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A. Literature review: Further details

I.A. Literature on base-rate neglect with feedback

This section first provides a review of the experiments on base-rate neglect (BRN). Our focus is
on the extent to which the different studies document changes in behavior in response to feedback.
At the end of the section we also include a brief overview of probability-matching experiments and
the connection to our paper.

The literature on base-rate neglect is founded on two seminar papers by Kahneman and Tversky
(1972, 1973). The two papers differ in the type of updating problem used in the experiment
to study base-rate neglect. In Kahneman and Tversky (1973) subjects were asked to make a
judgment about the probability that a person is an engineer or a lawyer based on a description.
The description provided was designed to include characteristics “representative” of being either an
engineer or a lawyer.59 However, this design was criticized by some (Nisbett et al. 1976) who were
concerned that the detailed textual description provided as a signal, which stood in contrast to the
statistical description of the prior, could explain why base rates were not as strongly incorporated
into posterior beliefs. However, base-rate neglect is also observed in more standard updating
problems. Kahneman & Tversky (1972) purposefully used an abstract problem (although framed
as the famous cab problem), where the state and signal were simply colors (green vs. blue) and
the reliability of the signal was explicitly given to the subjects to enable Bayesian updating.60 The
parameters used in our experiment are precisely the values from this paper, although we change
the framing slightly as described in the experimental-design section. The literature that followed
from these papers broadly falls into two corresponding categories: experiments where the primitives
are fully provided (as in Kahneman & Tversky 1972) or experiments where either the prior or the
signal reliability is open to interpretation (as in Kahneman and Tversky 1973).

Grether (1980, 1992) and Griffin and Tversky (1992) are some of the early economics-style
experiments on the topic where subjects are financially incentivized to form accurate beliefs and
the updating problems are presented in the standard framework of judging the likelihood of abstract
events (for example, event involving balls drawn from different urns). Importantly, Grether (1980)
also introduces a general way of measuring partial base-rate neglect based on regression analysis
focusing on the log likelihood ratio of different events. This approach is now commonly used in many
papers, including this one, studying updating behavior. It should be noted that none of these early
papers studied how behavior changes with feedback. In most experiments subjects only answered
one belief updating question, and in others that included multiple questions, the parameters and/or

59After being provided with a prior (on the person being a lawyer of an engineer), subjects were given, for example,
the following description. “Jack is a 45 year old man. He is married and has four children. He is generally conservative,
careful, and ambitious. He shows no interest in political and social issues and spends most of his free time on his many
hobbies which include home carpentry, sailing, and mathematical puzzles.” Results revealed subjects’ posteriors to
vary very little with the base rate. An important advantage of this design is that the degree to which base rates are
incorporated into the posterior can be tested without explicitly fixing the informativeness of the description (hence,
without studying directly whether subject over or under react to the information).

60Subjects were asked the following problem: “Two cab companies operate in a given city, the Blue and the Green
(according to the color of cab they run). Eighty-five percent of the cabs in the city are Blue, and the remaining
15 percent are Green. A cab was involved in a hit-and-run accident at night. A witness later identified the cab
as a Green cab. The court tested the witness’ ability to distinguish between Blue and Green cabs under nighttime
visibility conditions. It found that the witness was able to identify each color correctly about 80 percent of the time,
but confused it with the other color about 20 percent of the time. What do you think are the chances that the errant
cab was indeed Green, as the witness claimed?” The correct answer is 41percent.

31



the environment changed between questions with no feedback between questions.

The literature on base-rate neglect grew quickly in the next few decades. Koehler (1996)
provides an extensive review of experiments on base-rate neglect up to that point. There are three
important observations in this paper that are relevant to our research question. First, Section 2.1.1
of this paper concludes that in experiments where subjects are faced with multiple versions of a
belief elicitation question (without any feedback) whether the base rate or the characteristics of
the signal are varied within subject can have an impact of the results. In general, subjects respond
more to base rates if they are varied within, or alternatively if there is no variation in signal
characteristics within. Second, the paper highlights a line of research studying whether the base
rate is integrated more in a belief updating problem when the question is framed or presented in
terms of frequencies rather than probabilities. This perspective was first introduced by Gigerenzer
(1991) and Gigerenzer & Hoffrage (1995). Further evidence on different aspects of this are also
presented in Cosmides & Tooby (1996), and more recently in Barbey and Sloman (2007).

Third, more closely related to our research question, Section 2.1.2 of Koehler (1996) discusses
several early experiments where subjects have an opportunity to learn about base rates from direct
feedback. For example, Manis et al. (1980), Lindeman et al. (1988), and Medin and Edelson (1988)
provide evidence that base rates influence probabilistic judgements more when they are directly
experienced through trial-by-trial outcome feedback. None of these papers include a treatment that
can be mapped back cleanly to either of our treatments, but they provide insights that parallel some
of our findings. In Manis et al. (1980) subjects were shown 50 yearbook pictures of male students
and, for each randomly selected picture, they were asked to predict the person’s position on two
issues (marijuana legalization and mandatory seatbelt legislation). Note that a signal in this context
can be interpreted to be the characteristics of person observed in the picture. The informativeness of
these pictures is ambiguous and actually manipulated to be non-existent. The results suggest that
subjects adjust their judgments in response to the accuracy of their past predictions. In Lindeman
et al. (1988) subjects are given 16 different versions of Kahneman and Tversky’s engineer-lawyer
problem. While the analysis indicates that feedback leads to adjusted probability estimates closer
to the Bayesian benchmark, the type of feedback that subjects are provided is highly unnatural
and unusual.61 It is also important to note that the paper does not find any transfer of learning
in this environment to another one where subjects can display base-rate neglect (based on Zukier
and Pepitone 1984). Medin and Edelson (1988) report results from an experiment where the task
involved participants diagnosing hypothetical diseases on the basis of symptom information. It is
difficult to interpret their results as their learning environment is complicated by the fact that there
are many features of the environment that are varied within subjects and some of these involve
ambiguous signals. Overall, they find mixed results for subjects incorporating the base rate. Among
these set of papers, the closes to our work is Christensen-Szalanski and Beach (1982). The paper
demonstrates that subjects make use of base rates in forming posterior probabilities when they
have experienced the relationship between the base rate and the diagnostic information, but fail to
make use of the base rate when they only experience the base rate and are given the reliability of
the signal.62

61In each problem, subjects were asked to form beliefs based on the same description using different base rates.
While the informativeness of the description is not explicitly given in this experiment, a subject’s answer to the first
question implies a ‘correct’ answer to the second question if subjects are assumed to be Bayesian. The experiment
elicited both beliefs while giving feedback on what the ‘correct’ answer should have been to the second question
(conditional on the answer to the first question).

62One of their treatments (where subjects experience both the state and the signal in direct feedback) is similar to
our NoPrimitives treatment where subject are not given the primitives and learn from feedback. However, a critical
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Since the review article of Koehler (1996), there has been a considerable literature in psychol-
ogy studying whether subjects can learn through direct experience to incorporate base rates into
posterior beliefs. These papers are reviewed in Goodie and Fantino (1999). While this body of
work often provides evidence that subjects can learn from experience to adjust actions towards
optimal behavior, the approach in these papers are fundamentally different from ours. The frame-
work adopted in most of these experiments is one where subjects repeatedly choose between two
binary options after observing a binary cue, receiving feedback about the optimality of the choice
after each round. The choices are often between abstract options (for example, green or blue) and
the cues could be labeled similarly or differently from the options (for example, matching colors or
arbitrary shapes). Critically, subjects are not informed about the primitives determining statistical
relationship between the cue and the optimal action.63 In this respect, these experiments are closest
to our NoPrimitives treatment in which the prior and the reliability of the signal were not provided
to the subjects. However, there are still some differences in how such a treatment is implemented
in these papers that could be important for behavior. For example, in these experiments, subjects
are not told explicitly that the environment they face repeatedly is a stationary one in the sense
that each round corresponds to an independent draw of optimal action/cue pair from the same
distribution. Note also that the learning problem is different from the one we study in that in
these experiments subjects can possibly learn the optimal binary action conditional on each signal
without ever forming precise beliefs conditional on each signal.

Despite the relatively large literature on the topic, we have not identified a paper that includes
a treatment in which subjects were provided with the primitives and also had to opportunity to
learn from direct feedback while repeatedly experiencing the same environment. Moreover, we
have not found a single study that compares differences between the description and experience
paradigms within the same sample of subjects.64 Fantino and Navarro (2012) provide a survey of
the description-experience gap (the finding that people respond differently to the same quantitative
information depending on whether it is described or experienced) in different environments. With
respect to the description-experience gap in base-rate neglect experiments, they compare across
experiments within each paradigm (only description experiments, such as Kahneman & Tversky
(1972), or only experience experiments, such as Goodie and Fantino (1996)). That is, they report
that there was no single study that compared the description to the experience paradigm within
the same group of participants.

difference is that subjects form beliefs only after observing all the feedback. Christensen-Szalanski and Beach (1982)
also go further and tell subjects explicitly that they “will be asked to use this information” to answer several question
in the future. In their second treatment, they provide subjects only with the reliability of the signal, and then provide
subjects with 100 rounds of natural feedback only on the base rate. They find that subjects cannot successfully make
use of the feedback in this context.

63In these experiments subjects are not even allowed keep track of past realizations. In the instruction subjects
are explicitly told: “Please don’t use any outside tools, such as a pencil and paper, to help you remember what you
saw” (Goodie and Fantino 1999).

64The ‘experience’ paradigm corresponds to experiments described in the previous paragraph (surveyed in Goodie
and Fantino (1999)), where subjects are not provided with the primitives but can learn from feedback. Meanwhile, the
‘description’ paradigm captures the standard Kahneman & Tversky (1972) example, where primitives are provided
and subjects answer one question. Notice that this comparison does not involve a treatment in which people are
given the primitives and feedback.
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Literature on probability matching & feedback

The experimental literature on probability matching is surveyed in Vulkan (2000) and, more recently
in Erev and Haruvy (2013). Most papers in the early literature on probability matching used an
environment in which the primitives were not provided to subjects. To illustrate, here is a typical
example taken from Erev and Haruvy (2013). There is an event E that happens with probability
0.7, but subjects do not know this probability. In a given round, subjects click on button H or
button L. Button H pays (L pays) a positive amount if E occurs (E does not occur). After 50
rounds, the observed rate of H selection is 70%. This finding coincides with the earlier literature
in which subjects were reported to make choices that are close to ‘probability matching’ instead of
optimizing. However, more recent papers have demonstrated that longer experience slowly moves
choices toward maximization. In that example, the H rate in the data was 90% between rounds 51
and 150. These findings are consistent with our long-run findings for the NoPrimitives treatment.

Relatively recent papers do provide primitives.65 Newell et al. (2013) present an experiment in
which a 10-sided die with 7 green and 3 red sides, which subjects can see, is going to be rolled in
each round. The subjects’ task is to predict the color of the die. In the first 50 rounds, the rate of
green choices was close to 80 percent. In rounds 51 to 150, the rate is close to 85 percent. These
findings suggest that while subjects make choices consistent with probability matching early on,
suboptimal choices decrease with feedback. This finding is in line with our result for the Primitives
treatment in which feedback moves average beliefs closer to the Bayesian benchmark.

Koehler & James (2010) provide evidence suggesting that when primitives are provided, the
‘probability-matching’ heuristic more readily comes to mind relative to the optimal strategy. This
opens up the possibility that subjects may have confidence in an incorrect choice, but we did not
find a reference that would measure confidence. While the evidence from experiments with and
without primitives suggests that mistakes are corrected we do not know of a paper that tests both
environments with the same sample. The closest evidence to compare between the two environments
that we found is what we provided in the previous two paragraphs, so from the literature it is not
possible to know if in the long run there would be a treatment effect.

I.B. Learning theory in experiments: A brief description of recent related papers

There is a large set of experiments in which feedback of some sort plays a role but where feedback
is not part of the central object of study. Meanwhile, the literature that focuses specifically on
feedback can perhaps be organized into two groups. The first is the relatively large experimental
literature that studies how people use feedback to learn in games, which dates at least back to
Harrison and Hirshleifer (1989) and Prasnikar and Roth (1992), and is less directly related to our
work in this paper. Models such as reinforcement learning (Erev and Roth (1998), Roth and Erev
(1995)), directional learning (Selten and Stoecker 1986), adaptive learning (Cheung and Friedman
1997), experience-weighted attraction (Camerer and Hua Ho 1999), and rules-based learning (Stahl
2000) were proposed and tested in this literature. The focus is on what kind of model can rationalize
how people learn from feedback, mostly in settings in which taking into account the behavior of
other players is crucial. For a detailed survey of the literature, see Part 5 of Dhami (2020).

The second group involves a more recent set of papers that are closer to our paper and focus

65See Gal (1996), West and Stanovich (2003), Newell and Rakow (2007), Koehler and James (2009, 2010), James
& Koehler (2011).

34



on evaluating subjects’ use of feedback in testing long-run predictions of (behavioral) learning
theories. Attention is not on exactly on what model better rationalizes how subjects process the
feedback, but on whether long-run choices are consistent with learning-theory predictions.66 Long-
run predictions may differ from Nash equilibria for essentially two reasons. The first case concerns
with mistakes that are due to off-path play (i.e. incorrect off-path beliefs that are not corrected
via feedback), while the second captures congitive limitations that generate on-path mistakes. We
provide examples of both cases next.

As a first example of off-path mistakes leading to long-run behavior that is not part of a Nash
equilibrium, consider Fudenberg & Vespa (2019). This paper studies experimentally a signaling
game presented in Dekel et al. (2004) in which the first player selects to enter or to stay out and
the second player is only asked to make a binary choice (Y or Z) only when the first player selects
to enter. Player 1 can have two types (A, B). The game has a unique Nash equilibrium in which
player 1 enters and player 2 selects Y. In a first treatment, subjects experience 120 repetitions of this
game, each time being randomly matched with another participant, and in each repetition Nature
randomly assigns a type to player 1. In this case, self-confirming and Nash equilibria coincide. In
a second treatment, types are fixed. A player 1 subject assigned type B may initially believe that
player 2 would select Z upon entry, and in such case player 1 type B would want to stay out. If she
stays out, she would never collect feedback that challenges such beliefs. It is thus possible in the
long run that player 1 type B never enters, so with fixed types there is a self-confirming equilibrium
that is not Nash. The experiment in Fudenberg & Vespa (2019) presents data in line with the
comparative static.

Cognitive limitations of agents are behind the second case capturing long-run play that deviates
from Nash play. For example, the notion of Behavioral Equilibrium (Esponda 2008) captures
the long-run behavior of an agent that has difficulties to understand endogenous selection in her
feedback. An experimental test of these predictions is studied in Esponda & Vespa (2018). An
agent who does not control for selection will have a biased view of the environment. Such biased
view would lead to decisions that are suboptimal, but could generate feedback that results in a
Non-Nash equilibrium. The experimental test consists of comparing choices in a treatment in which
feedback involves a selected sample against a treatment in which such selection is not present. The
evidence suggests that most subjects do not adjust for selection and end up making suboptimal
choices in the long run.

Fudenberg & Peysakhovich (2016) study a version of the classic lemons problem (Akerlof 1970)
in which subjects observe 30 rounds of feedback and in which on-path mistakes can arise. The
experiment is designed to distinguish between different theoretical notions of behavior that capture
cognitive limitations (e.g. cursed equilibrium (Eyster and Rabin 2005) and behavioral equilibrium
(Esponda 2008)). The data suggests that subjects give more weight to recent observations (i.e. a
recency effect), a feature that was not present in behavioral learning models. Connected to our
paper, they also find that providing subjects with a processed summary of the information they
have observed helps them make better choices.

Relatedly, Barron et al. (2019) study a situation in which individuals try to learn from observing
behavior of others who have faced similar decisions previously. However, information from others
involves selection because choices of others are observed conditional on private information. Their
experimental paper uses the theoretical selection neglect framework of Jehiel (2018). The paper
documents evidence of selection neglect, which is consistent with findings in other papers in this

66A central theoretical reference in this literature is Fudenberg and Levine (1998).
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literature. They also document that issues with selections increase when the agents generating the
feedback that others use have more private information.67 In all of the papers in this part of the
literature the quality of the feedback depends on subject’s choices. A difference with our paper is
that in the environments we study the quality of subjects’ choices is independent of the quality of
the feedback that subjects receive.

67There is also a related set of papers that do not focus on feedback per se but that also show that taking selection
into account is extremely challenging for many subjects. Prominent recent examples include Enke (2020) and Araujo
et al. (2021).
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B. Details on the experimental design

In this appendix, we summarize our experimental design. For full details on the experimental
material, see the Procedures Appendix.

Core treatments

The core treatments consist of nine parts. For expositional purposes, in the main text we grouped
the nine parts into four. What we described as the first part in Section II corresponds to the BRN
task (Part 2 below), and the instructions necessary to introduce the elicitation mechanism (Parts
0 and 1 below). The second part in Section II maps to Parts 3 and 4. The third and fourth parts,
were introduced in Section IV.E. Specifically, the third part corresponds to Parts 5, 6, 7 and 8. The
fourth part includes only Part 9. We now briefly summarize what each of the nine parts achieves.

Part 0

This part uses a simple example to describe the BDM belief elicitation method. Specifically we
ask subjects to consider a trivial question: “What is the chance that a fair coin lands Heads vs.
Tails?” We ask them to submit an answer to this question (non-incentivized) using a similar 0 to
100 slider as we will use in our main task later. Given a selection in the slider (which is initially
blank) the top of the slider indicates the percent chance that the coin lands heads that corresponds
to the selection and the bottom of the slider describes the percent chance that the coin lands tail
that corresponds to the selection. We then describe, given the BDM mechanism, why it is payoff-
maximizing to report their best assessment that the coin will land heads. Given that there is an
objective answer to this question, we describe qualitatively why answering 50% is optimal.68

Part 1

The aim of this part is to introduce the strategy method. There are two decks of cards, each with
100 cards and cards can be green or blue. One card of the 200 cards is randomly selected and they
have to indicate the chance that the selected card is green vs. blue in case it belongs to deck 1, and
separately, in case it belongs to deck 2. On the screens subjects are informed of the composition of
each deck before they submit their answers. As the problem in Part 0, there is an objective answer
to maximize payoffs in this problem. After they submit their answers, an explanation appears on
the screen describing the answers that maximize payoffs. They repeat this problem twice, each
time with different compositions of each deck.

Part 2

This section involves the main task. For each possible test result (positive, negative) participants
submit the chance that the project is a success vs. a failure. The instructions are presented in

68The BDM mechanism works in the following manner. After subjects submit a choice X% that the event at the
top of the slider happens, the interface uniformly draws a value between 0 and 100, which we call Y . If Y ≥ X, the
subject wins $25 with Y% chance. If Y < X, the subject wins $25 if the event occurs.
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Appendix J. This is the only part in the experiment where the instructions to treatment Primitives
differ from those of NoPrimitives.

Part 3

Consists of 99 repetitions of the Part 2 task. The Part 2 task is referred to as round 1 of Part
3, participants get feedback on their round 1 choice and subsequently make 99 additional choices,
getting feedback in each round. Feedback is presented round by round on a table, where for each
round they learn whether the test was positive or negative and whether the project was a success
or a failure.

Part 4

This part consist of 100 additional rounds. It is identical to Part 3, except that subjects make a
choice every ten rounds.

Part 5

In this part, we ask subjects to recall the feedback they received on the updating task in the last 200
rounds. Specifically, we ask them to recall the number of rounds in which the four possible types
of events were observed: positive signal and success, positive signal and failure, negative signal and
success, and negative signal and failure. For payment, the interface selects one of the four entries
(with equal chance). The subject earns $25 if the number reported is within plus or minus 5 of the
actual number that they experienced.

Part 6

In this part, we confront subjects with the actual data they observed in a conveniently aggregated
manner. We present the data in a two-by-two table showing the number of actual rounds in which
a specific combination of the signal and state realization was observed. Because it was hard to
anticipate what kind of concrete feedback would prompt subjects to revise their incorrect beliefs
prior to running the experiment, we proceeded in three steps.

In the first step (Part 6), we present subjects with data from the previous 200 rounds that they
experienced. After observing this information, subjects do one more round of the belief elicitation
task.

Part 7

In the next step, the interface simulates an additional 800 rounds of signal-state realizations, adds
it to the existing 200 rounds, and presents the data in the same table format. Thus, subjects now
observe feedback from 1,000 rounds in a table format. After observing this information, subjects
do one more round of the belief elicitation task.
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Part 8

In the last step, the interface computes the relevant frequencies of the entries presented in the table
from the previous step. In particular, conditional on each possible signal (positive or negative), the
interface reports the percentage of all 1,000 rounds in which the project was a success vs. failure.
After observing this information, subjects have to enter it back themselves (to minimize any chance
that they are not reading the data) and subsequently do one more round of the belief elicitation
task.

Part 9

In the last part of the experiment, we change the primitives of the belief elicitation task to p′ = .95
and q′ = .85. Subjects in both the Primitives and NoPrimitives treatment are informed of these
primitives, and subjects submit beliefs once without the possibility of further feedback.

Survey

At the end of the experiment, we conducted a brief survey consisting of four questions to assess
whether the subject had taken a class in probability and/or statistics in college, whether or not
their major is STEM related, their gender, and their year of study in college (freshman, sophomore,
junior, senior, or graduate student).

Mechanism treatments

Primitives w/ shock

This treatment is identical to the Primitives treatment until the beginning of Part 3. After in-
structions for Part 3 are read but before they receive feedback, the screen displays a message in
case their answers to Part 2 were not correct. Specifically, if only one answer was not correct, they
would see the following message “At least one of the answers that you provided in Part 2 is NOT
CORRECT.” If both answers were incorrect, the screen would shot the following message: “Both
answers that you provided in Part 2 are NOT CORRECT.”

Subsequently, Parts 3 and 4 proceed as in the Primitives treatment. Subjects then face Parts 5
and 6 as in the core treatments.

Primitives w/ lock in and NoPrimitives w/ lock in

These treatments are identical to the Primitives and NoPrimitives treatment, respectively until
Part 3. At that point and for both treatments, the instructions for Part 3 include the following
sentences in the last paragraph: “(...) You will also have a ‘lock-in’ option. This option enables
you to use your current choices for the current round and all future rounds. In other words, if
you select this option, you will not need to click through all the remaining rounds; instead you
will jump to the end of the experiment. But this also means that you will not be able to modify
your choice for future rounds. Note that even if you use the ‘lock-in’ option to skip to the end of
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the experiment, you will not be able to leave early. We will pay you only after everybody is done.
You will be able to make choices at your own pace in this part. Part 3 will end after you make
your choices for all rounds.” Given the option to lock in choices, we merged parts 3 and 4 in this
treatment. Essentially, subjects were told that in Part 3 they would face additional 199 rounds.

Primitives w/ freq. and NoPrimitives w/ freq.

These treatments are identical to the Primitives and NoPrimitives treatments, respectively, except
that the feedback in Parts 3 and 4 is presented in a two-by-two table showing the number of actual
rounds in which a specific combination of the signal and state realization was observed so far.69

Voting treatments

We conducted for voting treatments. Participants were recruited from Prolific and there are 130
participants per treatment.70 These treatments have two parts. Full details of instructions with
screenshots are provided in the Procedures Appendix.

Part 1

After reading detailed instructions and questions on the instructions, subjects make the decision
for Part 1. How the choice between Option 1 and Option 2 changes across the four treatments is
described in Table 3. The problem in Complex Primitives (Voting) is the same as the problem in
Primitives (Voting) except that the options are described in a less transparent manner. A similar
comment applies to the No Primitives treatments.

After subjects submit their choice for Part 1, we ask them: “How confident do you feel about
your choice in Part 1?” This question is unincentivized. Possible answers range from ‘Not confident
at all’ to ‘Extremely confident,’ with three additional options in between.

Part 2

Part 2 consists of 99 rounds, with the first round providing feedback on the Part 1 choice. This part
is identical in all treatments. Subjects observe informative feedback, which is exogenous to their
choices, as in the BRN treatments. We implement this by telling subjects that they will receive
feedback from a different participant. In odd rounds they receive feedback from a participant who
selected Option 1. In even rounds they receive feedback from a participant who selected Option 2.
After responding understanding questions, they start Part 2.

They observe feedback in the form of a table, where for each round they can see the other
participant’s vote and the other participant’s payment. They make a choice for each round and
the experiment is over once they make the choice for the last round.

69These treatments do include Part 5 (which asks subjects to recollect the data), but we did not ask Part 6 as it
essentially would have implied a repetition of the last choice they made in Part 4. Due to a software error we did not
collect the survey variables at the end of these treatments.

70We decided to double the sample size relative to the BRN experiments because research suggests that online
participants can be noisier (Gupta et al. 2021)
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Treatment Voting Complex Voting

Option 1 pays A

pays A if only one vote for it

If there are two votes: (i) A if RN ≤ X

(ii) B if RN ∈ {X + 1, ...X + 10}
(iii) C if RN > X + 10

Option 2

pays B if RN ≤ X − 2

pays B if RN ≤ X pays A if RN ∈ {X − 1, X}
pays C if RN > X pays C if RC > X

Option 1 selected? If there is at least one vote for Option 1

Option 2 selected? If there are two votes for Option 2

Computer’s Vote Option 2 if RN > X

Notes: (i) RN is a random uniform integer in {1, ..., 100}. Subjects are told that the computer knows RN.
(ii) In NoPrimitives (Voting) and Complex NoPrimitives (Voting), subjects are told that A, B, C and X
represent numbers, but that they are not be told what the actual numbers are. We also do not tell them
what the computer’s strategy is or whether it depends on RN.
(iii) In Primitives (Voting) and Complex Primitives (Voting) subjects know that A = 0, B = 6, C = 10 and
X = 60. Subjects also know the computer’s strategy.
(iv) Option 1 pays the same in both problems. The computer votes for option 1 when RN ≤ X. So, if
there are two votes for option 1 in complex, it pays A. If there is one vote for option 1 in complex, it pays
A. Hence, option 1 in complex pays A.
(v) Option 2 pays the same in both problems. The computer votes for option 2 when RN > X. If there
are two votes for option 2 (and option 2 is only implemented if there are two votes for it), it pays C in both
problems.

Table 3: Summary of Voting Treatments: Part 1
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C. Additional analysis: Results on Primitives vs. NoPrimitives

III.A. Treatment differences in rounds 1-200

Statistical analysis on treatment differences

Conditional on positive signal Conditional on negative signal H0

P NP Diff. P NP Diff. P = NP

Round 1 31 19 p < 0.001 18 35 p < 0.001 p < 0.001
p < 0.001 p < 0.001 p < 0.001

Round 50 25 19 p = 0.041 15 13 p = 0.599 p = 0.107
p = 0.043 p = 0.710 p = 0.117

Round 100 24 18 p = 0.025 13 8 p = 0.045 p = 0.011
p = 0.026 p = 0.053 p = 0.011

Round 200 21 13 p = 0.002 10 7 p = 0.183 p = 0.007
p = 0.002 p = 0.203 p = 0.008

Table 4: Average Distance to Bayesian Benchmark in Primitives vs. NoPrimitives

Notes: P and NP denote Primitives and NPrimitives. For each round and each treatment the table reports the average
of bj , where bj is the absolute value of the distance between the submitted belief and the Bayesian benchmark, that
is, bj = |Bj −BBay

j |. At each given round and for each possible signal, the first p-value of the difference corresponds
to the p-value of βj (j ∈ {Pos,Neg}) in the following equation: bj = αj + βjP+ υj , where; υj is an error term; and
P is a dummy that takes value 1 if the variable comes from Primitives. The second p-value includes three survey
controls in each equation: a dummy for whether the subject has taken a probability class, a dummy for whether the
subject is enrolled in a STEM major, and a gender dummy. To obtain p-values, we estimate both equations jointly
as a system, using seemingly unrelated regressions. This allows us to allow for a correlation across equation (because
for a fixed subjects beliefs can be correlated) but assume independence across subjects. Because the regressions are
estimated as a system, we can use a Wald test and evaluate the joint hypothesis that there is no treatment effect (i.e.
βPos = βNeg = 0). The p-value of such test (not including and including survey controls) is reported in last column.

Aggregate measure of partial base-rate neglect

Figure 2 presents average beliefs for different rounds relative to the perfect base-rate neglect and
Bayesian benchmarks. An alternative way to present our data and highlight treatment differences is
to measure the degree to which responses in aggregate display partial base rate neglect. We use an
approach that was introduced by Grether (1980) and since has become standard in empirical work
studying updating behavior. This approach does not necessarily have a behavioral interpretation,
particularly when applied to beliefs submitted over multiple rounds and to a treatment without
primitives, but it does provide an indication of how close beliefs are to the benchmark where
subjects know the primitives and can apply Bayes’ rule by appropriately weighting the prior and
the signal accuracy.

To conduct this analysis, we make use of an implication of Bayes’ rule that the posteriors
odds ratio (in log form) can be written as a linear function of the prior odds ratio and the signal
likelihood ratio. Specifically, we estimate the following regression for each round of our data:

ln
(

Bj

1−Bj

)
= αln

(
p

1−p

)
+ βln

(
Qj

1−Qj

)
, where for j = {Pos, Neg}, QPos = q and QNeg = 1− q. The

parameter α captures responsiveness to the prior (controlling for its strength), while β captures
responsiveness to the signal (controlling for its informational value). This provides us with two
benchmarks: α = β = 1 for a Bayesian, and α = 0, β = 1 for a pBRN agent. Importantly, the
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Conditional on positive signal Conditional on negative signal H0

P NP Diff. P NP Diff. P = NP

Round 1 64 60 p = 0.258 22 39 p < 0.001 p < 0.001
p = 0.297 p < 0.001 p < 0.001

Round 50 57 47 p = 0.028 18 16 p = 0.488 p = 0.077
p = 0.028 p = 0.579 p = 0.080

Round 100 53 47 p = 0.159 16 11 p = 0.035 p = 0.056
p = 0.175 p = 0.041 p = 0.064

Round 200 54 46 p = 0.021 13 10 p = 0.112 p = 0.049
p = 0.025 p = 0.123 p = 0.055

Table 5: Average Beliefs in Primitives vs. NoPrimitives

Notes: P and NP denote Primitives and NPrimitives. For each round and each treatment the table reports the
average of bj , where bj is the submitted belief, that is, bj = Bj . At each given round and for each possible signal,
the first p-value of the difference corresponds to the p-value of βj (j ∈ {Pos,Neg}) in the following equation:
bj = αj + βjP + υj , where; υj is an error term; and P is a dummy that takes value 1 if the variable comes from
Primitives. The second p-value includes three survey controls in each equation: a dummy for whether the subject
has taken a probability class, a dummy for whether the subject is enrolled in a STEM major, and a gender dummy.
To obtain p-values, we estimate both equations jointly as a system, using seemingly unrelated regressions. This
allows us to allow for a correlation across equation (because for a fixed subjects beliefs can be correlated) but assume
independence across subjects. Because the regressions are estimated as a system, we can use a Wald test and evaluate
the joint hypothesis that there is no treatment effect (i.e. βPos = βNeg = 0). The p-value of such test (not including
and including survey controls) is reported in last column.

estimate on α gives us a continuous measure of the level of partial base rate neglect in the aggregate
data.71

While there are no significant differences in the estimates of β between treatments (and estimates
are relatively close to 1), Figure 10 reveals large differences in the estimates of α.

Consistent with our earlier findings, the estimate of α for both treatments remains substantially
below the Bayesian benchmark even after 200 rounds. More importantly, the 200-round estimate
of α for treatment Primitives, which equals .55, is significantly smaller than that of treatment
NoPrimitives, which is .82 (p-value 0.001). Table 6 summarizes estimates of α and β at round 200
in all our treatments involving the updating task.

Behavior of Round 1 pBRN subjects vs. Others in Primitives

Figure 11a separately follows with diamonds the behavior of Round 1 pBRN subjects. Note that,
by definition, all Round 1 pBRN subjects make pBRN choices in round one, so that the starting
point for this group is (BPos, BNeg) = (80, 20). While beliefs for these subjects move towards
the Bayesian benchmark with experience, by round 200 beliefs for these subjects are substantially
farther away from the Bayesian benchmark relative to the average in Primitives. Furthermore, the
beliefs of Round 1 pBRN subjects are significantly different from subjects in NoPrimitives. This is
shown in column (1) of Table 7; for example, there is a significant fifteen percentage-point difference

71To study treatment differences, we pool data from Primitives and NoPrimitives allowing for different α and β
estimates for the two treatments. Reported significance is with respect to the equivalence of the estimates from the
two treatments. We cluster standard errors by subject.
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Figure 10: Estimates of α per round by treatment

Estimates

P NP Ps Pl NPl Pf NPf

α 0.55 0.82 0.82 0.49 0.72 0.89 0.99
β 0.87 0.88 0.81 0.77 0.84 0.83 0.99

Differences

P vs. NP P vs. Ps NP vs. Ps Pl vs. NPl Pf vs. NPf Pf vs. P NPf vs. NP

α p = 0.001 p = 0.001 p = 0.987 p = 0.014 p = 0.127 p < 0.001 p = 0.015
β p = 0.897 p = 0.444 p = 0.414 p = 0.430 p = 0.334 p = 0.412 p = 0.122

Notes: P and NP, Ps, Pl, NPl, Pf, NPf, denote Primitives and NoPrimitives, Primitives w/ shock, Primitives w/
lock in, NoPrimitives w/ lock in, Primitives w/ freq, and No Primitives w/ freq. Reported values correspond to the

following regression for round 200: ln
(

Bj

1−Bj

)
= αln

(
p

1−p

)
+ βln

(
Qj

1−Qj

)
, where for j = {Pos, Neg}, QPos = q and

QNeg = 1 − q. The parameter α captures responsiveness to the prior (controlling for its strength), while β captures
responsiveness to the signal (controlling for its informational value).

Table 6: Estimates from Grether Regressions in Round 200
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(b) BPos ∈ [70, 100] and BNeg ∈ [0, 30]

Figure 11: Evolution of submitted beliefs by subgroups

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Triangles
indicate the Bayesian and the pBRN benchmarks. Squares (Circles) report averages in treatment Primitives (No-
Primitives). Diamonds indicate averages for R1 pBRN subjects in Primitives. Crosses indicate average for R1 other
subjects in Primitives. The numbers indicate the round for which the averages are taken.

in the average of BPos between the two groups.72 Here, we focus on Round 1 pBRN subjects who
made pBRN choices in round 1, but may change their behavior as the session evolves. Additionally,
it is possible to trace the proportion of subjects in each round who make choices consistent with
pBRN. Such evolution is presented in Figure 12.

72If we test the joint hypothesis that there are differences in BPos and BNeg, we obtain p-values of 0.007 and 0.001
in rounds 100 and 200, respectively.
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Sample

(1) (2) (3)
Round 1 pBRN v. NoPrimitives Round 1 pBRN v. Round 1 Others Round 1 Others v. NoPrimitives

γPos γNeg γPos γNeg γPos γNeg

Round 1
19.8 -18.5 36.2 -5.4 -16.3 -13.1

(.000) (.000) (.000) (.192) (.000) (.002)

Round 100
10.0 8.6 9.1 6.8 0.9 1.8

(.047) (.010) (.157) (.115) (.858) (.486)

Round 200
15.2 3.9 16.2 2.5 -0.9 1.5

(.000) (.068) (.003) (.279) (.808) (.539)

#Obs 100 64 92

Table 7: Estimation output for subsets of subjects

Notes: The table presents different estimates of γPos and γNeg, where BPos = δPos + γPosP + υPos and BNeg =
δNeg + γNegP + υNeg. Equations are estimated jointly using the seemingly unrelated regressions procedure. In (1)
the dummy P takes value 1 if the subject was classified as Round 1 pBRN in Primitives and 0 if the subject is in
NoPrimitives. In (2) the dummy P takes value 1 if the subject was classified as Round 1 pBRN in Primitives and 0
if the subject is not classified as Round 1 pBRN in Primitives (what we refer to as Round 1 Others in Primitives).
In (3) dummy P takes value 1 if the subject is classified as ‘Round 1 Others in Primitives’ and 0 if the subject is
in NoPrimitives. Between parentheses we report standard errors. Each row constrains the sample to the decision
referred to in the first column. The last row indicates the number of observations in each regression.
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Figure 12: Proportion of choices consistent with pBRN in Primitives as the session evolves

In Figure 11b, we demonstrate that these distinct patterns observed for Round 1 pBRN subjects
are not due to the fact that they start out in round one with particularly extreme beliefs that are
quite far from the Bayesian benchmark. To do so, we study treatment differences focusing on a
subset of subjects who start with similar initial beliefs. Specifically, we constrain the sample in
both treatments to include only subjects with BPos ∈ [70, 100] and BNeg ∈ [0, 30] in round 1. In
Primitives, only Round 1 pBRN subjects are included with this constraint, while in NoPrimitives
approximately thirty percent of subjects (who likely assigned high informational value to the signal
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Sample

(1) (2) (3) (4)
Round 1 pBRN BPos ≥ 70 Round 1 pBRN Round 1 Others

v. NoPrimitives BPos ≤ 30 v. Round 1 Others v. NoPrimitives

γPos γNeg γPos γNeg γPos γNeg γPos γNeg

Round 1
19.8 -18.5 2.0 0.4 36.2 -5.4 -16.3 -13.1

(.000) (.000) (.186) (.790) (.000) (.192) (.000) (.002)

Round 100
10.0 8.6 12.5 11.6 9.1 6.8 0.9 1.8

(.047) (.010) (.079) (.015) (.157) (.115) (.858) (.486)

Round 200
15.2 3.9 15.5 6.4 16.2 2.5 -0.9 1.5

(.000) (.068) (.012) (.008) (.003) (.279) (.808) (.539)

Table -1000- freq
-0.1 3.3 1.4 2.4 0.7 3.6 -0.8 -0.3

(.930) (.091) (.336) (.483) (.534) (.216) (.577) (.548)

#Obs 100 60 64 92

Table 8: Estimation output for subsets of subjects

Notes: The table presents different estimates of γPos and γNeg, where BPos = δPos + γPosP + υPos and BNeg =
δNeg+γNegP+υNeg. Equations are estimated jointly using the seemingly unrelated regressions procedure. In (1) the
dummy P takes value 1 if the subject was classified as Round 1 pBRN in Primitives and 0 if the subject participated
in NoPrimitives. In (2) P takes value 1 if the subject is in Primitives and as 0 if in NoPrimitives, but the sample is
restricted to subjects who in round 1 submitted beliefs such that: BPos ≥ 70 and BNeg ≤ 30. In (3) the dummy P
takes value 1 if the subject was classified as Round 1 pBRN in Primitives and 0 if the subject not classified as Round
1 pBRN in Primitives (what we refer to as R1 Others in Primitives). In (4) dummy P takes value 1 if the subject is
classified as ‘Round 1 Others in Primitives’ and 0 if the subject participated in NoPrimitives. Between parentheses
we report standard errors. Each row constrains the sample to the decision referred to in the first column, where
Table-1000-freq refers to the decision after we provide subjects with the relevant frequencies from the 1000-round
table. The last row indicates the number of observations in each regression.

labels) satisfy the constraint. Even within this subset, large treatment differences emerge by round
100, and these differences remain by round 200. Table 8 verifies these patterns statistically.

To provide further evidence that the treatment differences are driven by the Round 1 pBRN
subjects, we also separately analyze beliefs of those subjects who are not classified as Round 1
pBRN in Primitives. We refer to such subjects as Round 1 Others. Average beliefs for these
subjects in rounds 1, 100, and 200 are depicted (with crosses) in Figure 11a. At the 100-round and
the 200-round marks, average beliefs of Round 1 Others are statistically different from Round 1
pBRN subjects in Primitives, but not statistically different from subjects in NoPrimitives.73

In summary, the decomposition of subjects in Primitives depending on their round one choices
shows that beliefs of Round 1 pBRN subjects in round 200 are statistically different from other
subjects in the same treatment and from subjects in NoPrimitives. But such differences are not
present between subjects in NoPrimitives and subjects in Primitives who were not classified as
Round 1 pBRN, and the beliefs of subjects in these groups are closer to the Bayesian benchmark
than the beliefs of Round 1 pBRN subjects in Primitives.

73The p-value of the joint test of γPos = γNeg = 0 by round 200 for the estimates reported in column (3) of Table
7 equals .011, but the same test for estimatates in column (4) delivers a p-value of .760.
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Signal was: Positive Negative

Actual .41 .04

Round 1 pBRN .54 .15

Round 1 Others .45 .10

NoPrimitives .47 .11

(a) Frequency of Success: Actual and in-
ferred from reports

(1) (2) (3)

Dep. var.: ∆B,F ∆B,R ∆R,F

DRound 1 pBRN 17.9 12.3 14.3

DRound 1 Others 11.4 9.4 8.1

DNoPrimitives 9.8 10.3 9.6

Hypotheses:

DRound 1 pBRN = DRound 1 Others .006 .262 .021

DRound 1 pBRN = DNoPrimitives .000 .333 .033

DRound 1 Others = DNoPrimitives .454 .719 .542

(b) Differences between beliefs, reports and feedback across
treatments

Table 9: Recollection of feedback

Notes: The right-hand side variable in each regression of panel (b) is indicated on the first row. The right-hand
side of each regression includes three dummy variables, each taking value 1 when the subject is in Primitives and
classified as Round 1 pBRN (DRound 1 pBRN), in Primitives and classified as Round 1 Others (DRound 1 Others), or in
NoPrimitives (DNoPrimitives). Coefficient estimates for the dummy variables are reported in the corresponding row.
The p-values associated with the null hypothesis that the coefficient equals zero are are all lower than 0.001 and not
reported.

Convergence and time

We also use convergence as a measure of when subjects stop responding to data. We code a subject’s
beliefs to have converged by round t if the subject does not change either belief from round t until
round 100.74 We use t = 91 (t = 96) to look at the share of subjects whose beliefs converged
by the last 10 (5) rounds. We find substantial differences between the treatments. The share of
subjects whose beliefs converged by the last 10 rounds is 77 percent in Primitives and this share
increases to 94 percent when we focus on the last 5 rounds. By contrast, the corresponding values
for NoPrimitives are only 36 and 47 percent.

Similar patterns are observed with respect to the time that subjects take to make their decisions.
The average (median) amount of minutes that subjects in NoPrimitives take to complete the
first 100 rounds is 15 (12.5), while subjects in Primitives take 10.7 (9.2). That is, subjects in
NoPrimitives take about 30 percent more time relative to subjects in Primitives, and the difference
is statistically significant (p-value 0.001).

III.B. Treatment differences after round 200

Recollection of feedback

In this part of the experiment, we test how well subjects can recall the feedback they experienced in
the rounds 1-200. As explained in Online Appendix B, each subject submits four numbers denoting
the number of rounds in which each possible signal-state realization was observed.

A first look at results is presented in Table 9a, which shows the average implied frequency of

74Recall that rounds 101-200 are introduced as a surprise, so when facing the first 100 rounds subjects did not
know that they would receive additional feedback.
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success conditional on each signal calculated from subjects’ recollection of feedback and, in the first
row, the actual average frequencies that subjects observed.

We find that frequencies implied by the recollection of feedback are farthest away from the
actual frequencies for Round 1 pBRN subjects. Note also that for these subjects the frequencies
implied by the recollection of feedback deviate from actual frequencies precisely in the direction of
the beliefs they submit.75

To study more carefully how well subjects recall feedback and how that connects to the beliefs
they submit, in Table 9b we focus on the relationship between three objects: actual realized fre-
quencies (Fj), frequencies implied by recollection of feedback (Rj) and beliefs reported in round
200 (Bj), where j ∈ {Neg,Pos}.76 These results can be summarized as follows. (1) We find that
frequencies implied by the recollection of feedback, as well as beliefs, to be farthest away from the
actual frequencies for Round 1 pBRN subjects at 14.3 and 17.9 percentage points, respectively (see
column ∆R,F and ∆B,F of Table 9b). While other groups of subjects also have a noisy recollection
of the data, the test of hypotheses at the bottom of the table show that such differences are smaller
than for Round 1 pBRN subjects. (2) However, there are no statistically significant differences be-
tween groups in terms of how far beliefs are from frequencies implied by the recollection of feedback
(see column ∆B,R of Table 9b).

These observations suggest that Round 1 pBRN subjects differ from other subjects in a very
specific way. Their beliefs are similarly consistent with their recollection of the data as others, but
they stand out from others in that they have a systematically biased recollection of the data.

Summary tables

In this section we study the effect of showing subjects aggregate data (that they have already expe-
rienced) in a summarized table form. As explained in Online Appendix B, we begin by presenting
subjects with feedback from rounds 1-200 using a two-by-two table that reports the number of
rounds that each of the four combinations of signal-state realizations were observed.77 We view
the provision of the table as an intervention that significantly reduces the attention costs of the
subjects.

The main finding is that introducing the table dramatically moves beliefs closer to the Bayesian
benchmark in Primitives, particularly with respect to BPos. The movement of average beliefs can
be observed in Figure 13a, in which the average belief for this part of the experiment (denoted
‘Table’) is shown for different groups. While there is no significant change with respect to BNeg,
we observe a downwards adjustment in BPos of approximately 14 percentage points in treatment
Primitives.

75This is consistent with subjects using their mental model (due to their limited recollection of past events) to
reconstruct what might have happened to them.

76We then construct a measure of distance for each subject by computing ∆x,y =
|xNeg−yNeg|−|xPos−yPos|

2
, where

x and y represent any two of the objects of interest. We report regressions in which the distance measure is the
dependent variable, and the right-hand side includes a dummy variable for each group of subjects (Round 1 pBRN,
Round 1 Others and NoPrimitives).

77Interventions where subjects are presented with aggregate information is common in the psychology literature.
For example, Gigerenzer & Hoffrage (1995) find that providing natural frequencies, as opposed to primitives, reduces,
but does not eliminate, base-rate neglect. This literature, however, does not inform on how subjects respond to
aggregate information when they are already given the primitives and/or when they have previously experienced the
same information directly through natural sampling.
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Figure 13: Reported beliefs at different parts of the session

Notes: The vertical (horizontal) axis represents beliefs conditional on the signal being positive (negative). Triangles
indicate the Bayesian and pBRN benchmarks. Squares (Circles) report averages in Primitives (NoPrimitives). The
numbers indicate the round for which the averages are reported. ‘Table’ refers to when subjects are presented with a
summary table of the feedback collected in 200 rounds. ‘Table + Simul’ refers to when the summary table includes
800 additional simulated rounds (for a total of 1000 rounds). ‘Freq’ refers to when subjects see the table with 1000
rounds of feedback and the relevant frequencies.

As explained in Online Appendix B, the part where we provide a summary table is divided into
three phases. In the first phase, discussed above, each subject observes a summary table with data
from the 200 rounds they experienced. In phases two and three, which we now discuss, subjects
observe a summary table from an additional 800 simulated rounds, for a total of 1,000 rounds,
and later observe a table with realized frequencies of success and failure conditional on a positive
and negative signal. As mentioned earlier, the treatment effect disappears with the first of these
interventions. Phases two and three have a small additional impact on beliefs, the main one being
that beliefs get closer and closer to the Bayesian benchmark in both treatments. By end of this
part, the belief conditional on a positive signal, BPos, is statistically indistinguishable from the
Bayesian belief of 41 percent in both treatments. The belief conditional on a negative signal, BNeg,
is statistically different from the Bayesian benchmark of 4 percent in both treatments, but this
difference is very small. The findings are presented in the left panel of Figure 14 and Figure 15,
which reveal, essentially all subjects in both treatments to report beliefs very close to the Bayesian
benchmark by the end of the final phase.
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Figure 14: Density plots in the Primitives treatment

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Beliefs
are presented at the individual level (rounded to multiples of 3). The size of each bubble represents the number of
subjects with such beliefs. Table-200 refers to when feedback from 200 rounds is presented in table form. Table-
1000-freq refers to when 1000 rounds of feedback is presented in table form including frequency of state realization
conditional on signal.
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Figure 15: Density plots in the Primitives treatment

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Beliefs
are presented at the individual level (rounded to multiples of 3). The size of each bubble represents the number of
subjects with such beliefs. Table-200 refers to when feedback from 200 rounds is presented in table form. Table-
1000-freq refers to when 1000 rounds of feedback is presented in table form including frequency of state realization
conditional on signal.
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D. Additional analysis: Confidence
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Figure 16: Density Plots for Primitives w shock

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Beliefs
are presented at the individual level (rounded to multiples of 3). The size of each bubble represents the number of
subjects with such beliefs.

Treatment differences Distance to Bayesian benchmark
P+s vs. P P+s vs. NP P+s vs. P P+s vs. NP

Round 1 p = 0.419 p < 0.001 p = 0.159 p < 0.001
p = 0.432 p < 0.001 p = 0.193 p < 0.001

Round 50 p = 0.026 p = 0.933 p = 0.063 p = 0.902
p = 0.024 p = 0.897 p = 0.073 p = 0.868

Round 100 p = 0.404 p = 0.605 p = 0.040 p = 0.656
p = 0.443 p = 0.625 p = 0.045 p = 0.677

Round 200 p = 0.013 p = 0.510 p = 0.021 p = 0.927
p = 0.012 p = 0.503 p = 0.031 p = 0.935

Table 10: Comparing Primitives w/ shock to Primitives and NoPrimitives

Notes: P+s, P and NP denote Primitives w/ shock, Primitives and NoPrimitives. The first p-value in each comparison
results from estimation a system of equations (using seemingly unrelated regressions) for j ∈ {Pos,Neg} given
by: bj = αj + βjT + υj , where; υj is an error term; and T is a treatment dummy. In columns with the heading
‘Treatment differences,’ bj is the submitted belief, that is, bj = Bj . In columns with the heading ‘Distance to Bayesian
benchmark,’ bj is the absolute value of the distance between the submitted belief and the Bayesian benchmark, that
is, bj = |Bj − BBay

j |. The treatment dummy changes depending on the comparison in the column. For example,
in ‘P+s vs. P, it takes value one if the observation comes from Primitives w/ shock and zero if it corresponds
to Primitives. Because the regressions are estimated as a system, we can use a Wald test and evaluate the joint
hypothesis that there is no treatment effect (i.e. βPos = βNeg = 0). Each cell reports the p-value of such test. The
second p-value in each comparison results from using the same procedure, but including three right-hand side survey
controls: a dummy for whether the subject has taken a probability class, a dummy for whether the subject is enrolled
in a STEM major, and a gender dummy.
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E. Additional analysis: Attentiveness
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Figure 17: Density Plots for Primitives w/ lock in

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Beliefs
are presented at the individual level (rounded to multiples of 3). The size of each bubble represents the number of
subjects with such beliefs.
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Figure 18: Density Plots for NoPrimitives w/ lock in

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Beliefs
are presented at the individual level (rounded to multiples of 3). The size of each bubble represents the number of
subjects with such beliefs.

40
50

60
70

0 50 100 150 200
Round

BPos

0
10

20
30

40

0 50 100 150 200
Round

Primitives

NoPrimitves

Primitives w/ lock in

NoPrimitives w/ lock in

BNeg

Green line denotes Bayesian Benchmark.

Figure 19: Evolution of Beliefs in Treatments with Lock In

Notes: Shaded lines in the background show average belief in each round of each treatment. Darker lines in the
foreground show beliefs averaged over prior ten rounds to make general patterns in evolution of beliefs more discernible.
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F. Additional analysis: Costly attention

Figure 20: Interface Screenshot of Treatments with Frequencies (Round 50)
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Figure 21: Density Plots for Primitives w/ freq

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Beliefs
are presented at the individual level (rounded to multiples of 3). The size of each bubble represents the number of
subjects with such beliefs.
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Figure 22: Density Plots for NoPrimitives w/ freq

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Beliefs
are presented at the individual level (rounded to multiples of 3). The size of each bubble represents the number of
subjects with such beliefs.

Details on estimation of the learning model on the aggregate level

Estimation of η: We use least squares estimation to find parameters ηPj and ηNP
j for j ∈ {pos, neg}

that best describe evolution of beliefs with feedback in Primitives w/ freq and NoPrimitives w/
freq, respectively.

For each j ∈ {Pos,Neg} and t ∈ {P,NP}, we find

argmin
ηtj∈R

∑
r=2,200

((
ηtj

ηtj + nr

)
B̂1

j +

(
1−

ηtj
ηtj + nr

)
f r − B̂r

j

)2

,

where B̂t
j is average belief, n

r, average number of observations, and f r, average empirical frequency
at round r.

Estimation of σ: Given estimates for η, we use least squares estimation to find parameters σP
j

and σNP
j for j ∈ {Pos,Neg} that best describe evolution of beliefs with feedback in Primitives and

NoPrimitives, respectively.

Taking σP
j and σNP

j as given, for each j ∈ {Pos,Neg} and t ∈ {P,NP}, we find

argmin
σt
j∈R

∑
r=2,200

((
ηtj

ηtj + σt
jn

r

)
B̂1

j +

(
1−

ηtj
ηtj + σt

jn
r

)
f r − B̂r

j

)2

,

where B̂t
j is average belief, n

r, average number of observations, and f r, average empirical frequency
at round r.
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Treatment differences Distance to Bayesian benchmark
Round Pf vs. NPf Pf vs. P NPf vs. NP Pf vs. NPf Pf vs. P NPf vs. NP

1 p < 0.001 p = 0.710 p = 0.190 p < 0.001 p = 0.935 p = 0.141
50 p = 0.174 p = 0.007 p = 0.004 p = 0.326 p < 0.001 p < 0.001
100 p = 0.272 p = 0.005 p = 0.058 p = 0.394 p < 0.001 p = 0.001
200 p = 0.196 p = 0.010 p = 0.033 p = 0.313 p < 0.001 p < 0.001

Notes: Pf, NPf, P and NP denote Primitives w/ freq, No Primitives w/ freq, Primitives and NoPrimitives. For
each cell we estimate a system of equations (using seemingly unrelated regressions) for j ∈ {Pos,Neg} given by:
bj = αj + βjT + υj , where; υj is an error term; and T is a treatment dummy. In columns with the heading
‘Treatment differences,’ bj is the submitted belief, that is, bj = Bj . In columns with the heading ‘Distance to Bayesian
benchmark,’ bj is the absolute value of the distance between the submitted belief and the Bayesian benchmark, that
is, bj = |Bj − BBay

j |. The treatment dummy changes depending on the comparison in the column. For example, in
‘Pf vs. P, it takes value one if the observation comes from Primitives w/ freq and zero if it corresponds to Primitives.
Because the regressions are estimated as a system, we can use a Wald test and evaluate the joint hypothesis that
there is no treatment effect (i.e. βPos = βNeg = 0). Each cell reports the p-value of such test. Due to a software
error, we did not collect survey variables in the frequency treatments.

Table 11: Primitives w/ freq and NoPrimitives w/ freq

Estimates on long-run outcomes

The model estimates can also be used to project outcomes for longer horizons than can be observed
in our experimental design (beyond 200 rounds). Figure 23 below uses the model to project beliefs
for rounds 200 too 1000. While beliefs continue to move towards the Bayesian benchmark in this
rage, the qualitative results from the first 200 rounds reported in the paper (particularly the relative
comparison of Primitives to NoPrimitives) remain.
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Figure 23: Model Estimates on Evolution of Beliefs for Rounds 1-1000

Notes: Shaded lines in the background show average belief in each round of each treatment. Darker lines depict
estimates from the learning model. Orange line represent a counterfactual estimate where subjects in Primitives are
set to be as attentive as those in NoPrimitives (keeping confidence level the same). Green line denotes Bayesian
benchmark.

Estimating the learning model on the individual level

Here we estimate both ex-ante expected value p0 and η/σ, which captures relative importance of the
prior relative to feedback for each subject in treatments Primitives, NoPrimitives, Primitives w/
table and NoPrimitives w/ table. To compute the counterfactual, we need a measure of attentiveness
in NoPrimitives. We do this by comparing the median estimated value of η/σ in NoPrimitives to
NoPrimitives w/ table. Then we apply this parameter to Primitives. We do so by adjusting all
individual level estimates from η/σ in Primitives by the same ratio so that the median value in
this treatment compares to Primitives w/ table in the same way as between NoPrimitives and
NoPrimitives w/ table.
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Figure 24: Model Estimates on Evolution of Beliefs Accounting for Heterogeneity

Notes: Shaded lines in the background show average belief in each round of each treatment. Darker lines depict
estimates from the learning model. Orange line represent a counterfactual estimate where subjects in Primitives are
set to be as attentive as those in NoPrimitives (keeping confidence level the same). Green line denotes Bayesian
benchmark.
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G. Additional analysis: Heterogeneity

In this section, we study the extent to which long-run treatment differences between treatments
with and without information on primitives is driven by those subjects who start at the BRN point.
We replicate main figures in the main text depicting evolution of beliefs with experience, separately
showing beliefs for those subjects who start at the BRN point and others in the same treatment.
Tables 12 to 14 provide further information on statistical differences between treatments without
primitives and with primitives (separated by subgroups) at important points: rounds 50, 100, and
200, respectively.

Here we summarize key findings:

1. In all cases where there is a long-run difference in beliefs between treatments with and without
primitives, this treatment effect is driven by those subjects who start at the BRN point in
round one. For evidence on this, see Figures 5 and Figures 26, as well as Tables 12 to 14.

2. In Tables 12 to 14, we go further and look at a subset of subjects in treatments with primitives
who start out at the BRN point. Specifically, we separate those subjects who start at the BRN
point, but then end up with different beliefs in round 200. Focusing on the contrast between
Primitives and NoPrimitives, we find that beliefs of these subset of subjects in Primitives are
significantly different from those in NoPrimitives. This suggest that the aggregate treatment
difference is not driven only by those subjects who never move from the BRN point.

3. Interventions that close or reduce the long-run difference in beliefs between treatments with
and without primitives (such as shock to confidence or presentation of feedback as frequency
tables) has the largest impact on those subjects who start at the BRN point. For evidence
on this, see Figures 25 and Figures 27 particularly, as well as Tables 12 to 14.

4. In treatments with lock-in option, when primitives are provided, those who start at the BRN
point lock-in slightly later than others (p = 0.079) in the same treatment, but much earlier
than those who are not given primitives (p < 0.001). However, subjects who start at the
BRN point do not keep revising their beliefs for significantly longer than others in the same
treatment (but both groups stop revising earlier than those who are not given primitives).78

This indicates that information on primitives lowers engagement with the data for all subjects
(both those who start at the BRN point and others). This suggests that subjects classified
as others in treatments with primitives learn both from data and from primitives. See Tables
15 and 16 for details.

78This is also the case in other treatments, except in Primitives w shock where subjects starting at the BRN point
revise their beliefs for longer than others in the same treatment. Furthermore, these pattern do not change when we
control for those subjects who are the Bayesian benchmark in round one.
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Figure 25: Evolution of Beliefs for R1 pBRN Subjects and Others in Primitives andPrimitives w/
shock vs. NoPrimitives

Notes: Shaded lines in the background show average belief in each round of each treatment. Darker lines in the
foreground show beliefs averaged over prior ten rounds to make general patterns in evolution of beliefs more discernible.
The horizontal green lines correspond to the Bayesian benchmark. Beliefs are separated by round one behavior. R1
pBRN denotes beliefs of subjects who start at the pBRN point. Others refers to others in the same treatment.
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Figure 26: Evolution of Beliefs for R1 pBRN Subjects and Others in Primitives and Primitives w/
lockin vs. NoPrimitives

Notes: Shaded lines in the background show average belief in each round of each treatment. Darker lines in the
foreground show beliefs averaged over prior ten rounds to make general patterns in evolution of beliefs more discernible.
The horizontal green lines correspond to the Bayesian benchmark. Beliefs are separated by round one behavior. R1
pBRN denotes beliefs of subjects who start at the pBRN point. Others refers to others in the same treatment.
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Figure 27: Evolution of Beliefs in Primitives, Primitives w/ freq, NoPrimitives and NoPrimitives
w/ freq

Notes: Shaded lines in the background show average belief in each round of each treatment. Darker lines in the
foreground show beliefs averaged over prior ten rounds to make general patterns in evolution of beliefs more discernible.
The horizontal green lines correspond to the Bayesian benchmark. Beliefs are separated by round one behavior. R1
pBRN denotes beliefs of subjects who start at the pBRN point. Others refers to others in the same treatment.
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Table 12: Round 50

Share (%) BPos BNeg ∆Pos ∆Neg

NP 47 15 19 13

P pBRN in R1 56 61 20 p = 0.011 28 17 p = 003
P pBRN in R1 but not in R200 44 54 19 p = 0.078 23 15 p = 0.056
P Others 44 51 15 p = 0.706 20 12 p = 0.859

NP w/ lockin 52 16 21 14

P w/ lockin pBRN in R1 42 64 21 p = 0.050 27 17 p = 0.145
P w/ lockin pBRN in R1 but not in R200 24 49 17 p = 0.696 20 13 p = 0.658
P w/ lockin Others 58 47 15 p = 0.543 20 11 p = 0.681

P w/ shock pBRN in R1 49 48 16 p = 0.995 20 13 p = 0.969
P w/ shock pBRN in R1 but not in R200 47 46 15 p = 0.995 18 12 p = 0.998
P w/ shock Others 51 44 15 p = 0.790 17 11 p = 0.611

NP w/ freq 45 7 13 6

P w/ freq pBRN in R1 61 50 12 p = 0.126 19 9 p = 0.044
P w/ freq pBRN in R1 but not in R200 53 45 11 p = 0.513 13 8 p = 0.464
P w/ freq Others 49 43 11 p = 0.352 10 8 p = 0.490

Notes: P and NP denote Primitives and NPrimitives. The table reports the average belief (BPos or BNeg) or average
distance to the Bayesian benchmark (∆Pos = |BPos −BBay

Pos | and ∆Neg = |BNeg −BBay
Neg |). The first p-value reports

whether beliefs in selected group in P are different from closest NP treatment. The second p-value reports whether
distance to Bayesian benchmark is different relative to closest NP treatment. For details of regressions see Table 4.
For each group, the closest NP treatment is listed right above (except for treatment with shock where the original
NP treatment is considered).

Table 13: Round 100

Share (%) BPos BNeg ∆Pos ∆Neg

NP 47 11 17 8

P pBRN in R1 56 57 19 p = 0.007 26 16 p < 0.001
P pBRN in R1 but not in R200 44 49 16 p = 0.078 22 13 p = 0.021
P Others 44 48 13 p = 0.784 20 10 p = 0.664

NP w/ lockin 50 14 19 11

P w/ lockin pBRN in R1 42 64 19 p = 0.015 27 16 p = 0.050
P w/ lockin pBRN in R1 but not in R200 24 50 16 p = 0.660 20 13 p = 0.658
P w/ lockin Others 58 48 15 p = 0.853 20 11 p = 0.886

P w/ shock pBRN in R1 49 45 12 p = 0.196 18 11 p = 0.514
P w/ shock pBRN in R1 but not in R200 47 48 13 p = 0.258 16 10 p = 0.546
P w/ shock Others 51 45 12 p = 0.749 15 9 p = 0.721

NP w/ freq 42 6 10 5

P w/ freq pBRN in R1 61 43 10 p = 0.391 16 7 p = 0.077
P w/ freq pBRN in R1 but not in R200 53 40 9 p = 0.456 11 7 p = 0.542
P w/ freq Others 49 43 10 p = 0.424 8 7 p = 0.509

Notes: P and NP denote Primitives and NPrimitives. The table reports the average belief (BPos or BNeg) or average
distance to the Bayesian benchmark (∆Pos = |BPos −BBay

Pos | and ∆Neg = |BNeg −BBay
Neg |). The first p-value reports

whether beliefs in selected group in P are different from closest NP treatment. The second p-value reports whether
distance to Bayesian benchmark is different relative to closest NP treatment. For details of regressions see Table 4.
For each group, the closest NP treatment is listed right above (except for treatment with shock where the original
NP treatment is considered).
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Table 14: Round 200

Share (%) BPos BNeg ∆Pos ∆Neg

NP 46 10 14 7

P pBRN in R1 56 61 14 p = 0.001 25 11 p < 0.001
P pBRN in R1 but not in R200 44 50 12 p = 0.073 18 9 p = 0.022
P Others 44 45 11 p = 0.760 15 8 p = 0.762

NP w/ lockin 48 13 18 11

P w/ lockin pBRN in R1 42 64 19 p = 0.004 27 16 p = 0.027
P w/ lockin pBRN in R1 but not in R200 24 50 16 p = 0.497 20 12 p = 0.620
P w/ lockin Others 58 48 15 p = 0.927 20 11 p = 0.834

P w/ shock pBRN in R1 49 45 12 p = 0.758 16 9 p = 0.717
P w/ shock pBRN in R1 but not in R200 47 42 11 p = 0.764 14 8 p = 0.852
P w/ shock Others 51 41 11 p = 0.229 12 8 p = 0.792

NP w/ freq 41 6 7 3

P w/ freq pBRN in R1 61 46 9 p = 0.116 12 6 p = 0.071
P w/ freq pBRN in R1 but not in R200 53 41 8 p = 0.691 7 5 p = 0.789
P w/ freq Others 49 41 8 p = 0.550 6 5 p = 0.431

Notes: P and NP denote Primitives and NPrimitives. The table reports the average belief (BPos or BNeg) or average
distance to the Bayesian benchmark (∆Pos = |BPos −BBay

Pos | and ∆Neg = |BNeg −BBay
Neg |). The first p-value reports

whether beliefs in selected group in P are different from closest NP treatment. The second p-value reports whether
distance to Bayesian benchmark is different relative to closest NP treatment. For details of regressions see Table 4.
For each group, the closest NP treatment is listed right above (except for treatment with shock where the original
NP treatment is considered).
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Table 15: Round of Last Revision in Beliefs (OLS)

(1) (2) (3) (4)

Primitives -42.84∗∗∗ -90.99∗∗∗ -42.79∗∗∗

(13.15) (10.31) (11.87)

R1 pBRN -16.43 11.53 43.35∗∗ 9.205
(14.62) (12.36) (17.87) (12.89)

Constant 175.5∗∗∗ 113.1∗∗∗ 90.50∗∗∗ 191.5∗∗∗

(7.254) (6.505) (12.46) (6.286)

Observations 128 139 70 118

Standard errors in parentheses.
∗∗∗1%, ∗∗5%, ∗10% significance.

(1): Data from Primitives and NoPrimitives.

(2): Data from Primitives w/ lockin and NoPrimitives w/ lockin.

(3): Data from Primitives w/ shock.

(4): Data from Primitives w/ freq and NoPrimitives w/ freq.

Table 16: Round of Lock-in Decision (OLS)

Round of Lock-in

Primitives -90.09∗∗∗

(11.48)

R1 pBRN 24.32∗

(13.76)

Constant 124.5∗∗∗

(7.245)

Observations 139

Standard errors in parentheses.
∗∗∗1%, ∗∗5%, ∗10% significance.

Data from Primitives w/ lockin and NoPrimitives w/ lockin..
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H. Additional analysis: Transfer learning
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Figure 28: Transfer Learning: Density Plots in Final Round with New Primitives

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Beliefs
are presented at the individual level (rounded to multiples of 3). The size of each bubble represents the number of
subjects with such beliefs. The data is from the final round of the core treatments where the prior and the reliability
of the signal is changed.
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I. Additional Analysis: Evidence beyond the updating problem

In the text we focus on the proportion of choices that are correct in the last round and compare
it across treatments. A limitation of this exercise is that it is does not measure convergence. It
is possible that subjects making an optimal choice in the last round are still unsettled in their
choice and just happened to make an optimal choice at that point. Here we provide an alternative
presentation that controls for convergence.

As a reference we will say that a subject converged to the correct choice if the participant made
such choice in all the last five rounds. Figures 29 and 30 provide this information. In addition,
for each round t, the figures depict for each treatment the proportion of subjects who selected
optimally from that round onward.

Consider Figure 29 first. The proportion of subjects who choose correctly from round one
onward (i.e. in all rounds) in the Primitives (Voting) treatment is approximately 18 percent. These
are subjects who very likely identify that there is a dominant vote from the instructions and, hence,
have nothing to learn. In NoPrimitives (Voting), identifying the optimal vote from the instructions
is not possible and, accordingly, the proportion of subjects selecting consistently in all rounds is
lower, at close to ten percent. However, there is substantial learning in NoPrimitives (Voting). In
the last five rounds the difference between treatments is 21.5 percentage points, which is significant
(p-value <0.001)79. The same type of exercise can be done with a less strict consistency condition
on optimality, by relaxing the demand that subjects make no mistakes from round t onward. For
example, it is possible to construct the same figure demanding that z percent of choices from round
t onward are optimal. While such analysis changes the levels, the treatment effects remain the
same for values of z ∈ {70, 75, 80, 85, 90, 95}.

Figure 30 provides the same comparison but for “Complex” treatments. In this case, there
is little to no difference throughout the session. The last-round proportion of subjects behaving
optimally is slightly higher in the environment with no primitives but the difference is not significant
(p-value 0.537).

The figures also suggest that it is more demanding to learn from feedback in the Complex envi-
ronment, even though the actual feedback that subjects receive is structurally identical. To see this,
notice that the proportion of subjects behaving optimally in the last five rounds of NoPrimitives
(Voting) is approximately ten percentage points higher than in Complex NoPrimitives (Voting).
This suggests that even if the data is of the same quality, having more involved instructions to
begin with may make it more difficult for subjects to learn from feedback. It also suggests that
the difference between Primitives (Voting) and Complex Primitives (Voting) may understimate the
real difference given that learning in the Complex setting is more challenging. The difference in
the last round from comparing these two treatments results in approximately 10 percentage points
more subjects behaving optimally in Complex Primitives (Voting) than in Primitives (Voting). We
leave it for future research to study how learning in settings where options are more difficult to
parse to begin with might affect long-run learning.

79We test the null hypothesis of no difference by running a regression in which the proportion of subjects making
optimal choices in the last round is on the left-hand side and the right-hand side includes a treatment dummy.
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Figure 29: Subjects making optimal choices in Primitives (Voting) and NoPrimitives (Voting)

Notes: For each treatment the figure reports the percentage of subjects choosing optimally from round t onward.
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Figure 30: Subjects making optimal choices in Complex Primitives (Voting) and Complex NoPrim-
itives (Voting)

Notes: For each treatment the figure reports the percentage of subjects choosing optimally from round t onward.
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J. Experimental instructions

Full details on our implementation are provided in the Procedures Appendix. In the instructions
to the subjects part 2 refers to round 1 as described in the paper. For a more direct access to
the crucial differences between treatments in this section, we include the instructions that were
presented to subjects on the main updating task (round 1) and how the two treatments (Primitives
and NoPrimitives) differ in this respect. The sections of the instructions that differ by treatment
are highlighted between brackets [].

Round 1 Instructions:

There is a total of 100 projects, and one of these projects will be randomly selected (with all

projects having an equal chance of being selected).

[Primitives: Of the 100 projects, there are 15 projects that are successes and 85 projects that

are failures.]

[NoPrimitives: Of the 100 projects, a certain number of them are successes and the remaining
ones are failures. We will not tell you how many of them are successes and how many are failures.]

Your task is to assess the chance that the project that was randomly selected is a Success vs.
Failure.

To aid your assessment, the computer will run a test on the selected project.

[Primitives: The test result can be either Positive or Negative and has a reliability of 80%.]

[NoPrimitives: The test result can be either Positive or Negative and has a reliability of R%.]

That means that:

[Primitives:

• If the project is a Success, the test result will be Positive with 80% chance and the test result

will be Negative with 20% chance.

• If the project is a Failure, the test result will be Negative with 80% chance and the test result

will be Positive with 20% chance.]

[NoPrimitives:

• If the project is a Success, the test result will be Positive with R% chance and the test result

will be Negative with (100-R)% chance.

• If the project is a Failure, the test result will be Negative with R% chance and the test result

will be Positive with (100-R)% chance.
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The reliability R is a specific number between 0 and 100, but we will not tell you this number.]

We will ask you to submit two assessments:

• If the test is Positive, what is the chance that the project is a Success vs. Failure?

• If the test is Negative, what is the chance that the project is a Success vs. Failure?

For each possible test result (Positive and Negative), you will select a point that indicates the chance

that the randomly selected project is a Success vs. Failure given the test result. [NoPrimitives:

Clearly, you are not given enough information to make an informed decision. Please go ahead and

take a guess.]

If this part is selected for payment, the interface will first randomly select a project. It will

then conduct a test, as described above. If the test result is Positive, we will use your submitted

choice for the case where the test is Positive and pay you as explained in the instruction period. If

the test result is Negative, we will use your submitted choice for the case where the test is Negative

and pay you as explained in the instruction period. The important thing to remember is that to

maximize your payment you should give us your best assessment of the chance that the project is

a Success vs. Failure given the test result.
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Round 1 screenshot (part 2 in instructions):

Figure 31: Interface screenshots for round 1 (presented as part 2 to subjects)
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