum gain
from vertical integration is decreasing in c.
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Observe that for v′ > v, we have Fv′(v) ≤ Fv(v), with a strict inequality for
v ∈ (v, 1), that is, Fv′ first-order stochastically dominates Fv. Define the weighted
virtual value function associated with the truncated distribution by, for a ∈ [0, 1]
and v ∈ [v, 1],

Φa
v(v) ≡ v − (1− a)

1− Fv(v)

fv(v)
= v − (1− a)

1− F (v)

f(v)
= Φa(v),

which reflects the well-known truncation-invariance result for virtual value func-
tions.

Analogous to how we define πw in (7), given v and ρ, define π(v, ρ) to be
the budget surplus of the mechanism with the allocation rule that solves (6) for
w = 1, not including fixed payments:

π(v, ρ) ≡


1

1−F (v)

∫ Γ1/ρ−1
(1)

0

∫ 1

Φ1/ρ−1
(Γ1/ρ(c))

(Φ(v)− Γ(c))f(v)ln(c)dvdc if v ∈ [0,Φ1/ρ−1
(0)],∫ Γ1/ρ−1

(1)

0

∫ 1

max{v,Φ1/ρ−1
(Γ1/ρ(c))}

(Φ(v)− Γ(c))fv(v)ln(c)dvdc if v ∈ [Φ1/ρ−1
(0), 1).

Let ρv be the smallest ρ ∈ [1,∞) such that π(v, ρ) ≥ 0. Because the first-best

is not achieved when v = 0, it follows that ρ0 > 1. For all v ∈ [0,Φ1/ρ −1
0 (0)],

the sign of π(v, ρ) does not depend on v, so we have ρv = ρ0. In contrast, for

v ∈ (Φ1/ρ −1
0 (0), 1), π(v, ρ) is increasing in v because an increase in v induces

a first-order stochastic dominance shift in Fv and because Φ(v) increases with

v. Because π(v, ρ) is increasing in ρ (because Γ1/ρ−1
(1) is decreasing in ρ and

Φ1/ρ−1
(Γ1/ρ(c)) is increasing in ρ), it follows that ρv is strictly decreasing in v for

v ∈ (Φ1/ρ −1
0 (0), 1) provided that ρv > 1. Thus, we have,

(F.10)
∂ρv
∂v

≤ 0,

with a strict inequality if and only if v ∈ (Φ1/ρ −1
0 (0), 1) and ρv > 1.

First-best social surplus given v satisfies

WFB(v) =
1

1− F (v)

∫ 1

v

∫ v

0
(v − c)ln(c)f(v)dcdv,
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and second-best social surplus given v satisfies

WSB(v) =


1

1−F (v)

∫ 1

Φ1/ρ −1
0 (0)

∫ Γ1/ρ −1
0 (Φ1/ρ0 (v))

0
(v − c)ln(c)f(v)dcdv if v ∈ [0,Φ1/ρ −1

0 (0)],∫ 1

v

∫ Γ1/ρ −1
v (Φ1/ρv (v))

0
(v − c)ln(c)f(v)dcdv if v ∈ [Φ1/ρ −1

0 (0), 1).

Turning to the ratio G(v) = WFB(v)−WSB(v)
WFB(v)

, for v ∈ [0,Φ1/ρ −1
0 (0)], we have

G(v) = 1−

∫ 1

Φ1/ρ −1
0 (0)

∫ Γ1/ρ −1
0 (Φ1/ρ0 (v))

0
(v − c)ln(c)f(v)dcdv∫ 1

v

∫ v

0
(v − c)ln(c)f(v)dcdv

,

and so for v ∈ (0,Φ1/ρ −1
0 (0)],

G′(v) = −


∫ 1

Φ1/ρ −1
0 (0)

∫ Γ1/ρ −1
0 (Φ1/ρ0 (v))

0
(v − c)ln(c)f(v)dcdv


(∫ v

0
(v − c)f(v)ln(c)dc

)
∫ 1

v

∫ v

0
(v − c)ln(c)f(v)dcdv

2 < 0,

which is the desired result.

Consider now the case with v ∈ (Φ1/ρ −1
0 (0), 1). Observe first that because Φ1/ρ

and Γ1/ρ−1
are both decreasing in ρ, it follows that

(F.11)
∂Γ1/ρ−1

(Φ1/ρ(v))

∂ρ
< 0.

For v ∈ (Φ1/ρ −1
0 (0), 1), we have G(v) = 1− h(v)

k(v) , where

h(v) ≡
∫ 1

v

∫ Γ
1/ρ −1

v (Φ1/ρv (v))

0
(v − c)ln(c)f(v)dcdv

and

k(v) ≡
∫ 1

v

∫ v

0
(v − c)ln(c)f(v)dcdv.

Thus, for v ∈ (Φ1/ρ −1
0 (0), 1), the sign of G′(v) is equal to the sign of h(v)k′(v)−

h′(v)k(v). Using 0 < h(v) < k(v), a sufficient condition for G′(v) < 0 is that
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k′(v) < h′(v). To see that this holds, first note that if ρv > 1, then for all
v ∈ [v, 1],

(F.12) Γ1/ρ −1
v (Φ1/ρv(v)) < v,

and second notice that if ρv > 1, then

h′(v)− k′(v)

=
∫ v
0 (v − c)f(v)ln(c)dc−

∫ Γ
1/ρ −1

v (Φ1/ρv (v))
0 (v − c)ln(c)f(v)dc

+
∫ 1
v (v − Γ1/ρ −1

v (Φ1/ρv(v)))ln(Γ
1/ρ −1

v (Φ1/ρv(v)))f(v)∂Γ
1/ρ −1

v (Φ1/ρv (v))
∂ρv

∂ρv
∂v dv

>
∫ 1
v (v − Γ1/ρ −1

v (Φ1/ρv(v)))ln(Γ
1/ρ −1

v (Φ1/ρv(v)))f(v)∂Γ
1/ρ −1

v (Φ1/ρv (v))
∂ρv

∂ρv
∂v dv

> 0

where the first inequality uses ρv > 1 and (F.12), and the second inequality
uses ρv > 1, (F.10), (F.11), and (F.12), completing the proof that for all v ∈
(Φ1/ρ −1

0 (0), 1) such that ρv > 1, G′(v) < 0. ■

Proposition F.2 provides a monotonicity result relating differences in supports
to the maximum gain from vertical integration. Reduced overlap of the supports
reduces the maximum gain from vertical integration. Intuitively, the social ben-
efit from vertical integration is reduced when gains from trade are more certain
because then market-based transactions between nonintegrated firms work better.

b. Comparative statics for vertical integration. — In this section, we begin
by considering the possibility, captured by Proposition 6 that with overlapping
supports, the social surplus effects of vertical integration depend, in general, on
the number of firms. Specifically, consider the case of one buyer and multiple
suppliers, each of which draws it cost from the same distribution. We know
from Williams (1999) that the first-best is possible if v > c and nS is large
enough.13 Because vertical integration induces the buyer’s willingness to pay to
be y = min{v, c}, the support of y is [min{v, c}, c]. The results of Williams (1999)
for this case imply that the first-best is not possible. Hence, vertical integration
is socially harmful whenever nS and the supports are such that the first-best is
possible without vertical integration. When c = v and c = v, the first-best is not
possible absent vertical integration, nor with vertical integration if nS > 1 (see,
e.g., Williams, 1999).
So the question arises whether vertical integration is more or less likely to be

socially harmful if nS is larger. The intuition and insights from oligopoly mod-

13See also Makowski and Mezzetti (1993).
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els, discussed in the body of the paper, together with the point that the double
markup under linear pricing in those models corresponds to having to pay in-
formation rents to both the buyer and the suppliers in incomplete information
bargaining, suggests that vertical integration is more likely to be harmful the
larger is nS . However, establishing this in general is challenging and beyond the
scope of the present paper. That said, Figure F.1(a) illustrates a case in which the
oligopoly intuition carries over to our setup. In particular, in a one-to-many mar-
ket with overlapping supports, vertical integration eliminates a double-markup
(of information rents), but it also makes the outside market less competitive, and
possibly less efficient, and affects the virtual type function of the integrated firm.
As the number of nonintegrated suppliers grows large, the probability that the
vertically integrated firm sources internally goes to zero, and the outside market
is close to efficient (see Appendix F.2.c for details). Because all effects become
small, it is hard to prove general results analytically. As shown in Figure F.1(a),
for the case of uniformly distributed types on [0, 1], the change in social surplus
due to vertical integration is nonmonotone in the number of outside suppliers
and, in the limit, approaches zero from below.

1 2 3 4 5 6 7 8 9 10
n
S0

(a) Social surplus effect of vertical integra-
tion given [c, c] = [v, v] as a function of nS

(illustration of Proposition 6)

n
S=1
n
S=2

0.1 0.2 0.3 0.4
v0

(b) Social surplus effect of vertical integra-
tion given [c, c] = [0, 1] and v = 1.2 as a
function of v (illustration of Proposition 7)

Figure F.1. Change in expected social surplus as a result of vertical integration.

Notes: Change in expected social surplus as a result of vertical integration in a market with one buyer
and multiple suppliers with single-unit demand and supply, where nS is the number of independent
suppliers after vertical integration (i.e., the pre-integration market has nS +1 suppliers). Pre-integration
suppliers’ costs are uniformly distributed on [c, c] = [0, 1], the pre-integration buyer’s value is uniformly
distributed on [v, v], and bargaining weights are symmetric. In panel (a), [v, v] = [0, 1], and in panel (b),
v = 1.2 with v varying as indicated.

We provide comparative statics related to Proposition 7 in Figure F.1(b), where
we illustrate that given c < v, as v increases, eventually vertical integration
decreases expected social surplus (again, see Appendix 2.c for details). While
Proposition 7 is straightforward to prove by taking the case of v = c, Figure F.1
provides examples in which having as few as two independent suppliers in the post-
integration market is sufficient for vertical integration to reduce social surplus even
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when v = c. This emphasizes the salient possibility of anticompetitive vertical
integration in a variety of settings.
Interesting and challenging (and still open) issues arise with vertical integration

in many-to-many settings. As discussed in and around footnote 22, in that case,
the integrated firm may be a buyer or a supplier vis-à-vis the outside firms in the
post-integration market, or not trade at all.

c. Details underlying Figure F.1 showing social surplus effects of ver-

tical integration. — Here we provide the details underlying Figure F.1. For
the purposes of the comparative statics illustrated there, we assume that there is
one buyer with single-unit demand, i.e., nB = 1 and KB = 1, [c, c] = [0, 1], and
G1 = · · · = GnS ≡ G. We denote the buyer’s distribution by F, dropping the
buyer subscript since there is only one buyer. We assume that all agents, includ-
ing a vertically integrated firm, have bargaining weight equal to one. Because we
focus on social surplus effects, the tie-breaking shares are not relevant.
Denote by Ln(c) = 1− (1−G(c))n the distribution of the lowest of n indepen-

dent draws from G and by ln(c) the associated density. We assume that v ≥ 1.
Specifically, for Figure F.1(a), we assume that v = 0 and v = 1, and for Figure
F.1(b), we assume that v = 1.2 and that v varies as indicated in the figure. Below,
we let n denote the number of nonintegrated suppliers, which means that if there
is vertical integration, the total number of suppliers is n+ 1. Given n and ρ ≥ 1,
we denote by Rρ(n) the revenue of the mechanism absent vertical integration. We
have

Rρ(n) ≡
∫ v

Φ1/ρ−1
(0)

∫ Γ1/ρ−1
(Φ1/ρ(v))

0
(Φ(v)− Γ(c))f(v)ln(c)dcdv.

Because Ln(c) ≤ Ln+1(c), if Γ(c) is increasing, which we assume, this implies that

Rρ(n) < Rρ(n+ 1).

Because the second-best mechanism given n is characterized by the unique
ρ∗n ≥ 1 such that

Rρ∗n(n) = 0,

and because Rρ(n) increases in ρ, it follows that

ρ∗n+1 < ρ∗n.

This means that the more competition there is, the more efficient is the second-
best mechanism, that is, the closer is the allocation rule under the second-best
mechanism to the one under first-best. Social surplus given n without integration
is

W (n) ≡
∫ v

Φ1/ρ∗ −1
n (0)

∫ Γ1/ρ∗ −1
n (Φ1/ρ∗n (v))

0
(v − c)f(v)ln(c)dcdv.
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This suggests that eliminating the agency (or double information rent) problem
by vertically integrating the buyer with one supplier has less of an impact the
larger is n. But there is more to vertical integration than eliminating an indepen-
dent supplier, which all else equal makes the outside market less efficient because
vertical integration also changes the virtual valuation function of the buyer from

Φ(v) = v − 1−F (v)
f(v) to

Φ̂(x) ≡ x− 1−H(x)

h(x)
,

where H(x) = 1− (1− F (x))(1−G(x)) and h(x) = H ′(x), with support [c, c] =

[0, 1]. We assume that F and G are such that Φ̂ is increasing. Denote the

corresponding weighted virtual value function by Φ̂a(x) ≡ x − (1 − a)1−H(x)
h(x) . It

follows that if F = G, as is the case in Figure F.1(a), then we have

Φ̂(x) = x− 1

2

1− F (x)

f(x)
= Φ1/2(x) ≥ Φ(x),

where the inequality is strict for all x < 1.
Given n independent suppliers and ρ ≥ 1, revenue from the mechanism under

vertical integration, denoted R̂ρ(n), is

R̂ρ(n) =

∫ 1

Φ̂1/ρ−1
(0)

∫ Γ1/ρ−1
(Φ̂1/ρ(x))

0
(Φ̂(x)− Γ(c))h(x)ln(c)dcdx.

The second-best mechanism is characterized by ρ̂∗n such that

R̂ρ̂∗n
(n) = 0.

One might be inclined to think that the outside market becomes less efficient
with vertical integration in the sense that ρ̂∗n > ρ̂∗n+1, where it will be recalled
that if there are n independent suppliers with vertical integration there were n+1
independent suppliers without it. But it is neither clear whether ρ̂∗n > ρ̂∗n+1 is the
case nor what it precisely means: even if ρ were the same, the allocation rules with
and without vertical integration change because the virtual valuation changes.
While it seems natural to think that R̂ρ(n) < Rρ(n+ 1) because of the decrease
in the number of independent suppliers because of vertical integration, there is
an additional revenue effect via the change in the virtual valuation function. As
noted, for F = G, we have Φ̂(x) > Φ(x) for all x < 1, which has a revenue
increasing effect. In addition, the density of x is different from the density of v.
For example, if F = G, then we have h(x) = 2f(x)(1 − F (x)). All of this goes
to show that it will, in general, be tricky to say much about which of the various
effects dominates.
Social surplus under vertical integration given n independent suppliers, denoted
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Ŵ (n), consists of the social surplus from internal production by the vertically
integrated firm, which is Ev,c[max{v − c, 0}], plus the value from procuring from
the outside market, that is

Ŵ (n) ≡
∫ v

v

∫ v

0
(v−c)f(v)g(c)dcdv+

∫ 1

Φ̂ρ̂∗ −1
n (0)

∫ Γρ̂∗ −1
n (Φ̂1/ρ̂∗n (x))

0
(x−c)h(x)ln(c)dcdx.

To see how this is derived, note that if v < c, then there is no internal production
and the buyer’s willingness to pay for an independent supplier is x = v; if v > c,
then the integrated firm’s willingness to pay is x = c, meaning that if it procures
from the external market it does so to replace production by its own supply unit.
Under the assumption that F and G are uniform, we can compute ρ∗n and ρ̂∗n

and hence W (n) and Ŵ (n). Figure F.1(a) plots the change in social surplus from

vertical integration, Ŵ (n) − W (n + 1), for n ∈ {1, . . . , 10}, and Figure F.1(b)

graphs Ŵ (n) − W (n + 1) as a function of v for the cases of n = 1 and n = 2.
In line with the intuition provided above, the social benefits are positive when
n is small and negative when n becomes larger. For the uniform example, once
Ŵ (n)−W (n+ 1) is negative for some value of n, say n′, it remains negative for
all n > n′, while asymptotically approaching 0 (from below). The nonmonotone

behavior of Ŵ (n)−W (n+1) in n is as expected because when n is large, vertical
integration has little effect on internal sourcing (which is unlikely to occur) and
small effects on the efficiency of the outside market because, in that case, the
market is close to first-best before and after vertical integration. Computations
also show that for n = 0,

Ŵ (n)−W (n+ 1) = 0.0260417 =
1

6
− 9

64
,

where 1/6 is first-best welfare in the Myerson-Satterthwaite problem for uniformly
distributed types and 9/64 is second-best welfare when F and G are uniform.

3. Investment effects of vertical integration

Using Proposition 8, we can connect investment with vertical integration. We
assume that vertical integration does not affect the cost of investment for the in-
tegrated firm, so if buyer i and supplier j integrate and invest eBi in the integrated
buyer’s distribution and eSj in the integrated supplier’s distribution, the cost of

investment is ΨB
i (e

B
i ) + ΨS

j (e
S
j ). With one buyer and one supplier in the pre-

integration market and overlapping supports, incomplete information bargaining
is inefficient, which under conditions (10) and (11), implies that equilibrium in-
vestments are inefficient. But, by assumption, the allocation is efficient after
vertical integration, which by Proposition 8 implies that investments are efficient
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after vertical integration. Thus, with overlapping supports, vertical integration
promotes efficient investment insofar as there is an equilibrium with efficient in-
vestments after integration but not before. In contrast, with, say, one buyer and
two or more symmetric suppliers and nonoverlapping supports, incomplete infor-
mation bargaining is efficient for some bargaining weights, including symmetric
ones, without vertical integration, which implies that investments are efficient
without vertical integration. But following vertical integration, incomplete in-
formation bargaining is inefficient, and so, under (10) and (11), and investments
are no longer efficient. In this case, vertical integration disrupts efficient invest-
ment insofar as there is no equilibrium with efficient investments after integration
whereas there was one before integration.

COROLLARY F.1: Assuming that (10) and (11) hold, for a one-to-one pre-
integration market with overlapping supports, vertical integration promotes effi-
cient investment; but for a one-to-many pre-integration market with nonoverlap-
ping supports, if at least one of (ii)–(iv) as stated following (11) in the body of the
paper holds, then vertical integration disrupts efficient investment if bargaining is
efficient prior to vertical integration (which occurs, for example, with symmetric
bargaining weights).
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