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This appendix provides supplementary material to the paper “From Fog to Smog: the
Value of Pollution Information.” Section A describes the driving factors that influenced
China’s dramatic shift in environmental regulations surrounding 2012. Section B presents
a theoretical model on the role of the monitoring program that reduces the wedge between
individuals’ perceived and experienced air pollution. Section C proves that the key parameter
can be consistently estimated via OLS under assumptions 1 and 2 as stated in Section 4.2.
Section D provides more details on several empirical analyses, including program rollout,
a data-driven method to identify outdoor trips, private sources for pollution information,
IV and synthetic analyses of mortality outcomes, and robustness results using annual data
(instead of weekly data).

Appendix A: Policy Shift Timeline and Driving Factors

Appendix Table E.1 provides a chronology of important events related to the policy shift
on PM2.5 regulation discussed in Section 2.1 and the implementation of the monitoring and
disclosure program. The shift of the government’s stance on regulating PM2.5 is reflected by
the change from the first to the second draft of the National Ambient Air Quality Standards
amendment published for public comments on November 2010 and November 2011, respec-
tively. While the first draft deemed China not yet ready to implement national standards
for PM2.5, the second draft a year later added the national standards for PM2.5.

As household income rose rapidly and a large middle class emerged in China during the
past two decades, the demand for better environmental quality and quality of life in general
increased (Dasgupta et al., 2002; Kahn and Zheng, 2016). Together with the important
changes in economic and social conditions, the following three factors likely played a key role
in propelling the dramatic shift in the stance of the Chinese government on PM2.5 monitoring
and disclosure, and on air pollution regulations in general.

First, the environmental science community has been working behind the scene to push
for more stringent environmental regulations and transparency in China. As a large body of
evidence emerged regarding the harmful health impacts of PM2.5 in the past several decades
(Pope and Dockery, 2012; Landrigan et al., 2018) and recognized by policymakers around the
world, many countries have amended their ambient air quality standards to include PM2.5
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as a primary pollutant (e.g., U.S. in 1997, EU in 1999, and Japan in 2009). Environmental
scientists in China have been pushing for the regulation for PM2.5 through academic confer-
ences and policy dialogues, according to our conversation with Jiming Hao, Professor and a
former Dean of the School of Environment at Tsinghua University and one of the pioneers
in China’s environmental regulations and pollution prevention.44 In the early 2000s, envi-
ronmental scientists organized international conferences on air pollution and PM2.5 in China
in order to draw attention from and educate policymakers. Nevertheless, policymakers were
predominantly concerned about economic growth and did not fully appreciate the benefit of
educating the general public when the government was not yet ready to bring the pollution
problem under control. This concern perhaps underlies the views stated in the first draft of
the NAAQS amendment released in November 2010. While the draft recognized that PM2.5

had become a major pollutant in many areas in China, it considered standards set by the
WHO and developed countries too aggressive for China and deemed that China was not
ready to set national PM2.5 standards.

Second, the U.S. Embassy in Beijing is likely another important catalyst behind the shift.
In early 2008, the embassy installed a rooftop air quality monitor and reported hourly PM2.5

readings through the Twitter account @beijingair in order to advise U.S. citizens who travel
in China before the upcoming summer Olympics. The PM2.5 readings were often in conflict
with the Chinese government’s official report on air quality, especially during the extreme
pollution episodes in winter. For example, on November 19, 2010, the Twitter account
@beijingair reported PM2.5 over 500 and described the air pollution as “crazily bad”, while
China’s official assessment of air quality based on API was “mildly polluted” (PM2.5 was
not incorporated in API). The discrepancy prompted environmental activists in China to
call for more transparency on pollution information. The ensuing social media storm likely
contributed to the decision by the MEP to provide their own data that the general public
would trust, rather than to dispute the U.S. Embassy’s data.

Third, environmental NGOs and social influencers have played an important role in rais-
ing the awareness of the general public and exerting pressure on policymakers. Their role is
facilitated and amplified by the emergence of social media (notably through Weibo in China)
and the wide adoption of information technologies. Motivated by severe pollution episodes
and the lack of transparency and reporting of air pollution levels, the campaign “Measuring
Air Quality for our Motherland” in the Fall of 2011 was a concerted effort mobilized through
social media Weibo by environmental NGOs and influential activists. The campaign called

44In 2015, Professor Hao was awarded the Haggen-Smit Clean Air Award by the California Air Resources
Board for his contribution to air pollution control and understanding PM pollution in major cities in China.
When he visited Cornell University in May 2019, our research team met with him to understand the context
of the policy shift in our study and more broadly the history of environmental regulations in China.
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for setting national PM2.5 standards and implementing accurate monitoring and reporting of
air quality by the government. In order to achieve their goals more efficiently, environmental
NGOs in China often position themselves as educators and partners of government agen-
cies, taking into account the cultural and social landscape. The campaign appealed to the
government to sustain its vigilance towards safeguarding people’s welfare due to the detri-
mental health impacts of air pollution especially PM2.5. This campaign was considered a
milestone and a great success in the discourse of civic participation in China’s environmental
governance (Fedorenko and Sun, 2016), contributing to the release of the second draft of the
NAAQS amendment in November 2011 where PM2.5 was added as a primary pollutant to
be regulated.

Appendix B: Theoretical Model

Classical economic theory argues that the value of information stems from the fact that in-
formation as an input to the decision process can help economic agents make better decisions
– for example, by resolving market uncertainty in demand and supply conditions (Stigler,
1961, 1962) or technological uncertainty in investment and production decisions (Lave, 1963;
Hirshleifer, 1971). Access to pollution information affects the behavior of informed individ-
uals who could take measures to reduce the harm from pollution. In this section, we present
a stylized model to illustrate how the monitoring program affects individual behavior and
utility by incorporating the elements of information economics (Hirshleifer, 1971; Hilton,
1981) into a classical model of health demand and production (Grossman, 1972; Harrington
and Portney, 1987)..

B.1 Model Setup

Individuals derive utility U(x, h) from the consumption of a numeraire good x, whose price
is normalized to one, and health stock h. Health stock depends on both the pollution level
c and the extent of avoidance a (individuals’ actions that mitigate the negative impact of
pollution): h = h(c, a).

Individuals face a budget constraint that is given by: I + w · g(h) ≥ x + pa · a, where
I is non-labor income, and w is the wage rate. Hours worked is denoted by g(h) and is a
function of the health stock.45 Individuals allocate their wage and non-wage income between
consumption and engaging in avoidance behavior a, where pa is the associated price (e.g.,

45The effect of health on wage income captures the impact of pollution on labor supply or productivity as
documented in Graff Zivin and Neidell (2012); Hanna and Oliva (2015); Chang et al. (2019); He, Liu and
Salvo (2019).
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the cost of an air purifier or medication). We use a to include broadly defined (costly)
adaptation behavior.46 Dynamics and savings are assumed away to ease exposition.

Under imperfect information on pollution, consumers may or may not know the real
pollution level c. They maximize utility by choosing the optimal consumption x and defensive
investment a based on the perceived pollution level c0:

max
x,a

U(x, h)

s.t. I + w · g(h) ≥ x+ pa · a

h = h(c0, a)

The health function h = h(c0, a) in the optimization can be viewed as an ex ante health
function upon which consumers rely for decisions before the health outcome is realized. It
is different from the ex post health outcome h = h(c, a) experienced by consumers. This
difference gives rise to the discrepancy between the (ex ante) decision utility and the (ex
post) experience utility as described in Bernheim and Rangel (2009) and Allcott (2013).

Let avoidance under the perceived pollution c0 be denoted by a(c0). Individuals’ wage
income is determined by the actual pollution level c and avoidance a(c0): w · g[h(c, a(c0))].
Let x(c, c0) denote consumption of the numeraire good.

The experience utility based on the perceived pollution prior to the monitoring program
is:

U [x(c, c0), h(c, a(c0))] ≡ V (c, c0)

where V (·, ·) denotes the indirect utility: the first argument is the actual pollution c, and
the second argument is the perceived pollution level c0. To examine the behavioral changes
associated with and the welfare impacts of the monitoring program, we make the following
assumptions:

Assumption A1 Health stock is bounded and decreases in pollution and increases in
avoidance: ∂h

∂c
≤ 0, and ∂h

∂a
≥ 0. In addition, the marginal health benefit of avoidance is

decreasing: ∂2h
∂a2
≤ 0. This assumption ensures that people do not engage in an unreasonable

amount of avoidance behavior. Similarly, we assume that hours worked increases in health,
but at a decreasing rate: dg

dh
≥ 0, d

2g
dh2 ≤ 0. Finally, the worse the pollution, the larger the

marginal health benefit of avoidance: ∂2h
∂a∂c

≥ 0. The health benefit of avoidance is likely

46Examples include reducing outdoor activities (Zivin and Neidell, 2009; Saberian, Heyes and Rivers,
2017), engaging in defensive spending (e.g., buying face masks and air purifiers) (Ito and Zhang, 2018;
Zhang and Mu, 2018), and making choices to change residential locations or migrate (Chay and Greenstone,
2005; Banzhaf and Walsh, 2008; Bayer, Keohane and Timmins, 2009; Chen, Oliva and Zhang, 2017).
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much higher when pollution is severe than when it is modest.
We focus on interior solutions for the optimal level of avoidance behavior a.47 The

assumption of ∂2h
∂a∂c

≥ 0 is crucial in delivering “complementarity” between pollution and
avoidance: the higher the pollution, the more intense avoidance is likely to be. At low levels
of pollution, the marginal health benefit of avoidance ∂h

∂a
is likely to be limited. As pollution

elevates, higher marginal benefits induce individuals to engage in more avoidance to mitigate
the health and wage impact of pollution. There are many low-cost defensive mechanisms.
For example, avoiding outdoor activities at times of high PM2.5, wearing facial masks, or
purchasing air purifiers are all cheap and effective defensive mechanisms.

Assumption A2 Utility is quasi-linear U(x, h) = x + u(h) and increases in health at a
decreasing rate: ∂U

∂h
≥ 0, ∂

2U
∂h2 ≤ 0. Quasi-linear utility functions are commonly used in the

literature and help to simplify the exposition.

Assumption A3 Let c0 denote individuals’ perception of air pollution before the moni-
toring program. We assume that c0 < c, that is, the perceived level of pollution is lower than
the actual level.48 Another interpretation of Assumption 3 is that people underestimate the
negative health impact of pollution. Pollution concentration c is assumed to be perfectly
observed following the implementation of the program.

Proposition 1. Under assumptions A1-A3, the monitoring program is predicted to result in
the following impacts:

1. Avoidance behavior increases: a(c) > a(c0)

2. Health improves and the (downward slopping) health-pollution response curve flattens:

h(c, a(c)) > h(c, a(c0)),
dh

dc
|c=c0 ≥

dh

dc
|c>c0

3. Indirect utility increases: V (c, c) > V (c, c0)

Appendix B.3 provides the proof. The theoretical model predicts that following the
implementation of the monitoring program, individuals engage in more pollution avoidance,
which, in turn, reduces the health damages from pollution and increases consumer welfare.
Our empirical analysis provides empirical tests on the first two predictions, and uses the
third prediction to quantify the value of the monitoring program.

47A necessary condition for an interior solution is w · dgdh ·
∂h
∂a |a=0> pa.

48An alternative assumption to c0 < c, is that the monitoring program reduces the price of avoidance pa.
This also delivers Proposition 1.
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B.2 Value of Information

To derive the value of information (VOI), recall that:

V (c, c) = U [x, h(c, a(c))] + λ{I + w · g [h(c, a(c))]− x− pa · a(c)}

where V (c, c) denotes the indirect utility when individuals correctly perceive pollution, and
avoidance is chosen optimally according to the following condition:

[Uh(c, a) + λ · w · gh(h(c, a))]
∂h(c, a)

∂a
− λpa = 0 (B.1)

The indirect utility before the monitoring program is:

V (c, c0) = U [x, h(c, a(c0))] + λ{I + w · g [h(c, a(c0))]− x− pa · a(c0)}

The key difference between V (c, c) and V (c, c0) is in the choice of avoidance: a(c) is deter-
mined by Equation (B.1) rather than Equation (B.3). To derive the value of information,
we apply the Taylor’s series expansion to the indirect utility function V (c, c) at the second
argument c = c0: V (c, c) = V (c, c0) + ∂V

∂c0
(c− c0) + op(c− c0), where op(c− c0) denotes higher

order terms of (c− c0). The value of information is therefore:

V OI = V (c, c)− V (c, c0)

= {Uh ·
∂h

∂a
· ∂a
∂c0

+ λ · w · gh ·
∂h

∂a
· ∂a
∂c0
− λ · pa ·

∂a

∂c0
}(c− c0) + op(c− c0) (B.2)

There are three terms in the curly bracket. The first refers to changes in utility as health
improves from the avoidance behavior. The second denotes changes in wage income due to
pollution impact on effective work hours or productivity. The third term in the curly bracket
captures the cost of taking additional avoidance measures such as buying air purifiers or
changing outdoor activities. Our empirical analysis quantifies the magnitude of the terms in
the curly bracket.

B.3 Proof of Proposition 1

Individuals choose optimal consumption x and defensive investment a to maximize utility
under the perceived pollution level c0 as described in Section B.1. The Lagrangian equation
is:

L = U(x, h(c0, a)) + λ [I + w · g(h(c0, a))− x− pa · a]
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where λ is the Lagrange multiplier and denotes the marginal utility per dollar. The first
order conditions are:

∂L

∂x
= 0⇒ Ux − λ = 0

∂L

∂a
= 0⇒ (Uh + λ · w · gh)

∂h(c0, a)

∂a
− λpa = 0 (B.3)

∂L

∂λ
= 0⇒ I + w · g(h)− x− pa · a = 0

where Ux, Uh, and gh denote partial derivatives. We first show that under Assumptions 1-3,
optimal avoidance (weakly) increases in perceived pollution:

da

dc
≥ 0.

Let f denote the first order condition w.r.t avoidance (equation B.3):

f = (Uh + λ · w · gh)
∂h

∂a
− λpa = 0

Applying the implicit function theorem to f , we obtain:

da

dc
= −∂f/∂c

∂f/∂a
= −

[Uhh + λ · w · ghh] · ∂h
∂c
· ∂h
∂a

+ (Uh + λ · w · gh) · ∂2h
∂a∂c

(Uhh + λ · w · ghh) ·
(
∂h
∂a

)2
+ (Uh + λ · w · gh) · ∂2h

∂a2

= −A+B

C +D

where Uhx, Uhh, ghh are second order derivatives. Under the assumption of diminishing
marginal utility, decreasing marginal labor product of health, and decreasing health ben-
efit of avoidance, C + D ≤ 0.49 Similarly, A + B ≥ 0. Hence, avoidance increases weakly
in (perceived) pollution. The key assumption for this result is ∂h2/∂a∂c ≥ 0. When pollu-
tion deteriorates, avoidance restores health more effectively (that is, the marginal benefit of
avoidance is large with bad pollution). After the monitoring program, individuals observe
the actual pollution c, which is higher than previously perceived level, c0. The above analysis
indicates that individuals would increase the level of avoidance post the policy intervention:

a(c) ≥ a(c0).

As the marginal health benefit of avoidance is positive from Assumption (A1) in Section
49At the optimal a and X, Uh + λ · w · g(h) > 0 by construction. In addition, Uhh, ghh, ∂2h/∂a2 < 0.

Another way to show C +D ≤ 0 is that this is the second order condition for the optimal avoidance.
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B.1, the health condition improves with avoidance:

h(c, a(c)) ≥ h(c, a(c0)).

Due to the lack of real-time information on pollution prior to the monitoring program,
perceived pollution c0 is unlikely to fully respond to day-to-day changes in actual pollution.
The total derivative of health w.r.t. pollution is:

dh

dc
|c0 =

∂h

∂c
+
∂h

∂a
· da
dc0
· dc0
dc

where 0 < dc0/dc < 1. Post the monitoring program, the perceived pollution is equal to the
actual pollution and individuals can engage in effective avoidance to moderate the negative
impact of pollution. The total derivative of health w.r.t. pollution is:

dh

dc
|c =

∂h

∂c
+
∂h

∂a
· da
dc
≥ dh

dc
|c0

Lastly, let V (c, c) denote the indirect utility when individuals accurately perceive pollu-
tion c0 = c. In that case, the experience utility and decision utility coincides. V (c, c0) is
the utility achieved by maximizing the decision utility under perceived pollution of c0. Since
utility is maximized under full (and accurate) information, we have:

V (c, c) ≥ V (c, c0).

Appendix C: Identification of the Change in the Outcome-

Pollution Gradient

In this section, we restate the two key identification assumptions that are outlined in the
paper and prove Proposition 2 (that the OLS estimate of β in Equation (1) is consistent).
Rewriting Equation (1):

yit = αpit + βpitdit + xitγ + εit, (C.4)

where pit measures ambient air quality and could be correlated with εit due to unobservables
or measurement error as discussed in the main text. dit represents the treatment dummy
and is equal to one after treatment based on the staggered rollout schedule. xct includes
city attributes and other controls such as city and time fixed effects, and city-specific time
trends. The key parameter of interest is β, the change in the slope of pollution-outcome
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relationship. To facilitate proof, we write Equation C.4 above in matrix form:

y = αp+ βp ◦ d+Xγ + ε, (C.5)

where ‘◦’ is an element-by-element product. y,p,d, and ε are N by 1 vectors, X is a N by
k matrix.

Assumption B1: εit ⊥ dit | xit. This assumption implies that conditioning on city at-
tributes and other controls xct, the treatment dct is exogenous.

Assumption B2: dit ⊥ pit | xit. This assumption implies that the treatment status is
independent of pollution levels conditioning on xct (i.e., variations in pollution unexplained
by xct).50

Assumption B1 is the standard conditional exogeneity assumption: the program rollout
is as good as random conditional on the control variables. This assumption can be assessed
via both institutional and econometric evidence (Section 4.3). We show that the assign-
ment of cities to rollout wave largely follows city hierarchies and designated status that are
determined long before the monitoring place came into place. We discuss other major en-
vironmental policies and argue that they have limited scope to confound our analysis. We
present event study estimates, which allows us to assess whether there are any preexisting
trends in the outcomes that could be indicative of endogeneity issues.

Assumption B2 ensures the nature of endogeneity is the same before versus after the
monitoring program. One way to conceptualize it is to imagine a binary context in which
Pollution indicates “high” vs. “low” pollution areas. Note that Equation (1) reduces to a
difference-in-differences style setting that compares outcome in regions with high vs. low
pollution, before vs. after policy introduction. The outcome-pollution gradient in this case
is simply the difference in the outcomes experienced in areas with high and low pollution.
Assumption B2 ensures that there are no compositional changes in regions that experience
high or low levels of pollution after the policy introduction. In other words, the nature of
the endogeneity in pollution does not change before and after the policy. Assumption B2
can be tested empirically as well (Section 4.3). In particular, we present balancing test in
Appendix Table E.5 which shows that, conditional on fixed effects controls, the monitoring
policy does not lead to significant changes in pollution levels.

50While we present Assumption B2 for ease of interpretation, the assumption is stronger than what we need
to prove the consistency of β. As we show in the proof that follows, a sufficient condition is E[dit|Mxp] = c,
whereMx is the projection matrix;Mxp is the residual from OLS regression of p on X; and c is a constant.
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We now demonstrate theoretically that the β coefficient in Equation 1 is consistent under
these two identification assumptions.

Proposition 2. Under Assumptions B1 and B2, the OLS estimate of β in Equation (C.4)
is consistent.

Proof of Proposition 2 LetMx denote the projection matrix: Mx = I−X(X ′X)−1X ′.
Multiplying both sides of equation C.5 with Mx, we have:

MxY = αMxP + βMxp ◦ d+Mxε,

where MxP is an N by 1 vector, the projection residual of p on X. Collect the two key
regressors in Z = [Mxp,Mxp ◦ d]. Let the OLS estimates of α and β be denoted as α̂ and
β̂. (

α̂− α
β̂ − β

)
=

(
(Mxp ◦ d)′(Mxp ◦ d) −(Mxp)′(Mxp ◦ d)

−(Mxp ◦ d)′(Mxp) (Mxp)′(Mxp)

)(
(Mxp)′(Mxε)

(Mxp ◦ d)′(Mxε)

)

∗ 1

det[(Z ′Z)]
.

The probability limit of (β̂ − β) converges to the following term multiplied by a constant:

−E[(Mxp ◦ d)′(Mxp)] E[(Mxp)′(Mxε)] + E[(Mxp)′(Mxp)] E[(Mxp ◦ d)′(Mxε)].

Assumption B2 implies that E (d|Mxp) = c. Hence:

E[(Mxp ◦ d)′(Mxp)] = E[(Mxp)′(Mxp) E(d|Mxp)] = cE[(Mxp)′(Mxp)].

Assumptions B1 and B2 imply that:

E[(Mx ◦ d)′(Mxε)] = cE[(Mxp)′(Mxε)].

Therefore, plim(β̂ − β) = 0 and the OLS estimate β̂ is consistent.

Appendix D: Additional Analysis

This section provides more details on several analyses that we do not have space for in the
main paper. Section D.1 discusses how different cities are designiated into different rollout
waves. Section D.2 uses sensitivity to precipitation to define consumption categories that
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are more ‘outdoor’ in nature. Sections D.3 and D.4 examine two private sources of pollution
information and evalutes whether households engage in effective pollution avoidance prior
to the monitoring program. Sections D.5 and D.6 conducts the IV and synthetic analyses
of mortality effects. Section D.7 uses annual data to evaluate the robustness of avoidance
findings.

D.1 Determinants of Information Rollout Assignment

Appendix Table E.3 reports an analysis on the determinants of the official rollout assignment.
Columns (1)-(3) show a representation of Appendix Figure E.9 using three separate linear
probability models. The models regress an indicator of a city being in wave k in the rollout
on three indicators for administrative hierarchies and pre-designated status that are denoted
by the deep blue, light blue, or white group.51 Consistent with our discussion above, these
simple models produce a very high R2 ranging from 0.65 to 0.84.

We now examine the potential role of observed covariates in determining the official
rollout timing. To make it simple, in column (4), we first estimate a benchmark model
where the outcome variable is city’s rollout wave as a continuous variable (take values 1,
2 or 3, and hence negative coefficients would mean earlier waves). Regressors include a
constant term and indicators for deep blue and light blue cities; the indicator for white cities
is the omitted category. This model is therefore a parsimonious summary of columns (1)-(3).
Again, this simple model has a high R2 of 0.75.

Column (5) bases off the specification of column (4), but asks whether observed covariates
in the pre-policy period can provide additional explanatory power. Specifically, we examine
pollution, income, and their trends. Pollution and pollution trends are measured by a city’s
2006-2012 average AOD and its 2006-2012 annual change in AOD. Income and trends are
measured by a city’s 2006-2012 average per capita disposable income and its 2006-2012
annual changes in per capita income.

All covariates are normalized by dividing the mean, so the interpretation of the coefficients
is “how much change in the rollout wave is associated with a doubling of the characteristics”,
with a negative coefficient meaning that an increase in the characteristics is associated with
the city being in an earlier rollout.

Results in column (5) suggest cities with higher levels of pollution and higher levels of per
capita income are significantly more likely to be in earlier waves. This is expected, as cities
in earlier rollout waves tend to be more developed such as provincial capitals.52 We note that

51Note in column (3), the coefficient on light blue indicator is missing because there were no light blue
cities in the wave-3 rollout. Also see Appendix Figure E.9.

52We have shown similar quantitative patterns in Appendix Table E.4.
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our analysis includes city fixed effects, and therefore any permanent differences in the levels
of characteristics do not post a threat to the identification. On the other hand, trends in
pollution and income prior to the monitoring program do not predict wave assignment. This
suggests the rollout timing is not determined by changes in local conditions. Comparing R2

in columns (4) vs. (5), the additional covariates provide little improvement in explanatory
power (R2=0.747 in column (4) and R2=0.769 in column (5)).

Finally, column (6) presents a model with only the pollution and income covariates.
Similar qualitative conclusions emerge: cities with high pollution and high income are in
earlier waves but trends are, once again, not predictive. The model’s goodness-of-fit is lower
(R2=0.427).

Overall, the regression analysis reinforces the view that the policy rollout is a top-down
decision that reflects pre-existing administrative hierarchies and city characteristics rather
than changes in local economic or pollution conditions.

D.2 Outdoor Consumption Trips

Our transaction data do not contain flags on the indoor/outdoor nature of the underlying
purchases. To make progress, we consider a data-driven exercise that exploits heterogene-
ity in how precipitation affects transaction activities across 273 narrowly defined merchant
category codes (MCCs). The underlying logic of this exercise is that merchant categories
whose transaction volumes are more sensitive to precipitation events are more likely to be
those that are either deferrable in nature or those that tend to occur in outdoor settings
(and thus involve more pollution exposure). These are the types of transaction activities
that we expect to exhibit more pronounced pollution avoidance behavior.

We begin by estimating the following regression separately for each of the 273 merchant
categories. We use daily-level observations to detect responses to precipitation better.

Log(Transactionsmct) = βm · Precipitationct + αmc + αmt + εmct

where Transactionmct is the number of transactions in merchant category m in city c on
day t. Precipitationct is a dummy variable for whether there was any precipitation (snow
or rain) in the city-day. All regressions control for city fixed effects (αmc) and week fixed
effects (αmt). We cluster standard errors at the city level. Panel (a) of Appendix Figure E.10
plots the estimates βm estimates. Each bar represents a merchant category m, and the range
of each bar corresponds to the 95% confidence interval of the estimate. We rank merchant
categories by their estimated sensitivity to precipitation, starting from those with the most
negative point estimate of βm. Blue bars highlight merchant categories whose βm estimates
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are statistically significant at the 5% level.
Two findings emerge from this exercise. First, the vast majority of precisely estimated ef-

fects have negative signs (i.e., precipitation reduces transactions). This is reassuring because
virtually all transactions in our database occur in physical stores and necessarily involve
outdoor trips, so we expect an overall negative association with precipitation. Second, at
the bottom of the same chart, we use red bars to mark merchant categories in supermarkets,
dining, and entertainment sectors that we defined as deferrable consumption trips in Table
2, Panel B of the paper. Our new analysis shows that these categories are disproportion-
ately deferrable and/or outdoor in nature from a precipitation-sensitivity perspective. In
Appendix Figure E.11, we tabulate the top 20 most precipitation-sensitive merchant cat-
egories according to our estimates. The most sensitive categories include snow car rentals
and dealers, vacation houses, sports stadiums, garment stores, amusement parks, and optical
exams and products, among others that are arguably deferrable in nature or occurring in
open-air settings.

Next, we construct a new purchase frequency variable which equals the number of card
transactions per 10,000 active cards in these top 20 merchant categories. Its mean is 56.3
transactions per week per 10,000 cards (for reference, the all-category transaction frequency
mean is 869 transactions). We then repeat the shopping-pollution gradient analysis using
this deferrable/outdoor purchase frequency as the dependent variable. Panel (b) of Appendix
Figure E.10 reports the event study figure. The pollution gradient after the monitoring
program exhibited a sharp drop of -3.12 transactions per 10,000 cards (SE = 1.27, p-value =
0.015), which represents a 5.5 percent reduction relative to the mean transaction frequency
(56.3 per 10,000 cards). Recall from Table 2 that the effect size for all-category transactions
is a 1.4 percent reduction. As expected, the effect size for the deferral categories is much
more pronounced. This new analysis provides additional evidence that consumption trips
that are more deferrable/outdoor in nature responded more strongly to pollution variations
after the information became available.

D.3 Visibility as Alternative Pollution Information

We assess the possibility that people used visibility as a proxy for pollution levels even
before the pollution information program. We obtain weather-station-based daily visibility
data covering all cities from China’s National Meteorological Administration for 2011-2016.
Panel (a) of Appendix Figure E.12 plots the distribution of the raw visibility measure. For
the vast majority of stations, visibility is top coded at 30 km (18.6 miles).

How accurate is visibility as a proxy for air pollution? Panel (b) of Appendix Figure
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E.12 shows the median, inter-quartile range, and 10-90 percentile range of satellite-based
AOD by ventile bins of visibility. Lower visibility bins (the left part of the x-axis) mean poor
visibility conditions. We find an overall downward-sloping relationship between pollution and
visibility, which suggests that visibility provides useful information on air quality, especially
when visibility is high. However, the relationship features substantial uncertainty when
visibility is poor. For example, for the bottom 20% days with the lowest visibility, the 10-90
quantile range of AOD can vary from 0.35 (decent air quality, compared to a national average
of 0.55) to 1.55 (poor air quality). These patterns underline the challenges that people face
in trying to avoid pollution without actual pollution monitoring data: both heavy fog and
heavy smog could cause poor visibility outdoors. Therefore, the scope for using visibility as
a proxy for pollution is limited.

It is nevertheless interesting to empirically test whether residents used visibility as a
proxy for pollution and exercised avoidance, and how that relationship interacts with actual
pollution variation. To operationalize the test, consider the following two sets of estimation
equations, where we use the “pre, post” superscripts to note that we estimate coefficients of
interest for both before and after the monitoring program:

Transactionsct = Γpre,post · V isibilityct + αc + αt + εct;

Transactionsct = γpre,post · V isibilityct + βpre,post · Pollutionct + αc + αt + ect.

We leverage these two sets of estimation equations to answer the following four questions:

Question 1. Did purchase trips respond to outdoor visibility before pollution infor-
mation was available (Γpre)?

Question 2. Did the purchase-visibility relationship change after pollution monitoring
began (Γpre vs. Γpost)?

Question 3. If the answer to Question 2 is yes, then how much of that change was
explained by people’s response to “real” pollution (Γpre,post vs. γpre,post)?

Question 4. Once we take into account that people may use visibility as a proxy for
pollution, does “real” pollution variation still matter for purchase trips (βpre,post)?

Panels (c) and (d) of Appendix Figure E.12 summarize the answers to Questions 1, 2, and
3. The blue lines show the estimates for Γpre,post, and the orange lines show the estimates
for γpre,post.

S-14



Before the monitoring program, we observed fewer card transactions during weeks when
visibility is in the lowest quintile. However, the shopping-visibility relationship is non-
monotone, economically modest, and imprecisely estimated. The reduction in card transac-
tions during weeks with the lowest visibility may reflect a genuine concern for poor visibility
per se (e.g., road safety concerns) instead of pollution. Overall, the data provide little sup-
port that people used visibility as a proxy for pollution and engaged in avoidance before
pollution monitoring.

The blue line in Panel (d) of Appendix Figure E.12 shows that the negative relationship
between visibility and card transactions became stronger after monitoring, which is consistent
with our main findings based on the pollution measure.

More importantly, adding pollution controls barely changes the transactions-visibility re-
lationship before the monitoring program (the orange line is very close to the blue line). If
people were using visibility to predict pollution levels, the transactions-visibility relationship
should change after we add pollution controls. This is indeed the pattern we find post the
monitoring program: controlling for pollution attenuates the transactions-visibility relation-
ship, especially at low visibility ranges.

To numerically summarize our findings, Appendix Table E.9 reports specifications where
the key regressors are log-inverse visibility “Log(1/Visibility)” (higher values stand for lower
visibility), pollution “Log(Pollution)”, and their interactions with the post-monitoring dummy.

Columns (1) through (4) examine the relationship between card transactions and poor
visibility and how the relationship changes before and after the monitoring policy. There
is no evidence that people responded to visibility before the monitoring program (the co-
efficient for poor visibility, Log(1/Visibility), is mostly imprecisely estimated and positive).
The interaction coefficient is negative, suggesting that people were more responsive to poor
visibility after the monitoring program. However, unlike the case for pollution (Table 2 in
the paper), the interaction coefficients are not precisely estimated.

Columns (5) through (8) show that, once pollution and its interaction with the post-
information dummy are included in the specifications, the gradient change in (1/Visibility)
is largely explained away (and of wrong sign in Columns (7) and (8)). On the other hand, the
visibility terms cannot explain away the pollution findings. The “Log(Pollution) × 1(after
monitoring)” coefficients from columns (5) through (8) (βpre,post in Question 4 above) are
similar in magnitude to those from our preferred specifications where we only looked at the
effect of pollution (Table 2 of the paper), though more noisily estimated when both the
visibility and pollution terms are included as regressors.

Overall, the data do not support the conjecture that consumers engaged in effective
pollution avoidance through visibility cues likely due to: (1) visibility is a noise indicator of
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pollution when visibility is low (e.g., it could be due to fog), and (2) the general public had
limited awareness of air pollution before the program.

D.4 U.S. Embassy PM2.5 Data in Beijing as Alternative Pollution

Information

We consider the possibility that independent pollution monitoring conducted by the U.S.
Embassy in China might have been used as an alternative pollution measure. Five cities
in China with U.S. Embassy and Consulates (Beijing, Chengdu, Guangzhou, Shanghai, and
Shenyang) operate independent PM2.5 monitoring. Our analysis focuses on Beijing, the only
city with PM2.5 data going back to January 2011 that allows our regression analysis to
include seasonal controls before and after the monitoring program. Appendix Figure E.13
summarizes the results. We examine web searches for smog in panel (a) and card transactions
in panel (b). For each outcome, we show a decile bin scatterpolot of the relationship between
the outcome and Embassy PM2.5 and do so separately for the pre-policy (i.e., 2011 and 2012)
and post-policy (i.e., 2013-2016) periods. The difference in the slope of the two fitted lines
(gray for pre-policy, blue for post-policy) corresponds to what we call “change in pollution
gradient” – that is, the change in how the outcome variable responds to pollution, before vs.
after information availability. With weekly time series data from one city we cannot have
detailed control variables. For both the pre- and post-policy periods, we residualize each
outcome with 52 week-of-year indicators to parse out seasonality. The analysis contains 312
observations.

Panel (a) in Appendix Figure E.13 shows that the correlation between web searches and
pollution readings was close to zero before 2013. It is a tight ‘zero’ relationship as the dots lie
close to the linear fitted line. This suggests that the U.S. Embassy PM2.5 monitoring data,
which were reported on Twitter since 2008, were not a significant information source for the
average resident in Beijing. If they were, Beijing residents would have responded to such
information before 2013. After 2013, the search-pollution gradient became much more pos-
itively correlated, with searches going up substantially on weeks when PM2.5 concentration
exceeds 100 µg/m3.

Panel (b) shows that the correlation between U.S. Embassy pollution readings and weekly
card transactions was also flat before 2013. After 2013 when pollution information became
available, the correlation became significantly negative, and doubling the pollution level is
associated with 195 fewer transactions per 10,000 active cards per week. The magnitude
of this estimate is much larger than our full-sample estimate (about 12 fewer transactions
per 10,000 active cards per week). This is partly because Beijing has a higher baseline
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transaction rate (1,232 weekly transactions per 10,000 cards compared to a national average
of 869) and because the levels of pollution in Beijing tend to be higher (daily mean = 79
µg/m3, IQR = 29 to 109 µg/m3 in 2015, compared to the national average daily mean = 39
µg/m3, IQR = 24 to 63 µg/m3).

D.5 Instrumental Variables Approach

Our empirical analysis shows that the monitoring program has reduced the mortality-pollution
gradient, i.e., the mortality impact of air pollution was mitigated after the program relative
to that before the program likely due to behavioral changes as documented in our analysis.
While the impact of pollution on mortality itself is not the focus of our paper (we evaluate
its changes), it might be of interest to policymakers. In this section, we recover the causal
estimate of the pollution’s mortality effect using IVs to address the endogeneity in pollution.

We implement a wind-transport instrumental variable (IV) approach in the spirit of
Bayer, Keohane and Timmins (2009), Deryugina et al. (2019), Anderson (2020) and espe-
cially Barwick et al. (2020). The goal is to tease out (exogenous) variation in a city’s local
air pollution attributable to transported pollutants from upwind cities. Our IV is essentially
a function of wind directions, wind speed, weather conditions, and distance of origin and
destination cities. To see the IV construction, we use the city of Beijing as a narrative ex-
ample. We begin with a daily panel dataset of PM2.5 in a set of cities whose pollution level
may affect air quality in Beijing. Let C denote the set of contributing cities. For each city
c and day t, we calculate the radian angle φct between city c’s local wind direction and the
vector pointing from city c to Beijing (e.g., φct = 0 if city c is exactly upwind from Beijing
on day t). The IV is a time-series variable constructed using the following formula:

IVt =
∑
c∈C

max{0, cos(φct)} · Pollutionct ·
( 1/distancec∑

i∈C 1/distancei

)
, (D.6)

where the term max{0, cos(φct)} · Pollutionct – which we call “upwind pollution” – is the
vector component of air pollution in city c on day t that is expected to move toward Beijing.
We assume upwind pollution is zero if φct is an obtuse angle, i.e., winds in city c on day t
are blowing away from the direction toward Beijing. On any date t, the IV is the average of
individual cities’ upwind pollution terms, inversely weighted by city c’s distance to Beijing
(distancec).

The choice of contributing cities (denoted as C) for our analysis involves a trade-off be-
tween bias and variance. Using cities that are very far from Beijing helps the exclusion
restriction assumption of the IV (that is, the assumption that transported pollution from
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distant cities does not affect mortality in Beijing, except through its impact on local air
quality). However, focusing on pollution from cities too far away hurts the first stage as-
sumption because the local impact of upwind pollution from faraway cities is weak. We take
the following steps to address such bias-variance trade-off. First, we restrict contributing
cities to those that are at least 300 km away from Beijing.53 Second, among the remaining
cities, we employ a data-driven method that selects the most predictive upwind cities in a
“zero-stage” Lasso regression. Specifically, before constructing the IV variable, we estimate
the following equation with linear Lasso:

PollutionBeijing,t = λ0 +
∑
c∈C̃

λc ·max{0, cos(φct)} · Pollutionct + εt,

which selects a subset of 73 upwind cities from a total of 330 cities that are at least 300
km away from Beijing. Appendix Figure E.16 maps out the location of these upwind cities
and their corresponding λc coefficients in the post-Lasso regression. We then construct the
IV variable for Beijing using these selected cities as outlined in Equation (D.6). We repeat
this procedure for all cities in our sample. The first stage of our IV is strong, with the
Kleibergen-Paap F-statistic exceeding 600.

Having constructed the IV, we use 2SLS to estimate the mortality impact of pollution
separately for the pre and post periods following Equation 1. We include city, week-of-year,
and year FEs, as well as city-specific trends, as in the main analysis. Standard errors are
clustered at the city level. Appendix Figure E.17 reports the parameter estimates capturing
the mortality impact of pollution before and after the monitoring program, separately by
the cause of deaths. Panel (a) shows the OLS results while Panel (b) shows the IV results.

Several patterns emerge from this analysis. First, our IV estimates are in general larger
in magnitude than OLS estimates, consistent with the literature (Deschenes and Greenstone,
2011; Ebenstein et al., 2017; Deryugina et al., 2019) that OLS estimates of the health im-
pact of air pollution are small and often insignificant. For example, before the monitoring
program, doubling pollution increased the all-cause mortality rate (the first blue solid dot in
both figures) by 0.64% according to the OLS regression (Panel (a)) and 2.35% according to
the IV regression (Panel (b)). The magnitude of the IV estimates is intuitive: the mortality-
pollution elasticity is highest for the respiratory category at 6.74% (as PM2.5 directly affects
the human respiratory system). The pollution elasticity is close to zero for injuries, which is
also sensible.

Second, for both IV and OLS estimates, the monitoring program is associated with a
53Similar strategies have been used in the prior literature. For example, Williams and Phaneuf (2019) uses

a buffer zone of 60-120 km radius; Barwick et al. (2020) uses a buffer zone of 150 km radius.
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reduction in the pollution elasticity, i.e., a decrease in the pollution gradient. In the figure,
the hollow dots (which denote post-monitoring estimates) shift downward from the solid dots
(which denote pre-monitoring estimates) for all of the cause categories except for injuries.
That is, post the monitoring program, the pollution’s mortality damage is partially mitigated,
consistent with our main estimates on the change-in-gradient shown in Table 3.

Third, for all-cause mortality, the change in coefficients is virtually the same whether
we use OLS or IV regressions (at 0.02 log points). The orange dashed lines in both figures
provide a visual aid to this result, with the two lines having the same length and slope. This
finding provides support to the identification assumption in our change-in-gradient analysis:
the magnitude of bias appears similar before vs. after the monitoring program and hence
cancels out when we focus on the change in the gradient itself.

D.6 Synthetic Control Analysis

The key step of this exercise is that, for each city, we need to identify a set of “control” cities
that can serve as reasonable counterfactuals in the absence of the monitoring program. To
identify these control cities, we use the synthetic control method following Abadie, Diamond
and Hainmueller (2010) and Arkhangelsky et al. (2021). For each city c̃, we create a group g
which contains the city itself and all of its control cities: g = {c̃, c1, . . . , ck} with associated
synthetic weights w = {1, w1, . . . , wk} such that

∑k
i=1wi = 1. We will henceforth call c̃ the

“treated” city and {c1, . . . , ck} the “control” cities.
We make two decisions regarding the choice of the control cities and the synthetic weights.

First, each treated city is matched to control cities that have not yet been treated by the
monitoring program. That is, for each city in wave 1, we choose control cities from waves 2
and 3; for each city in wave 2, we choose controls from wave 3 cities. We drop wave 3 cities
because they are in the last wave of the information rollout and there are no untreated cities
to serve as their controls.

Second, we select control cities based on outcomes prior to the monitoring policy, but
compute synthetic weights using data up to one year before the information program is
actually implemented. This allows us to use the year prior to the pre-treatment period as a
validation sample to examine the synthetic control method’s performance.

We estimate the following difference-in-differences estimation equation:

Log(Mortality)gct = β · Treatedgc × Postgt + γ · Treatedgc (D.7)

+θ · Postgt + x′ctθ + εct,

where g denotes a group that contains a treated city and its control cities. A unit in this
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panel-data regression is a city c in a group g (thus the subscript gc). Treatedgc is a dummy
variable for the treated city in each group. Postgt indicates post-treatment periods for group
g based on the treated city’s treatment time. The regression is weighted by group-by-city
level synthetic weights and includes city-by-group, week-of-year, and year fixed effects, as
well as city-by-group-specific trends. Standard errors are clustered at the city level.

Panel (a) in Appendix Figure E.18 shows the event study results. The blue line at the
bottom of the chart represents the difference between treated cities’ mortality rates and
their synthetically weighted control cities’ mortality rates as a function of time relative to
the information rollout. All periods prior to eight months before the monitoring policy are
pooled into one group and used as the reference group. The regression includes city, week-
of-year, and year fixed effects. The orange line on the top shows the average pollution level
in the corresponding event time. The shaded areas highlight the quarters when a pollution
peak occurred.

Several patterns emerge from the graph. First, the blue stays close to zero during the
matching period. This means that, as expected, treated and control cities’ mortality rates
track each other closely during the period used to compute synthetic weights. Second, during
the validation period (i.e., one year prior to the information rollout), mortality rates in the
treated and control cities continue to be close to each other. Our estimate suggests that,
relatively to the the matching period, mortality rate decreases by 0.25 percent (SE = 1.16
percent) during the validation period. Third, we estimate that the mortality rate decreases by
1.64 percent on average after the monitoring policy. This estimate is imprecise with SE=1.70.
However, comparing the blue (mortality) and the orange (pollution) lines, we notice much
more pronounced gaps in mortality rates between the treated city and the control group
during heavily polluted periods post the information program, a visual pattern that was not
apparent before the monitoring rollout. In contrast, differences in mortality levels during
low pollution periods are modest before vs. after the program. These qualitative patterns
suggest that the imprecise average effect of the information program may be masked by
important heterogeneity.

To formally analyze this possibility, we test if the reduction in mortality rate after the
monitoring program concentrates on periods when the city experiences high pollution lev-
els. We group each city’s weekly observations into quintiles based on its weekly pollution
concentration. Then we estimate an augmented version of Equation (D.8), allowing the β
coefficient to vary by the pollution quintiles.

Panel (b) in Appendix Figure E.18 reports the heterogeneous β coefficients. Each co-
efficient represents a synthetic difference-in-differences estimate regarding the monitoring
program’s impact on mortality within a quintile of a city’s pollution levels. The monitoring
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program has no discernible impact on the mortality rate during periods of low pollution
levels, but reduced mortality significantly (both statistically and economically) during high
pollution periods. For example, the mortality rate decreases by more than four percent in
weeks with the 20 percent highest pollution levels after the monitoring program. Importantly,
this result is “isomorphic” to our gradient analysis in the main text of the paper, where we
document a negative coefficient for the pollution and post-treatment interaction. In theory,
this negative relationship could be driven by an increase in mortality during low pollution
periods, a decrease in mortality during high pollution periods, or some combination of both.
The new insight from the quintile analysis above shows that our main finding is mostly
driven by a net reduction in mortality during high pollution periods post the monitoring
program. The findings provide empirical justificatioon of our focus on the gradient analy-
sis which leverages the fact that the mortality impact of the program is critically through
its interaction with pollution. That is, rather than a (uniform) level shift in the mortality
rate across different pollution levels, the program resulted in a change in the slope of the
mortality-pollution relationship.

D.7 Annual Analysis

We conclude the empirical exercise with a robustness analysis that uses annual pollution
measures. Specifically, we use the annual PM2.5 modeling data from Van Donkelaar et al.
(2016), which combines satellite-based AOD and chemical transport modeling tools to pro-
vide estimates of ground-level PM2.5 concentration at the 10km-grid-by-annual frequency.
We use this data to calculate two versions of city-year level PM2.5. The first version uses
the 10-by-10km grids that correspond to the ground locations of the pollution monitors and
averages over these readings to get a city average. This is closest to the level of air quality
that would have been captured by the monitors. The second version averages the pollution
information from all grids within the city border, which allows us to measure overall pollution
conditions in the city. The annual-level estimation model mirrors the primary specification
Equation (1), with a few minor differences.

Given the annual frequency, we assign years 2013-2016 as the post period for wave one
cities, 2014-2016 for wave two cities, and 2015-2016 for wave three cities. The regression
includes city and year fixed effects (ηt) and clusters standard errors at the city level.

Appendix Table E.10 displays the results. Each panel-column represents a regression.
The panels differ by the type of pollution measures used: Panel A uses modeling PM2.5 near
pollution monitors and Panel B uses modeling PM2.5 citywide. For reference, panel C uses
the satellite-based AOD as in the paper but aggregates to the annual level. Column (1)
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reports results for card transactions. The outcome variable is annual rather than weekly
transaction rates, and therefore the magnitudes of the coefficients are much larger than
the weekly coefficients in Table 2 of the paper. Consistent with our original analysis, the
coefficient of “Log(Pollution)× 1(after monitoring)” shows a negative sign regardless of which
pollution measure we use. The magnitude is smaller than if one were to linearly scale up
the weekly coefficient from Table 2 of the paper to the annual level (-12 transactions per
week × 52 weeks). This is consistent with intertemporal substitution of consumption. For
example, a consumer might postpone a shopping trip due to high pollution, but the trip
would eventually occur at some future point.

Column (2) reports mortality results. Once again, the coefficients are consistently nega-
tive, which echoes our findings in the paper using weekly data. In terms of the magnitude,
we find relatively larger effect estimates at the annual level than those from the weekly anal-
ysis. This reflects the fact that the mortality effect of pollution in a given week takes more
than one week to fully manifest, which is consistent with the findings in the literature (e.g.,
(Deryugina et al., 2019)). With the much smaller sample size, however, the annual estimates
are imprecise in all three panels.

We take away from these exercises that the annual level analysis using alternative pollu-
tion measures gives us a broadly consistent conclusion, but we are underpowered by a 50-fold
reduction in sample size. The annual level analysis discards rich, short-term pollution vari-
ations that are useful to identify the impact of the monitoring program on individuals’
avoidance and health responses. In addition, there is evidence that the modeling PM2.5

measure might not provide accurate estimates of ground-level pollution in countries where
pollution levels are high (Greenstone et al., 2021; Fowlie, Rubin and Walker, 2019).54

54Greenstone et al. (2021) calculate trends in PM2.5 pollution in China since 2013 and find that the values
base on modeling data are lower than the levels recorded by the government monitors. A similar pattern is
documented in Fowlie, Rubin and Walker (2019) using the U.S. portion of the modeling PM2.5 data. They
find that the modeling data understate PM2.5 at levels above 15 µg/m3.
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Appendix E: Figures and Tables

Figure E.1: Screenshot of China’s Air Quality Disclosure Platform Web Interface

Notes: This figure shows a screenshot of the Ministry of Environmental Protection’s real-time air quality
disclosure platform web interface as of September 25, 2016. The left panel is an interactive map that
displays the locations of all monitoring stations. The right panel reports real-time measures of six major
pollutants for all monitoring stations in the city that is specified (Beijing).
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Figure E.2: Smartphone Air Quality App

Notes: This figure shows a sketch of what a typical smartphone air quality app looks like. The left panel
shows the air quality index (AQI) in the city of Shanghai for that hour is 101 and PM2.5 is 75 ug/m3. The
right panel shows PM2.5 and AQI readings at different monitoring stations in Shanghai.
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Figure E.3: Consumption Trends: UnionPay vs. National Accounts
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Notes: This figure plots annual GDP (triangles) and aggregate consumption (squares) reported by the
National Bureau of Statistics of China (NBS), and total bank card spendings ×100 (circles) aggregated
from the UnionPay 1% bank card data, excluding business to business transactions (the wholesale
category).
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Figure E.4: UnionPay Bank Card Penetration by City, 2011-2015 Average

(a) Number of active cards

(b) Number of daily transactions per 100,000 cards

Notes: The maps show the 2011-2015 average number of active UnionPay bank cards (panel (a)) and daily
transactions per 100,000 cards (panel (b)) at the city level. Orange lines show inter-provincial borders.
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Figure E.5: Correlation between PM2.5 and AOD
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Notes: This graph shows city×day level average PM2.5 concentration (y-axis) by 100 equal bins of AOD
(x-axis), for periods after the monitoring program. There is no reliable information on PM2.5 before the
program. Histograms show the distribution of the two variables.
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Figure E.6: Event Time Plots with Different Controls
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(b) Web searches
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(c) Air purifier purchases
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Notes: Figures plot standardized news mentions for smog (panel (a)), standardized smog-related web
searches (panel (b)), and log per-capita air purifier purchases in large 50 cities (panel (c)) as a function of
quarters since the completion of the monitoring program in a given city. Event quarter -1 is normalized to
0. Solid blue lines show raw data patterns, green dashed lines control for city fixed effects, and orange
dashed lines control for city and week fixed effects. Shaded regions show the 95% confidence intervals for
the raw data pattern (the blue lines) and are constructed from standard errors clustered at the city level.
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Figure E.7: Changes in Pollution Information Access – Mobile Phone Apps
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Notes: This chart shows the release-date distribution of Apple App Store apps separately for pollution
apps (solid dots and line) and other apps (hollow dots and dashed line). Apps in other categories include
games, music, video, reading, finance, sports, education, shopping, and navigation. For each category,
sample is restricted to the first 200 apps returned by the Apple API given the search key. Data are queried
from Apple App Store on December 27, 2015. Pollution apps released before 2013 typically stream weather
information and incorporate real-time air quality content post 2013.
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Figure E.8: Citizen Complaints on Air and Water Pollution Issues
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Notes: This figure plots the total number of complaints posted by citizens that are related to air pollution
issues (solid line) and water pollution issues (dashed line) by year. Data are sourced from the message
board for government leaders (Agarwal et al. 2020).
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Figure E.9: List of Cities by Rollout Waves

Notes: The three panels tabulate cities included in the official rollout waves of the monitoring program. Color coding indicates administrative
hierarchies and predesignated status. Deep blues are cities in the Jing-Jin-Ji Metropolitan Region, the Yangtze River Delta Economic Zone, the
Pearl River Delta Metropolitan Region, direct administered municipalities, and provincial capitals. Light blues are 2007 Environmental
Improvement Priority Cities and 1997-2007 National Environmental Protection Exemplary Cities. White denotes remaining cities.

S-31



Figure E.10: Pollution Avoidance Among Categories Most Sensitive to Precipitation

(a) % changes in transactions on days with precipitation
by category
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(b) Avoidance in most precipitation-sensitive categories
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Notes: Panel (a) shows the impact of precipitation on spending for 273 merchant categories. To facilitate
comparison across categories, for each category, we regress log city-day transactions on a dummy variable
of rain or snow, controlling for city and week-of-year fixed effects. Each bar represents a separate merchant
category. A bar’s middle point denotes the percentage change in transactions on rainy/snowy days and its
range corresponds to the 95% confidence interval. Blue (grey) color represents precise (imprecise) estimates.
Red bars at the bottom mark merchant categories in supermarkets, dining, and entertainment sectors that
are defined as deferrable in Table 2. Panel (b) conducts an event study using city-weekly transactions and
limiting to the top 20 categories whose transactions are most sensitive to rain/snow. The underlying
regression controls for city, week-of-year, and year fixed effects and city-specific time trends. Shaded region
shows the 95% confidence interval constructed from standard errors clustered at the city level.
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Figure E.11: List of Top 20 Most Precipitation-Sensitive Merchant Categories

Notes: this table lists the top 20 most precipitation-sensitive merchant categories that are identified in
panel (a) of Figure E.10. The event study in panel (b) of Figure E.10 uses these categories. “Effect Size” is
the percentage changes in daily transaction volume in response to any precipitation, rain or snow, during
the day. t-statistics are computed using standard errors clustered at the city level.
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Figure E.12: Visibility as Private Information of Air Pollution

(a) Distribution of daily visibility
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(b) Distribution of pollution by visibility
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(d) After monitoring
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Notes: Panel (a) shows the distribution of raw visibility measure at the station-day level. For the vast
majority of stations, visibility is top coded at 30 km (18.6 miles). Panel (b) shows the median,
inter-quartile range, and 10-90 percentile range of satellite-based AOD by ventile bins of visibility. Panels
(c) and (d) plot card transactions by visibility bins, separately for before and after the program. The
underlying regressions control for city, week-of-year, and year fixed effects and city-specific linear time
trends. The blue lines with solid circles show the effect of visibility without controlling for the pollution
(AOD) levels. The orange lines show the effect of visibility controlling for pollution levels. Dashed lines
show 95% confidence intervals for the no-pollution-controls specifications, calculated using standard errors
clustered at the city level.
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Figure E.13: Awareness and Avoidance vs. U.S. Embassy PM2.5 Readings

(a) Residualized web searches
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(b) Residualized card transactions
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Notes: Each panel shows decile bin scatterplots of an outcome against U.S. Embassy’s PM2.5 readings in Beijing, separately for before vs. after the
monitoring program. Outcome variables are residualized Baidu searches for smog (panel a) and card transactions per 10,000 active cards (panel b)
in Beijing after partialling out week-of-year fixed effects. “∆Slope” reports the change in the outcome-pollution gradient after the monitoring policy.
Robust standard errors are reported in parentheses.
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Figure E.14: Distribution of Cities by Rollout Dates

(a) Official rollout dates
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(b) “Field” rollout dates
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Notes: Panel (a) shows the number of cities for each official rollout dates. Panel (b) reports the number of
cities for each “field” rollout date, the earliest date when a city’s pollution monitoring data became
available. We collected field rollout dates for over 92% of cities in our sample by searching news media and
city government yearbooks. Overall, the field dates are close to the official dates. Using the field rollout
dates produces similar results to those reported in the main text.
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Figure E.15: Staggered Rollout Design: Treated vs. Not-yet-Treated Comparison

(a) Illustration of comparison groups

(b) Estimation results

Notes: Panel (a) illustrates the three comparison groups. Panel (b) reports estimation results using
different comparison groups. Each panel-column is a separate regression using different cities and sample
periods, as indicated by column head. “Log(Pollution)” is logged AOD in a city×week. In panel A,
dependent variable is city×weekly bank card transactions per 10,000 active cards. Mean transaction rates
are 869.1 (column 1), 821.1 (column 2), 850.1 (column 3), and 581.0 (column 4). In panel B, dependent
variable is city×weekly log mortality rate. The coefficient of Log(pollution)× 1(after monitoring) reports
changes in mortality-pollution elasticity after monitoring. All regressions control for city, year, week-of-year
fixed effects and city-specific time trends. Standard errors are clustered at the city level.
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Figure E.16: Upwind Cities Selected by the “Zero-Stage” Lasso Regression: Beijing

Notes: This map highlights 73 cities selected by a “zero-stage” Lasso regression of Beijing’s daily AOD on
all other 330 cities’ upwind component vector AOD.
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Figure E.17: OLS and IV Estimates of the Mortality-Pollution Gradient

(a) OLS Estimates

-.0
6

-.0
3

0
.0

3
.0

6
.0

9
.1

2
∂ 

Lo
g(

M
or

ta
lit

y)
 / 

∂ 
Lo

g(
Po

llu
tio

n)

general cardio. resp. non-
cardioresp.

injury

Before monitoring (OLS)
After monitoring (OLS)

(b) IV Estimates
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Notes: Panel (a) reports the OLS estimates of the mortality-pollution gradients by cause of death before
the program (solid circles) and after the program (open circles). Panel (b) shows the IV estimates. We run
separate regressions for each mortality cause. Both OLS and IV results suggest a reduction of the
mortality-pollution gradient after the program. For all-cause mortality, the OLS and IV estimates exhibit
virtually the same reduction in mortality-pollution gradient. The orange dashed lines, which have the same
slope and length, serve as visual aid. This confirms the assumptions in Section 4.2: the magnitude of bias
appears similar before vs. after monitoring and cancels out when we focus on the change in gradient.
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Figure E.18: The Monitoring Program’s Mortality Impact – Synthetic Control Method

(a) Event study of the mortality impact
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(b) Mortality impact by within-city pollution quintile
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Notes: In panel (a), the blue line (and left axis) shows the difference between treated cities’ mortality rates
and their synthetically weighted control cities’ quarterly mortality rates as a function of time relative to
the information rollout, conditioning on city and quarter-of-year fixed effects. The orange line (and right
axis) shows the treated cities’ average monthly pollution level in the corresponding event time. Shaded
areas highlight the quarters when a pollution peak occurred. Panel (b) shows the synthetic DID estimates
of the monitoring program’s mortality impact by within-city pollution quintiles. The dependent variable is
city-week log mortality rate and the sample consists of city-weeks in different pollution quintiles.
Regressions control for city-by-group, week-of-year fixed, and year fixed effects, as well as group-specific
linear time trends. Range bars display the 95% confidence intervals constructed using standard errors
clustered at the city level.
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Table E.1: Chronology of Key Events Related to the Monitoring Program

Time Key Events

Jun 2004 The first known use of the word “Smog” in news media is found in the weather
column of Beijing Daily, a popular local newspaper in Beijing

Apr 2008 US Embassy in Beijing installs a rooftop air quality monitor and reports hourly
PM2.5 via its twitter account @beijingair

Apr 2009 A report by the National People’s Congress recognizes PM2.5 as a major pollutant,
a first in official public documents

Jan 2010 China Meteorological Agency issues national standards on the observation and
forecast of smog based on visibility levels

Nov 2010 First draft for NAAQS amendment opens for public comments, deeming the
choice of national PM2.5 standards requires public input

Nov 2011 Environmental NGOs start campaign “Measuring Air Quality for our Motherland”
and call for systematic PM2.5 monitoring by the government

Nov 2011 Second draft for NAAQS amendment opens for public comments, proposing
national standards for PM2.5 for the first time

Feb 2012 NAAQS amended to set national standards for PM2.5 for the first time

Jun 2012 Vice Minster of China’s Ministry of Environmental Protection objects the release
of PM2.5 data by US Embassy during a press conference

Jan 2013 The first wave of Air Quality Monitoring and Disclosure program officially rolls out
in 74 cities, with two other waves to follow

Sep 2013 China State Council issues “Air Pollution Prevention and Control Action Plan”
with PM2.5-reduction targets in key areas

Mar 2014 Chinese Premier Li Keqiang first declared “war on smog”

Notes: NAAQS stands for the National Ambient Air Quality Standards, first established in 1982.
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Table E.2: Changes in Web Searches-Pollution Gradient

Dep. var.: Standardized web searches for “smog”

(1) (2) (3) (4)

Log(Pollution) 0.412 0.200 0.098 0.073
(0.286) (0.212) (0.105) (0.089)

Log(Pollution) × 1(after monitoring) 0.205 0.339 0.438 0.371
(0.105) (0.108) (0.154) (0.136)

FEs: city, city-linear time trends X X X X
FEs: month-of-year X
FEs: year X
FEs: month-of-sample X X
FEs: region×year X
FEs: region×month-of-sample X

Notes: Number of observations is 83,122. “Log(Pollution)” is logged AOD in a city×week. “Region” is a conventional partition
of cities by location: north (36 cities), northeast (38 cities), east (105 cities), central south (81 cities), southwest (54 cities),
and northwest (52 cities). Standard errors are clustered at the city level.
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Table E.3: Determinants of Monitoring Roll-out Waves

(1) (2) (3) (4) (5) (6)
1(wave-1) 1(wave-2) 1(wave-3) wave wave wave

1( ) 0.925 0.015 0.060 -1.711 -1.467
(0.032) (0.015) (0.029) (0.066) (0.108)

1( ) 0.119 0.881 - -0.964 -0.856
(0.040) (0.040) - (0.049) (0.052)

1(�) 0.015 0.125 0.860 - -
(0.009) (0.023) (0.025) - -

Pollution level -0.100 -0.254
(0.046) (0.079)

Pollution trends -0.004 0.00022
(0.004) (0.0066)

Per capita income level -0.654 -1.876
(0.231) (0.224)

Per capita income trends 0.143 -0.039
(0.156) (0.229)

Constant 2.845 3.386 4.470
(0.028) (0.111) (0.118)

R2 0.800 0.648 0.842 0.747 0.769 0.427

Notes: In columns 1-3, the dependent variable 1(wave-k) is an indictor variable for whether a city is among the wave-k cities
in the actual roll-out. In columns 4-6, the dependent variable is the roll-out wave as a “continuous” variable whose value
equals 1, 2, or 3. The indicator variable 1(deep blue) denotes cities in the Jing-Jin-Ji Metropolitan Region, the Yangtze River
Delta Economic Zone, the Pearl River Delta Metropolitan Region, direct administered municipalities, and provincial capitals.
The indicator variable 1(light blue) denotes the 2007 designated Environmental Improvement Priority Cities and the
1997-2007 National Environmental Protection Exemplary Cities. The indicator variable 1(white) denotes the remaining cities.
Variables ‘Pollution level’, ‘Pollution trends’, ‘Per capita income level’, and ‘Per capita income trends’ are divided by their
mean (so the coefficients indicate percent changes).
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Table E.4: Characteristics of Cities by Monitoring Roll-out Waves

(1) (2) (3)

Wave 1 Wave 2 Wave 3

Number of cities 74 116 177

Population (million) 7.05 3.90 2.90
(4.85) (2.10) (1.95)

GDP per capita (yuan) 69,836 42,881 27,400
(27,627) (23,110) (13143)

AOD level 0.665 0.600 0.456
(0.239) (0.242) (0.237)

PM2.5 level (ug/m3) 61.3 57.9 46.0
(22.1) (20.2) (17.4)

Industrial SO2 emissions (ton) 37,569 29,609 18,214
(40,186) (24,695) (17,550)

Average temperature (F) 59.7 58.0 55.3
(8.52) (9.59) (10.6)

Total precipitation (inches) 47.0 42.2 40.3
(21.9) (23.2) (24.4)

Average wind speed (m/s) 1.94 1.71 1.47
(0.63) (0.62) (0.68)

Notes: all characteristics are measured by the 2011-2015 average, except for PM2.5 (average over the post-monitoring periods)
and industrial SO2 emissions (year 2006). The table reports the average characteristics of cities in different waves. Standard
deviations are in parentheses.
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Table E.5: Changes in the Economic and Regulatory Environment After Monitoring

Indep. var.: 1(after monitoring)
(1) (2) (3) (4)

Panel A. Pollution levels

Log(Pollution) 0.0054 0.0044 0.0025 -0.0042
(0.0095) (0.0094) (0.0096) (0.0088)

Log(max Pollution) -0.0001 -0.0077 -0.0100 -0.0140
(0.0127) (0.0107) (0.0109) (0.0096)

Panel B. Political/regulatory environment

aN(anti-corruption cases) -0.004 -0.028 0.010 0.005
(0.044) (0.047) (0.026) (0.027)

bAge(mayor) 0.335 0.313 0.350 0.354
(0.158) (0.167) (0.163) (0.165)

cMayor having a Ph.D. degree -0.017 -0.016 -0.026 -0.026
(0.023) (0.025) (0.025) (0.025)

dN(“pollution regulation” news mention) -0.0062 -0.0092 -0.0084 -0.0084
(0.0064) (0.0071) (0.0074) (0.0075)

Panel C. Healthcare access

eLog N(hospitals per 100,000 people) 0.085 0.089 0.094 0.095
(0.080) (0.083) (0.085) (0.087)

FEs: city, city-linear time trends X X X X
FEs: week-of-year X
FEs: year X
FEs: week-of-sample X X
FEs: region×year X
FEs: region×week-of-sample X

aN(anti-corruption cases) mean = 0.24, sd = 0.75
bAge(mayor) mean = 50.8, sd = 3.63
cMayor having a Ph.D. degree mean = 0.234, sd = 0.423
dN(“pollution regulation” news) mean = 0.052, sd = 0.45
eN(hospitals per 100,000 people), annual frequency mean = 4.56, sd = 3.16

Notes: Each cell is a regression. Estimation data are at the city × weekly level, except for Panel C which uses city × annual
hospital counts. Row names show the dependent variable. “Log(Pollution)” is logged AOD in a city×week. “Anti-corruption
cases” is the number of local officials ousted during the anti-corruption campaign, “Mayor having a Ph.D. degree” indicates
whether the current city mayor has a doctoral degree, “pollution regulation news” is the number of People’s Daily news
articles that mention both smog and the city name. “region” is a conventional partition of cities by location: north (36 cities),
northeast (38 cities), east (105 cities), central south (81 cities), southwest (54 cities), and northwest (52 cities). Standard
errors are clustered at the city level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table E.6: Changes in Air Purifier Purchase-Pollution Gradient

Dep. var.: Number of air purifier purchases per 1,000 people

(1) (2) (3) (4)

Log(Pollution) 1.34 -1.76 -2.12 -1.79
(1.33) (1.28) (1.25) (1.61)

Log(Pollution) × 1(after monitoring) 1.86 6.21 6.69 6.50
(2.09) (2.44) (2.70) (3.26)

FEs: city, city-linear time trends X X X X
FEs: month-of-year X
FEs: year X
FEs: month-of-sample X X
FEs: region×year X
FEs: region×month-of-sample X

Notes: The analysis contains 50 cities for which we have air purifier sales data between 2012-2016. Number of observations is
9,871. Mean of dependent variable is 64.1 purchases per month per 1,000 city residents. “Log(Pollution)” is logged AOD in a
city×month. These 50 cities account for 28% of the national population; among them, 34, 11, and 5 cities are in the first,
second, and third wave of the information program rollout, respectively. All regressions include lower-order interaction and
main effect terms. Standard errors are clustered at the city level.
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Table E.7: Changes in Bank Card Transaction-Pollution Gradient – Robustness

Coef. of interest: Log(Pollution)×1(after monitoring)

(1) (2) (3) (4)

Drop cities w/ top 10% anti-corruption cases -10.47 -13.29 -8.65 -12.62
(4.50) (5.26) (4.79) (5.53)

Control for online shopping shares -10.58 -13.21 -7.86 -12.02
(4.54) (4.83) (4.41) (4.95)

Control for weather variables -10.36 -12.76 -8.63 -12.94
(5.14) (5.54) (5.03) (5.68)

Weekly max pollution -12.12 -12.68 -7.42 -10.59
(5.97) (5.59) (4.37) (4.87)

Manually collected “field” roll-out date -10.10 -12.34 -7.23 -8.08
(3.72) (3.85) (3.48) (3.75)

Quarterly aggregation -180.15 -248.60 -204.77 -205.40
(99.35) (149.89) (150.74) (135.80)

FEs: city, city-linear time trends X X X X
FEs: week-of-year X
FEs: year X
FEs: week-of-sample X X
FEs: region×year X
FEs: region×week-of-sample X

Notes: This table examines the robustness of the changes in the transaction - pollution gradient. Each cell represents a
separate regression. The main effect Log(Pollution) term is not reported in the interest of space. Weather controls include
linear terms of weekly temperature, precipitation, wind speed, barometric pressure, and their full interactions. Standard
errors are clustered at the city level. Numbers of observations are (from top to bottom rows): 74903, 82703, 71857, 83122,
83122, 6674.
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Table E.8: Changes in Transaction-Pollution Gradient - Spatial Spillovers

Dep. var.: Number of transactions per 10,000 active cards in a city×week

(1) (2) (3) (4)

Log(Pollution) × 1(after monitoring) 0.15 -0.29 -0.36 -0.28
(0.71) (0.83) (0.54) (0.63)

Log(Pollution) × 1(after monitoring) × 1(Treated) -9.05 -10.03 -9.00 -10.66
(5.71) (7.34) (6.85) (8.00)

FEs: city-group, city-linear time trends X X X X
FEs: week-of-year X
FEs: year X
FEs: week-of-sample X X
FEs: region×year X
FEs: region×week-of-sample X

Notes: Number of observations is 150,289. A treated city and its neighboring cities not yet experiencing the roll-out constitute
a city-group. “Log(Pollution)” is logged AOD in a city×week. “1(Treated)” equals 1 for cities in the roll-out wave and 0 for
neighboring cities not yet experiencing the roll-out. “region” is a conventional partition of cities by location: north (36 cities),
northeast (38 cities), east (105 cities), central south (81 cities), southwest (54 cities), and northwest (52 cities). All regressions
include lower-order interaction and main effect terms. All fixed effects are interacted with 1(Treated) dummy. Standard errors
are clustered at the city level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table E.9: Changes in Card Transaction-Pollution Gradient: Visibility

(1) (2) (3) (4) (5) (6) (7) (8)

Log(1/Visibility) 10.12 3.08 3.96 15.46 11.46 0.23 1.51 10.20
(6.59) (6.18) (5.96) (7.01) (10.57) (9.57) (7.86) (8.88)

Log(1/Visibility) × 1(after monitoring) -11.98 -13.49 -7.54 -10.86 -6.05 -1.52 2.95 1.60
(12.92) (13.28) (9.92) (10.64) (16.40) (18.72) (13.54) (14.71)

Log(Pollution) 3.25 3.47 2.09 3.21
(5.19) (5.63) (4.20) (4.64)

Log(Pollution) × 1(after monitoring) -9.38 -12.88 -9.06 -12.87
(4.86) (8.01) (6.42) (7.54)

FEs: city, city-linear time trends X X X X X X X X
FEs: week-of-year X X
FEs: year X X
FEs: week-of-sample X X X X
FEs: region×year X X
FEs: region×week-of-sample X X

Notes: Number of observations is 83,122. “Log(1/Visibility)” is logged inverse visibility in a city×week that is based on weather-station data sourced from China’s National
Meteorological Administration. “Log(Pollution)” is logged AOD in a city×week. Dependent variable is city×weekly bank card transactions per 10,000 active cards. “region” is
a conventional partition of cities by location: north (36 cities), northeast (38 cities), east (105 cities), central south (81 cities), southwest (54 cities), and northwest (52 cities).
Standard errors are clustered at the city level.
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Table E.10: Annual Analysis using Alternative Pollution Measurements

(1) (2)
Card Mortality

Panel A. Pollution = Modeling PM2.5 near monitoring site

Log(Pollution) -656.6 0.039
(349.2) (0.049)

Log(Pollution) × 1(after monitoring) -167.7 -0.032
(173.3) (0.087)

Panel B. Pollution = Modeling PM2.5 citywide

Log(Pollution) -490.3 0.032
(280.2) (0.049)

Log(Pollution) × 1(after monitoring) -282.9 -0.054
(119.4) (0.092)

Panel C. Pollution = AOD

Log(Pollution) 343.6 0.119
(181.3) (0.058)

Log(Pollution) × 1(after monitoring) -329.6 -0.111
(147.5) (0.076)

Observations 1,998 774
FEs: city X X
FEs: year X X

Notes: Log(Pollution) in Panels A and B is based on the modeling PM2.5 measure from Van Donkelaar et al. (2016) at the
10km-grid-by-annual frequency. For each city, Panel A averages over the annual pollution readings from grids that are closest
to the city’s monitoring stations, while Panel B averages over all grids within the city. Log(Pollution) in Panel C is the
city-annual AOD measure. Dependent variables are the number of annual transactions per 10,000 active cards in each city
(column 1) and the log mortality rate in the city year (column 2). Standard errors are clustered at the city level.
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Table E.11: Heterogeneity by City Characteristics

(1) (2) (3) (4) (5)
Per cap. Per cap.

Per cap. Frac. Per cap. residential mobile
City characteristics: income urban hospitals electricity phones

Panel A. Card transactions

Log(Pollution) × 1(after monitoring) -4.99 -7.26 -6.40 -7.84 -11.00
× 1(below average) (3.34) (4.82) (5.57) (3.02) (3.30)

Log(Pollution) × 1(after monitoring) -9.22 -10.80 -13.17 -10.14 -11.81
× 1(above average) (6.79) (7.35) (7.70) (7.04) (6.84)

Panel B. Mortality

Log(Pollution) × 1(after monitoring) -0.019 -0.018 -0.014 -0.020 -0.014
× 1(below average) (0.008) (0.009) (0.008) (0.010) (0.009)

Log(Pollution) × 1(after monitoring) -0.035 -0.033 -0.038 -0.046 -0.041
× 1(above average) (0.011) (0.008) (0.013) (0.011) (0.010)

Notes: This table reports heterogeneous changes in the purchase-pollution gradient (panel A) and mortality-pollution gradient
(panel B) by above and below average city characteristics. Each column corresponds to a separate city characteristic: column
1 = per capita personal dispensable income; column 2 = share of urban population; column 3 = per capita number of
hospitals; column 4 = per capita residential electricity usage; column 5 = share of mobile phone users. City characteristics are
computed as the 2011-2015 average. Cities with missing attributes are omitted from the analysis. All regressions control for
city, week-of-year, and year fixed effects, full sets of lower-order interaction terms, and city-specific time trends. Standard
errors are clustered at the city level.
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