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OA.1 Interim superior contracts when x is not interim efficient

This section states supporting lemmas for the proof of Proposition 6. Consider some
sequence of smooth bargaining games satisfying (SBC) with δn → 1. Let (xn,yn)→
(x,y) be an associated conciliatory equilibrium demands, where limit outcome c∗ =
(x + y)/2 is not interim efficient. By Lemma 2, E[xi|ti] = E[c∗i |ti] and so x is not
interim efficient, but is weakly ex-post efficient with x2(t) ≥ u2(t). In the proof
of Proposition 6 we claimed there must exist an ex-post efficient contract e which
interim strictly dominates x̄ when restricted to T ′1 × T ′2 with |T ′i | = 2 and T ′i ⊂ Ti,
where x̄(t) = (f1(t, x2(t)), x2(t)) ≥ x(t) is the horizontal projection of x onto the
utility frontier (notice x̄ is ex-post efficient).

This claim is an implication of Lemma OA.1 and OA.2 if xi(t) > ui(t) for all i
and t, where such an x must be ex-post efficient, and so x = x̄. First Lemma OA.1
shows that there exists a contract that interim dominates x = x̄ when restricted to
some T ′1 × T ′2 with |T ′i | = 2.

Lemma OA. 1. Consider a smooth bargaining problem where each agent has at least
two types. Suppose x is an ex-post efficient contract with xi(t) > ui(t) for i = 1, 2
and t ∈ T . If x is not interim efficient, then there are T ′i ⊂ Ti for i = 1, 2 with
|T ′i | = 2 and a contract e∗ that interim dominates x when restricted to T ′1 × T ′2 with
|T ′i | = 2.

Lemma OA.2 then shows that if x = x̄ is ex-post efficient but interim dominated
when restricted to T ′1×T ′2 then it is also interim strictly dominated. Hence, combined
with Lemma OA.1 there must exist a contract that interim strictly dominates x = x̄
when restricted to T ′1 × T ′2 .

Lemma OA. 2. Suppose |Ti| = 2 for i = 1, 2. If x is both ex-post efficient and weakly
interim efficient, then it is also interim efficient.

Although we know x2(t) > u2(t) for all t, by Lemma 3 ((SBC) implies (BC)),
we cannot be sure x1(t) > u1(t), for all t. Suppose then that x1(t) ≤ u1(t) in some
state. In this case, Lemma OA.3 directly shows there exists T ′i ⊂ Ti for i = 1, 2 with
|T ′i | = 2 such that x̄ is not weakly interim efficient restricted to T ′1 × T ′2 (given that
the bargaining problem satisfies (SBC)), and so establishes our claim.

Lemma OA. 3. If x1(t) ≤ u1(t) for some t and the bargaining problem satisfies
(SBC), then there exists T ′i ⊂ Ti for i = 1, 2 with |T ′i | = 2 such that x̄ is not weakly
interim efficient restricted to T ′1 × T ′2 .
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We can extend these claims further (and thus the claims of Proposition 6) when
|Ti| = 2. If the bargaining problem is smooth but may not satisfy (SBC), Lemma
OA.4 directly shows x̄ is not weakly interim efficient. If the bargaining problem is
not smooth but satisfies | arg maxu(t)∈U(t) ui(t)| = 1 for all i and t, Lemma 2 ensures
x is ex-post efficient and so Lemma OA.2 implies it is not weakly interim efficient.

Lemma OA. 4. For a smooth bargaining problem with two types for each agent,
|Ti| = 2 for i = 1, 2, if Agent 1’s limit conciliatory equilibrium contract x is not
interim efficient, then x̄ defined by x̄(t) = (f1(t, x2(t)), x2(t)) ≥ x(t) is not weakly
interim efficient.

We prove these and additional technical lemmas in section OA.6.

OA.2 Proof of Proposition 1 (Myerson uniqueness)

This section proves the claim of Proposition 1 that interim utilities are uniquely
defined in the Myerson solution. For α > 0 and i = 1, 2, let Si(α, t) represent i’s
payoff under the equal-split solution when V(t) is expanded by allowing transfers at
a rate of α utils for bargainer 2 against one util for bargainer 1:

S1(α, t) =
1

2α
max
v∈V(t)

(αv1 + v2) and S2(α, t) = αS1(α, t).

Lemma OA. 5. Take α′′ > α′ > 0, x′ ∈ arg maxv∈V(t)(α
′v1 + v2) and x′′ ∈

arg maxv∈V(t)(α
′′v1 + v2). The following comparative statics hold.

(i) x′′1 ≥ x′1 and x′′2 ≤ x′2.

(ii) S1(α′, t) ≥ S1(α′′, t), the inequality being strict if x′′2 > 0.

(iii) S2(α′, t) ≤ S2(α′′, t), the inequality being strict if x′1 > 0.

Proof.

(i) Suppose x′1 > x′′1. Then α′x′1 + x′2 ≥ α′x′′1 + x′′2 and α′′x′′1 + x′′2 ≥ α′′x′1 + x′2 lead
to the contradiction α′(x′1 − x′′1) ≥ x′′2 − x′2 ≥ α′′(x′1 − x′′1).

(ii) We have S1(α′, t) = (α′x′1+x′2)/(2α′) ≥ (α′x′′1+x′′2)/(2α′) ≥ (α′′x′′1+x′′2)/(2α′′) =
S1(α′′, t), with the second inequality being strict when x′′2 > 0.

(iii) We have S2(α′, t) = (α′x′1 +x′2)/2 ≤ (α′′x′1 +x′2)/2 ≤ (α′′x′′1 +x′′2)/2 = S2(α′′, t),
with the first inequality being strict when x′1 > 0.

Lemma OA. 6. If x′ and x′′ are two Myerson solutions with associated interim utility
weights that are collinear, then each type of each bargainer is indifferent between x′

and x′′ at the interim stage.
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Proof. This is immediate, since bargainer i’s expected utility when of type ti is equal
to her expected utility from picking the midpoint in the ex-post linearized problems,
which must coincide when linearizing at x′ or x′′ when the associated interim utility
weights are collinear.

Rescaling the problem if necessary, we assume the prior is uniform (the necessary

transformation is highlighted in Section OA.1). Let λ̂
′

(λ̂
′′
) be the interim utility

weight supporting x′ (x′′) as a Myerson solution. Define

α′(t) =
λ̂′1(t1)

λ̂′2(t2)
and α′′(t) =

λ̂′′1(t1)

λ̂′′2(t2)
.

Bargainers’ excess utility in state t, when comparing their payoff in the solution to
the midpoint of the linearized bargaining set, is:

∆′i(t) = x′i(t)− Si(α′(t), t) and ∆′′i (t) = x′′i (t)− Si(α′′(t), t),

for i = 1, 2. By virtue of being Myerson solutions, we have:

(OA.1)
∑

t∈T (ti)

∆′i(t) =
∑

t∈T (ti)

∆′′i (t) = 0,

for i = 1, 2 and all ti ∈ Ti. It can also be immediately verified (i.e. given α′(t)x′1(t) +
x′2(t) = 2S2(α′, t)) that:

(OA.2) α′(t)∆′1(t) + ∆′2(t) = α′′(t)∆′′1(t) + ∆′′2(t) = 0,

for all t ∈ T .
For each t = (t1, t2) such that ∆′1(t) ≥ ∆′′1(t), define g(t) ∈ T (t1) as a minimizer

of α′(τ )/α′′(τ ) over T̂ (t1) = {τ ∈ T (t1)|∆′1(τ ) ≤ ∆′′1(τ )} (which is nonempty, by
(OA.1)). If α′(g(t)) > α′′(g(t)), then α′(τ ) > α′′(τ ), for all τ ∈ T̂ (t1), in which case
∆′1(τ ) ≥ ∆′′1(τ ), for all τ ∈ T (t1) (by Lemma OA.5 and the definition of T̂ ). This
is compatible with (OA.1) only if this weak inequality is binding for all τ ∈ T (t1).
By Lemma OA.5 (ii), such an equality holds only if ∆′1(τ ) = ∆′′1(τ ) = ū1(t)/2 > 0,
which would contradict (OA.1). Thus it must be that

(OA.3) α′(g(t)) ≤ α′′(g(t)).

Since ∆′1(g(t)) ≤ ∆′′1(g(t)), we must also have by (OA.2) that

(OA.4) ∆′2(g(t)) ≥ ∆′′2(g(t)).

Similarly, for each t = (t1, t2) such that ∆′2(t) ≥ ∆′′2(t), define h(t) ∈ T (t2) as
a maximizer of α′(τ )/α′′(τ ) over {τ ∈ T (t1)|∆′2(τ ) ≤ ∆′′2(τ )}. Following a similar
reasoning as in the previous paragraph, we conclude that

(OA.5) α′(h(t)) ≥ α′′(h(t)) and ∆′1(h(t)) ≥ ∆′′1(h(t)).
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Suppose, by way of contradiction, that some type of some bargainer is not indif-

ferent between x′ and x′′ at the interim stage. By Lemma OA.6, λ̂
′

and λ̂
′′

are not
collinear, say α′(t∗) > α′′(t∗). Hence ∆′1(t∗) ≥ ∆′′1(t∗), by Lemma OA.5. Construct
the infinite sequence of states (tk)k≥0 by t0 = t∗, tk+1 = g(tk) for all even k ≥ 0 and
tk+1 = h(tk) for all odd k ≥ 1. By (OA.3) and (OA.5), α′(tk) ≥ α′′(tk) for even k’s,
and α′(tk) ≤ α′′(tk) for odd k’s. With finitely many states, there exist 0 ≤ i < j with
ti = tj and tk 6= t` for all i ≤ k < ` ≤ j. We assume i is even (a similar argument
applies if i is odd instead).

We now prove that α′(tk) = α′′(tk) for all i ≤ k ≤ j. This is obvious if j = i+1 (or
g(ti) = ti), since α′(ti) ≥ α′′(ti) (i is even) and α′(tj) ≤ α′′(tj) (j is odd). Suppose
then that j > i + 1, in which case it must be even too in order to have ti = tj. Let
tk = (tk1, t

k
2) and notice that tk1 = tk+1

1 for k even and tk2 = tk+1
2 odd. We have:

1 =
λ̂′2(tj2)

λ̂′2(ti2)
=
λ̂′1(ti1)

λ̂′2(ti2)
· λ̂
′
2(ti+1

2 )

λ̂′1(ti+1
1 )
· λ̂
′
1(ti+2

1 )

λ̂′2(ti+2
2 )
· · · · λ̂

′
2(tj2)

λ̂′1(tj1)

≥ λ̂′′1(ti1)

λ̂′′2(ti2)
· λ̂
′′
2(ti+1

2 )

λ̂′′1(ti+1
1 )
· λ̂
′′
1(ti+2

1 )

λ̂′′2(ti+2
2 )
· · · · λ̂

′′
2(tj2)

λ̂′′1(tj1)
=
λ̂′′2(tj2)

λ̂′′2(ti2)
= 1

To avoid a contradiction 1 > 1, α′(tk) = α′′(tk) for all i ≤ k ≤ j, as claimed.
By the previous paragraph, λ′1(tk1)/λ′′1(tk1) = λ′2(tk2)/λ′′2(tk2), for all i ≤ k ≤ j.

Since a single bargainer’s type changes in moving from tk to tk+1, an inductive ar-
gument establishes λ′1(t1)/λ′′1(t1) = λ′2(t2)/λ′′2(t2), or α′(t) = α′′(t), for all t ∈ A× B,
where A = {tk1|i ≤ k ≤ j} and B = {tk2|i ≤ k ≤ j}. Let Ā = {t1 ∈ T1|α′(t) =
α′′(t), for some t2 ∈ B} and B̄ = {t2 ∈ T2|α′(t) = α′′(t), for some t1 ∈ A}. Sim-
ilar reasoning implies λ′1(t1)/λ′′1(t1) = λ′2(t2)/λ′′2(t2), or α′(t) = α′′(t), for all t ∈
Ā × B̄. Take now t = (t1, t2) ∈ Ā × (T2 \ B̄) and t′2 ∈ B. Given t1 ∈ Ā we
have α′((t1, t

′
2)) = α′′((t1, t

′
2)), or λ′1(t1)/λ′′1(t1) = λ′2(t′2)/λ′′2(t′2) (*). Consider now

t′1 ∈ A. If α′((t′1, t2)) < α′′((t′1, t2)), then ∆′1((t′1, t2)) ≤ ∆′′1((t′1, t2)) and we contradict
α′(g(tk)) = α′′(g(tk)) for k such that tk1 = t′1. Given that α′((t′1, t2)) 6= α′′((t′1, t2)),
since t2 6∈ B̄, it must be that α′((t′1, t2)) > α′′((t′1, t2)), or λ′1(t′1)/λ′′1(t′1) > λ′2(t2)/λ′′2(t2)
(**). Since (t′1, t

′
2) ∈ A × B, λ′1(t′1)/λ′′1(t′1) = λ′2(t′2)/λ′′2(t′2) (***). Combining (*),

(**) and (***), we conclude that λ′1(t1)/λ′′1(t1) > λ′2(t2)/λ′′2(t2). Hence for all t ∈
Ā× (T2 \ B̄) we have α′(t) > α′′(t), and ∆′1(t) ≥ ∆′′1(t), by Lemma OA.5; and similar
reasoning implies α′(t) < α′′(t), and hence ∆′2(t) ≥ ∆′′2(t), for all t ∈ (T1 \ Ā)× B̄.

Given the last sentence, (OA.1) implies
∑

t∈Ā×B̄ λ̂
′
1(t1)[∆′1(t) − ∆′′1(t)] ≤ 0 and∑

t∈Ā×B̄ λ̂
′
2(t2)[∆′2(t)−∆′′2(t)] ≤ 0. Combined together these give:∑

t∈Ā×B̄

λ̂′1(t1)[∆′1(t)−∆′′1(t)] + λ̂′2(t2)[∆′2(t)−∆′′2(t)] ≤ 0.

Using (OA.2) and α′(t) = α′′(t) for t ∈ Ā × B̄, we get∑
t∈Ā×B̄

(
λ̂′1(t1)[∆′1(t)−∆′′1(t)] + λ̂′2(t2)[∆′2(t)−∆′′2(t)]

)
= 0.
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Hence, our inequalities must be equalities. In particular, ∆′1(t) = ∆′′1(t) for all
t ∈ Ā × (T2 \ B̄), and ∆′2(t) = ∆′′2(t), for all t ∈ (T1 \ Ā) × B̄. This requires
∆′1(t) = ∆′′1(t) = ū1(t)/2 > 0 for t ∈ Ā × (T2 \ B̄) since α′(t) > α′′(t), and ∆′2(t) =
∆′′2(t) = ū2(t)/2 > 0 for t ∈ (T1 \ Ā) × B̄ since α′(t) < α′′(t). Given (OA.1), we
must then have

∑
t∈Ā×B̄ λ̂

′
1(t1)∆′1(t) < 0 (note Ā × (T2 \ B̄) 6= ∅ as t∗2 6∈ B̄ given

α′(t∗) > α′′(t∗)) and also
∑

t∈Ā×B̄ λ̂
′
2(t2)∆′2(t) ≤ 0. Combining these inequalities,

however, gives
∑

t∈Ā×B̄ λ̂
′
1(t1)∆′1(t) + λ̂′2(t2)∆′2(t) < 0, which contradicts (OA.2). �

OA.3 Characterization of Conciliatory Equilibria

This section proves the Propositions 2 and 3 which characterize conciliatory equilib-
rium.

Proof of Proposition 2 (Inscrutability). Take a separating conciliatory equilibrium. It

is associated with partitions of the type spaces: T1 = T (1)
1 ∪· · ·∪T

(m)
1 , and T2 = T (1)

2 ∪
· · · ∪ T (n)

2 . All types t1 belonging to cell T (j)
1 propose x(j), and all types t2 belonging

to cell T (j)
2 propose y(j). We may assume wlog that x(j) 6= x(k) and y(j) 6= y(k) when

j 6= k. We can thus define functions j : T1 → {1, . . . ,m} and k : T2 → {1, . . . , n},
where j(t1) is the index of the cell in the partition of T1 to which t1 belongs (t1 ∈
T (j(t1))

1 ), and k(t2) is the index of the cell in the partition of T2 to which t2 belongs

(t2 ∈ T (k(t2))
1 ). Define best-safe contracts, Xbs|y(j)

for each j ∈ {1, . . . , n} and Ybs|x(k)

for each k ∈ {1, . . . ,m}.
Consider a pooling strategy for Agent 1 where he offers x∗ independently of t1,

with x∗(t) = x(j(t1))(t) for t = (t1, t2), and a pooling strategy for Agent 2 where he
offers y∗ independently of t2, with y∗(t) = y(k(t2))(t) for t = (t1, t2). Followed by
a conciliatory posture from all types, the same outcome prevails in all states as the
original equilibrium. To conclude, we verify the conditions of Proposition 3.

The condition E[x∗1|t1] ≥ E[X
bs|y∗
1 |t1] follows by observing that in the original

separating equilibrium, if Agent 1 (of any type) were to instead propose X̄bs|y∗ then
all types of Agent 2 will be conciliatory, for whatever beliefs 2 may have following this
deviation. This follows by a similar computation as in the proof of Proposition 3. In
the original separating equilibrium, Agent 1 of a type t1 ∈ T (j)

1 instead proposes x(j),
to which all types of Agent 2 respond with a conciliatory posture. The rationality of
Agent 1 sending x(j) thus requires that E[x

(j)
1 |t1] ≥ E[X

bs|y∗
1 |t1]. By construction of

x∗, when t1 ∈ T (j)
1 we have E[x

(j)
1 |t1] = E[x∗1|t1], yielding the desired inequality. A

symmetric argument for Agent 2 implies the condition E[y∗2|t2] ≥ E[Y
bs|x∗

2 |t2].

To conclude, we show E[x∗2|t2] ≥ E[X
bs|y∗
2 |t2] holds for all t2 (E[y∗1|t1] ≥ E[Y

bs|x∗
1 |t1]

for all t1 is derived analogously). After receiving x(j) in the separating equilibrium,

Agent 2 of type t2 ∈ T (k)
2 has Bayesian-updated beliefs p(t1|t2, T (j)

1 ). By a similar
computation as for Proposition 3, being conciliatory after Agent 1’s proposal requires

(OA.6) E[x
(j)
| t2, T

(j)
1 ] ≥ γE[y

(k)
2 |t2, T

(j)
1 ] = E[X

bs|y(k)

2 |t2, T (j)
1 ]
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for every type t2 ∈ T (k)
2 , every k ∈ {1, . . . , n} and every j ∈ {1, . . . ,m}. Multiply the

inequality (OA.6) associated with each j ∈ {1, . . . ,m} by the probability p(T (j)
1 |t2)

and sum up the corresponding inequalities over all j. The resulting inequality is
equivalent to the desired one by the construction of x∗ and y∗.

Proof of Proposition 3 (Characterization of Conciliatory Equilibria). It remains to show
sufficiency. Suppose x and y satisfy equation (3) from the paper. We construct a
conciliatory equilibrium in which all types of Agent 1 propose x and all types of Agent
2 propose y. After the offer x, Agent 2’s updated belief over Agent 1’s type coincides
with his interim belief, and being conciliatory is optimal, as E[x2|t2] ≥ E[X

bs|y
2 |t2],

for all t2 ∈ T2. Similar reasoning applies to Agent 1 after y.
We now define beliefs and strategies, and check incentives after a unilateral devia-

tion. Without loss, suppose Agent 1 proposes x′ instead, while 2 proposes y. For any
type t2, define Agent 2’s beliefs and action as follows. Let T1(t2,x

′,y) = {t1 ∈ T1 :
x′2(t1, t2) < γy2(t1, t2)}. If T1(t2,x

′,y) 6= ∅, let the probability type t2 believes that he
faces t1 given x′ be µ2(t1|t2,x′,y) = 1 for some t1 ∈ T1(t2,x

′,y), so Agent 2 takes an
aggressive stand against x′. If T1(t2,x

′,y) = ∅ then let µ2(t1|t2,x′,y) = 1 for some
arbitrary t1 ∈ T1, with Agent 2 conciliatory following x′. Agent 1’s belief following y
coincides with his interim belief, and he is conciliatory following 2’s proposal.

We show the off-equilibrium behavior following a unilateral deviation is rational.
If Agent 2 expects 1 to be conciliatory towards y, then it is rational to posture aggres-
sively against 1’s deviation x′ given his off-equilibrium belief when T1(t2,x

′,y) 6= ∅,
and to be conciliatory otherwise. For Agent 1, posturing aggressively against y after
proposing x′, when he is of type t1, gives him δ

∑
t2∈T2(x′,y) p(t2|t1)x′1(t1, t2) in expec-

tation, where T2(x′,y) = {t2 : T1(t2,x
′,y) = ∅} is the set of Agent 2’s types who will

be conciliatory after x′. By being conciliatory, Agent 1 of type t1 gets:∑
t2∈T2(x′,y)

p(t2|t1)
x′1(t1, t2) + y1(t1, t2)

2
+ δ

∑
t2∈T2\T2(x′,y)

p(t2|t1)y1(t1, t2).

Multiplying payoffs by 2/γ and rearranging, being conciliatory is preferable if and only if∑
t2∈T2(x′,y)

p(t2|t1)x′1(t1, t2) ≤ 1

γ
E[y1|t1] +

∑
t2∈T2\T2(x′,y)

p(t2|t1)y1(t1, t2).

Since x′2(t) ≥ γy2(t) for t = (t1, t2) such that t2 ∈ T2(x′,y) we must have x′1(t) ≤
X
bs|y
1 (t). Imposing this inequality as an equality and rearranging, a conciliatory

posture is certainly preferable if

E[X
bs|y
1 |t1] ≤ 1

γ
E[y1|t1] +

∑
t2∈T2\T2(x′,y)

p(t2|t1)(y1(t1, t2) +X
bs|y
1 (t1, t2)).

By equation (3) from the paper, we have E[y1|t1] ≥ E[Y
bs|x

1 |t1] = γE[x1|t1] ≥
γE[X

bs|y
1 |t1]. Hence, a conciliatory posture is preferable, since y(t) ≥ 0 and Xbs|y(t) ≥

0.
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We now show that deviating from x to x′ is not profitable for Agent 1. Agent
1’s expected payoff is equal to δy1(t) in any state t = (t1, t2) where Agent 2 refuses
x′ (i.e. if t2 ∈ T2 \ T2(x′,y)), and is equal to (x′1(t) + y1(t))/2 for states where 2 is
conciliatory. So 1 has no strict incentive to deviate from x to x′ if and only if
(OA.7)∑
t2∈T2(x′,y)

p(t2|t1)
x′1(t1, t2) + y1(t1, t2)

2
+δ

∑
t2∈T2\T2(x′,y)

p(t2|t1)y1(t1, t2) ≤ E[x1|t1] + E[y1|t1]

2

Multiplying both sides of the inequality by 2 and rearranging, we get:

(OA.8)
∑

t2∈T2(x′,y)

p(t2|t1)x′1(t1, t2) + γ
∑

t2∈T2\T2(x′,y)

p(t2|t1)y1(t1, t2) ≤ E[x1|t1].

Notice that x′1(t1, t2) ≤ X
bs|y
1 (t1, t2) when t2 ∈ T2(x′,y), by definition of T2(x′,y),

and that γy1(t) ≤ X
bs|y
1 (t), by definition of X

bs|y
1 . Thus the LHS of equation (OA.8)

is less or equal to E[X
bs|y
1 |t1], which is less than the RHS of equation (OA.8), thanks

to (3) from the paper. Thus Agent 1 does not find it profitable to unilaterally deviate
to x′, as claimed.

It remains to ensure there exist mutually optimal continuation strategies given be-
liefs after mutual deviations to x′ and y′. We define beliefs to be consistent with those
after unilateral deviations, so µ2(t1|t2,x′,y′) = µ2(t1|t2,x′,y), and µ1(t2|t1,x′,y′) =
µ1(t1|t2,x,y′). These beliefs and posturing strategies determine expected continua-
tion payoffs. Let those continuation payoffs correspond to payoff functions in an aux-
iliary posturing game with T1 ∪ T2 players. That finite game has a Nash equilibrium,
and we let postures following deviations x′,y′ be given by one of those equilibria.

OA.4 Non-Emptiness of C∗(B)

This section establishes Proposition 4’s claim that there is always at least one efficient
limit of conciliatory equilibria, C∗(B) 6= ∅. We begin by defining the correspondence
F : U ⇒ U that associates to any contingent contract v ∈ U the set of contingent
contracts u ∈ U that are weakly interim superior to v:

F(v) = {u ∈ U : E[ui|ti] ≥ E[vi|ti] for all ti ∈ Ti and i = 1, 2}.

The technical Lemma OA.7 (proved in section A4) establishes that this correspon-
dence is continuous with non-empty, compact, and convex values

Lemma OA. 7. F is continuous with non-empty, compact, and convex values.

We use this result to establish the existence of an equilibrium with interim efficient
demands.

Proposition OA. 1. For any δ, there exists some pooling conciliatory equilibrium
with interim-efficient demands.

7



Proof. For γ ≤ 0, the demands (x,y) with x(t) = (u1(t), u2(t)) and y(t) = (u1(t), u2(t))
form such an equilibrium. Henceforth, assume γ > 0 (equivalently δ > 1/2).

Let U(t) = {u ∈ R2
+|(∃v ∈ U(t)) : u ≤ v} be the comprehensive closure

of U(t), and let G : U ⇒ U be the correspondence that is defined by G(v) =
arg maxu∈F(v)

∏
ti, i

(E[ui|ti]− E[vi|ti] + 1) , where F was defined right before Lemma
OA.7. The set G(v) is compact and convex, since it is obtained by maximizing a con-
cave function over a compact and convex set. Clearly, it selects contingent contracts
that are interim efficient in U . The Theorem of the Maximum implies G is upper
hemi-continuous (F is continuous, thanks to Lemma OA.7).

Let then H : U2 ⇒ U2 be the correspondence defined as follows: H(x,y) =
(G(Xbs|y),G(Ybs|x)). This is well-defined since Xbs|y and Ybs|x belong to Ū (but
not necessarily U). Notice Xbs|y is continuous in y and that Ybs|x is continuous
in x. Let (x,y) be a fixed-point of H, by Kakutani’s fixed point theorem. The

construction of H ensures interim efficiency of x and y, and that E[xi|ti] ≥ E[X
bs|y
i |ti]

and E[yi|ti] ≥ E[Y
bs|x
i |ti] for all ti and i. Hence, by Proposition 3, demands (x,y)

are sustained by a pooling conciliatory equilibrium.

The next lemma establishes that the set of interim efficient contingent contracts
is closed. This holds under complete information with two agents, but not for three
or more. With two agents under incomplete information, there are more than two
type-agents and it is not obvious interim efficiency is preserved through limits.

Lemma OA. 8. Consider a sequence of feasible contingent contracts xn → x ∈ U .
If each xn is interim efficient, then x is interim efficient.

We are now ready to prove the non-emptiness of C∗(B).

Proof of Proposition 4 (C∗(B) is non-empty). Fix a sequence δn → 1, and an associ-
ated sequence of pooling conciliatory equilibria with interim efficient demands (xn,yn)
(see Proposition OA.1). Since U(t) is compact, we may assume (considering a sub-
sequence if needed) (xn,yn) converges to a limit (x,y) as n tends to infinity. By
Lemma OA.8, x and y are interim efficient. By Lemma 2, E[xi|ti] = E[yi|ti] for all
i, ti. So the limit equilibrium outcome (x + y)/2 is interim efficient and belongs to
C∗(B).

OA.5 Proof of Proposition 7 (Cns(B) 6= ∅)
This section establishes Proposition 7’s claim that conciliatory equilibria satisfying
NSWYDK exist for large δ. This has two parts, we first show in Proposition OA.2
joint principal equilibrium exists in smooth problems satisfying (BC) and (NLB), and
then use such an equilibrium to establish Proposition 7.

Proposition OA. 2. For any smooth bargaining problem which satisfies (BC) and
(NLB), there exists δ < 1 such that if δ > δ there is a joint principal equilibrium.
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Proof. Let EPE be the set of ex-post efficient contingent contracts in U .
We now construct a correspondence from EPE × EPE into itself, and prove that

it admits a fixed-point. We will use this result in the second-half of the proof to
establish the existence of a joint principal equilibrium for sufficiently large δ.

Fix (x,y), a pair of ex-post efficient contingent contracts in EPE . For i = 1, 2,
we take a few steps to define a subset Fi(x,y) of EPE . We start by detailing the
construction for i = 1. The case i = 2 proceeds analogously, as explained below.

First, let λx(t) ∈ R2
+ denote the unique normalized unit vector that is orthogonal

to U(t) at x(t) and continuous in x. In each state t, we expand U(t) using the
supporting hyperplane defined by λx(t). Then we select the payoff pair on that
hyperplane that pays γy2(t) to the second bargainer. This is not well-defined though
if λx1 (t) = 0. For that purpose, we introduce a large number K,1 and define the
continuous function g by:

[g(x,y)](t) =

(
min

{
K, (x1(t) +

λx2 (t)

λx1 (t)
(x2(t)− γy2(t))

}
, γy2(t))

)
.

Second, given that g(x,y) typically falls outside of U , we wish to project it back
to feasible contingent contracts, in fact ones that are ex-post efficient. For the fixed-
point to be useful, though, we have to proceed carefully. Let

H(x,y) = {u ∈ RT1+ |(∃z ∈ U)(∀ti) :u(t1) = E[z1|t1] ≥ E[X
bs|y
1 |t1],

and E[z2|t2] = γE[y2|t2]}

and define h(x,y) ∈ H(x,y) to be the vector of interim utilities for the first bargainer
which is closest (minimum Euclidean distance) to the vector (E[g(x,y)1|t1])t1∈T1 . It is
not difficult to check that h is a continuous function.2 We can then construct another
continuous function IE such that IE(x,y) ∈ RT1+ × RT2+ is a interim efficient payoff
profile satisfying the following inequalities for all t1 and t2:3

[IE(x,y)]1(t1) ≥ [h(x,y)]1(t1) and [IE(x,y)]2(t2) ≥ γE[y2|t2].

Finally, let F1(x,y) be the set of feasible contingent contracts that generate the
interim utility profile IE(x,y):

F1(x,y) = {z ∈ U|(∀i = 1, 2)(∀ti) : E[zi|ti] = [IE(x,y)]i(ti)}.
1K is taken large enough that E[zi|ti] < Kp(t−i|ti) for all i, ti and z ∈ U , that is, the expected

utility of getting K in some state and zero elsewhere is infeasible.
2Clearly, H has compact, convex values and always contains (E[X

bs|y
1 |t1])t1∈T1 . Lemma OA.7

implies that H is continuous. The Euclidean distance is continuous and so the theorem of the
maximum implies that h is continuous.

3For instance, pick IE(x,y) by maximizing the function
∏

ti∈Ti,i=1,2(wi(ti) + 1) over the set of

feasible interim utilities w ∈ RT1+ × RT2+ that satisfy w1(t1) ≥ [h(x,y)]1(t1) and w2(t2) ≥ γE[y2|t2]
for all ti. Again the constraint set has compact, convex values and non-empty and continuous by
Lemma OA.7 ensuring the continuity of IE by the theorem of the maximum.
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By construction, any z ∈ F1(x,y) is interim efficient, and so ex-post efficient.
A symmetric construction applies to the second bargainer, which defines a cor-

respondence F2 that associates a set of interim efficient contingent contract to any
pair (x,y) of ex-post efficient contracts in U .4 The correspondence F = F1 × F2

is defined from EPE × EPE into itself, is upper-hemi continuous, and has compact,
convex values. Since EPE is compact and homeomorphic to a convex set, F admits
a fixed-point by Kakutani.

We now examine the properties of such fixed points (x,y) ∈ F(x,y). First, notice
that the interim efficient contracts (x,y) form an equilibrium because our construction

ensured [IE(x,y)]1(t1) ≥ [h(x,y)]1(t1) ≥ E[X
bs|y
1 |t1] and [IE(x,y)]2(t2) ≥ γE[y2|t2]

for all ti.
We next claim that there exists δ < 1, such that for δ ≥ δ we must have xi(t) >

ui(t). If this was not true, then there must exist some sequence of δn → 1 and
associated sequence of equilibria arising from our fixed points such that for all n,
xni (t) ≤ ui(t) for some player i and state t. Considering a subsequence if necessary
let (xn,yn) → (x,y). By Lemma 3 and (BC), we must have x2(t) > u2(t) and
y1(t) > u1(t) for all t, and so it must be that x1(t) ≤ u1(t) for some t. This
combined with (NLB) implies that (x + y)/2 is not ex-post efficient. By Lemma 2,
however, we must have E[xi|ti] = E[yi|ti] = E[xi + yi|ti]/2 for all ti and by Lemma
OA.8, x and y must be interim efficient. This contraction ensures xi(t) > ui(t) for
all sufficiently large δ. In this case, we clearly have a uniquely defined positive unit
vector λ̂

x
∈ ∆++(T1)×∆++(T2) which is interim orthogonal to U(B) at x.

We next claim that E[x1|t1] = [h(x,y)]1(t1) ≤ E[g(x,y)1|t1] and E[x2|t2] =
γE[y2|t2] for all t1, t2. To establish this, first notice that [h(x,y)]1(t1) ≤ E[g(x,y)1|t1]
for all t1, or we could find points inH(x,y) that are strictly closer to (E[g(x,y)1|t1])t1∈T1
than h(x,y).5 Also notice that if [h(x,y)]1(t1) = E[g(x,y)1|t1] for all t1 then we
would have E[x1|t1] = [h(x,y)]1(t1) = E[g(x,y)1|t1] and E[x2|t2] = γE[y2|t2] =
E[g2(x,y)|t2] for all t2 because g(x,y) is interim efficient in the bargaining prob-
lem where each U(t) is expanded by the supporting hyperplane defined by λx(t) =
(λ̂x1 (t1)/p(t1), λ̂x2 (t2)/p(t2)).6 For our claim not to hold, therefore, there must be some
type t′1 such that [h(x,y)]1(t′1) < E[g(x,y)1|t′1].

By construction we have E[xi|ti] = [IE(x,y)]i(ti) and so E[x1|t1] ≥ [h(x,y)]1(t1)
and E[x2|t2] ≥ γE[y2|t2]. If E[x2|t′2] > γE[y2|t′2] for some t′2, then we could increase
[h(x,y)]1(t′1) slightly to find a point in H(x,y) that is closer to (E[g(x,y)1|t1])t1∈T1
than h(x,y).7 Similarly, if E[x1|t′′1] > [h(x,y)]1(t′′1) for some t′′1, then we could slightly

4Now γx is used as an outside option for the first bargainer, and the second bargainer gets the
remaining surplus in the linearized problem using in each t the vector that is orthogonal to U(t) at
y(t). Details, which are simple once the construction of F1 is understood, are left to the reader.

5Consider v1(t1) = min{[h(x,y)]1(t1), E[g(x,y)1|t1]}. We can always assume U is comprehensive
and so ensure v ∈ H(x,y), because adding all less efficient utility pairs to U doesn’t affect EPE .

6The vector λ̂
x

is interim orthogonal even given feasible utility sets V(t) = {v ∈ R2
+|v · λ

x(t) ≤
x(t) · λx(t)} ⊇ U(t).

7Consider v ∈ H(x,y) defined by v1(t1) = min{E[x̂1|t1], E[g(x,y)1|t1]} where x̂(t) = x(t) except
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increase [h(x,y)]1(t′1) to find a point in H(x,y) that is closer to (E[g(x,y)1|t1])t1∈T1
than h(x,y).8 This establishes the claim.

Identical logic applies to player 2’s demand y. Thus we are ready to show that
x,y with interim orthogonal vectors λ̂

x
, λ̂

y
form a joint principal equilibrium. We

have established E[x2|t2] = γE[y2|t2]. Because x is interim efficient we have:

[g(x,y)]1(t)
λ̂x1 (t1)

p(t1)
=x1(t)

λ̂x1 (t1)

p(t1)
+ (x2(t)− γy2(t))

λ̂x2 (t2)

p(t2)

= max
u∈U(t)

u1
λ̂x1 (t1)

p(t1)
+ (u2 − γy2(t))

λ̂x2 (t2)

p(t2)

for all t = (t1, t2), where the first equality is by definition. We now multiply this by
p(t) and sum it up over t ∈ T to get:∑
t1∈T1

E[g(x,y)1|t1]λ̂x1 (t1) =
∑

t1∈T1,t2∈T2

p(t2|t1)x1(t)λ̂x1 (t1) + p(t1|t2)(x2(t)− γy2(t))λ̂x2 (t2)

=
∑
t1∈T1

E[x1|t1]λ̂x1 (t1)

where the second equality holds because E[x2|t2] = γE[y2|t2] for all t2. But now using
the established claim that E[x1|t1] ≤ E[g(x,y)1|t1] for all t1, it is clear that the above
equality can only hold if E[x1|t1] = E[g(x,y)1|t1] for all t1. But in which case,

E[x1|t1] = E[g(x,y)1|t1] =
∑
t2∈T2

p(t2|t1)[ max
u∈U(t)

u1 + (u2 − γy2(t))
p(t1)λ̂x2 (t2)

p(t2)λ̂x1 (t1)
].

This establishes equation (7) for (x, λ̂
x
) in the joint principal equilibrium definition.

Identical logic then applies to (y, λ̂
y
), establishing the result.

We now show that beliefs in a joint principal equilibrium (which exists thanks to
Proposition OA.2) can be made to satisfy NSWYDK. Rescaling if necessary, consider
a joint principal equilibrium with demands x,y in B = (T ,U ,p), where p is a com-
mon uniform prior (the necessary transformation is highlighted in Section OA.7). Let

λ̂
x
, λ̂

y
be interim orthogonal unit vectors associated with those joint principal equilib-

rium with demands. We will focus on showing that following an arbitrary deviation x̂
by Agent 1, we can find a belief π2 ∈ ∆(T1) for Agent 2 and continuation acceptance
strategies, which make the deviation unprofitable. Notice that we can transform B

for in state (t′1, t
′
2) where x̂ gives player 2 slightly less than x, and player 1 slightly more. This clearly

implies v1(t′1) > [h(x,y)]1(t′1).
8For some arbitrary t′2, let x̂(t) = x(t) except for in state (t′1, t

′
2) and (t′′1 , t

′
2). Let x̂ give player 2

slightly less than x in state (t′1, t
′
2) slightly more in state (t′′1 , t

′
2), with player 1 getting the residual,

so that type t′2 obtains the same interim utility under x̂ and x. The point v ∈ H(x,y) defined by
v(t1) = min{E[x̂1|t1], E[g(x,y)1|t1]} is closer to (E[g(x,y)1|t1])t1∈T1 than h(x,y).
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into a strategically equivalent problem Bx = (T ,Ux,p) using the invertible mapping
φx : U → RT+, with φx(u)i(t) = λ̂xi (ti)ui(t), where Ux = {v ∈ RT+ : v = φx(u),u ∈
U}. This transformation, implies E[ui|ti]λ̂xi (ti) = E[φx(u)i|ti] for all u ∈ U . We have
a joint principal equilibrium with demands x,y in the original problem if and only if
we have a joint principal equilibrium with demands φx(x),φx(y) in the transformed
problem. Notice, that in this new bargaining problem the vector (1,1) is ex-post or-
thogonal to Ûx(t) at φx(x) for all t. To avoid unnecessary notation assume that the
joint principal equilibrium demands and deviation in Bx are in fact x,y and x̂ (not
φx(x),φx(y) and φx(x̂)).

If γ ≤ 0 then it is an equilibrium for each agent to demand the entire surplus and to
accept regardless of her demand or her opponent’s demand. We can therefore assume
that agents don’t update their beliefs after a deviation in this case. Henceforth,
therefore, we restrict attention to the case of γ > 0. We first specify that Agent 1
always accepts in the continuation game; it will be verified later that this behavior is
optimal. Define D(t) = γy2(t)− x̂2(t); this is twice the difference between Agent 2’s
payoff from rejecting and accepting. Given a belief π2 ∈ ∆(T1), type t2 must accept
if π2 ·D(., t2) < 0, and reject if π2 ·D(., t2) > 0.

Let V1(t) be the expected payoff for Agent 1 in state t = (t1, t2) when Agent 2
accepts with probability α(t2) then:

2V1(t) =x̂1(t) + y1(t)− (1− α(t2))(x̂1(t)− γy1(t))

≤M(t) + y1(t)− x̂2(t)− (1− α(t2))((1− γ)M(t) +D(t)),

where M(t) = x1(t) + x2(t) and the inequality uses x̂1(t) ≤ M(t) − x̂2(t) and
y1(t) ≤M(t)− y2(t). And so:

2E[V1|t1] ≤ E[M+y1−x̂2−(1−α)((1−γ)M+D)|t1] = E[x1+y1+αD−(1−α)(1−γ)M |t1]

where the equality follows from E[x2−γy2|t1] = 0 in a joint principal equilibrium. The
equilibrium payoff of t1 is E[x1 + y1|t1]/2, implying that the deviation is unprofitable
for type t1 whenever E[αD − (1− α)(1− γ)M |t1] ≤ 0.

Below we outline a series of lemmas, which show that there always exists a belief
and optimal acceptance strategies for player 2 that imply E[αD|t1] ≤ 0 for all t1 ∈ T1,
ensuring the deviation is unprofitable.

Let ∆n be the n-dimensional simplex, that is, ∆n = {π ∈ Rn
+|
∑

k πk = 1}.

Lemma OA. 9. Let h : ∆n → Rn be a continuous function such that π · h(π) ≤ 0
for all π ∈ ∆n. Then there exists π ∈ ∆n such that h(π) ≤ 0.

Proof. Suppose, on the contrary, that h(π) 6∈ Rn
− for all π. For each ε > 0 and

π ∈ ∆n, let hε(π) = h(π) − ε1n. There exists η > 0 so that hη(π) 6∈ Rn
− for all π.

Otherwise, one can construct a sequence πm converging to some π∗ ∈ ∆n such that
h(πm)− 1n/m ≤ 0, for each m. Since h is continuous, h(π∗) ≤ 0, a contradiction.
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Let G : ∆n → ∆n be the correspondence associating to each π the set of vectors
separating hη(π) and Rn

−:

G(π) = {π̂ ∈ ∆n|π̂ · hη(π) ≥ 0}.

Clearly, G has nonempty convex values and a compact graph. But then it admits a
fixed point π∗ ∈ ∆n, in which case π∗ ·hη(π∗) ≥ 0, a contradiction, since π∗ ·hη(π∗) =
π∗ · h(π∗)− η < 0.

Lemma OA. 10. Let F : ∆n → Rn be a correspondence with nonempty convex
values and a compact graph. Then, for each m there exists a continuous function
hm : ∆n → Rn such that maxπ∈∆n minv∈F(π) ||hm(π)− v|| ≤ 1/m.

Proof. This result is from von Neumann (1937); alternatively see Border (1985), p68.
�

Lemma OA. 11. Let F : ∆n → Rn be a correspondence with nonempty convex
values and a compact graph. If π ·v ≤ 0 for all π ∈ ∆n and all v ∈ F(π), then there
exists π ∈ ∆n and v ∈ F(π) such that v ≤ 0.

Proof. Suppose, on the contrary, that F(π)∩Rn
− = ∅ for all π. For ε > 0, define F ε :

∆n → Rn as F ε(π) = {x−ε1n|x ∈ F(π)}. There exists η > 0 so that Fη(π)∩Rn
− = ∅

for all π. Otherwise, one can construct a sequence πk converging to some π∗ and a
sequence vk converging to some v such that vk ≤ 0 and vk + 1n/k ∈ F(πk), for each
k. Since F has a compact graph v ∈ F(π∗), which contradicts the assumption that
F(π∗) ∩ Rn

− = ∅.
Using Lemma OA.10, let (hm)m≥1 be a sequence of continuous functions from

∆n into Rn such that maxπ∈∆n minv∈Fη(π) ||hm(π) − v|| ≤ 1/m. Focusing on m’s
large enough, we’ll have π · hm(π) ≤ 0, for all π ∈ ∆n, since π · v ≤ −η for all
v ∈ Fη(π). By Lemma OA.9, we can find for all such m’s a vector πm ∈ ∆n such
that hm(πm) ≤ 0. Consider now the sequence vm such that vm ∈ Fη(πm) and
||hm(πm) − vm|| ≤ 1/m, for all m. We can assume without loss that πm converges
to some π∗ and vm converges to some v. Hence hm(πm) converges to v, and it must
be that v ≤ 0. Since Fη has a compact graph, we also have that v ∈ Fη(π∗), a
contradiction.

For each π2 ∈ ∆(T1), a possible belief for Agent 2, let S(π2) be the set of 2’s
optimal strategies α ∈ [0, 1]T2 when deciding whether or not to accept payoffs −D
given her belief π2: α(t2) = 0 (resp., 1) for all t2 such that π2 ·D(., t2) > 0 (resp., <).
Let then P(π2) denote the set of 1’s expected payoff vectors from B when 2 picks a
strategy in S(π2):

P(π2) = {(
∑
t2

α(t2)

|T2|
D(t1, t2))t1∈T1 | α ∈ S(π2)}.
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The next lemma shows that there exists a belief π2 and a best-response strategy
for Agent 2 given that belief, α, which implies E[αD|t1] ≤ 0 for all t1 ∈ T1, making
the deviation to x̂ unprofitable.

Lemma OA. 12. There exists π2 ∈ ∆(T1) such that P(π2) contains a vector with
non-positive components.

Proof. The correspondence P has nonempty convex values and a compact graph.
Notice that, for all π2, Agent 2 thinks 1 gets a non-positive payoff on average: π2 ·v ≤
0, for all v ∈ P(π2), because α(t2)π2 ·D(., t2) ≤ 0 for all t2. The result then follows
from Lemma OA.11.

The final step of the proof is to ensure that player 1’s strategy to always accept
is optimal. Given player 2’s acceptance strategy, type t1’s expected payoff from
accepting E[V1|t1] satisfies

2E[V1|t1] = E[αx̂1 + y1(1 + γ(1− α))|t1] ≤ E[x1 + y1|t1]

and so: E[αx̂1|t1] ≤ E[x1 − γy1(1− α)|t1]. Type t1’s payoff if she rejects is W1(t1) =
δE[αx̂1|t1] and so difference in payoff between accepting and rejecting satisfies:

2(V(t1)−W (t1)) =E[−γαx̂1 + y1(1 + γ(1− α))|t1]

≥E[−γ(x1 − γy1(1− α)) + y1(1 + γ(1− α))|t1]

=E[y1 − γx1 + γ(1 + γ)(1− α)y1|t1] ≥ 0

where the final inequality uses the fact that equilibrium demands must always satisfy
E[y1 − γx1|t1] ≥ 0. And so acceptance is always optimal for agent 1. This completes
the proof of the Proposition. �

OA.6 Proofs of Technical Lemmas

This section provides proof for a series of technical lemmas, which were stated previ-
ously.

Proof of Lemma 1 (Efficiency and Weighted Utilitarianism). For (i), replacing any
ex-post dominated contract would improve interim utilities. Sufficient conditions in
(ii)-(iii) are easy to check. Necessity follows from the separating hyperplane theorem.
It remains to show (iv). Observe that:∑
i=1,2

∑
ti∈Ti

λ̂i(ti)E[yi|ti] =
∑
i=1,2

∑
ti∈Ti

λ̂i(ti)
∑

t−i∈T−i

p(ti, t−i)

p(ti)
yi(t) =

∑
t∈T

p(t)
∑
i=1,2

λ̂i(ti)

p(ti)
yi(t).

If y = x maximizes the LHS, it also maximizes the RHS. Hence, for each t ∈ T ,
y(t) = x(t) must also maximize

∑
i=1,2

λi(ti)
p(ti)

yi(t). Similarly, if y(t) = x(t) maximizes∑
i=1,2

λ̂i(ti)
p(ti)

yi(t) for each t = 1, 2 then it maximizes the LHS.
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Proof of Lemma 2. For (i), observe that in a conciliatory equilibrium, we must have

E[xn2 |t2] ≥ E[X
bs|yn
2 |t2] = γnE[yn2 |t2]. In the limit as γn → 1 we must have E[x2|t2] ≥

E[y2|t2]. We must also have E[yn2 |t2] ≥ E[Y
bs|xn

2 |t2] ≥ E[xn2 |t2]. Hence E[y2|t2] ≥
E[x2|t2] and so E[y2|t2] = E[x2|t2]. By identical logic E[y1|t1] = E[x1|t1].

We now prove (ii). If f2(t′, x1(t′)) > x2(t′) for some t′, then E[yn2 |t′2] ≥ E[Y
bs|xn

2 |t′2]

and Y
bs|xn

2 (t) ≥ f2(t, γnxn1 (t)) ≥ γnxn2 (t) for all t, imply thatE[y2|t′2] ≥ limE[Y
bs|xn

2 |t′2] ≥
E[f2(t, x1(t))|t′2] > E[x2|t′2], a contradiction to (i). Given f2(t, x1(t)) = x2(t) for all
t, if x is not weakly ex-post efficient then we must have x1(t′) < u1(t′) for some
t′ and u2(t′) > f2(t′, x1(t′)) = x2(t′). Then xn1 (t′) < u1(t′) for large n, and so

Y
bs|xn

2 (t′) = u2(t′) > f2(t′, x1(t′)) = x2(t′). Hence E[y2|t′2] ≥ limE[Y
bs|xn

2 |t′2] >
E[f2(t, x1(t))|t′2] = E[x2|t′2], contradicting (i). Given that x is weakly ex-post effi-
cient and f2(t, x1(t)) = x2(t), it immediately follows that x2(t) ≥ u2(t).

Proof of Lemma OA.1 (Interim domination for some types). Let λ(t) ∈ R2
++ be the

unique strictly positive orthogonal unit vector to U(t) at x(t), for each t ∈ T1 × T2.
An orthogonal unit vector exists because x is ex-post efficient, it is strictly positive
by the fact that xi(t) ∈ (ui(t), ui(t)), and it is unique by smoothness and xi(t) ∈
(ui(t), ui(t)).

Suppose there is no contract e∗ which is more efficient than x when restricted
to T ′1 × T ′2 for any T ′1 × T ′2 such that |T ′i | = 2. We prove this implies x is interim
efficient, a contradiction. To do this we construct λ̃i(ti) > 0 for all ti and i such
that (λ̃1(t1)/p(t1), λ̃2(t2)/p(t2)) is collinear with λ(t1, t2) which must imply that x is
interim efficient by Lemma 1. Fix t̄2 ∈ T2. Let:

η(t1, t2) =
λ1(t1, t2)

λ2(t1, t2)

p(t1)

p(t2)
, λ̃1(t1) = η(t1, t̄2), and λ̃2(t2) =

η(t1, t̄2)

η(t1, t2)

for all (t1, t2). With this definition, λ̃1(t1)/λ̃2(t2) = η(t1, t2) = (λ1(t1, t2)/λ2(t1, t2))(p(t1)/p(t2)).
It remains to show λ̃2(t2) is well-defined, that is, η(t1, t̄2)/η(t1, t2) is independent of
t1, for all t2. To establish this, consider arbitrary distinct types t′1, t′′1, t′2 6= t̄2 and let
T ′1 = {t′1, t′′1} and T ′2 = {t′2, t̄2}. By definition of η, we have:

(OA.9)
η(t1, t̄2)

η(t1, t2)
=
λ1(t1, t̄2)

λ2(t1, t̄2)

p(t1)

p(t̄2)

λ2(t1, t2)

λ1(t1, t2)

p(t2)

p(t1)
.

Next define:

p′(ti) = p(ti|T ′i × T ′j ) =
p(ti)p(T ′j |ti)
p(T ′i × T ′j )

By Lemma 1 x is interim efficient when restricted to T ′1 ×T ′2 if and only if there exists
λ̂(ti) > 0 for ti ∈ T ′i such that

λ1(t1, t2)

λ2(t1, t2)
=
λ̂1(t1)p′(t2)

λ̂2(t2)p′(t1)
=
λ̂1(t1)p(t2)p(T ′1 |t2)

λ̂2(t2)p(t1)p(T ′2 |t1)
,
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or
λ1(t1, t2)p(t1)

λ2(t1, t2)p(t2)
=
λ̂1(t1)p(T ′1 |t2)

λ̂2(t2)p(T ′2 |t1)
,

for all (t1, t2) ∈ T ′1 × T ′2 . Plugging this into equation (OA.9) we get

η(t1, t̄2)

η(t1, t2)
=
λ̂1(t1)p(T ′1 |t̄2)

λ̂2(t̄2)p(T ′2 |t1)

λ̂2(t2)p(T ′2 |t1)

λ̂1(t1)p(T ′1 |t2)
=
λ̂2(t2)p(T ′1 |t̄2)

λ̂2(t̄2)p(T ′1 |t2)

for each t1 ∈ T ′1 , from which we conclude η(t1, t̄2)/η(t1, t2) is independent of t1. Hence
λ̃2(t2) is well defined.

Proof of Lemma OA.2 (Implication of weak interim efficiency for two types). Suppose
x is not interim efficient (but by assumption is ex-post efficient). Then let z be an ex-
post efficient contract that interim dominates x. For any α ∈ (0, 1), zα = λz+(1−λ)x
interim dominates x.

First suppose that zλi (t) > ui(t) for all i, t. To fix ideas, say that E[zλ1 |t′1] >
E[x1|t′1] for some t′1 ∈ T1 where Ti = {t′i, t′′i }. Define ẑ(t) = zα(t) if t 6∈ T (t′1) and
ẑ(t) = (zα1 (t) − ε, f2(t, zα1 (t) − ε)) otherwise. For ε > 0 small enough we clearly
have ẑi(t) > ui(t), E[ẑ1|t′1] > E[x1|t′1] and E[ẑ2|t2] > E[x2|t2] for t2 ∈ T2. Finally
define z∗(t) = (f1(t, ẑ2(t) − ε′), ẑ2(t) − ε′) otherwise. For ε′ > 0 small enough,
E[z∗i |ti] > E[xi|ti] for all i and all ti. Hence x is not weakly interim efficient, a
contradiction.

It remains to consider the case zαi (t) = ui(t) for some i, t. It must then be that
x(t) = z(t) since both x and z are ex-post efficient. But then it must be that x = z,9

which contradicts the fact that z interim dominates x, and establishes the lemma.

Proof of Lemma OA.3 (Remaining case). By Lemma 3 ((SBC) implies (BC)) we have
y1(t) > u1(t) for all t. Let T ′i = {t′i, t′′i }. By assumption we have that x1(t′) ≤
u1(t′) < y1(t′) for some t′ = (t′1, t

′
2) and so we also have y2(t′) < x2(t′) = u2(t′) (by

Lemma 2 we know x is weakly ex-post efficient and satisfies E[xi|ti] = E[yi|ti] for all
ti). Because E[xi|t′i] = E[yi|t′i] we must have some states (t′1, t

′′
2) and (t′′1, t

′
2) such that

x1(t′1, t
′′
2) > y1(t′1, t

′′
2) > u1(t′1, t

′′
2) and x1(t′′1, t

′
2) > y1(t′′1, t

′
2) > u1(t′′1, t

′
2). Finally, we

have x1(t′′1, t
′′
2) < u1(t′′1, t

′′
2), again by Lemma 3.

Recall that x̄ is defined by x̄(t) = (f1(t, x2(t)), x2(t)) and consider the alterna-
tive allocation e∗ defined by e∗2(t′1, t

′
2) = x̄2(t′1, t

′
2) − ε, e∗2(t′′1, t

′
2) = x̄2(t′′1, t

′
2) + Kε,

e∗2(t′′1, t
′′
2) = x̄2(t′′1, t

′′
2) − K ′ε, e∗2(t′1, t

′′
2) = x̄2(t′1, t

′′
2) + K ′′ε and e∗1(t) = f1(t, e∗2(t)) for

some ε,K,K ′, K ′′ > 0. Choosing K > p(t′1, t
′
2)/p(t′′1, t

′
2) ensures that E[e∗2|t′2, T ′1 ] >

9Otherwise, there is a state – say (t′1, t
′
2) – where an agent – say 1 – gets strictly more under

x than under z. Since z interim dominates x, it must be that 1 gets strictly more under z than
under x in state (t′1, t

′′
2). In that case, 2 is strictly worse under z than under x in that state, and

the comparison must reverse in state (t′′1 , t
′′
2) for z to be interim superior to x. Of course the same

reasoning also tells that 1 must be strictly better under z than under x in state (t′′1 , t
′
2). Thus if x

and z differ in one state, they must differ in all states.
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E[x̄2|t′2, T ′1 ], and choosingK ′′ > K ′p(t′′1, t
′′
2)/p(t′1, t

′′
2) ensures that E[e∗2|t′′2, T ′1 ] > E[x̄2|t′′2, T ′1 ].

Notice that limε→0(e∗1(t′1, t
′
2)−u1(t′1, t

′
2))/ε = −f ′1((t′1, t

′
2), u2(t)) =∞ where x̄1(t′1, t

′
2) ≤

u1(t′1, t
′
2),

limε→0(e∗1(t′1, t
′′
2)−x̄1(t′1, t

′′
2))/ε = K ′′f ′1((t′1, t

′′
2), x̄2(t′1, t

′′
2)) > −∞, hence for any K ′′, for

sufficiently small ε we have E[e∗1|t′1, T ′2 ] > E[x̄1|t′1, T ′2 ]. Also notice limε→0(e∗1(t′′1, t
′
2)−

x̄1(t′′1, t
′
2))/ε = Kf ′1((t′′1, t

′
2), x̄2(t′′1, t

′
2)) > −∞, and

limε→0(e∗1(t′′1, t
′′
2)− x̄1(t′′1, t

′′
2))/ε = −K ′f ′1((t′′1, t

′′
2), x̄2(t′′1, t

′′
2)). So, choosing

K ′ > −Kp(t
′′
1, t
′
2)f ′1((t′′1, t

′
2), x̄2(t′′1, t

′
2))

p(t′′1, t
′′
2)f ′1((t′′1, t

′′
2), x̄2(t′′1, t

′′
2))

,

we have E[e∗1|t′′1, T ′2 ] > E[x̄1|t′′1, T ′2 ] for all sufficiently small ε, we complete the proof.

Proof of Lemma OA.4 (smooth 2×2 case). If x is ex-post efficient (but not interim
efficient) so x = x̄ then Lemma OA.2 shows that it not weakly interim efficient.
Hence suppose the limit contract x is not ex-post efficient. By Lemma 2, any limit
equilibrium demands x and y are weakly ex-post efficient with x2(t) ≥ u2(t) and
y1(t) ≥ u1(t), while E[xi|ti] = E[yi|ti]. Hence, without loss of generality, assume
that x1(t′1, t

′
2) < u1(t′1, t

′
2) ≤ y1(t′1, t

′
2) where Ti = {t′i, t′′i }. Weak ex-post efficiency

then implies x2(t′1, t
′
2) = u2(t′1, t

′
2). Smoothness and u1(t′1, t

′
2) > 0 ensures that (SBC)

and hence (BC) is satisfied for agent i = 2 in state (t′1, t
′
2), and so by Lemma 3

we must have y2(t′1, t
′
2) < u2(t′1, t

′
2) = x2(t′1, t

′
2). Combined with E[xi|ti] = E[yi|ti]

we must then have u2(t′′1, t
′
2) ≥ y2(t′′1, t

′
2) > x2(t′′1, t

′
2). Given the weak ex-post effi-

ciency of x and x2(t) ≥ u2(t) for all t, the fact that u2(t′′1, t
′
2) > x2(t′′1, t

′
2) implies

x(t′1, t
′′
2) must be efficient in U(t′1, t

′′
2). Similarly, given y1(t) ≥ u1(t) for all t, we

get y2(t′′1, t
′
2) > x2(t′′1, t

′
2) ≥ u2(t′′1, t

′
2) and so the weak ex-post efficiency of y im-

plies y(t′1, t
′′
2) must be efficient in U(t′1, t

′′
2). The efficiency of y(t′1, t

′′
2) and x(t′1, t

′′
2)

in U(t′′1, t
′
2) and y2(t′′1, t

′
2) > x2(t′′1, t

′
2) then implies y1(t′′1, t

′
2) < x1(t′′1, t

′
2). Combining

that fact with E[xi|ti] = E[yi|ti] we must then have u1(t′′1, t
′′
2) ≥ y1(t′′1, t

′′
2) > x1(t′′1, t

′′
2).

By a similar argument: x1(t′1, t
′
2) < y1(t′1, t

′
2) and E[xi|ti] = E[yi|ti] ensure that

x1(t′1, t
′′
2) > y1(t′1, t

′′
2) ≥ u1(t′1, t

′′
2), and so x2(t′1, t

′′
2) < u2(t′1, t

′′
2).

Recall that x̄2 = x2 and consider the allocation e∗ as defined in the proof of
Lemma OA.3: e∗2(t′1, t

′
2) = x2(t′1, t

′
2) − ε, e∗2(t′′1, t

′
2) = x2(t′′1, t

′
2) + Kε, e∗2(t′′1, t

′′
2) =

x2(t′′1, t
′′
2)−K ′ε, e∗2(t′1, t

′′
2) = x2(t′1, t

′′
2)+K ′′ε and e∗1(t) = f1(t, e∗2(t)). As in that proof,

we can then choose K, K ′ and K ′′ such that for all ε > 0 small e∗ is feasible and
E[e∗i |ti] > E[x̄i|ti] given that f ′1((t′1, t

′
2), u2(t′1, t

′
2)) = 1/f ′2((t′1, t

′
2), u1(t′1, t

′
2)) = −∞

where x2(t′1, t
′
2) = u2(t′1, t

′
2) and (SBC) is satisfied for agent i = 2 in state (t′1, t

′
2).

Proof of Lemma OA.7 (Properties of F). We only prove that F is lower hemi-continuous,
as other properties are straightforward to check. Let vn → v be a sequence in
U , u ∈ F(v), and ε > 0. We have to show that there exists an integer N large
enough that F(vn) intersects the ε ball centered at u, B(u, ε), for all n ≥ N . Let
α < 1 be large enough that v + α(u − v) ∈ B(u, ε/2). Notice that there exists
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N ′ large enough that wn = vn + α(u − v) ∈ U , for all n ≥ N ′. Indeed, con-
sider t ∈ T , and assume that u(t) 6= v(t). If v(t) + α(u(t) − v(t)) ∈ int(U(t)),
then clearly wn(t) ∈ U(t) for all n large enough. Otherwise, the boundary of U(t)
contains both u(t) and v(t), and is flat in between. It is easy to check then that
wn(t) ∈ Conv({0,u(t),v(t), (u1(t), u2(t)), (u1(t), u2(t))}) ⊆ U(t), for all n large
enough, as desired. Next, E[wni |ti] = E[vni |ti] + α(E[ui|ti] − E[vi|ti]) ≥ E[vni |ti], for
all i, ti, since u ∈ F(v). Hence wn ∈ F(vn), for all n ≥ N ′. As wn → u + α(u− v),
we can find N ≥ N ′ such that wn ∈ B(u + α(u − v), ε/2) for all n ≥ N . Since
u + α(u− v) ∈ B(u, ε/2), wn is within distance ε of u, as desired.

Proof of Lemma OA.8 (Set of interim-efficient contracts is closed). Suppose that z ∈
U is such that E[zi|ti] ≥ E[xi|ti] for all i, ti, with at least one of the inequalities being
strict. Let then zn = xn+α(z−x), where α is say 1/2. As established in the proof of
the previous lemma, there exists N ′ large enough that zn ∈ U for all n ≥ N ′. Notice
that E[zni |ti] = E[xni |ti] +α(E[zi|ti]−E[xi|ti]) ≥ E[xni |ti] for all i, ti, with at least one
of the inequalities being strict. This contradicts the fact that xn is interim efficient,
which concludes the proof.

OA.7 More general beliefs

We assumed that types are independent. Although this might seem like a restric-
tion, in fact an even stronger assumption that each player’s belief is derived from a
common uniform prior (i.e. p∗(t|ti) = 1/|T−i|) is without loss of generality. Myer-
son (1984) highlights that any Bayesian game with state-dependent utility is strate-
gically equivalent to a Bayesian game with such a uniform prior, as probabilities
cannot be determined independently of utilities. In fact, this is the justification for
the probability invariance axiom. To see this equivalence in our setting, suppose
there is a game with states T and ex-post utility sets U and the prior probabil-
ity that agent i’s type ti believes she faces t−i is pi(t−i|ti) (which need not be in-
dependent of ti, and potentially cannot be derived from any common prior), and
let this game be described by B = (T ,U ,p). We can now define ex-post utility
sets V(t) = {v ∈ R2

+ : vi = Ki(t)ui(t),u ∈ U(t)} where Ki(t) = |T−i|pi(t−i|ti),
so any contract u ∈ U corresponds to a contract v(u) ∈ V = ×t∈T V(t) where
vi(t,u) = Ki(t)ui(t). The bargaining game B∗ = (T ,V ,p∗) with beliefs derived
from the uniform prior, p∗(t|ti) = 1/|T−i|, is then strategically identical to game
B = (T ,U ,p). To illustrate this, suppose that agents mix over only a finite set of
demands U ⊆ U , and the probability that type ti demands u ∈ U in B (respectively
v(u) in B∗) is σi(ti,u), and the probability that ti accepts after demands x,y in B
(respectively v(x),v(y) in B∗) is σ̂i(ti,x,y) then type ti’s payoff is identical in B and
B∗. In particular:∑
t2∈T2

∑
x,y∈U

σ1(t1,x)σ2(t2,y)p1(t2|t1)Q1(t) =
∑
t2∈T2

∑
x,y∈U

σ1(t1,x)σ2(t2,y)p∗(t2|t1)K1(t)Q1(t)
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where agent 1’s expected payoff in state t is Q1(t) in B and K1(t)Q1(t) in B∗:

Q1(t) = σ̂1(t1,x,y)σ̂2(t2,x,y)
x1(t) + y1(t)

2
+ δ(σ̂1(t1,x,y)y1(t) + σ̂2(t2,x,y)x1(t)).

Fudenberg and Tirole (1991) take advantage of exactly this equivalence between
games, in order to extend the reach of their perfect Bayesian equilibrium definition:
they transform any game without independent types into one with independent types
and then require that beliefs in the transformed game satisfy NSWYDK.

Finally, it is easily verified that (BC), (NLB), (SBC) and smoothness are all
preserved under this transformation.

OA.8 Generic interim inefficiency of ex-post Nash

In the text we stated that the ex-post Nash solution is generically not interim efficient.
What we mean by this is: if the ex-post Nash solution is interim efficient in some
bargaining problem where both players have at least two types, then the solution is
not interim efficient when one player’s utility is rescaled (in any way) in some state.

A more concrete way to highlight the inefficiency is to specialize to the case of risk
averse players with CRRA utility functions but players have different coefficients of
relative risk aversion, have at least two types, and players divide $M(t) > 0 in state
t. If the ex-post Nash solution is interim efficient, then any change in the money
available in some state implies the solution is no longer interim efficient (the simple
proof follows similar arguments to the result below and is left to the reader).

Lemma OA. 13. Suppose for a smooth bargaining problem B = (T ,U ,p) with |Ti| ≥
2 for i = 1, 2 that the ex-post Nash solution uN ∈ U is interim efficient. Then for
any t∗ ∈ T , and K ∈ (0, 1) ∪ (1,∞), in the bargaining problem B̃ = (T , Ũ ,p), with
Ũ(t) = U(t) for t 6= t∗ and Ũ(t∗) = {(u1, Ku2) : u ∈ U(t∗)}, the ex-post Nash
solution is not interim efficient.

Proof. For the smooth problem B, the ex-post Nash bargaining solution uN , must
satisfy f ′1(t, uN2 (t))uN2 (t) + uN1 (t) = 0 in state t and have uNi (t) > ui(t). This in turn
implies that there is a unique positive unit vector w(t) which is ex-post orthogonal
to U(t) at uN(t), which satisfies w2(t)/w1(t) = −f ′1(t, uN2 (t)) = uN1 (t)/uN2 (t). Fix
t′1 6= t∗1. The characterization of interim efficiency in Lemma 1 implies there is a
unique vector λ̂ ∈ RT1++ × RT2++ normalized so that λ̂1(t′1) = 1, which is interim
orthogonal to U(B) at uN . Moreover, this interim orthogonal vector must satisfy
λ̂1(t1)p(t2)/(λ̂2(t2)p(t1)) = w1(t1, t2)/w2(t1, t2).

Now consider the ex-post Nash solution ũN for bargaining problem B̃. The Nash
solution does not change for t 6= t∗ and so neither do the associated ex-post or-
thogonal unit vectors, ũN(t) = uN(t) and w̃(t) = w(t). This means λ̂ remains the
unique vector in RT1++×RT2++ such that λ̂1(t1)p(t2)/(λ̂2(t2)p(t1)) = w1(t1, t2)/w2(t1, t2)

for (t1, t2) 6= t∗ and normalized so that λ̂1(t′1) = 1. However, the Nash solution
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in state t∗ must satisfy ũN(t∗) = (uN1 (t∗), KuN2 (t∗)) by invariance. So the unique
ex-post orthogonal unit vector w̃(t∗) satisfies w̃2(t∗)/w̃1(t∗) = uN1 (t∗)/KuN2 (t∗) 6=
λ̂1(t∗1)p(t∗2)/λ̂2(t∗2)p(t∗1), which implies ũN cannot be interim efficient.

OA.9 War of attrition

We show here how our results can be extended to the war of attrition bargaining
game outlined in the text. We are interested in characterizing the set of conciliatory
equilibria (stationary equilibria with deterministic demands and initial concession on
path). Following on path demands in such equilibria, players must accept in every
future period (as beliefs must match those in period 1). For the same reasons as in
our simple one period model, it is without loss of generality to focus on stationary
pooling equilibria with initial acceptance (the proof is identical to Proposition 2). The
expected outcome of such an equilibrium is c = δ(x + y)/2 where δ = 1−ε

1−εδ and x
and y are the pooling demands. Thus given equivalent demands x and y, payoffs are
simply discounted by δ compared to the our one period model.

As noted in the main text, for the war of attrition model we define γ = δ(1−ε)/(1−
εδ2). We then define best-safe contracts and payoffs exactly as in the main text but us-

ing this new γ (e.g. Y
bs|x

1 (t) = γx1(t) and Y
bs|x

2 (t) = max{u2 | u ∈ U , u1 ≥ γx1(t)}).
The result below then shows that conciliatory equilibrium in the war of attrition are
characterized by the same necessary and sufficient conditions as conciliatory equilib-
rium in our single period model. The proof follows a similar structure to Proposition
3. Given this result, Proposition 5 establishes conditions for convergence to the Myer-
son solution. We have not extended our sequential equilibrium results to this model.

Proposition OA. 3. Let x,y be contingent contracts in U . There is a conciliatory
pooling equilibrium where all types of player 1 propose x, and all types of player 2
propose y, if and only if for all ti ∈ Ti and all i = 1, 2:

E[xi|ti] ≥ E[X
bs|y
i |ti] and E[yi|ti] ≥ E[Y

bs|x
i |ti].

Proof. To establish the necessity of E[y1|t1] ≥ E[Y
bs|x

1 |t1] notice that following equi-
librium demands x and y, if player 1’s type t1 rejects in period s and then returns to
his equilibrium strategy (of always accepting) he gets:

(1− ε)δ
∞∑
j=1

(
(εδ)2j−2E[x1|t1] + (εδ)2j−1E[y1|t1]

)
=

(1− ε)δ
1− (εδ)2

(E[x1|t1] + εδE[y1|t1]) .

For this to be less than his payoff of E[y1|t1] from accepting, we need E[y1|t1] ≥
γE[x1|t1] = E[Y

bs|x
1 |t1]. By identical logic E[x2|t2] ≥ E[X

bs|y
2 |t2]

To establish the necessity of E[y2|t2] ≥ E[Y
bs|x

2 |t2], temporarily suppose that there
is a single state of the world so players 1 and 2 make demands x ∈ R2

+ and y ∈ R2
+.

Clearly if x2 > y2 then it cannot be optimal for player 2 to reject x in any period s,
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so suppose that y2 ≥ x2, then 2’s best possible continuation payoff after rejecting x
clearly requires that 1 always accepts. Let V2 be player 2’s maximum expected utility
when he gets to accept in period r ≥ s assuming player 1 always accepts then:

V2 = max

{
x2,

δ(1− ε)
1− δ2ε2

y2 +
δ2ε(1− ε)
1− δ2ε2

V2

}
= max{x2, γy2}.

If γy2 < x2, therefore, player 2’s maximum possible payoff from rejecting an of-
fer is strictly less than x2, and so player 2 must certainly accept whenever he gets
the chance. Returning now to bargaining problems with multiple states of the world.
Player 1 can ensure that player 2 accepts whenever possible when 1 deviates to propos-
ing (arbitrarily close to) his best-safe contract in every state. Player 1’s expected

payoff from making this deviation and then always accepting y is δ(E[X
bs|y
1 |t1] +

E[y1|t1])/2 and so we clearly need E[x1|t1] ≥ E[X
bs|y
1 |t1] for that deviation to be

unprofitable. By identical logic, E[Y
bs|x

2 |t2] ≤ E[y2|t2].
We now turn to establishing sufficiency and so consider two pooling contingent

contracts x and y satisfying our equilibrium inequalities. After receiving offer x,
player 2’s updated belief over player 1’s type coincides with his interim belief, and
acceptance of x is a best response since E[x2|t2] ≥ E[X

bs|y
2 |t2], for all t2 ∈ T2. For

identical reasons, player 1 optimally accepts y.
We now define beliefs and strategies after a unilateral deviation where player

1 proposed x′ 6= x, but 2 proposed y. Unilateral deviations y′ by player 2 are
deterred analogously. As in Proposition 3’s proof, let T1(t2,x

′,y) = {t1 ∈ T1 :
x′2(t1, t2) < γy2(t1, t2)}. If T1(t2,x

′,y) 6= ∅, then the probability type t2 believes he
faces type t1 is µ2(t1|t2,x′,y) = 1 for some t1 ∈ T1(t2,x

′,y) and he always rejects x′.
If T1(t2,x

′,y) = ∅ then type t2 believes µ2(t1|t2,x′,y) = 1 for some arbitrary t1 ∈ T1,
and always accepts. Player 1’s belief after y coincides with his interim belief and he
always accepts.

We next check that this behavior is sequentially rational. If type t2 expects that
1 always accepts y, then it is certainly optimal to reject x′ when T1(t2,x

′,y) 6= ∅
(as x2(t1, t2) < γy2(t1, t2) for t1 ∈ T1(t2,x

′,y)) and to accept x′ otherwise. To check
player 1’s incentives, let T2(x′,y) = {t2 ∈ T2 : T1(t2,x

′,y) = ∅} be the set of player
2’s types who accept x′. Let the probability that type t1 believes the state is t in
period s following x′ and y be denoted µs1(t|t1,x′,y). Given player 2’s strategy, this
satisfies:

µ2k+d
1 (T2(x′,y)|t1) =

p(T2(x′,y)|t1)εk

p(T2(x′,y)|t1)εk + p(T2 \ T2(x′,y)|t1)

where d ∈ {1, 2}. This decreases in k. Beliefs about opponent types are:

µ2k+d
1 (t2|t1) = µ2k+d

1 (T2(x′,y)|t1)p(t2|T2(x′,y), t1) + µ2k+d
1 (T2 \ T2(x′,y)|t1)p(t2|T2 \ T2(x′,y), t1).
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Type t1’s expected payoff from accepting y in period s = 2k + d is then:

UAt1(2k + d) =µ2k+d
1 (T2(x′,y)|t1)

∑
t2∈T2(x′,y)

p(t2|T2(x′,y), t1)y1(t1, t2)

+ µ2k+d
1 (T2 \ T2(x′,y)|t1)

∑
t2∈T2\T2(x′,y)

p(t2|T2 \ T2(x′,y), t1)y1(t1, t2).

By contrast his payoff from a one-step deviation of rejecting in period s is:

UR
t1(2k + d) =µ2k+d

1 (T2(x′,y)|t1)
∑

t2∈T2(x′,y)

p(t2|T2(x′,y), t1)
δ(1− ε)
1− (εδ)2

(x′1(t1, t2) + δεy1(t1, t2))

+ µ2k+d
1 (T2 \ T2(x′,y)|t1)

∑
t2∈T2\T2(x′,y)

p(t2|T2 \ T2(x′,y), t1)
δ2(1− ε)
1− εδ2

y1(t1, t2)

These payoffs are linear in µ2k+d
1 (T2(x′,y)|t1) = 1−µ2k+d

1 (T2 \T2(x′,y)|t1), and hence
so is their difference. Given that µ2k+d

1 (T2(x′,y)|t1) is decreasing in k, it is therefore
sufficient to check player 2’s incentive to accept when k = 0 and when k → ∞. In
the latter case, if T2(x′,y) 6= T2 then limk→∞ µ

2k+d
1 (T2(x′,y)|t1) = 0 and accepting

is certainly a best response (as remaining opponents always reject). Of course, if
T2(x′,y) = T2 then beliefs are stationary, and we only need to check the former
case of k = 0, where µd1(T2(x′,y)|t1) = p(T2(x′,y)|t1). The payoff to rejecting then
satisfies:

URt1 (d) ≤ δ(1− ε)
1− (εδ)2

E[X
bs|y
1 + εδy1|t1] ≤ δ(1− ε)

1− (εδ)2
E[x1 + εδy1|t1],

where the first inequality follows from x′1(t1, t2) ≤ X
bs|y
1 (t1, t2) for t2 ∈ T2(x′,y) and

from X
bs|y
1 (t) ≥ y1(t) (so that y1(t)δ2(1 − ε)/(1 − εδ2) ≤ (X

bs|y
1 (t)δ(1 − ε)/(1 −

ε2δ2) + εδy1(t)). The second follows from E[X
bs|y
1 |T1] ≤ E[x1|t1]. Hence, we have

UAt1(d) = E[y1|t1] ≥ URt1 (d) when:

δ(1− ε)
1− (εδ)2

E[x1 + εδy1|t1] ≤ E[y1|t1],

which rearranges to give the (assumed) equilibrium condition E[y1|t1] ≥ γE[x1|t1].
We show deviating to x′ is unprofitable. Type t1’s payoff from this is:

Ut1 =
(1− ε)

2

( ∑
t2∈T2(x′,y)

p(t2|t1)
1

1− δε
(x′1(t1, t2) + y1(t1, t2))

+
∑

t2∈T2\T2(x′,y)

p(t2|t1)
1 + δ

1− δ2ε
y1(t1, t2)

)
Again, we can bound this from above:

Ut1 ≤
1− ε
1− δε

E[X
bs|y
1 + y1|t1]

2
≤ 1− ε

1− δε
E[x1 + y1|t1]

2
,

22



where the first inequality again follows from x′1(t1, t2) ≤ X
bs|y
1 (t1, t2) for t2 ∈ T2(x′,y)

and from X
bs|y
1 (t) ≥ y1(t) (so that y1(t)(1 + δ)/(1− δ2ε) ≤ (X

bs|y
1 + y1(t))/(1− δε).

The second inequality again follows from E[X
bs|y
1 |T1] ≤ E[x1|t1]. The RHS is exactly

type t1’s equilibrium payoff of δE[x1 + y1|t1]/2, and so the deviation is not profitable.
It remains to ensure there exist mutually optimal, stationary continuation strate-

gies given the players’ beliefs after the joint deviation to x′ and y′. We define beliefs
consistent with those after unilateral deviations: the probability type t2’s believes that
he faces type t1 is µ2(t1|t2,x′,y′) = µ2(t1|t2,x′,y), and similarly, µ1(t2|t1,x′,y′) =
µ1(t1|t2,x,y′). As these beliefs are degenerate they are not be updated over time.
Let tj(ti) = tj if µi(tj|ti,x′,y′) = 1. Define an auxiliary game with players T1 ∪ T2

where type ti chooses a “mixed” strategy σti ∈ [0, 1]. Type t1’s expected payoff given
σ is:

Ut1(σ) = σt1y
′
1(t1, t2(t1)) + (1− σt1)

δ(1− ε)σt2(t1)

1− δ2(1− (1− ε)σt2(t1))
x′1(t1, t2(t1))

The utility of t2 is defined similarly. This game has a Nash equilibrium σ∗ in “mixed”
strategies by standard reasoning (e.g., Kakutani). Type ti’s payoffs are linear in σti ,
so if σti ∈ (0, 1) is a best response, then so is σti ∈ [0, 1]. Denote by σ∗ti type ti’s
stationary acceptance probability in each period of the war of attrition. It is easy to
check optimality of σ∗ti in the auxiliary game entails no profitable one-shot deviations
in the war of attrition.

OA.10 Computing Myerson solutions

In this section we will highlight a simple procedure which can be used to easily
identify Myerson solutions numerically. It effectively involves solving for the zeros of
one-dimensional, continuous monotonic functions, and can be easily executed using
standard numerical minimizers available in Matlab, R etc.

We limit attention to smooth bargaining problems satisfying (SBC), and which
have a Non Linear Frontier (NLF). A smooth bargaining problem has a non-linear
frontier if f ′i(t, .) is strictly decreasing on (u−i(t), u−i(t)), for all t, i = 1, 2. For such
a bargaining problem, for any α > 0, there is a unique u(α, t) ∈ U(t) such that
u(α, t) ∈ arg maxv∈U(t)(αv1 + v2); it satisfies −f ′2(u1(α, t), t) = α.10 We also assume,
without loss of generality as described in OA.7, that there is a uniform prior.

In what follows, we slightly adapt the notation from Section OA.2. For any
α > 0, there is a unique u(α, t) ∈ U(t) such that u(α, t) ∈ arg maxv∈U(t)(αv1 + v2); it
satisfies −f ′2(u1(α, t), t) = α. For such an α > 0, also let S1(α, t) = maxv∈U(t)(αv1 +
v2)/(2α) and S1(α, t) = αS2(α, t) define the mid-point of the associated linearized

10Moreover, u(., t) is continuous in α, and u1(., t) is strictly increasing (conversely u2(., t) is
strictly decreasing), and approaches (u1(t), u2(t)) as α→∞ and (u1(t), u2(t)) as α→ 0.
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bargaining set.11 Bargainer i’s excess utility in state t, when comparing her payoff to
the midpoint of the linearized bargaining set, is then: ∆i(t, α) = ui(α, t) − Si(α, t)
for i = 1, 2,12 where it is immediately verified that:

(OA.10) α∆1(t, α) + ∆2(t, α) = 0.

For interim weights λ̂ ∈ RT1++ × RT2++, we then define α(t, λ̂) = λ̂1(t1)/λ̂2(t2)

and ∆̄i(ti, λ̂) =
∑

t∈T (ti)
∆i(t, α(t, λ̂)). With t = (ti, tj), notice that ∆i(t, α(t, λ̂))

depends only the weight λj(tj) for type tj of bargainer j and the weight λi(ti) for
bargainer i. Similarly, ∆̄i(t,λ) depends on λj(tj) for all tj ∈ Tj but only on λi(ti) for

bargainer i. Thus, in a slight abuse of notation, we will henceforth use ∆i(t, α(t, λ̂))
and ∆̄i(t, λ̂) for subvectors λ̂ that may not contain all the interim weights, but do
specify the weights needed to define the object.

To simplify notation in the description of the computational process and the proof
that it identifies the Myerson solution, we present it when T1 has three states, ar-
bitrarily enumerated as T1 = {t11, t21, t31} (the cardinality of T2 is irrelevant for the
notation). The generalization of this process and the proof to arbitrary T1 are both
straightforward. The process finds the interim weights λ̂∗i (ti) for each ti ∈ Ti and
each i = 1, 2 associated with the Myerson solution. Aside from λ̂∗1(t31) = 1, which
is normalized to equal 1, each interim weight λ̂∗i (ti) will be chosen as an element in
some interval [λi(ti), λi(ti)]. Defining gi(t) = ∆−1

i (t,−
∑

t′∈T (ti)\{t} ui(t
′)/2),

λ2(t2) = 1/g2(t31, t2) and λ2(t2) = 1/g1(t31, t2)

for each t2 ∈ T2,

λ1(tk1) = max
t2∈T2

g1(tk1, t2)/g2(t31, t2) and λ1(tk1) = min
t2∈T2

g2(tk1, t2)/g1(t31, t2),

for each k < 3.
Step 0: For any inputted interim weights (λ̂1(t11), λ̂1(t21)) ∈ [λ1(t11), λ1(t11)] ×

[λ1(t21), λ1(t21)] and λ̂1(t31) = 1, define for each t2 ∈ T2 the function λ̌2(t2|·) that
sets

λ̌2(t2|λ̂1(t11), λ̂1(t21)) = arg min
λ̂′2(t2)∈[λ2(t2),λ2(t2)]

(
∆̄2

(
t2, λ̂1(t11), λ̂1(t21), λ̂1(t31), λ̂′2(t2)

))2

,

This function is simple to identify because ∆̄2

(
t2, λ̂1(t11), λ̂1(t21), λ̂1(t31), λ̂′2(t2)

)
is con-

tinuous in the weights and strictly increasing in λ̂′2(t2). Let λ̌
2
(λ̂1(t11), λ̂1(t21)) ∈ RT2++

11Lemma OA.5 shows that S1(., t) is decreasing in α and S2(., t) is increasing. Moreover,
S1(α, t)→ u1(t)/2 and S1(α, t)→ −∞ as α→∞ (likewise S2(α, t)→ u2(t)/2 and S1(α, t)→ −∞
as α→ 0).

12For t = (t1, t2), ∆1(t, α) is clearly continuous and strictly increasing in α, converging to u1(t)/2
as α→∞ and to −∞ as α→ 0 (conversely ∆2(t, α) is continuous and strictly decreasing, converging
to −∞ and u2(t)/2 respectively).
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be the vector of interim weights for bargainer 2 which uses, for each t2 ∈ T2, the
interim weight λ̌2(t2|λ̂1(t11), λ̂1(t21)) defined above.

Step 1: For any inputted interim weight λ̂1(t21) ∈ [λ1(t21), λ1(t21)], define the func-
tion λ̌1(t11|·) that sets

λ̌1(t11|λ̂1(t21)) = arg min
λ̂′1(t11)∈[λ1(t11),λ1(t11)]

(
∆̄1

(
t11, λ̂

′
1(t11), λ̌

2
(λ′1(t11), λ̂1(t21))

))2

.

This is simple to identify because ∆̄1

(
t11, λ̂

′
1(t11), λ̌

2
(λ̂′1(t11), λ̂1(t21))

)
is continuous in the

weights and strictly increasing in λ̂′1(t11).
Step 2 (final): Given the initialization λ̂1(t31) = 1, select λ̌1(t21) by

λ̌1(t21) = arg min
λ̂′1(t21)∈[λ1(t21),λ1(t21)]

(
∆̄1

(
t21, λ̂

′
1(t21), λ̌

2
(λ̌1(t11|λ̂′1(t21)), λ̂′1(t21))

))2

.

This is simple to identify because ∆̄1

(
t21, λ̂

′
1(t21), λ̌

2
(λ̌1(t11|λ̂′1(t21)), λ̂′1(t21))

)
is continuous

and strictly increasing in λ̂′1(t11). The interim weights in the Myerson solution are then:

λ̂
∗

=
(
λ̌1(t11|λ̌1(t21)), λ̌1(t21), 1, λ̌

2
(λ̌1(t11|λ̌1(t21)), λ̌1(t21))

)
,

and so, ex-post utilities are u(α(λ∗, t), t).

In the general case with T1 = {t11, ..., tK1 }, we normalize λ̂1(tK1 ) = 1 and identify
λ̌1(tk1|.) for k < K as the function of λ̂(tk+1

1 ), ..., λ̂1(tK−1
1 ) which minimizes (∆̄(tk1, .))

2

where interim vectors for each t2 and tm1 with m < k have been previously identified
by the functions λ̌2(t2|.) and λ̌1(tm1 |.). When executing these steps numerically, it
is clear that increasing agent 1’s types adds more to the computational load than
increasing agent 2’s types (as we must then execute more nested minimization oper-
ations). While using a numerical approach identifies a solution approximately (i.e.
with |∆̄i(ti, λ̂)| < ε ≈ 0 for all i, ti), it is readily verified by continuity that the
identified utilities are arbitrarily close to Myerson’s solution when there is sufficient
numerical precision (i.e. when ε is small). We next justify the steps above, showing
they indeed identify the solution.

Proof of the above claims

We begin by pointing out we can work on the compact set of interim weights above
instead of RT1++ × RT2++. Notice that if ∆i(t, α(t, λ̂)) < −

∑
t′∈T (ti)\{t} ui(t

′)/2 then

∆̄i(ti, λ̂) < 0. This implies that in the Myerson solution, α(t, λ̂
∗
) ∈ [g1(t), g2(t)],

and so given λ̂∗1(t31) = 1, we must have λ̂∗i (ti) ∈ [λi(ti), λi(ti)]. More generally, given
λ̂1(t31) = 1, notice that if λ̂i(ti) = λi(ti) then ∆̄i(ti, λ̂) ≤ 0.

Step 0: The fact that ∆̄2

(
t2, λ̂1(t11), λ̂1(t21), λ̂1(t31), λ̂′2(t2)

)
is continuous in the

weights and strictly increasing in λ̂′2(t2) is an immediate implication of the prop-
erties of ∆i(t, .). Given that and the fact that ∆̄2(t2, λ̂) ≤ 0 when λ̂2(t2) = λ2(t2),
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we must have that the value of ∆̄2(t2, .) at λ̌2(t2|.) is weakly negative, and is strictly
negative only if λ̌2(t2|.) = λ2(t2). It is immediate the λ̌2(t2|.) is continuous.

Step 1: We first claim that ∆̄1

(
t11, λ̂

′
1(t11), λ̌

2
(λ′1(t11), λ̂1(t21))

)
is strictly increasing

in λ̂′1(t11); it is clearly continuous in the interim weights. This is an implication of the
fact that λ̂′1(t1

1)/λ̌2(t2|λ̂′1(t1
1), λ̂1(t21)) is strictly increasing in λ̂′1(t11). Suppose not, so

that there is some λ̂′1(t11) > λ̂1(t11) and some t2 with

(OA.11) 1 <
λ̂′1(t11)

λ̂1(t11)
≤ λ̌2(t′2|λ̂′1(t1

1), λ̂1(t21))

λ̌2(t2|λ̂1(t1
1), λ̂1(t21))

.

For that t2 we must have λ̌2(t2|λ̂1(t1
1), λ̂1(t21)) < λ2(t2) and so (as argued in Step 0)

∆̄2(t2, λ̂) = 0 ≥ ∆̄2(t2, λ̂
′
) for the interim vectors given by

λ̂ =
(
λ̂1(t11), λ̂1(t21), λ1(t31), λ̌

2
(λ̂1(t1

1), λ1(t2
1))
)
,

λ̂
′
=
(
λ̂′1(t11), λ̂1(t21), λ1(t31), λ̌

2
(λ̂′1(t1

1), λ1(t2
1))
)
.

But given (OA.11), we must have ∆2(t, λ̂
′
) ≥ ∆2(t, λ̂) for t = (t11, t2), and since

λ̂1(tm1 ) = λ̂′1(tm1 ) for m > 1 we must also have ∆2(t, λ̂
′
) > ∆2(t, λ̂) for all t = (tm1 , t2)

with m > 1 as well. This contradicts ∆̄2(t2, λ̂) = 0 ≥ ∆̄2(t2, λ̂
′
).

As in step 0, it is immediate that λ̌1(t11|.) is continuous and that the value of
∆̄1(t11, .) at λ̌1(t11|.) is weakly negative and can only be strictly negative when λ̌1(t11|.) =
λ1(t11) (since ∆̄1(t11, λ̂) ≤ 0 when λ̂1(t11) = λ1(t11)).

Step 2: A nearly analogous argument as in Step 1 shows that the function

∆̄1

(
t21, λ̌1(t21|λ̂′1(t21)), λ̂′1(t21), λ̌

2
(λ̌1(t11|λ̂′1(t21)), λ̂′1(t21))

)
is strictly increasing in λ̂′1(t11); again,

it is clearly continuous in the interim weights. Suppose not, then for some t2 and
λ̂′1(t11) > λ̂1(t11) we must have

(OA.12) 1 <
λ̂′1(t21)

λ̂1(t21)
≤ λ̌2(t2|λ̌1(t1

1|λ̂′1(t21)), λ̂′1(t21)

λ̌2(t2|λ̌1(t1
1|λ̂1(t21)), λ̂1(t21)

= max
t′2∈T2

λ̌2(t′2|λ̌1(t1
1|λ̂′1(t21)), λ̂′1(t21)

λ̌2(t′2|λ̌1(t1
1|λ̂1(t21)), λ̂1(t21)

.

Letting

λ̂ =
(
λ̌1(t11|λ̂1(t21)), λ̂1(t21), λ1(t31), λ̌

2
(t2|λ̌1(t1

1|λ̂(t21)), λ̂(t21))
)

λ̂
′
=
(
λ̌1(t11|λ̂′1(t21)), λ̂′1(t21), λ1(t31), λ̌

2
(t2|λ̌1(t1

1|λ̂
′
(t21)), λ̂

′
(t21))

)
,

we must have ∆2(t, λ̂
′
) ≥ ∆2(t, λ̂) for t = (tm1 , t2) and m ≥ 2, with strict inequality

for m > 2. The difference with the previous step is that to avoid contradicting

∆̄2(t2, λ̂) = 0 ≥ ∆̄2(t2, λ̂
′
), it must be that ∆2(t, λ̂

′
) < ∆2(t, λ̂) for t = (t1

1, t2).13 This

13More broadly, when generalizing beyond three types for bargainer 1, the inequality must hold
for some tm1 where m is smaller than the index of the current type examined.
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implies λ̂′1(t11)/λ̂1(t11) > λ̂′2(t2)/λ̂2(t2) > 1 and ∆1(t, λ̂
′
) > ∆1(t, λ̂). Furthermore,

since λ̂1(t11) < λ1(t11) we must have ∆̄1(t11, λ̂
′
) ≤ ∆̄1(t11, λ̂) = 0, and so there must exist

t′2 with ∆1(t, λ̂
′
) < ∆1(t, λ̂) for t = (t11, t

′
2). That is possible, only if λ̂′2(t′2)/λ̂2(t′2) >

λ′1(t11)/λ̂1(t11) > λ̂′2(t2)/λ̂2(t2). However, this contradicts the equality in (OA.12),
which establishes the claim.

As in step 0 and 1, it is immediate that the value of ∆̄1(t21, .) at λ̌1(t21) is weakly
negative and can only be strictly negative if λ̌1(t21) = λ1(t21) (since ∆̄1(t21, λ̂) ≤ 0 when
λ̂1(t21) = λ1(t21)).

Why this leads to Myerson For the vector λ̂
∗

to be interim weights in the Myerson
solution, we need ∆̄i(ti, λ̂

∗
) = 0 for all ti. To establish this, first notice that (OA.10)

implies ∑
t1

λ∗1(t1)∆̄1(t, λ̂
∗
) +

∑
t2

λ∗2(t2)∆̄2(t, λ̂
∗
) = 0.

We established above that ∆̄2(t2, λ̂
∗
) ≤ 0 with a strict inequality only if λ̂

∗
2(t2) =

λ2(t2) and ∆̄1(tk1, λ̂
∗
) ≤ 0 for k < 3 with a strict inequality only if λ̂

∗
1(tk1) = λ1(tk1). If

λ̂∗2(t2) = λ2(t2) for some t2, however, then ∆̄1(t31, λ̂
∗
) ≤ 0, and so our interim weights

would be those of the Myerson solution (all inequalities would need to be equalities).
On the other hand suppose that λ̂∗2(t2) < λ2(t2) for all t2. If λ̂∗1(t1) = λ1(t1) for some

t1 then we would have ∆̄2(t2, λ̂
∗
) < 0 for some t2 (by the definition of λ1(t1) and

λ̂∗2(t2) < λ2(t2)), which implies λ̂∗2(t2) = λ2(t2). This is a contradiction, and so we

must also have λ̂∗1(tk1) < λ1(tk1) for k < 1 and hence ∆̄i(ti, λ̂
∗
) = 0 for ti ∈ T2∪{t11, t21}.

Combined with (OA.10), we must then additionally have ∆̄1(t31, λ̂
∗
) = 0, and so again

our interim weights must be those of the Myerson solution.
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