
Online Appendix for “Sentiment and speculation in a

market with heterogeneous beliefs”

Ian Martin Dimitris Papadimitriou∗

March, 2022

1 Miscellaneous results

First of all, let us write down a version of the de Moivre–Laplace theorem; this theorem

is essentially a special case of the Central limit theorem that first appeared in 1716 in de

Moivre’s The Doctrine of Chances. For a proof, see the textbook of Chung (2012).

Theorem 1. Suppose 0 < pn < 1, pn + qn = 1, pn → p and

xk =
k − npn√
npnqn

, 0 ≤ k ≤ n

Let A be an arbitrary, fixed positive number. Then in the range of k such that |xk| ≤ A

we get (
n

k

)
pknq

n−k
n ∼ 1√

2πnpnqn
e−

x2k
2

where the convergence is uniform and the notation ∼ means that the ratio of the right hand

side to the left hand side tends to 1 as n→∞.1 Moreover if Sn has the Binomial(n, pn)

distribution then, for any two constants a < b we have:

lim
n→∞

P

(
a ≤ Sn − npn√

npnqn
≤ b

)
=

1√
2π

∫ b

a

e−x
2/2dx

We also use a stronger version of the de Moivre–Laplace theorem presented in Osius

(1989) which implies that there is convergence of the moment generating function of a

∗http://personal.lse.ac.uk/martiniw/ and https://sites.google.com/site/papadimitrioudea/.
1f(x) ∼ g(x) is equivalent to f(x) = g(x)(1 + o(1)).
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standardized binomial to that of a standardized Normal (there is convergence of infinite

exponential order).

We use a central limit theorem for beta-binomial random variables that appears2 in

Paul and Plackett (1978) in a slightly generalized form that allows α and β to have a

term proportional to
√
N .

Theorem 2. If Y ∼ BB(λN, α, β), where λ > 0, α = θN + η
√
N, β = θN − η

√
N , and

we let N →∞, then:
Y − 1

2
λN − η

2θ
λ
√
N√

(λ+2θ)
8θ

λN
→ N(0, 1)

Note that the convergence of Beta-Binomial distribution to Normal holds not only

in distribution but also in moment generating functions. Indeed, by the Moment Con-

tinuity Theorem, convergence in distribution of subgaussian random variables implies

convergence of moment generating functions.

1.1 Proof of Lemma 2

This section provides a proof of Lemma 2, which we restate in its general form:

Lemma. If Y1 ∼ BB(T, α, λα) and Y2 ∼ BB(T, α, λα), for α > α and λ > 0 then Y1
second order stochastically dominates Y2.

Proof. First note that E[Y1] = E[Y2] = T
1+λ

. Write fα(·) and fα(·) for the probability

mass functions of Y1 and Y2, respectively. It is enough to show that the likelihood

ratio fα(k)/fα(k) is increasing for integers k ∈ [0, T/(1 + λ)) and decreasing for integers

k ∈ (T/(1 + λ), T ]. This implies that Y1 second order stochastically dominates Y2, by

Theorem 2.2 of Ramos et al. (2000).3

We start by showing that

B(k + α, T − k + λα)

B(k + α, T − k + λα)

(that is, the likelihood ratio, up to a positive constant of proportionality) is increasing

for integers k ∈ [0, T/(1 + λ)]. Pick k1 between 1 and T/(1 + λ) and let k2 = k1 − 1. We

must show that

Γ(k1 + α)Γ(T − k1 + λα)

Γ(k1 + α)Γ(T − k1 + λα)
>

Γ(k2 + α)Γ(T − k2 + λα)

Γ(k2 + α)Γ(T − k2 + λα)
. (1)

2We caution the reader that there is a typo in the theorem as stated by Paul and Plackett (1978):
the random variable is not correctly standardized.

3This result applies for continuous random variables, but it is straightforward to adapt the result to
the discrete case which is relevant here.
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As Γ(z + 1) = zΓ(z) for any positive real z, this reduces to

k2 + α

T − k1 + λα
>

k2 + α

T − k1 + λα
,

which is equivalent to k1 + λk2 < T . This holds because k1 ≤ T/(1 + λ) and k2 < k1.

Conversely, if k2 = k1−1 ≥ T
1+λ

then the inequality (1) reverses as then k1+λk2 > T .

1.2 Proof of Lemma 4

This section provides the Proof of Lemma 4 which we restate here:

Lemma. Write W (pT ) for an investor’s wealth at time T , as a function of the price of

the risky asset pT . Suppose that W (0) = 0. Then terminal wealth W (pT ) can be achieved

by holding a portfolio of (i) W ′(K0) units of the underlying asset, (ii) bonds with face

value W (K0) − K0W
′(K0), (iii) W ′′(K) dK put options on the risky asset maturing at

time T with strike K, for every K < K0, and (iv) W ′′(K) dK call options maturing at

time T with strike K, for every K > K0. The constant K0 > 0 can be chosen arbitrarily.

Proof. We can write

W (pT ) = W ′(K0)pT + [W (K0)−K0W
′(K0)] +

+

{∫ K0

0

W ′′(K) max {0, K − pT} dK +

∫ ∞
K0

W ′′(K) max {0, pT −K} dK
}
.

To see this, integrate the right-hand side by parts. The result follows after noting that the

three terms on the right-hand side are, respectively, the payoff on a position in W ′(K0)

units of the underlying asset; the payoff on bonds with face value W (K0) −K0W
′(K0);

and the payoffs on the portfolios of put and call options described in the statement.

1.3 Proof of Lemma 5

This section provides the Proof of Lemma 5 which we restate here:

Lemma. If θ > 1, then the sequence
{

(M2
t )(N)

}
(where we include superscripts to em-

phasize the dependence on N) is uniformly integrable.

Proof. The proof of Result 9 showed that (M2
t )(N) is asymptotically equivalent toDeA(ψ

(N))2+Bψ(N)+C ,

where ψ(N) =
m−φN− η

θ
φ
√
N√

φN/2
, A = φ

φ+θ
, and B, C, and D are constants. We will show that

there exists an ε > 0 such that supN E[(eA(ψ
(N))2+Bψ(N)+C)1+ε] < ∞, which implies that

(M2
t )(N) is uniformly integrable. Let us set ε = 1− 2A = 1− 2φ

φ+θ
> 0.
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By Hoeffding’s inequality,

P
(∣∣∣∣m− φN√

φN

∣∣∣∣ ≥ k

)
≤ 2e−k

2

(2)

for any k > 0. For x > 0, this implies that P
(
e

1
1+ε2

(m−φN)2

φN ≥ x

)
≤ 2

x1+ε2
. As

e
1

1+ε2
(m−φN)2

φN ≥ 1, we have

E[e
1

1+ε2
(m−φN)2

φN ] ≤
∫ ∞
0

P
(
e

1
1+ε2

(m−φN)2

φN ≥ x

)
dx ≤ 1 +

∫ ∞
1

2

x1+ε2
dx <∞ .

Finally, note that ψ =
√

2(m−φN√
φN
−
√
φη
θ
) and 2(1 + ε)A < 1/(1 + ε2). Thus there

is a constant, K, such that (1 + ε)(Aψ2 + Bψ + C) < 1
1+ε2

(m−φN)2

φN
+ K, and therefore

E[(eA(ψ
(N))2+Bψ(N)+C)1+ε] < E[e

1
1+ε2

(m−φN)2

φN
+K

] <∞.

2 Result 1 via dynamic completeness

This section presents an alternative proof of Result 1 which exploits the fact that the

market is dynamically complete. We thank an anonymous referee for suggesting this

approach.

Proof. We write qm for the risk neutral probability of reaching node (m,T ), π
(h)
m for

the corresponding probability from the perspective of investor h, w
(h)
m,T for the wealth of

investor h at node (m,T ), and u(·) for utility over terminal wealth. As the market is

dynamically complete, we can equivalently solve for the static Arrow–Debreu equilibrium,

in which investors choose their terminal consumption w
(h)
m,T to solve the problem

max
w

(h)
m,T

T∑
m=0

π(h)
m u(w

(h)
m,T ) subject to

T∑
m=0

qmw
(h)
m,T = p0 .

The first-order conditions for this problem are that

π(h)
m u′(w

(h)
m,T ) = λ(h)qm for all m,

where λ(h) is the Lagrange multiplier on agent h’s budget constraint. We can now use
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the budget constraint to solve for λ(h), giving

∑
m

π
(h)
m u′(w

(h)
m,T )

λ(h)
w

(h)
m,T = p0 .

With log utility, this implies that λ(h) = 1
p0

for all agents h, and hence that

w
(h)
m,T =

π
(h)
m p0
qm

.

As aggregate wealth at node (m,T ) is pm,T , it follows that∫ 1

0
π
(h)
m p0f(h)dh

qm
= pm,T .

The net riskless rate is zero, so
∑

m qm = 1, and hence

T∑
m=0

(∫ 1

0

π(h)
m p0f(h) dh

)
zm,T = 1 ,

where we write zm,T = 1/pm,T as in the main text. Hence the price at time 0 satisfies

p0 =

[
T∑
0

(∫ 1

0

π(h)
m f(h) dh · zm,T

)]−1
.

As π
(h)
m =

(
T
m

)
hm(1− h)T−m, this gives the result.

3 Survival

In this section we assume that there is some true probability of an up-move htrue, and

we are interested in the evolution of the wealth distribution after many periods in the

baseline model in which agents do not learn. (We discuss what happens when agents

learn in the next section.)

For convenience, we will refer to the share of wealth held by type-h agents as Ω(h,m, n).

As shown in the main text,

Ω(h,m, n) =
hm(1− h)nf(h)∫ 1

0
hm(1− h)nf(h) dh

.
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Figure 1: Decay rate (left panel) and half-life (right panel) plotted against the true
up-probability, htrue, for investors h = 0.3, 0.5, 0.9.

We are interested in the case m = htruet and n = (1− htrue)t, where the elapsed number

of periods, t, is large. For h 6= htrue, the share of wealth will (asymptotically) decay

exponentially. Thus we focus on the asymptotic rate of exponential decay in agent h’s

share of wealth, namely,

lim
t→∞
−1

t
log Ω(h,m, n) = lim

t→∞
−1

t
log

hhtruet(1− h)(1−htrue)tf(h)∫ 1

0
hhtruet(1− h)(1−htrue)tf(h) dh

= −htrue log h− (1− htrue) log(1− h) + lim
t→∞

log f(h)

t
+

+ lim
t→∞

1

t
log

∫ 1

0

hhtruet(1− h)(1−htrue)tf(h) dh

= −htrue log h− (1− htrue) log(1− h) + lim
t→∞

log f(h)

t
+

+ lim
t→∞

1

t
log

∫ 1

0

exp {[htrue log h+ (1− htrue) log (1− h)] t+ log f(h)} dh

= −htrue log h− (1− htrue) log(1− h) + 0 +

+ sup
h

{
htrue log h+ (1− htrue) log (1− h)

}
= htrue log

htrue
h

+ (1− htrue) log
1− htrue

1− h
. (3)

This quantity is strictly positive when h 6= htrue, indicating that the wealth share of

all types other than the objectively correct type decays exponentially fast for large t.

The left panel of Figure 1 shows how the asymptotic decay rate (3) varies, as a

function of the true probability htrue, for investors with h = 0.3, 0.5, and 0.9. The right

panel shows the asymptotic half-life, log 2
decay rate

; this represents the number of time periods

required for an investor’s wealth share to halve. Although investors who are incorrect,

6



0.0 0.2 0.4 0.6 0.8 1.0
h0

1

2

3

4

0.1 0.2 0.3 0.4 0.5
σ

0.91

0.92

0.93

0.94

0.95

0.96

price

Figure 2: Left: The wealth distribution, plotted against agent type h, after t = 25, 50,
100, 200, 400, and 800 periods. The figure assumes that 60% of moves are up-moves
and sets ζ = 24, as in the example illustrated in Figure 3 of Section 2.1. Right: The
time 0 price of the risky asset in the example studied in Figure 2 of the main paper,
if agents learn over time, as a function of σ = 1√

4(1+ζ)
, the standard deviation of the

median agent’s prior belief.

h 6= htrue, experience exponential decay in wealth share, it takes several periods for

investors who are roughly correct to become irrelevant. For example, the half-life for

investor h = 0.5 is more than 34 periods for all values of htrue between 0.4 and 0.6.

4 Learning

As noted in the main text, all agents survive asymptotically in the case in which agents

learn, as the truth is in the support of every agent’s prior, and every agent’s posterior

belief will converge to the truth (Blume and Easley, 2006). The left panel of Figure 2

illustrates shows the wealth distribution as a function of agent type in the case ζ = 24,

as in the example illustrated in Figure 3 of Section 2.1. The figure assumes that 60%

of moves are up-moves and plots the wealth distribution after 25, 50, 100, 200, 400, and

800 periods.

The right panel of Figure 2 shows how the time 0 price of the risky asset in the

illustrative example provided in Figure 2 of the main paper varies if agents learn over

time. The variable on the x-axis is σ, the standard deviation of the median agent’s

prior belief; in the example in the main paper, σ = 0. The maximum possible standard

deviation is σ = 1/2. As 1/pm,t is convex in this example (which could be checked directly,

but in this case can be seen immediately using the sufficient condition that log pm,t is

weakly concave), the price declines as investors’ prior uncertainty increases (i.e., as ζ

decreases), as shown more generally in Result 4.
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5 Volume and leverage

Recall that the leverage ratio of investor h, which we define as the ratio of funds borrowed,

xhp− wh, to wealth, wh, is
xhp− wh

wh
=

h−Hm,t

Hm,t − h∗
.

If pu > pd then h∗ < Hm,t, by equation (8) of the paper; in this case the above equation

shows that people who are optimistic relative to the representative investor borrow from

pessimists. We can define gross leverage as the total dollar amount these optimists

borrow, scaled by aggregate wealth:∫ 1

Hm,t
(xhp− wh) f(h) dh

p
=

∫ 1

Hm,t

whf(h)

p

h−Hm,t

Hm,t − h∗
dh

=
Hm+α
m,t (1−Hm,t)

n+β

(m+ α + n+ β)B(α +m,β + n)(Hm,t − h∗)
,

where we use the fact that Hm+α
m,t (1−Hm,t)

n+β = −
∫ 1

Hm,t

(
hm+α(1− h)n+β

)′
dh to derive

the final expression. Conversely, if pu < pd then optimists are lenders and pessimists

borrowers. In either case, we can define gross leverage as the absolute value of the above

expression,
Hm+α
m,t (1−Hm,t)

n+β

(m+ α + n+ β)B(α +m,β + n) |Hm,t − h∗|
. (4)

5.1 Volume and leverage in the risky bond and bubbly asset

examples

The left panel of Figure 3 shows the time series of volume and gross leverage in the

risky bond example with ε = 0.3, assuming bad news arrives each period. (If good

news arrives at any stage, volume drops permanently to zero.) There is a burst of trade

at first: volume substantially exceeds the total supply of the asset initially, as agents

with extreme views undertake highly leveraged trades, but declines rapidly over time as

wealth becomes concentrated in the hands of investors with similar beliefs. The right

panel shows the corresponding series if ε = 0.9.

Assuming a down-movement in the transition from time t to time t + 1, the volume

of trade (in terms of the number of units of the risky asset transacted) is

1

2

∫ 1

0

∣∣∣∣∣(1− h)t

1
1+t

h− h∗t
H0,t − h∗t

− (1− h)t+1

1
2+t

h− h∗t+1

H0,t+1 − h∗t+1

∣∣∣∣∣ dh =
4(1 + t)1+t

(3 + t)3+t
·
∣∣∣∣1 + t+

1 + εT

1− ε

∣∣∣∣ ,
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Figure 3: Volume (solid) and gross leverage (dashed) over time in the risky bond example,
with ε = 0.3 (left) or ε = 0.9 (right).

where we include the factor of 1/2 to avoid double-counting.

Gross leverage, in the same transition, calculated from (4), is(
1 + t

2 + t

)2+t ∣∣∣∣1 +
1 + T

1 + t

ε

1− ε

∣∣∣∣ .
Note that the above formulas hold both for the risky bond case (ε < 1) and for the

bubbly asset case (ε > 1). (For simplicity, we assume here that in the bubbly asset case,

the good outcome ε > 1 occurs at the bottom node, rather than at the top node as in the

paper. This makes no substantive difference and allows us to use the same formula as for

the risky bond case, but means that throughout this subsection a down-move must be

interpreted as good news in the bubbly asset case.) In the former case volume and gross

leverage are each increasing in ε and in T . The safer the bond is, the more aggressively

agents trade on their disagreement without risking ruin, as the relative safety of the

asset permits agents to take on more leverage: extremists on both sides of the market

are trying to “pick up nickels in front of a steamroller.” Similarly, in the bubbly asset

case both volume and gross leverage are decreasing in ε.

6 Static trade in the risky bond example

This section contains some further calculations in the risky bond example, assuming

f(h) = 1. Suppose agents are not allowed to trade dynamically. Agent h perceives a

probability 1 − (1 − h)T that the bond pays 1, and (1 − h)T that the bond pays ε, so
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solves

max
xh

(
1− (1− h)T

)
log (wh − xhp+ xh) + (1− h)T log (wh − xhp+ xhε) .

The first-order condition (after setting wh = p to account for the fact that all agents are

initially endowed with a unit of the risky asset) is

xh = p

(
1− (1− h)T

p− ε
− (1− h)T

1− p

)
.

If T is reasonably large, most agents will have (1−h)T ≈ 0, and so will choose xh ≈ p
p−ε ;

their wealth in the bad state of the world is then approximately zero. Thus, if forced to

trade statically most agents will lever up (almost) as much as possible without risking

bankruptcy.

For the market to clear, we require
∫ 1

0
xh dh = 1, which implies that p = (1+T )ε

1+Tε
. This

is the same as the time-0 price in the case with dynamic trade. It follows that agent h’s

demand for the asset is

xh = 1 +
(
1− (1 + T )(1− h)T

) 1 + Tε

T (1− ε)
.

This is the quantity plotted as the “fundamental” position in Figure 5 of the paper.

7 Two calibrations in the Brownian limit

Figure 4 shows the two calibrations discussed in the main paper.

8 Option prices in the Poisson limit

To state our results in an economical way, we write

A = e−J
[
1− ω2λ(T − t)(eJ − 1)

1 + ω2λt

]
< 1 and B =

[
1− ω2λ(T − t)(eJ − 1)

1 + ω2λt

]1/ω2

,

(5)

so that the price of the risky asset, at time t, if q jumps have taken place, is BAq.

The option pricing result is most cleanly stated when the strike K = BAk, where

k ≥ 0 is an integer. For strikes not of this form, options are priced by interpolating

linearly in strike: that is, if K = BAk+1 and K = BAk and K = χK + (1 − χ)K for

χ ∈ (0, 1), then the price of an option with strike K is the convex combination of the
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Figure 4: Term structures of implied and physical volatility, mean expected returns and
disagreement in the baseline (left) and crisis (right) calibrations.

prices of options with strikes K and K, with weights χ and 1− χ, respectively. (To see

this, note that the price of a butterfly spread constructed using options of all three strikes

is zero, because the probability of the underlying asset’s price lying strictly between K

and K at expiry is zero by definition of K and K.)

Result 1. The time 0 price of a put option, expiring at time t, with strike BAk is4

p0 (1− C)1/ω
2

C1+k

(
k + 1/ω2

k + 1

)[
1

A
F
(
1, 1 + k + 1/ω2, 2 + k, C/A

)
− F

(
1, 1 + k + 1/ω2, 2 + k, C

)]
,

where the price of the underlying asset is p0 =
[
1− ω2λT

(
eJ − 1

)]1/ω2

, k ≥ 0 is an

integer, A and C are defined as in (5), C = ω2λt/(1 + ω2λt), and F (·, ·, ·, ·) is Gauss’s

hypergeometric function.

In the case ω = 1, this simplifies to
(

λt
1+λt

)k+1
(1+λT )(eJ−1), whereas if beliefs are ho-

mogeneous (ω = 0) then the price of the put option is e−λt−λT(eJ−1)∑
q>k

(λt)q

q!

(
eJ(q−k) − 1

)
.

Proof of Result 1. Following the same logic as in the proof of Result 7 of the paper, the

put price is p0 E
[(
Ak−q − 1

)+]
. As n→∞, a beta binomial distribution with parameters

n, α, ωn approaches a negative binomial distribution with parameters α and 1/(1 + ω),

so q is asymptotically distributed NegativeBinomial (1/ω2, C). Thus the put price is

p0
∑
q>k

(
q + 1/ω2 − 1

q

)
(1− C)1/ω

2

Cq
(
Ak−q − 1

)
4We write

(
n
k

)
for the generalized binomial coefficient n(n−1)(n−2)···(n−k+1)

k! , which is defined for k ∈ N
and arbitrary n.
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Figure 5: Left: The volatility smile for options of maturity 1 month and 2 years, in
heterogeneous (solid) and homogeneous (dashed) belief economies. Right: The term
structure of at-the-money implied volatility plotted against time-to-expiry, t, in hetero-
geneous (solid) and homogeneous (dashed) belief economies. Both panels use the baseline
calibration.

which reduces to the given formulas in the cases ω > 0 and ω = 1.

As ω → 0, the negative binomial random variable q converges to a Poisson random

variable with mean λt, and A approaches e−J . Thus the put price is

p0

∞∑
q=0

e−λt
(λt)q

q!

(
eJ(q−k) − 1

)+
= e−λt−λT(eJ−1)

∑
q>k

(λt)q

q!

(
eJ(q−k) − 1

)
.

Figure 5 illustrates. The left panel plots the Black–Scholes implied volatility for

short-dated (t = 1/12) and long-dated (t = 2) options across a range of strikes, both

with and without heterogeneity. Short-dated options exhibit a steeper smirk than long-

dated options. Heterogeneity increases the level of volatility and further steepens the

smirk relative to the homogeneous economy. The right panel plots the term structure of

implied volatility for at-the-money options, which exhibits a hump shape in the presence

of heterogeneous beliefs.
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