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A Proof of Proposition 1

The date s problem of an individual i born at date s can be written as:

max
{cst (i),`st (i),ast+1(i)}

−Es
∞∑
t=s

(βϑ)t−s
( t−1∏
k=s

ζk

){1

γ
e−γc

s
t (i) + ρe

1
ρ

[`st (i)−ξst (i)]
}

s.t.

cst (i) + qta
s
t+1(i) = wt`

s
t (i) + (1− τat )ast (i) +Dt − Tt (A.1)

where ass(i) = 0, wt = (1− τw)w̃t, τ
a
t = 0 for t > 0 and ζt is the discount-factor shock introduced in Online

Appendix J. The optimal labor supply decision of household i is given by:

`st (i) = ρ lnwt − γρcst (i) + ξst (i) (A.2)

and the Euler equation for all dates t > 0 is given by:

e−γc
s
t (i) = βζtRt(1− τat+1)Ete−γc

s
t+1(i) (A.3)

where we have used the fact that qt = ϑ
Rt

. Next, guess that the consumption decision rule takes the form:

cst (i) = Ct+µtxst (i) (A.4)

where xst (i) = (1− τat )ast (i) + wt
(
ξst (i)− ξ

)
is de-meaned cash-on-hand and so, xst+1(i) is given by

xst+1(i) = (1− τat+1)ast+1(i) + wt+1

(
ξst+1(i)− ξ

)
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Substituting out tor ast+1(i) and `st (i) using (A.1) and (A.2), and using the definition of xst (i), the above

expression can be written as

xst+1(i) =
(1− τat+1)Rt

ϑ

{
xst (i) + wt

(
ρ lnwt + ξ

)
+Dt − Tt − (1 + γρwt)c

s
t (i)
}

+ wt+1

(
ξst+1(i)− ξ

)
Since xst+1(i) is normally distributed, given (A.4), cst+1(i) is also normally distributed with mean:

Etcst+1(i) = Ct+1 + µt+1
(1− τat+1)Rt

ϑ

[
xst (i) + wt

(
ρ lnwt + ξ̄

)
+Dt − Tt − (1 + γρwt) c

s
t (i)
]

and variance:

Vt
(
cst+1(i)

)
= µ2

t+1w
2
t+1σ

2
t+1

Taking logs of (A.3) and using the two expressions above:

cst (i) = −1

γ
ln[βζtRt(1− τat+1)]− 1

γ
lnEte−γc

s
t+1(i)

= −1

γ
ln[βζtRt(1− τat+1)] + Etcst+1(i)− γ

2
Vt
(
cst+1(i)

)
= −1

γ
ln[βζtRt(1− τat+1)] + Ct+1

+µt+1
(1− τat+1)Rt

ϑ

[
xst (i) + wt

(
ρ lnwt + ξ̄

)
+Dt − Tt − (1 + γρwt) c

s
t (i)
]

−
γµ2

t+1w
2
t+1σ

2
t+1

2

Combining the cst (i) terms and using (A.4), the above can be rewritten as:[
1 + µt+1

(1− τat+1)Rt

ϑ
(1 + γρwt)

]
cst (i) = −1

γ
ln[βζtRt(1− τat+1)] + Ct+1 −

γµ2
t+1w

2
t+1σ

2
t+1

2

+µt+1
(1− τat+1)Rt

ϑ

[
xst (i) + wt

(
ρ lnwt + ξ̄

)
+Dt − Tt

]
Using cst (i) = Ct + µtx

s
t (i), we have:[

1 + µt+1
(1− τat+1)Rt

ϑ
(1 + γρwt)

]
{Ct + µtx

s
t (i)} = −1

γ
ln[βζtRt(1− τat+1)] + Ct+1 −

γµ2
t+1w

2
t+1σ

2
t+1

2

+µt+1
(1− τat+1)Rt

ϑ

[
wt
(
ρ lnwt + ξ̄

)
+Dt − Tt

]
+µt+1

(1− τat+1)Rt

ϑ
xst (i)

Matching coefficients on xst (i), we have for all t ≥ 0:

µ−1
t = 1 + γρwt +

ϑ

(1− τat+1)Rt
µ−1
t+1 (A.5)
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Notice that (A.5) is the same as (18) in the paper once we use the fact that τat+1 = 0 for all t ≥ 0. Next,

since the expression above must hold for all values of xst (i) including xst (i) = 0, we have

Ct = − ϑµt
µt+1(1− τat+1)Rt

1

γ
ln[βζt(1− τat+1)Rt] +

ϑµt
µt+1(1− τat+1)Rt

Ct+1 + µt
[
wt
(
ρ lnwt + ξ̄

)
+Dt − Tt

]
− ϑ

(1− τat+1)Rt

µt
µt+1

γµ2
t+1w

2
t+1σ

2
t+1

2
(A.6)

Next, aggregate hours worked are given by `t = ρ lnwt − γρCt + ξ and hence aggregate income is yt =

wt`t +Dt − Tt = wtρ lnwt − γρwtCt + wtξ +Dt − Tt. Using this in (A.6) together with Ct = yt yields

[1− µt(1 + γρwt)] yt = − ϑµt
µt+1(1− τat+1)Rt

1

γ
ln[βζt(1− τat+1)Rt] +

ϑµt
µt+1(1− τat+1)Rt

yt+1

− ϑ

(1− τat+1)Rt

µt
µt+1

γµ2
t+1w

2
t+1σ

2
t+1

2

Next, (A.5) implies that 1− µt(1 + γρwt) = ϑµt
µt+1(1−τat+1)Rt

so dividing both sides of the equation above by

1− µt(1 + γρwt) yields

yt = −1

γ
ln[βζt(1− τat+1)Rt] + yt+1 −

γµ2
t+1w

2
t+1σ

2
t+1

2

B Derivation of Σ recursion

B.1 Evolution of cash-on-hand within cohort

Given the consumption function and the definition of x, the evolution of cash on hand can be written as:

xst+1(i) = ast+1(i) + wt+1(ξst+1(i)− ξ)

=
Rt
ϑ

[
xst (i) + wt

(
ρ lnwt + ξ̄

)
− Tt +Dt − (1 + ργwt) yt − (1 + ργwt)µtx

s
t (i)
]

+ wt+1(ξst+1(i)− ξ)

=
Rt
ϑ

[1− (1 + ργwt)µt]x
s
t (i) + wt+1(ξst+1(i)− ξ)

where we have used the fact that τat = 0 for all dates t > 0. In the last line, we have used the definition of

aggregate income yt = wt(ρ lnwt − γρyt + ξ)− Tt +Dt. Multiplying both sides by µt+1:

µt+1x
s
t+1(i) = µt+1

Rt
ϑ

[1− (1 + ργwt)µt]x
s
t (i) + µt+1wt+1(ξst+1(i)− ξ)

and using (18) in the paper, we have µt+1x
s
t+1(i) = µtx

s
t (i)+µt+1wt+1(ξst+1(i)−ξ). That is, µtx

s
t (i) follows

a random walk within cohort. This implies that in steady state with µt = µ, xst (i) ∼ N
(
0, (t+ 1− s)w2σ2

)
and ast (i) ∼ N

(
0, (t− s)w2σ2

)
.
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B.2 Objective function of planner

Substituting labor supply (16) in the paper into the objective function, we can write the date 0 expected

utility of individual i from the cohort born at date s going forwards as:

W s
0 (i) = −1

γ
E0

∞∑
t=0

βt|0ϑ
t (1 + γρwt) e

−γcst (i) = −1

γ
E0

∞∑
t=0

βt|0ϑ
t (1 + γρwt) e

−γyt−γµtxst (i)

where we have used the consumption function (15) in the paper and the fact that in equilibrium Ct = yt.

We assume that the planner puts a weight of ℘s(i) on individual i born at date s ≤ 0 and βs|0 = βs
∏s−1
k=0 ζk

on the lifetime welfare of individuals who will be born at date s > 0. Then the social welfare is:

W0 = (1− ϑ)

0∑
s=−∞

ϑ−s
∫
℘s(i)W s

0 (i)di︸ ︷︷ ︸
welfare of those alive at date 0

+ (1− ϑ)

∞∑
s=1

βs|0

∫
W s
s (i)di︸ ︷︷ ︸

welfare of the unborn at date 0

Using the definition of W s
0 (i) and W s

s (i), notice that W0 can be written as:

W0 = −1

γ

∞∑
t=0

βt (1 + γρwt) e
−γyt︸ ︷︷ ︸

utility of rep. agent

Σt

where Σt is defined as:

Σt = (1− ϑ)
0∑

s=−∞
ϑt−s

∫
℘s (i) e−γ(cst (i)−ct)di+ (1− ϑ)

t∑
s=1

∫
ϑt−se−γ(cst (i)−ct)di

= (1− ϑ)

0∑
s=−∞

ϑt−s
∫
℘s (i) e−γµtx

s
t (i)di+ (1− ϑ)

t∑
s=1

∫
ϑt−se−γµtx

s
t (i)di (B.1)

Thus, we can write W0 as:

W0 =

∞∑
t=0

βt|0Ut where Ut = −1

γ
(1 + γρwt)e

−γytΣt

Next, we write (B.1) as:

Σt = (1− ϑ)
0∑

s=−∞
ϑt−s

∫
℘s (i) e−γµtx

s
t (i)di+ (1− ϑ)

t−1∑
s=1

∫
ϑt−se−γµtx

s
t (i)di+ (1− ϑ)

∫
e−γµtx

t
t(i)di

= ϑ

{
(1− ϑ)

0∑
s=−∞

ϑt−1−s
∫
℘s (i) e−γµtx

s
t (i)di+ (1− ϑ)

t−1∑
s=1

∫
ϑt−1−se−γµtx

s
t (i)di

}
+ (1− ϑ)

∫
e−γµtx

t
t(i)di
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Using µtx
s
t (i) = µt−1x

s
t−1 (i) + µtwt

(
ξst (i)− ξ

)
from Appendix B.1:

Σt = ϑ
{

(1− ϑ)
0∑

s=−∞
ϑt−1−s

∫
℘s (i) e−γ{µt−1xst−1(i)+µtwt(ξst (i)−ξ)}di

+ (1− ϑ)

t−1∑
s=1

∫
ϑt−1−se−γ{µt−1xst−1(i)+µtwt(ξst (i)−ξ)}di

}
+ (1− ϑ)

∫
e−γµtx

t
t(i)di

= ϑe
1
2
γ2µ2

tw
2
t σ

2
t

{
(1− ϑ)

0∑
s=−∞

ϑt−1−s
∫
℘s (i) e−γµt−1xst−1(i)di+ (1− ϑ)

t−1∑
s=1

∫
ϑt−1−se−γµt−1xst−1(i)di

}

+ (1− ϑ)

∫
e−γµtx

t
t(i)di

= e
1
2
γ2µ2

tw
2
t σ

2
t [1− ϑ+ ϑΣt−1]

Taking logs, this is the same for dates t > 0 as (27) in the paper. For date 0:

Σ0 = (1− ϑ)

0∑
s=−∞

ϑ−s
∫
℘s (i) e−γµ0xs0(i)di

= (1− ϑ)
0∑

s=−∞
ϑ−s

∫
℘s (i) e−γµ0(1−τa0 )as0(i)e−γµ0w0(ξs0(i)−ξ)di

= (1− ϑ) e
1
2
γ2µ2

0w
2
0σ

2
0

0∑
s=−∞

ϑ−s
∫
℘s (i) e−γµ0(1−τa0 )as0(i)di

where we use the fact that xs0(i) = (1 − τa0 )as0(i) + w0(ξs0(i) − ξ). Next, we restrict ℘s(i) = eγαa
s
0(i) where

α ≥ 0 measures the planner’s tolerance for pre-existing wealth inequality at date 0. Then we can write Σ0

as:

Σ0 = (1− ϑ) e
1
2
γ2µ2

0w
2
0σ

2
0

0∑
s=−∞

ϑ−s
∫
e−γ[α−µ0(1−τa0 )]as0(i)di

Since as0(i) ∼ N
(
0,−sw2σ2

)
for s ≤ 0, this can be rewritten as:

Σ0 = (1− ϑ) e
1
2
γ2µ2

0w
2
0σ

2
0

0∑
s=−∞

ϑe γ2µ2w2σ2

2

[
α−µ0(1−τa0 )

µ

]2
−s

=
(1− ϑ) e

1
2
γ2µ2

0w
2
0σ

2
0

1− ϑe
γ2µ2w2σ2

2

[
α−µ0(1−τa0 )

µ

]2

Taking logs, rewriting and using the definition Λ = γ2µ2w2σ2, this is the same as (45) in the paper and

with α = 0, this is the same as (28) in the paper.
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B.2.1 The Utilitarian planner

The Utilitarian planner is one who assigns ℘s(i) = 1 for all households alive at date 0. In this case the

expression for Σ0 can be simplified to:

Σt = (1− ϑ)

t∑
s=−∞

ϑt−se
1
2
γ2σ2

c (s,t)

To see this, impose ℘s(i) = 1 in (B.1), which can then be written as:

Σt = (1− ϑ)
t∑

s=−∞
ϑt−s

∫
e−γµtx

s
t (i)di

Given the consumption function (15) in the paper and the normality of shocks, the consumption of newly

born individuals at any date s is normally distributed with mean ys and variance σ2
c (s, s) = µ2

sw
2
sσ

2
s

since they all have zero wealth. Given the linearity of the budget constraint, it follows that newly born

agents’ savings decisions ass+1(i) are also normally distributed with mean 0 and variance σ2
a(s + 1, s) =(

Rs
ϑ

)2
[1− (1 + γρws)µs]

2w2
sσ

2
s . By induction, it follows that for any cohort born at date s, the cross-

sectional distribution of consumption at any date t > s is normal with mean yt and variance

σ2
c (t, s) = µ2

tσ
2
a (t, s) + µ2

tw
2
t σ

2
t (B.2)

while the distribution of asset holdings is normal with mean 0 and variance

σ2
a(t, s) =

R2
t−1

ϑ2
[1− (1 + γρwt−1)µt−1]2

[
σ2
a(t− 1, s) + w2

t−1σ
2
t−1

]
(B.3)

C Some auxiliary results

In the proofs that follow, we shall make liberal use of the following assumptions and results.

Assumption 1. Throughout the paper, we shall assume that:

1. ϑ ≥ 1
2

2. βϑ > e−
1
2 = 0.61

3. σ < min {σ1, σ2} where σ1 =
√√√√ 2ρ2 lnϑ−1(

γρ
1+γρ

)2
(

2(1−ϕγ ) lnϑ−1

1+2 lnϑ
+(1−β)

)2 and σ2 = ρ√
(1−βϑ)(1+γρ+1−βϑ)

.

Lemma 1. Given that βϑ > e−
1
2 , we have Λ < 1 and β̃ < 1.

Proof. Recall that in steady state, Λ = γ2µ2w2σ2 > 0, i.e.:

Λ =
σ2

ρ2

(
γρw

1 + γρw

)2 (
1− βϑe

Λ
2

)2
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Rearranging:

f (Λ) ≡ Λ(
1− βϑe

Λ
2

)2 =
σ2

ρ2

(
γρw

1 + γρw

)2

(C.1)

Now, f (Λ) is increasing for Λ < Λ∗ ≡ −2 lnβϑ < 1 given our assumption, and goes to ∞ as Λ→ Λ∗. For

any values of σ and ρ, we can find some 0 < Λ < Λ∗ satisfying f
(
Λ
)

= σ2

ρ2 . Thus, any solution to (C.1)

must satisfy Λ ≤ Λ < Λ∗ < 1. By construction, for any Λ < Λ∗, β̃ = βθe
Λ
2 < 1.

Lemma 2. For σ < [0, σ1), we have ϑe
Λ
2 < 1.

Proof. First we show that ϑe
Λ
2 = 1 implies that σ = σ. Starting from the expressions for wages in steady

state, using ϑe
Λ
2 = 1 we have:

w − 1

1 + γρw
=

Θ− 1 + Λ

(1− Λ)(1− β̃)
=

2
(

1− ϕ
γ

)
lnϑ−1

(1 + 2 lnϑ) (1− β)

Add 1 to both sides and multiply by γρ
1+γρ to get:

γρw

1 + γρw
=

 2 lnϑ−1
(

1− ϕ
γ

)
(1 + 2 lnϑ)

(
1− β̃

) + 1

 γρ

1 + γρ

Next, using the expression above in the definition of Λ, we have:

σ2 =
2 lnϑ−1(

γρ
1+γρ

)2
(
−2 lnϑ

(
1−ϕ

γ

)
(1+2 lnϑ) + (1− β)

)2

which is the same as σ1 defined in Assumption 1. Second, note that when σ2 = 0, we have Λ = 0 and

ϑe
Λ
2 = ϑ < 1. By continuity it follows that for σ ∈ [0, σ1), we have ϑe

Λ
2 < 1.

Corollary 1. The following is true:

1− β−1β̃ (1− Λ) > 0

Proof.

1− β−1β̃ (1− Λ) = 1− ϑe
Λ
2 (1− Λ) > 0
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D First-order condition of the planning problem

D.1 Optimally set fiscal instruments

The planner chooses τa0 and τw optimally absent aggregate shocks (zt = 1 and εt = ε ∀t). This problem

can be written as:

max
{wt,yt,µt,Σt,Πt}∞t=0,τ

a
0 ,τ

w

∞∑
t=0

βt
{
−1

γ
(1 + γρwt) e

−γytΣt

}
s.t.

γyt = γyt+1 − lnβϑ+ lnµt+1 + ln
[
µ−1
t − (1 + γρwt)

]
−
γ2µ2

t+1w
2σ2

2
e2ϕ(yt+1−y) (D.1)

(Πt − 1) Πt =
ε

Ψ

[
1− 1− τw

wt

]
+ β

(
yt+1wt+1

ytwt

)
(Πt+1 − 1) Πt+1 (D.2)

ln Σt =
γ2µ2

tw
2σ2

2
e2ϕ(yt−y) + ln [1− ϑ+ ϑΣt−1] + I(t = 0) ln

 1− ϑe
Λ
2

1− ϑe
Λ
2

(
α−(1−τa0 )µ0

µ

)2

 (D.3)

yt =
ρ lnwt + ξ

1 + γρ+ Ψ
2 (Πt − 1)2 (D.4)

Let M1,t denote the multiplier on the date t aggregate Euler equation, M2,t that on the date t Phillips

curve, M3,t that on the date t Σ recursion and M4,t that on the relationship between yt, wt and Πt). The

necessary conditions for optimality are as follows.

First-order condition with respect to wt:

Ut
γρwt

1 + γρwt
+M2,t−1

(
ytwt

yt−1wt−1

)
(Πt − 1) Πt −M1,t

γρwt

µ−1
t − (1 + γρwt)

+M2,t

{
ε (1− τw)

Ψwt
− β

(
yt+1wt+1

ytwt

)
(Πt+1 − 1) Πt+1

}
− M4,t

γ

γρ

1 + γρ+ Ψ
2 (Πt − 1)2 = 0 (D.5)

FOC wrt yt:

−γUt − γM1,t + β−1M1,t−1

{
γ − ϕγ2µ2

tw
2σ2e2[ϕ(yt−y)]

}
+M2,t−1

(
wt

yt−1wt−1

)
(Πt − 1) Πt

−βM2,t

(
yt+1wt+1

y2
twt

)
(Πt+1 − 1)Πt+1 +M3,tϕγ

2µ2
tw

2σ2e2ϕ(yt−y) +M4,t = 0

(D.6)
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FOC wrt µt:

−M1,t
µ−1
t

µ−1
t − 1− γρwt

+ β−1M1,t−1

[
1− γ2σ2w2µ2

t e
2ϕ(yt−y)

]
+M3,tγ

2σ2w2µ2
t e

2ϕ(yt−y)

−I(t = 0)M3,0
ϑe

Λ
2

(
α−(1−τa0 )µ0

µ

)2

1− ϑe
Λ
2

(
α−(1−τa0 )µ0

µ

)2 Λ

(
α− (1− τa0 )µ0

µ

)
(1− τa0 )

µ0

µ
= 0

(D.7)

FOC wrt Σt:

Ut −M3,t + βM3,t+1
ϑΣt

1− ϑ+ ϑΣt
= 0 (D.8)

FOC wrt Πt:[(
ytwt

yt−1wt−1

)
M2,t−1 −M2,t

]
(2Πt − 1) + ΨM4,t

ρ lnwt + ξ[
1 + γρ+ Ψ

2 (Πt − 1)2
]2 (Πt − 1) = 0 (D.9)

FOC wrt τa0 :

M3,0
ϑe

Λ
2

(
α−(1−τa0 )µ0

µ

)2

1− ϑe
Λ
2

(
α−(1−τa0 )µ0

µ

)2 Λ

(
α− (1− τa0 )µ0

µ

)
µ0

µ
= 0 (D.10)

FOC wrt τw:

∞∑
t=0

βt
M2,t

wt
= 0 (D.11)

We guess and verify that the optimal solution features yt = y, wt = w, µt = µ and Πt = 1 such that

(1− β̃) w−1
1+γρw = Ω. Plugging in the guesses into the FOCs, (D.9) implies M2,t−1 = M2,t. Given this, (D.11)

implies that M2,t = 0 for all t ≥ 0. Using µt = µ in (D.10), we have:

1− τa0 =
α

µ

as long as M3,0 6= 0. In particular, if α = 0, i.e., the planner is utilitarian, we have τa0 = 1. Next, we show

that M3,0 6= 0. To see this, notice that (D.8) can be rewritten as:

1− M3,t

Ut
+ βϑ

M3,t+1

Ut+1

Σt+1

1− ϑ+ ϑΣt
= 0 ⇒ M3,t

Ut
= 1 + β̃

M3,t+1

Ut+1
(D.12)

where we have used the fact that Ut+1/Ut = Σt+1/Σt and Σt+1

1−ϑ+ϑΣt
= e

Λ
2 since yt = y, wt = w and µt = µ.

Iterating forwards, we get M3,t/Ut = (1− β̃)−1 6= 0.

9



Using this, (D.5), (D.6) and (D.7) become:

(1 + γρ)w

1 + γρw
+ (1− β̃−1)

M1,t

Ut
(1 + γρ)w

1 + γρw
− 1

γ

M4,t

Ut
= 0 (D.13)

−1− M1,t

Ut
+ β−1M1,t−1

Ut

(
1− ϕΛ

γ

)
+

1

1− β̃
ϕΛ

γ
+

1

γ

M4,t

Ut
= 0 (D.14)

and

−β̃−1M1,t

Ut
+ β−1 (1− Λ)

M1,t−1

Ut
+ Λ

1

1− β̃
= 0 (D.15)

where we have used µ−1 = 1+γρw

1−β̃
. Next, combining (D.13) and (D.14), we get:

w − 1

1 + γρw
+

[(
1− β̃−1

) w − 1

1 + γρw
− β̃−1

]
M1,t

Ut
+ β−1Θ

M1,t−1

Ut
+ (1−Θ)

1

1− β̃
= 0 (D.16)

Combining (D.15) with (D.16), we get: w − 1

1 + γρw
− Θ− 1 + Λ(

1− β̃
)

(1− Λ)

[1 + β−1
(

1− β̃
)M1,t−1

Ut

]
= 0 (D.17)

In particular, this must be true at date 0 when M1,−1 = 0. This requires:(
1− β̃

) w − 1

1 + γρw
=

Θ− 1 + Λ

1− Λ

which is the same as the definition of Ω in (29) in the main text. Given that w satisfies this restriction,

(D.17) is also true at all subsequent dates. Since Π = 1, this implies from the Phillips curve that

1− τw = w−1 =
1− β̃ + Ω

1− β̃ − γρΩ

It follows that all FOCs and constraints are satisfied by our guesses and given the optimal values of τa0 and

τw, the variables yt,Πt, µt, wt remain at their steady state level absent aggregate shocks.

D.2 Steady state of the optimal plan

Imposing steady state on (D.3), one gets:

Σ =
(1− ϑ) e

Λ
2

1− ϑe
Λ
2

10



We already know from (D.12) in steady state that m3 = 1

1−β̃
and that m2 = 0 from (D.11) where

mi = Mi/U for i = {1, 2, 3, 4}. Next, imposing steady state in (D.15) yields:

m1 =
β̃

1− β̃

[
Λ

1− β−1β̃ (1− Λ)

]
(D.18)

Notice that since Λ = 0 in RANK, we have m1 = 0. Finally, using this in (D.13) and imposing steady

state yields:

m4 = γ

(
1− β−1β̃

)
(1− Λ)

1− β−1β̃ (1− Λ)

(
1 +

Ω

1− β̃

)
(D.19)

where Ω = Θ−1+Λ
1−Λ .

D.3 Optimal monetary policy given optimally set fiscal policy

The planning problem can be written as:

max
{wt,yt,µt,Σt,Πt}∞t=0

∞∑
t=0

βt

(
t−1∏
k=0

ζk

){
−1

γ
(1 + γρwt) e

−γytΣt

}
(D.20)

s.t.

γyt = γyt+1 − lnβϑ− ln ζt + lnµt+1 + ln
[
µ−1
t − (1 + γρwt)

]
−
γ2µ2

t+1w
2σ2

2
e2ϕ(yt+1−y)+2ςt+1

(D.21)

(Πt − 1) Πt =
εt
Ψ

[
1− εt − 1

εt

(1− τw)zt
(1− τ?)wt

]
+ β

(
ztwt+1yt+1

zt+1wtyt

)
(Πt+1 − 1) Πt+1 (D.22)

ln Σt =
γ2µ2

tw
2σ2

2
e2{ϕ(yt−y)+ςt} + ln [1− ϑ+ ϑΣt−1] + I(t = 0) ln

 1− ϑe
Λ
2

1− ϑe
(
α
µ

)2
Λ
2

(
µ−µ0
µ

)2

(D.23)

yt =
zt
(
ρ lnwt + ξ

)
1 + γρzt + Ψ

2 (Πt − 1)2 (D.24)
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and Σ−1 = 1. The problem can be written as a Lagrangian:

L =

∞∑
t=0

βt

(
t−1∏
k=0

ζk

){
−1

γ
(1 + γρwt) e

−γytΣt

}

+
∞∑
t=0

βt

(
t−1∏
k=0

ζk

)
M1,t

{
γyt+1 − lnβϑ− ln ζt + lnµt+1 + ln

[
µ−1
t − (1 + γρwt)

]
−
γ2µ2

t+1w
2σ2

2
e2ϕ(yt+1−y)+2ςt+1 − γyt

}
+

∞∑
t=0

βt

(
t−1∏
k=0

ζk

)
M2,t

{
εt
Ψ

[
1− εt − 1

εt

(1− τw) zt
(1− τ?)wt

]
+ β

(
ztwt+1yt+1

zt+1wtyt

)
(Πt+1 − 1) Πt+1 − (Πt − 1) Πt

}

+M3,0

γ2µ2
0w

2σ2

2
e2ϕ(y0−y)+2ς0 + ln [1− ϑ+ ϑΣ−1] + ln

 1− ϑe
Λ
2

1− ϑe
(
α
µ

)2
Λ
2

(
µ−µ0
µ

)2

− ln Σ0


+

∞∑
t=1

βt

(
t−1∏
k=0

ζk

)
M3,t

{
γ2µ2

tw
2σ2

2
e2ϕ(yt−y)+2ςt + ln [1− ϑ+ ϑΣt−1]− ln Σt

}

+
∞∑
t=0

βt

(
t−1∏
k=0

ζk

)
M4,t

{
yt −

zt
(
ρ lnwt + ξ

)
1 + γρzt + Ψ

2 (Πt − 1)2

}

The optimal decisions satisfy:

FOC wrt wt (multiplied through by wt):

Ut
γρwt

1 + γρwt
+ ζ−1

t−1M2,t−1

(
zt−1ytwt
ztyt−1wt−1

)
(Πt − 1) Πt −M1,t

γρwt

µ−1
t − (1 + γρwt)

+M2,t

{
εt − 1

Ψ

(1− τw) zt
(1− τ?)wt

− β
(
ztyt+1wt+1

zt+1ytwt

)
(Πt+1 − 1) Πt+1

}
− M4,t

γ
zt

γρ

1 + γρzt + Ψ
2 (Πt − 1)2 = 0

(D.25)

FOC wrt yt:

−γUt − γM1,t + β−1ζ−1
t−1M1,t−1

{
γ − ϕγ2µ2

tw
2σ2e2[ϕ(yt−y)+ςt]

}
+ ζ−1

t−1M2,t−1

(
zt−1wt

ztyt−1wt−1

)
(Πt − 1) Πt (D.26)

−βM2,t

(
ztyt+1wt+1

zt+1y2
twt

)
(Πt − 1) Πt +M3,tϕγ

2µ2
tw

2σ2e2ϕ(yt−y)+2ςt +M4,t = 0

(D.27)

FOC wrt µt:

−M1,t
µ−1
t

µ−1
t − 1− γρwt

+ β−1ζ−1
t−1M1,t−1

[
1− γ2σ2w2µ2

t e
2ϕ(yt−y)+2ςt

]
+M3,tγ

2σ2w2µ2
t e

2ϕ(yt−y)+2ςt

−I(t = 0)M3,0
ϑe

Λ
2

(
α
µ

)2(µ−µ0
µ

)2

1− ϑe
Λ
2

(
α−(1−τa0 )µ0

µ

)2 Λ

(
α

µ

)2(µ− µ0

µ

)
µ0

µ
= 0

(D.28)

12



FOC wrt Σt:

Ut −M3,t + βζtM3,t+1
ϑΣt

1− ϑ+ ϑΣt
= 0 (D.29)

FOC wrt Πt:

ζ−1
t−1M2,t−1

(
zt−1wtyt
ztwt−1yt−1

)
(2Πt − 1)−M2,t (2Πt − 1) + ΨM4,t (Πt − 1) = 0 (D.30)

D.4 State contingent τa0

Unlike in the main paper, if we allowed the planner to set τa0 in a state contingent fashion (varying with

shocks), the optimality condition with respect to τa0 given by equation (D.10) holds for any µ0, not just

absent shocks. This implies that the tax is optimally set to

1− τa?0 =
α

µ0

Consequently, (D.3) becomes

ln Σt =
γ2µ2

tw
2σ2

2
e2ϕ(yt−y) + ln [1− ϑ+ ϑΣt−1]

for any α at all dates t ≥ 0. Since α does not appear explicitly in any of the other constraints or the

objective function, it follows that the optimal path of all variables is the same as that chosen by the

utilitarian planner.

E Local approximation

E.1 Log-linearized dynamic equations

All hatted variables denote log-deviations of from steady state, except for the hatted multipliers which de-

note deviations in levels. In the baseline model with all four shocks, the log-linearized equations describing

aggregate dynamics are:

ŷt = Θŷt+1 −
1

γy

(̂
it − πt+1 + ζ̂t

)
− Λ

γy
µ̂t+1 −

Λ

γy
ς̂t+1 (E.1)

µ̂t = −
(

1− β̃
) γρw

1 + γρw
ŵt + β̃

(
µ̂t+1 + ît − πt+1

)
(E.2)

ŷt =
(ρ/y)

1 + γρ
ŵt +

1

1 + γρ
ẑt (E.3)

πt = κ (ŷt − ŷet ) + βπt+1 +
ε

Ψ
ε̂t (E.4)

where κ = ε(1+γρ)
Ψ(ρ/y) . Using (E.2) and (E.3) to substitute out it and ŵt and using the fact that Ω =

(1− β̃) w−1
1+γρw and 1 + Ω = Θ

1−Λ , the IS equation (E.1) can be written as

γy (1 + Ω) ŷt + µ̂t = β̃ (1− Λ) {γy (1 + Ω) ŷt+1 + µ̂t+1} − β̃ζ̂t +
γy

1 + γρ

(
1− β̃ + Ω

)
ẑt − β̃Λς̂t+1

13



Solving this equation forwards yields:

γy (1 + Ω) ŷt + µ̂t = Γt (E.5)

where

Γt =

∞∑
s=0

β̃s (1− Λ)s
{

γy

1 + γρ

(
1− β̃ + Ω

)
ẑt+s − β̃ζ̂t+s − β̃Λς̂t+1+s

}

=
γy

1 + γρ

1− β̃ + Ω

1− β̃%z (1− Λ)
ẑt −

β̃

1− β̃%ζ (1− Λ)
ζ̂t −

β̃%ςΛ

1− β̃%ς (1− Λ)
ς̂t (E.6)

where we have used the fact that ẑt+s = %sz ẑt, ζ̂t+s = %sζ ζ̂t and ς̂t+k = %sς ς̂t in the second equality. Next, the

log-linearized Σt recursion is

Σ̂t = −γy (Θ− 1) ŷt + Λ (µ̂t + ςt) + β−1β̃Σ̂t−1

Using equation (E.5), we can substitute out µ̂t from this expression

Σ̂t = −γy (Θ− 1) ŷt + Λ [Γt − γy (1 + Ω) ŷt + ςt] + β−1β̃Σ̂t−1

where Γt is defined in (E.6). Then we can write the log-linearized Σt recursion as

Σ̂t = −γyΩŷt + ΛΓt + β−1β̃Σ̂t−1

where Γt = Γz ẑt + Γζ ζ̂t + Γς ς̂t where

Γz =
γy

1 + γρ

1− β̃ + Ω

1− β̃ (1− Λ) %z

Γζ = − β̃

1− β̃ (1− Λ) %ζ

Γς =
1− β̃%ς

1− β̃ (1− Λ) %ς

Restricting attention to the case without demand shocks (ζ̂t = ς̂t = 0) as in our baseline model

Σ̂t = −γyΩ

ŷt −
(

1− β̃ + Ω

Ω

)
Λ

1− β̃ (1− Λ) %z

1

1 + ρ/y︸ ︷︷ ︸
=κ(Ω)

ŷet

+ β−1β̃Σ̂t−1
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where ŷet = 1+ρ/y
1+γρ ẑt. When Ω ≥ Ωc = Λ

1−Λ , we clearly have κ(Ω) > 0; we also have

κ (Ω) =

(
1− β̃ + Ω

Ω

)
Λ

1− β̃ (1− Λ) %z

1

1 + ρ/y

≤ κ (Ωc)

=
1− β̃ (1− Λ)

1− β̃ (1− Λ) %z

1

1 + ρ/y

<
1

1 + ρ/y
< 1

Thus, for Ω ≥ Ωc we have κ(Ω) ∈ (0, 1), as Lemma 1 claims.

E.2 Derivation of the Quadratic Loss function

As is well known, in the presence of a distorted steady state, maximizing a second-order approximation

to the objective function (D.20) subject to first-order approximations of constraints (D.21)-(D.24), will

not generally lead to a solution to the optimal policy problem which is accurate up to first-order. But

following Benigno and Woodford (2005) and others, we obtain a valid linear-quadratic (LQ) approximation

to the non-linear planning problem described in Appendix D.3 by using a second-order approximation of

the constraints to eliminate the linear terms in the second-order approximations of the objective function.

Taking a second-order approximation to the planner’s objective function W0, we have:1

W0 ≈ U
1− β

(E.7)

+U
∞∑
t=0

βt

 γρw

1 + γρw
ŵt − γyŷt + Σ̂t +

1

2
(γy)2 ŷ2

t − γyŷtΣ̂t − γy
γρ
(

1 + Ω

1−β̃

)
1 + γρ

ŷtŵt +
γρ
(

1 + Ω

1−β̃

)
1 + γρ

ŵtΣ̂t


The second-order approximation to the IS curve at date t can be written as:

gIS
t = γyΘŷt+1 + (1− Λ) µ̂t+1 −

1

β̃
µ̂t −

(
1− β̃
β̃

)(
γρw

1 + γρw

)
ŵt − γyŷt

− (γy)2 (1−Θ)2

Λ
ŷ2
t+1 − 2γy (1−Θ) µ̂t+1ŷt+1 −

(
1 + Λ

2

)
µ̂2
t+1 +

1

2

(
2− 1

β̃

)
1

β̃
µ̂2
t

−1

2

(
1

β̃

)2
γρ

(
1− β̃ + Ω

)
1 + γρ

2

ŵ2
t −

1

β̃2

γρ
(

1− β̃ + Ω
)

1 + γρ
ŵtµ̂t (E.8)

where we have used ϑ
Rt

= µt+1

[
µ−1
t − (1 + γρwt)

]
to eliminate Rt. Next, since the steady state multiplier

on the Phillips curve M2 = 0, we can skip taking a second-order approximation of the Phillips curve. So,

1This approximation is valid for all specifications of Pareto weights considered in Sections 3, 4 and 5.2 in the main paper.
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we proceed by taking a second-order approximation of the Σt recursion, we have:

gΣ
t ≈ Λµ̂t + γy(1−Θ)ŷt + β−1β̃Σ̂t−1 − Σ̂t +

1

2
Σ̂2
t −

1

2

(
β−1β̃

)2
Σ̂2
t−1

+ (γy)2 (1−Θ)2

Λ
ŷ2
t + 2γy (1−Θ) µ̂tŷt +

Λ

2
µ̂2
t + I(t = 0)

ϑ

1− ϑ

(
α

µ

)2 Λ

2
µ̂2

0 (E.9)

Finally, we can write the second-order approximation of (D.24) as:

gyt ≈ yŷt −
y

1 + γρ
ẑt −

ρ

1 + γρ
ŵt +

1

2

ρ

1 + γρ
ŵ2
t −

ρ

(1 + γρ)2 ŵtẑt +
1

2

Ψy

1 + γρ
π2
t (E.10)

Note that (E.8)-(E.10) equal 0 for any allocation satisfying the constraints up to second-order. Thus, we

can use these equations together with the FOCs from the planner’s problem absent shocks to eliminate

first-order terms from the objective function (E.7). This yields the purely second-order approximation to

(E.7):

W0 ≈
U

1− β̃
+ U

∞∑
t=0

βtŨt

where

Ũt =
1

2
(γy)2 ŷ2

t − γyŷtΣ̂t − γy
γρ
(

1 + Ω

1−β̃

)
1 + γρ

ŷtŵt +
γρ
(

1 + Ω

1−β̃

)
1 + γρ

ŵtΣ̂t

+m1

{
−β−1 (γy)2 (1−Θ)2

Λ
ŷ2
t − 2β−1γy (1−Θ) µ̂tŷt − β−1

(
1 + Λ

2

)
µ̂2
t +

1

2

(
2− 1

β̃

)
1

β̃
µ̂2
t

}

+m1

−1

2

(
1

β̃

)2
γρ

(
1− β̃ + Ω

)
1 + γρ

2

ŵ2
t −

1

β̃2

γρ
(

1− β̃ + Ω
)

1 + γρ
ŵtµ̂t


+m3

{
1− β−1β̃2

2
Σ̂2
t + (γy)2 (1−Θ)2

Λ
ŷ2
t + 2γy (1−Θ) µ̂tŷt +

Λ

2
µ̂2
t + I(t = 0)

ϑ

1− ϑ

(
α

µ

)2 Λ

2
µ̂2

0

}

+m4y

{
1

2

ρ/y

1 + γρ
ŵ2
t −

ρ/y

(1 + γρ)2 ŵtẑt +
1

2

Ψ

1 + γρ
π2
t

}
(E.11)

where mi = Mi/U denote the normalized steady state multipliers as above. Clearly maximizing W0 is

equivalent to minimizing
∑∞

t=0 β
tŨt since U < 0.

Using the expressions derived above for steady state multipliers and substituting out for ŵt using

ŵt = 1+γρ
ρ/y ŷt −

1
ρ/y ẑt and µ̂t using µ̂t = Γz ẑt − γy (1 + Ω) ŷt, we can obtain a loss function in ŷt, πt, zt and
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Σt (ignoring terms independent of policy) for t > 0:

Ũt =
1

2
γy

(y
ρ

) (1− β−1β̃
)

(1− Λ)

1− β−1β̃ (1− Λ)

(
1 +

Ω

1− β̃

)
Υ (Ω) + (γy)

Ω2

1− β̃

 ŷ2
t

− γy

1 + γρ

 γyΩ

1− β̃%z (1− Λ)
+ δ (Ω) Υ (Ω)

(
y

ρ
+ 1

) (1− β−1β̃
)

(1− Λ)

1− β−1β̃ (1− Λ)

(1 +
Ω

1− β̃

)
ŷtẑt

+
1

2

(
1− β−1β̃2

1− β̃

)
Σ̂2
t + γy

Ω

1− β̃
ŷtΣ̂t −

γy

1 + γρ

(
1 +

Ω

1− β̃

)
ẑtΣ̂t

+
1

2

(
1− β−1β̃

)
(1− Λ)

1− β−1β̃ (1− Λ)

(
1 +

Ω

1− β̃

)
Ψγy

1 + γρ
π2
t

(E.12)

where Υ(Ω) and δ(Ω) are given by

Υ(Ω) = 1 + γρ
Ω

1− β̃ + Ω

{
Ω

(
2

Λ (1− Λ)
− 1

)
− 1

}
(E.13)

δ(Ω) =
1

Υ (Ω)

[
1 +

(
1 + Λ

1− Λ

)
γρΩ

1− β̃%z (1− Λ)

1

1 + ρ/y

]
(E.14)

For t = 0 we have:

Ũ0 =
1

2
γy

(y
ρ

) (1− β−1β̃
)

(1− Λ)

1− β−1β̃ (1− Λ)

(
1 +

Ω

1− β̃

)
Υ0 (Ω) + (γy)

Ω2

1− β̃

 ŷ2
0

− γy

1 + γρ

 γyΩ

1− β̃%z (1− Λ)
+ δ0 (Ω) Υ0 (Ω)

(
y

ρ
+ 1

) (1− β−1β̃
)

(1− Λ)

1− β−1β̃ (1− Λ)

(1 +
Ω

1− β̃

)
ŷ0ẑ0

+
1

2

(
1− β−1β̃2

1− β̃

)
Σ̂2

0 + γy
Ω

1− β̃
ŷ0Σ̂0 −

γy

1 + γρ

(
1 +

Ω

1− β̃

)
ẑ0Σ̂0

+
1

2

(
1− β−1β̃

)
(1− Λ)

1− β−1β̃ (1− Λ)

(
1 +

Ω

1− β̃

)
Ψγy

1 + γρ
π2

0

(E.15)

where Υ0(Ω) and δ0(Ω) are given by

Υ0 (Ω) = Υ (Ω) + (1 + Ω)G (E.16)

δ0 (Ω) =
Υ (Ω)

Υ0 (Ω)
δ (Ω) +

1

Υ0 (Ω)

1− β̃ + Ω

1− β̃%z (1− Λ)

1

1 + ρ/y
G (E.17)

where

G = γρ

 1− β−1β̃ (1− Λ)(
1− β−1β̃

)
(1− Λ)

[ 1 + Ω

1− β̃ + Ω

](
α

µ

)2( ϑ

1− ϑ

)
Λ
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Notice that when α = 0, G = 0, Υ(Ω) = Υ0(Ω) and δ(Ω) = δ0(Ω), and there is no difference between the

two expressions above. In principle, one could derive optimal policy by minimizing
∑∞

t=0 β
tŨt subject to

the linearized Phillips curve (25) and the linearized Σ recursion (32). However, it is useful to use (32) to

substitute out for Σ̂t and obtain a loss function purely in terms of ŷt, πt and ẑt. The terms involving Σ̂t in

the objective function can be written as

LΣ =
∞∑
t=0

βt

{
1

2

(
1− β−1β̃2

1− β̃

)
Σ̂2
t + γy

Ω

1− β̃
ŷtΣ̂t −

γy

1 + γρ

(
1 +

Ω

1− β̃

)
ẑtΣ̂t

}
(E.18)

Next, solving (32) back to date −1 and using the definition of ŷet = 1+ρ/y
1+γρ ẑt, we have

Σ̂t = −γyΩ

t∑
k=0

(
β̃

β

)t−k
ŷk + Λ

1− β̃ + Ω

1− β̃%z (1− Λ)

γy

1 + γρ

t∑
k=0

(
β̃

β

)t−k
ẑk +

(
β̃

β

)t+1

Σ̂−1 (E.19)

Substituting (E.19) into (E.18) yields, after some algebra

LΣ = −1

2
(γy)2 Ω2

1− β̃

∞∑
t=0

βtŷ2
t +

(γy)2

1 + γρ

(
1 +

Ω

1− β̃

)
Ω

1− β̃%z (1− Λ)

∞∑
t=0

βtŷtẑt

Substituting this expression into (E.12) and (E.15) yields the expression

Ũt =
γy

2

(y
ρ

) (1− β−1β̃
)

(1− Λ)

1− β−1β̃ (1− Λ)

(
1 +

Ω

1− β̃

)
Υ0 (Ω)

 ŷ2
0

+
γy

2

(y
ρ

) (1− β−1β̃
)

(1− Λ)

1− β−1β̃ (1− Λ)

(
1 +

Ω

1− β̃

)
Υ (Ω)

 ∞∑
t=1

βtŷ2
t

− γy

1 + γρ

δ0 (Ω) Υ0 (Ω)

(
y

ρ
+ 1

) (1− β−1β̃
)

(1− Λ)

1− β−1β̃ (1− Λ)

(1 +
Ω

1− β̃

)
ŷ0ẑ0

− γy

1 + γρ

δ (Ω) Υ (Ω)

(
y

ρ
+ 1

) (1− β−1β̃
)

(1− Λ)

1− β−1β̃ (1− Λ)

(1 +
Ω

1− β̃

) ∞∑
t=1

βtŷtẑt

+
γy

2

(
1− β−1β̃

)
(1− Λ)

1− β−1β̃ (1− Λ)

(
1 +

Ω

1− β̃

)
Ψ

1 + γρ

∞∑
t=0

βtπ2
t (E.20)

Dividing by
(1−β−1β̃)(1−Λ)

1−β−1β̃(1−Λ)

(
1 + Ω

1−β̃

)
γy
(
y
ρ

)
, using the fact that ε/κ = Ψ(ρ/y)

1+γρ and using the definition of

ŷet = 1+ρ/y
1+γρ ẑt, yields the objective function in the main text in Proposition 9 in the paper

1

2

{
Υ0 (Ω)

(
ŷ0 − δ0(Ω)ŷe0

)2
+
ε

κ
π2

0

}
+

1

2

∞∑
t=1

βt
{

Υ (Ω)
(
ŷt − δ(Ω)ŷet

)2
+
ε

κ
π2
t

}
(E.21)

For the utilitarian planner, Υ0(Ω) = Υ(Ω) and δ0(Ω) = δ(Ω) and the expression simplifies to the expression
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in Proposition 3 in the paper:

1

2

∞∑
t=0

βt
{

Υ (Ω)
(
ŷt − δ(Ω)ŷet

)2
+
ε

κ
π2
t

}
(E.22)

The optimal policy problem can now simply be specified as minimizing (E.21) subject to the linearized

Phillips curve (30) in the paper. In Lagrangian form:

L =
1

2

{
Υ0 (Ω)

(
ŷ0 − δ0(Ω)ŷe0

)2
+
ε

κ
π2

0

}
+

1

2

∞∑
t=1

βt
{

Υ (Ω)
(
ŷt − δ(Ω)ŷet

)2
+
ε

κ
π2
t

}

+
∞∑
t=0

βtzt

{
βπt+1 + κ (ŷt − ŷet ) +

ε

Ψ
ε̂t − πt

}
The FOC w.r.t. ŷt can be written as:

Υ0(Ω) (ŷ0 − δ0(Ω)ŷe0) + κz0 = 0 for t = 0

Υ(Ω) (ŷt − δ(Ω)ŷet ) + κzt = 0 for t > 0

The FOC w.r.t. πt can be written as

ε

κ
πt −zt + zt−1 = 0 ⇔ zt =

ε

κ
p̂t

where κ = ε
Ψ

1+γρ
ρ/y . Combining the two FOCs we can derive the target criterion:

ŷ0 − δ0(Ω)ŷe0 +
ε

Υ0(Ω)
p̂0 = 0 for t = 0

ŷt − δ(Ω)ŷet +
ε

Υ(Ω)
p̂t = 0 for t > 0

E.3 Properties of loss function weights

Claim 1. Υ(Ω) > 1 with countercyclical risk

Proof.

Υ(Ω) = 1 +
ργΩ

1− β̃ + Ω

[(
2

Λ (1− Λ)
− 1

)
Ω− 1

]
> 1 +

ργΩ

1− β̃ + Ω

[(
2

Λ (1− Λ)
− 1

)
Λ

1− Λ
− 1

]

where we have used the fact that Ω = Θ−1+Λ
1−Λ and for countercyclical risk (Θ > 1), we have Ω > Λ

1−Λ .

Then, the above can be simplified to:

Υ(Ω) > 1 +
ργΩ

1− β̃ + Ω

1 + Λ

(1− Λ)2 > 1
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Claim 2. 0 < δ(Ω) < 1 with countercyclical risk

Proof. Using the expression for Υ(Ω) in δ(Ω), we have:

δ(Ω) =

(
1− β̃ + Ω

)(
1 + γρΩ

1−β̃ρz(1−Λ)

1
1+(ρ/y)

(
1+Λ
1−Λ

))
1− β̃ + (1− γρ) Ω + γρΩ2

(
2

Λ(1−Λ) − 1
) (E.23)

We need to show that δ(Ω) < 1, i.e.

(
1− β̃ + Ω

)(
1 +

γρΩ

1− β̃ρz (1− Λ)

1

1 + (ρ/y)

(
1 + Λ

1− Λ

))
< 1− β̃ + (1− γρ) Ω + γρΩ2

(
2

Λ (1− Λ)
− 1

)
This expression can be simplified to yield:

1 +

(
1− β̃

)
1− β̃ρz (1− Λ)

y

ρ+ y

(
1 + Λ

1− Λ

)
< Ω

[(
2

Λ (1− Λ)
− 1

)
− 1

1− β̃ρz (1− Λ)

y

ρ+ y

(
1 + Λ

1− Λ

)]
(E.24)

First, we show that the term in the square brackets on the RHS of (E.24) is positive, i.e.

2 > Λ

[
1− Λ +

1 + Λ

1− β̃ρz (1− Λ)

y

ρ+ y

]

The worst case for this to be true is if y is very large and %z = 1. In that case, for the expression above to

be true, it must be that:

β̃ <
2

2− (1− Λ) Λ

which is true since β̃ < 1 and 2
2−(1−Λ)Λ > 1 since we know that 0 < Λ < 1 from Appendix C. Thus,

the term in the square brackets on the RHS of (E.24) is positive. Next, to show that (E.24) holds with

countercyclical risk, it suffices to show that it holds for the lowest Ω consistent with non-procyclical risk,

i.e. Ω = Λ
1−Λ . Plug in Ω = Λ

1−Λ into (E.24), i.e:

1 +

(
1− β̃

)
(1 + Λ)

1− β̃ρz (1− Λ)

y

ρ+ y
<

[
Λ

(
2

Λ (1− Λ)
− 1

)
− 1 + Λ

1− β̃ρz (1− Λ)

y

ρ+ y

(
Λ

1− Λ

)]

Again the worst case for this condition to be satisfied is if %z = 1. Suppose that is the case. Then, the

expression can be further simplified to:
y

ρ+ y
< 1

which is true since steady state output is positive.

Claim 3. Υ(0) = δ(0) = 1 when α = 0.

Proof. True by inspection of equations (E.13), (E.14).

Claim 4. Υ0(Ω) > Υ(Ω) when α 6= 0
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Proof. The claim that Υ0 > Υ is true by inspection of equations (E.16) since G > 0 for Ω ≥ Ωc > 0.

Claim 5. Υ0(Ω) is increasing in α for α > 0.

Proof. Substituting the definition of G into (E.16):

Υ0 (Ω) = Υ (Ω) + γ (1 + Ω)2 γρ

m4
Λ

(
α

µ

)2( ϑ

1− ϑ

)
m3

µ

This is clearly increasing in α for α > 0.

Claim 6. $(Ω) ∈ (0, 1) for Ω ≥ Ωc

Proof. Define:

$(Ω) =
δ(Ω)− κ(Ω)

1− κ(Ω)

where κ(Ω) =
(

1−β̃+Ω
Ω

)
Λ

1−β̃(1−Λ)%z

1
1+ρ/y ∈ (0, 1) for Ω ≥ Ωc. Recall that Claim 2 above showed that

δ(Ω) < 1 for Ω ≥ Ωc. Thus, we have $(Ω) < 1 for Ω ≥ Ωc. It remains to show that $(Ω) > 0, i.e.,

δ(Ω) > κ(Ω). Recall from (E.14) that δ(Ω) is given by:

δ(Ω) =
1

Υ (Ω)

[
1 +

(
1 + Λ

1− Λ

)
γρΩ

1− β̃%z (1− Λ)

1

1 + ρ/y

]

=
1

Υ (Ω)

[
1 +

γρΩ

1− β̃ + Ω

(
1 + Λ

1− Λ

)
Ω

Λ
κ(Ω)

]
So we have:

δ(Ω)− κ(Ω) =
1

Υ (Ω)

[
1 +

γρΩ

1− β̃ + Ω

(
1 + Λ

1− Λ

)
Ω

Λ
κ(Ω)− κ(Ω)Υ(Ω)

]

=
1

Υ(Ω)

1−
γρ (1− Λ) Ω +

(
1−β̃+Ω

Ω

)
Λ− γρΛ

1− β̃ (1− Λ) %z

1

1 + ρ/y

 ,

where we have used the definitions of κ(Ω) and Υ(Ω). Since Υ(Ω) > 0, the expression above is positive if

1 ≥
γρ (1− Λ) Ω +

(
1−β̃+Ω

Ω

)
Λ− γρΛ

1− β̃ (1− Λ) %z

1

1 + ρ/y

or

(1 + ρ/y)
[
1− β̃%z (1− Λ)

]
> Λ

(
1− β̃ + Ω

Ω

)
− γρΛ + γρ (1− Λ) Ω ≡ i(Ω)

Clearly, i(Ω) is a convex function of Ω. Since Ω = (1 − β̃) w−1
1+γρw < limw→∞(1 − β̃) w−1

1+γρw = 1−β̃
γρ , Ω is

contained on the interval
[
Ωc, 1−β̃

γρ

]
. Thus,

i(Ω) ≤ max

{
i(Ωc),i

(
1− β̃
γρ

)}
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where i(Ωc) = i
(

1−β̃
γρ

)
= 1− β̃ (1− Λ). Thus, i(Ω) ≤ 1− β̃(1− Λ). Clearly, we have

(1 + ρ/y)
[
1− β̃%z (1− Λ)

]
> 1− β̃ (1− Λ) ≥ i(Ω),

since ρ/y > 0 and %z ∈ [0, 1). Thus, δ(Ω)− κ(Ω) > 0 and $(Ω) > 0 when Ω ≥ Ωc.

E.4 Deriving the target-criterion allowing for demand shocks

To derive a more general target criterion which allows for demand shocks in addition to aggregate produc-

tivity and markup shocks, we proceed by linearizing the first-order conditions of the non-linear planner’s

problem rather than adopting an LQ approach. Linearizing the first-order conditions (D.25)-(D.30) and

constraints (D.1)-(D.4) around the steady state described in Appendix D.2 yields the following

FOC wrt w:

− (γy)

(
1 +

Ω

1− β̃

)
ŷt +

(
1 +

Ω

1− β̃

)
Σ̂t −

(
1− β̃ + Ω

β̃

)
m̂1,t −m1

(
1− β̃ + Ω

β̃

)2
γρ

1 + γρ
ŵt

−

(
1− β̃ + Ω

β̃2

)
m1µ̂t +

(
1 + γρ

γρ

)
ε

Ψ
m̂2,t −

m̂4,t

γ
+
m4

γ
ŵt −

m4

γ

1

1 + γρ
ẑt = 0 (E.25)

FOC wrt y:

−
γρ
(

1 + Ω

1−β̃

)
1 + γρ

ŵt + (γy)

[
1 + 2

(1−Θ)2

Λ

(
m3 −

m1

β

)]
ŷt − Σ̂t − m̂1,t +

Θ

β

(
m̂1,t−1 −m1ζ̂t−1

)
+2 (1−Θ)

(
m3 −

m1

β

)
µ̂t + (1−Θ) m̂3,t +

m̂4,t

γ
+ 2 (1−Θ)

(
m3 −

m1

β

)
ς̂t = 0 (E.26)

FOC wrt π:

∆m̂2,t =

(
1− β−1β̃

)
(1− Λ)

1− β−1β̃ (1− Λ)

(
1 +

Ω

1− β̃

)
(γy) Ψ

1 + γρ
πt ⇒ m̂2,t =

(
1− β−1β̃

)
(1− Λ)

1− β−1β̃ (1− Λ)

(
1 +

Ω

1− β̃

)
(γy) Ψ

1 + γρ
p̂t

(E.27)

FOC wrt µ:

−

(
1− β̃ + Ω

β̃2

)
γρ

1 + γρ
m1ŵt +

[
2Λ

(
m3 −

m1

β

)
− 1− β̃

β̃2
m1

]
µ̂t + Λm̂3,t

+2 (γy) (1−Θ)

(
m3 −

m1

β

)
ŷt −

1

β̃

(
m̂1,t −

β̃

β
(1− Λ)

(
m̂1,t−1 −m1ζ̂t−1

))
+ 2Λ

(
m3 −

m1

β

)
ς̂t

+I(t = 0)Λ

(
α

µ

)2

m3

(
ϑ

1− ϑ

)
µ̂0 = 0 (E.28)

FOC wrt Σ:

γρ

1 + γρ

(
1 +

Ω

1− β̃

)
ŵt − (γy) ŷt − m̂3,t + β̃m̂3,t+1 +

1− β−1β̃2

1− β̃
Σ̂t + β̃m3ζ̂t = 0 (E.29)
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where m̂i = M̂i
U for i ∈ {1, 2, 3, 4}.

E.4.1 Deriving the target criterion

Add the FOC wrt w (E.25) to the FOC wrt y (E.26) to obtain:

− (γy)

(
1 +

Ω

1− β̃

)
ŷt +

Ω

1− β̃
Σ̂t −

γρ

1 + γρ

(
1 +

Ω

1− β̃

)m1

(
1− β̃
β̃

)2(
1 +

Ω

1− β̃

)
+ 1

 ŵt +
m4

γ
ŵt

+

(
1 + γρ

γρ

)
ε

Ψ
m̂2,t −

m4

γ

1

1 + γρ
ẑt +

Θ

β

(
m̂1,t−1 −m1ζ̂t−1

)
−

[(
1− β̃ + Ω

β̃

)
+ 1

]
m̂1,t

+ (γy)

[
1 + 2

(1−Θ)2

Λ

(
m3 −

m1

β

)]
ŷt −

[(
1− β̃ + Ω

β̃2

)
m1 − 2 (1−Θ)

(
m3 −

m1

β

)]
µ̂t

+2 (1−Θ)

(
m3 −

m1

β

)
ς̂t + (1−Θ) m̂3,t (E.30)

Combine with (E.28):

(γy)

{
− Ω

1− β̃
+ 2

(1−Θ)2

Λ

(
m3 −

m1

β

)
− 2 (1−Θ) (1 + Ω)

(
m3 −

m1

β

)}
ŷt +

Ω

1− β̃
Σ̂t

+

m1

(
1− β̃ + Ω

β̃2

)
γρ

1 + γρ
(1 + Ω)−

γρ
(

1 + Ω

1−β̃

)
1 + γρ

m1

(
1− β̃
β̃

)2(
1 +

Ω

1− β̃

)
+ 1

+
m4

γ

 ŵt

−
[
2

(
m3 −

m1

β

)
+

1

β̃
m1

]
Ωµ̂t

−Ωm̂3,t +

(
1 + γρ

γρ

)
ε

Ψ
m̂2,t −

m4

γ

1

1 + γρ
ẑt − 2Ω

(
m3 −

m1

β

)
ς̂t

−I(t = 0)Λ

(
α

µ

)2

m3 (1 + Ω)

(
ϑ

1− ϑ

)
µ̂0 = 0

Next, use the GDP definition (E.3) to substitute out for ŵt:

(γy)

{
− Ω

1− β̃
+ 2

(1−Θ)2

Λ

(
m3 −

m1

β

)
− 2 (1−Θ) (1 + Ω)

(
m3 −

m1

β

)}
ŷt +

Ω

1− β̃
Σ̂t

+

m1

(
1− β̃ + Ω

β̃2

)
γρ

1 + γρ
(1 + Ω)−

γρ
(

1 + Ω

1−β̃

)
1 + γρ

m1

(
1− β̃
β̃

)2(
1 +

Ω

1− β̃

)
+ 1

+
m4

γ

 1 + γρ

ρ/y
ŷt

−

m1

(
1− β̃ + Ω

β̃2

)
γρ

1 + γρ
(1 + Ω)−

γρ
(

1 + Ω

1−β̃

)
1 + γρ

m1

(
1− β̃
β̃

)2(
1 +

Ω

1− β̃

)
+ 1

+
m4

γ

 1

ρ/y
ẑt

−
[
2

(
m3 −

m1

β

)
+

1

β̃
m1

]
Ωµ̂t − Ωm̂3,t +

(
1 + γρ

γρ

)
ε

Ψ
m̂2,t −

m4

γ

1

1 + γρ
ẑt

−2Ω

(
m3 −

m1

β

)
ς̂t − I(t = 0)Λ

(
α

µ

)2

(1 + Ω)m3

(
ϑ

1− ϑ

)
µ̂0 = 0 (E.31)
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Next, using (E.5) to substitute out for µ̂t, using (E.27) to eliminate m̂2,t and using the definitions of m1,m3

and m4, (E.31) becomes

(γy)
Ω

1− β̃

−1− 2

(
1−Θ

Λ

)[
1− β−1β̃

1− β−1β̃ (1− Λ)

]
+

2
(

1− β−1β̃
)

+ Λ

1− β−1β̃ (1− Λ)

 Θ

1− Λ

 ŷt +
Ω

1− β̃
Σ̂t

+
1

ρ/y

(
1 + Ω

1−β̃

)(
1− β−1β̃

)
(1− Λ)

1− β−1β̃ (1− Λ)

(
ŷt −

1 + ρ/y

1 + γρ
ẑt

)

− Ω

1− β̃

2
(

1− β−1β̃
)

+ Λ

1− β−1β̃ (1− Λ)

Γt − Ωm̂3,t − 2
Ω

1− β̃

[
1− β−1β̃

1− β−1β̃ (1− Λ)

]
ς̂t

+I(t = 0) (γy) Λ

(
α

µ

)2 (1 + Ω)2

1− β̃

(
ϑ

1− ϑ

)
ŷ0

−I(t = 0)Λ

(
α

µ

)2 (1 + Ω)

1− β̃

(
ϑ

1− ϑ

)
Γ0 +

(
εy

ρ

) (1− β−1β̃
)

(1− Λ)

1− β−1β̃ (1− Λ)

(
1 +

Ω

1− β̃

)
p̂t = 0

(E.32)

Guess that

m̂3,t =
1

1− β̃
Σ̂t + γy

Ω

1− β̃
ŷt + az ẑt + aζ ζ̂t + aς ς̂t (E.33)

and use this in (E.29) with ŵt substituted out using the definition of GDP:

γyΩŷt+1 −
1− β̃
β̃

[
γy

1 + γρ

(
1 +

Ω

1− β̃

)
+ az

(
1− β̃%z

)]
ẑt − β−1β̃Σ̂t +

(
1− β̃

)
β̃

(
β̃%ζ − 1

)
aζ ζ̂t

+

(
1− β̃

)
β̃

(
β̃%ς − 1

)
aς ς̂t + Σ̂t+1 + ζ̂t = 0

using the fact that ẑt+1 = %z ẑt, ζ̂t+1 = %ζ ζ̂t and ς̂t+1 = %ς ς̂t. Using the expression for Σ̂t+1 in (32) and the

definition for ŷet in the equation above, we have[(
1− β̃
β̃

)(
β̃%z − 1

)
az −

(
1− β̃ + Ω

β̃

)
γy

1 + γρ
+ Λ

γy

1 + γρ

1− β̃ + Ω

1− β̃%z (1− Λ)
%z

]
ẑt

+

[(
1− β̃
β̃

)(
β̃%ζ − 1

)
aζ + 1−

β̃%ζΛ

1− β̃%ζ (1− Λ)

]
ζ̂t

+

[(
1− β̃
β̃

)(
β̃%ς − 1

)
aς − β̃

%2
ςΛ

2

1− β̃%z (1− Λ)
+ %ςΛ

]
ς̂t = 0
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which implies that az, aζ and aς must satisfy:

az = − γy

1 + γρ

 1 + Ω

1−β̃

1− β̃%z (1− Λ)

 (E.34)

aζ =
β̃

1− β̃

[
1

1− β̃ (1− Λ) %ζ

]
(E.35)

aς =
1

1− β̃

[
β̃%ςΛ

1− β̃ (1− Λ) %ς

]
(E.36)

Using the expression (E.33) for m̂3,t in (E.32):

ŷ0 − δ0 (Ω)

(
1 + ρ/y

1 + γρ

)
ẑt + χ0 (Ω) ζ̂t − Ξ0 (Ω) ς̂t +

ε

Υ0(Ω)
p̂t = 0 (E.37)

ŷt − δ (Ω)

(
1 + ρ/y

1 + γρ

)
ẑt + χ (Ω) ζ̂t − Ξ (Ω) ς̂t +

ε

Υ(Ω)
p̂t = 0 for t > 0 (E.38)

where Υ(Ω), δ(Ω),Υ0(Ω) and δ0(Ω) are the same as in (E.13), (E.14), (E.16) and (E.17) and

χ(Ω) =
1

Υ (Ω)

Ω

1− β̃ + Ω

(
1 + Λ

1− Λ

)[
β̃ (ρ/y)

1− β̃%ζ (1− Λ)

]
(E.39)

Ξ(Ω) =
1

Υ (Ω)
(ρ/y)

Ω

1− β̃ + Ω

2
(

1− β̃%ς
)

+ β̃%ςΛ (1− Λ)

(1− Λ)
[
1− β̃%ς (1− Λ)

] (E.40)

χ0 (Ω) =
Υ (Ω)

Υ0 (Ω)
χ (Ω) +

1

Υ0 (Ω)

1

γy

β̃

1− β̃%ζ (1− Λ)
G (E.41)

Ξ0 (Ω) =
Υ (Ω)

Υ0 (Ω)
Ξ (Ω)− 1

Υ0 (Ω)

1

γy

β̃%ςΛ

1− β̃%ς (1− Λ)
G (E.42)

where

G = γρ

 1− β−1β̃ (1− Λ)(
1− β−1β̃

)
(1− Λ)

 1 + Ω(
1− β̃ + Ω

)
(α

µ

)2( ϑ

1− ϑ

)
Λ

Note that in the baseline with the utilitarian planner (α = 0), we have G = 0 and Ξ0(Ω) = Ξ(Ω) and

χ(Ω) = χ0(Ω). This general target criterion can be specialized to yield the target criterion in Proposition

3 in the paper for the utilitarian planner (setting α = 0 and ζ̂t = ς̂t = 0), Proposition 9 in the paper

for the non-utilitarian planner (again, setting ζ̂t = ς̂t = 0), i.e., it yields the same target criterion as the

LQ approach. It can also be specialized to yield Proposition J.1 for demand shocks (setting α = 0 and

ẑt = ε̂t = 0).

Claim 7. χ(Ω) > 0 with countercyclical risk

Proof. It is clear from the expression for χ(Ω) that for countercyclical risk Ω ≥ Ωc > 0, χ(Ω) > 0.

Claim 8. Ξ(Ω) > 0 with countercyclical risk.

Proof. For Ω ≥ Ωc > 0, it is clear from the expression for Ξ(Ω) that Ξ(Ω) > 0.
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F Optimal Dynamics

As shown in Appendix E.4.1, the dynamics of xt and πt are given by the target criterion (36):

xt − xt−1 + επt = 0 (F.1)

and the Phillips curve

πt = βπt+1 + κ

(
xt − [1− δ(Ω)]

1 + (ρ/y)

1 + γρ
ẑt − χ(Ω)ζ̂t + Ξ(Ω)ς̂t +

ρ/y

1 + γρ
ε̂t

)
(F.2)

where

xt = ŷt − δ (Ω)

(
1 + ρ/y

1 + γρ

)
ẑt + χ (Ω) ζ̂t − Ξ (Ω) ς̂t,

ε = ε/Υ(Ω) and κ = ε
Ψ

1+γρ
ρ/y . Substituting the target criterion into the Phillips curve, we get a second-order

difference equation:

xt+1 −
[
1 +

κε+ 1

β

]
xt +

1

β
xt−1 =

εκ

β

[
− [1− δ(Ω)]

1 + (ρ/y)

1 + γρ
ẑt − χ(Ω)ζ̂t + Ξ(Ω)ς̂t +

ρ/y

1 + γρ
ε̂t

]
The solution to this system has the form:

xt = Axxt−1 +Az ẑt +Aζ ζ̂t +Aεε̂t +Aς ς̂t (F.3)

πt = Bxxt−1 + Bz ẑt + Bζ ζ̂t + Bεε̂t + Bς ς̂t (F.4)

Using the method of undetermined coefficients, it is straightforward to see that Ax satisfies the character-

istic polynomial:

P(Ax) = A2
x −

[
1 +

κε+ 1

β

]
Ax +

1

β
= 0 (F.5)

We know that P(0) = β−1 > 0 and P(1) = −β−1κε < 0. Thus, we have Ax ∈ (0, 1) and the coefficients

can be written as:

Ax =
1

2

1 +
κε+ 1

β
−

√[
1 +

κε+ 1

β

]2

− 4

β

 ∈ (0, 1) (F.6)

Az =
κβ−1ε

κβ−1ε+ (1−Ax) +
(

1
β − %z

) [1− δ(Ω)]
1 + (ρ/y)

1 + γρ
(F.7)
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Aζ =
κβ−1ε

κβ−1ε+ (1−Ax) +
(

1
β − %ζ

)χ (Ω) (F.8)

Aε = − κβ−1ε

κβ−1ε+ (1−Ax) +
(

1
β − %ε

) ρ/y

1 + γρ
(F.9)

Aς = − κβ−1ε

κβ−1ε+ (1−Ax) +
(

1
β − %ς

)Ξ(Ω) (F.10)

Bx =
1−Ax
ε

(F.11)

Bi = −1

ε
Ai for i ∈ {z, ζ, ε, ς} (F.12)

Claim 9. The following statements are true:

1. κβ−1ε

κβ−1ε+(1−Ax)+
(

1
β
−%i

) ∈ (0, 1) for i ∈ {z, ζ, ε, ς}

2. Bx > 0

Proof. To see that κβ−1ε

κβ−1ε+(1−Ax)+
(

1
β
−%i

) ∈ (0, 1) for i ∈ {z, ζ, ε, ς}, notice that since Ax ∈ (0, 1), we have

1 − Ax ≥ 0. Furthermore, since β < 1, so β−1 − %i > 0 for i ∈ {z, ζ, ε, ς} as long as %i ∈ (0, 1), which is

a maintained assumption. Again, since Ax ∈ (0, 1), it is immediate that Bx > 0. It follows that Az > 0,

Aζ > 0, and Aε < 0.

F.1 Proof of Propositions 5, 6, J.2 and J.3

F.1.1 Impact effects following a productivity shock

Since x−1 = 0, it follows from equations (F.3) and (F.4) that the impact effect of a productivity shock is:

∂x0

∂ẑ0
= Az > 0 and

∂π0

∂ẑ0
= Bz < 0

Using ŷt = xt + δ(Ω)1+(ρ/y)
1+γρ ẑt, we have:

∂ŷ0

∂ẑ0
= Az + δ(Ω)

1 + (ρ/y)

1 + γρ

=
1 + (ρ/y)

1 + γρ

δ (Ω) + [1− δ (Ω)]
κβ−1ε

κβ−1ε+ (1−Ax) +
(

1
β − %z

)
 ∈ (0,

1 + (ρ/y)

1 + γρ

)

where we have used the fact that δ (Ω) ∈ (0, 1) for Ω ≥ Ωc. In other words, ŷ0 falls less than ŷn0 = 1+(ρ/y)
1+γρ ẑ0

for ẑ0 < 0.
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F.1.2 Impact effects following a markup shock

Since x−1 = 0 and ŷt = xt (since all shocks other than markup shocks are 0 in this case), it follows

immediately from equations (F.3) and (F.4) that:

∂ŷ0

∂ε̂0
= Aε < 0

∂π0

∂ε̂0
= Bε > 0

Following a markup shock, the dynamics of πt and xt are described by the same equations (F.1) and (F.2)

except that ε(Ω) = ε
Υ(Ω) is smaller in HANK since Υ(Ω) > 1 while Υ = 1 in RANK. Thus, to show that

in HANK, output decreases less and inflation increases more following a positive markup shock, it suffices

to show that ∂Aε
∂ε < 0 (output falls less on impact when ε is lower) and ∂Bε

∂ε < 0 (inflation increases more

on impact when ε is lower). We have:

Aε = − κβ−1ε

κβ−1ε+ (1−Ax) +
(

1
β − %ε

) ρ/y

1 + γρ

= − 2β−1κ√
[1+β−1(κε+1)]2−4β−1

ε2
+
(

1−%ε
ε

)
+ β−1−%ε

ε + β−1κ

ρ/y

1 + γρ

where we have plugged in the expression for Ax from (F.6) in the second line. Since

∂

∂ε

[[
1 + β−1 (κε+ 1)

]2 − 4β−1

ε2

]
= −2

[[
1 + β−1 (κε+ 1)

] (
1 + β−1

)
+ 4β−1

ε3

]
< 0

it is clear that the denominator of Aε is decreasing in ε. Since the numerator is negative, it follows that

Aε is decreasing in ε. We also know that Bε = −1
εAε which implies:

Bε =
2β−1κ√

[1 + β−1 (κε+ 1)]2 − 4β−1 + (1− %ε) + (β−1 − %ε) + β−1κε

ρ/y

1 + γρ

Clearly, the denominator is increasing in ε so Bε is decreasing in ε.

F.1.3 Impact effects following a discount factor shock

Since x−1 = 0 and yt = xt − χ(Ω)ζ̂t, the response of ŷ0 to ζ̂0 is:

dŷ0

dζ̂0

= Aζ − χ (Ω) = −

1− κβ−1ε

κβ−1ε+ (1−Ax) +
(

1
β − %ζ

)
χ (Ω) < 0

while the impact response of π0 is given by Bζ = −1
εAζ < 0.
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F.2 Impact effects following a risk shock

Since x−1 = 0 and ŷt = xt + Ξ(Ω)ς̂t, the response of ŷ0 to ς̂0 is:

dŷ0

dς̂0
= Aς + Ξ (Ω) =

1− κβ−1ε

κβ−1ε+ (1−Ax) +
(

1
β − %ς

)
Ξ (Ω) > 0

for Ω ≥ Ωc. Similarly, the impact response of π0 is given by Bς = −1
εAς > 0.

F.3 Response of ŷt − ŷnt and πt for large t

The following Lemma characterizes the behavior of ŷt − ŷnt and πt following a generic shock S0 where

S0 ∈ {ẑ0, ε̂0, ζ̂0, ς̂0} for large t. In doing so, the Lemma provides a proof of the claims made in Propositions

5, 6, J.2 and J.3 about long-run behavior of ŷt − ŷnt and πt.

Lemma 3. After any date 0 shock S0 where S0 ∈ {ẑ0, ε̂0, ζ̂0, ς̂0}, for large enough t,

sign

(
∂πt
∂S0

)
= sign

(
∂(ŷt − ŷnt )

∂S0

)
= −1× sign

(
∂π0

∂S0

)
Proof. We know that ∂π0

∂S0
= BS = −1

εAS . Thus, we need to show that for large enough t, πt and ŷt − ŷnt
have the same sign as AS × S0. The dynamics of xt and πt in response to a shock S0 are given by the

system of two equations:

xt = Axxt−1 +ASSt and St = %SSt−1

with S0 given. The solution of this system is given by:

xt = AS
%t+1
S −At+1

x

%S −Ax
S0

as long as %S 6= Ax. Using this in (36) in the paper, the dynamics of inflation can then be written as:

πt = −AS
ε

(
%t+1
S −At+1

x

%S −Ax
−
%tS −Atx
%S −Ax

)
S0

where ε > 0, AS > 0 and 0 < Ax < 1 are defined in Appendix F. For large enough t > 0, the dynamics of

xt and πt are governed by the dominant eigenvalue max{Ax, %S}. If %S < AS , dividing expression for πt

above by Atx and taking the limit t→∞, we have:

lim
t→∞
A−tx πt =

1

ε

(
AS

Ax − %S

)
(1−Ax)︸ ︷︷ ︸

>0

S0

which has the same sign as AS × S0. Similarly, dividing the Phillips curve by Atx and taking limits as

t→∞ yields:

lim
t→∞

(1− βAx)
πt
Atx

= κ lim
t→∞

(
ŷt − ŷnt
Atx

)
This implies that ŷt − ŷnt has the same sign as AS ×S0 for large t. Instead if %S > Ax, dividing by %tS and
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taking limits, we have

lim
t→∞

%−tS πt =
1

ε
(1− %S)︸ ︷︷ ︸

>0

AS
%S −Ax

S0 and lim
t→∞

(1− β%S)
πt
%tS

= κ lim
t→∞

(
ŷt − ŷnt
%tS

)

This implies that again, πt and ŷt − ŷnt have the same sign as AS × S0 for large t. Finally, in the special

case where both eigenvalues are identical Ax = %S , the solution for xt is instead given by:

xt = (t+ 1)AS%tSS0

and so the target criterion implies that the path of inflation can be written as:

πt = −AS
ε

(
(t+ 1) %tS − t%t−1

S
)
S0

Divide this by (t+ 1) %tS and take limits:

lim
t→∞

πt
(t+ 1) %tS

=
AS
ε

(
1− %S
%S

)
S0

Following the same steps as above with the Phillips curve and taking limits yields:(
1− ρz

R

)
lim
t→∞

πt
(t+ 1) %tS

= κ lim
t→∞

(
ŷt − ŷnt

(t+ 1) %tS

)
Thus, even in this case, the sign of ŷt − ŷnt and πt is the same as that of AS × S0 for large t.

F.4 Interest rate rules

We have already seen that under optimal policy, the dynamics of xt and πt can be written as functions of

xt−1 and shocks – equations (F.3) and (F.4). Substituting (E.5) into the linearized IS equation (23) in the

paper:

ŷt = (1 + Ω) ŷt+1 −
1

γy
(it − πt+1)− Λ

γy
Γz%z ẑt

We can use this equation along with equations (F.3) and (F.4) to express it in terms of xt−1 and the shocks:

it = γy (1 + Ω) ŷt+1 − γyŷt + πt+1 − ΛΓz%z ẑt

= γy (1 + Ω)xt+1 − γyxt + πt+1

+

{
γyΩδ (Ω)

1 + (ρ/y)

1 + γρ
%z − ΛΓz%z − γyδ (Ω)

1 + (ρ/y)

1 + γρ
(1− %z)

}
ẑt

= (γy (1 + Ω)Ax − γy + Bx)xt

+γy

{
Ωδ (Ω)

1 + (ρ/y)

1 + γρ
%z −

ΛΓz%z
γy

− δ (Ω)
1 + (ρ/y)

1 + γρ
(1− %z) + (1 + Ω)Az%z +

Bz%z
γy

}
ẑt

+ (γy (1 + Ω)Aε%εε̂t + Bε%ε) ε̂t
= Φxxt−1 + Φz ẑt + Φεε̂t
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where

Φx = {γy (1 + Ω)Ax − γy + Bx}Ax
Φz = {γy (1 + Ω)Ax − γy + Bx}Az

+γy

{
Ωδ (Ω)

1 + (ρ/y)

1 + γρ
%z −

ΛΓz%z
γy

− δ (Ω)
1 + (ρ/y)

1 + γρ
(1− %z) + (1 + Ω)Az%z +

Bz%z
γy

}
Φε = γy (1 + Ω)Aε%εε̂t + Bε%ε + (γy (1 + Ω)Ax − γy + Bx)Aε

Next, we show that (38) in the paper implements the optimal allocations uniquely. First, note that first-

differencing the target criterion (36) in the paper and multiplying by φx ≡ φΥ(Ω)
ε yields:

φπt + φx∆xt = φπt + φgap (∆ŷt −∆ŷet ) + φy∆ŷt = 0

where xt = ŷt− δ(Ω)1+(ρ/y)
1+γρ ẑt, φ > 0 is a constant, φgap = φΥ(Ω)

ε δ(Ω) is the weight on the change in output

gap and φy = φΥ(Ω)
ε (1− δ(Ω)). Here, instead of writing the rule in terms of ŷt and the output gap ŷt− ŷet ,

it is more convenient to write it in terms of a single variable xt; the two formulations are equivalent. Since

by definition, we have it = i?t under optimal policy, it follows that the rule (38) in the paper is satisfied

at the optimal allocation. To see that this rule implements optimal allocations uniquely, it suffices to look

at the determinacy properties of the system comprised by the IS curve, the Phillips curve and the interest

rate rule absent shocks. This system can be written as:

(γy + φx)xt = γy (1 + Ω)xt+1 − Φxxt−1 − φπt + φxxt−1 + πt+1

πt = βπt+1 + κxt

In matrix-form, this can be written as: xt+1

πt+1

Lxt+1

 =


βγy+βφx+κ
βγ(1+Ω) − 1−βφ

βγ(1+Ω)
Φx−φx
γ(1+Ω)

−κ
β

1
β 0

1 0 0


 xtπt
Lxt


where Lxt ≡ xt−1. The characteristic polynomial of this system is given by

P (ℵ) = −
(

1

β
− ℵ

)(
Φx − φx
γy (1 + Ω)

)
−ℵ
{(

βγy + βφx + κ

βγy (1 + Ω)
− ℵ

)(
1

β
− ℵ

)
− 1− βφ
βγy (1 + Ω)

κ

β

}
Notice that

P(0) =
φΥ(Ω)/ε− Φx

βγy (1 + Ω)
P(1) =

κ(1−φ)
β −

(
1
β − 1

)
(Φx − γyΩ)

γy (1 + Ω)
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Clearly, for large enough φ, we have P(0) > 0 and P(1) < 0, implying that there is at least one root inside

the unit circle. Also, note that:

∂P (ℵ)

∂φ
=

1

βγy (1 + Ω)

[
Υ(Ω)

ε
(1− βℵ) (1− ℵ)− κℵ

]
which is positive for a finite ℵ > β−1 > 1. It follows that for sufficiently large φ, P(ℵ) > 0. Finally,

lim
ℵ→∞

P(ℵ) = −∞

implying that for sufficiently large φ, there are two roots above 1. Thus, the system has one stable and

two unstable eigenvalues as we have 2 jump variables (πt and xt) and one predetermined variable Lxt.

G Unequal distribution of profits

The date s problem of an individual i who is a stockholder (d) or nonstockholder (nd) born at date s can

be written as:

max
{cst (i),`st (i),ast+1(i)}

−Es
∞∑
t=s

(βϑ)t−s
( t−1∏
k=s

ζk

){1

γ
e−γc

s
t (i) + ρe

1
ρ

[`st (i)−ξst (i)]
}

s.t.

cst (i) + qta
s
t+1(i) = wt`

s
t (i) + (1− τat )ast (i) + Tt(i) (G.1)

where ass(i) = 0 and wt = (1−τw)w̃t and τat = 0 for t > 0. For a stockholder i, Tt(i) = Dt
ηd
−Tt−J where J

is the lump sum tax on stockholders and Dt/η
d is the dividend received by each of the ηd stockholders. For

a nonstockholder Tt(i) = −Tt+ ηd

1−ηdJ . The individual decision problem then is the same as in Appendix A

replacing Dt−Tt with Tt(i). Thus, following the steps in Appendix A, it is easy to see that the consumption

function for stockholders can be written as:

cst (i; d) = Cdt + µtx
s
t (i; d)

and for nonstockholders:

cst (i;nd) = Cndt + µtx
s
t (i;nd)

where the definition of x = a+ w
(
ξ − ξ

)
is the same as in the baseline model.

Cdt = − ϑµt
µt+1Rt

1

γ
lnβRt +

ϑµt
µt+1Rt

Cdt+1 + µt

[
wt
(
ρ lnwt + ξ̄

)
+
Dt

ηd
− Tt − J

]
− ϑ

Rt

µt
µt+1

γµ2
t+1w

2
t+1σ

2
t+1

2

(G.2)

Cndt = − ϑµt
µt+1Rt

1

γ
lnβRt +

ϑµt
µt+1Rt

Cndt+1 + µt

[
wt
(
ρ lnwt + ξ̄

)
− Tt +

ηd

1− ηd
J

]
− ϑ

Rt

µt
µt+1

γµ2
t+1w

2
t+1σ

2
t+1

2

(G.3)

µ−1
t = (1 + ργwt) +

ϑ

Rt
µ−1
t+1 (G.4)
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Since xst (i) has mean zero at any date and both types of households have the same µt, the goods market

clearing condition can be written as:

ηdCdt + (1− ηd)Cnd = yt

Multiplying (G.2) by ηd and (G.3) by 1−ηd and adding the two along with market clearing and rearranging

yields the aggregate Euler equation which is the same as in the baseline model:

yt = −1

γ
lnβRt + yt+1 −

γ

2
µ2
t+1w

2
t+1σ

2
t+1 (G.5)

Combining (G.2) and (G.5):

(
Cdt − yt

)
=

ϑ

Rt

µt
µt+1

(
Cdt+1 − yt+1

)
+ µt

(
1− ηd

ηd
dt − J

)
(G.6)

Iterating forwards:

Vt ≡
ηd

1− ηd

(
Cdt − yt
µt

)
=

∞∑
s=0

ϑs∏s−1
k=0Rt+s

[
Dt+s −

ηd

1− ηd
J

]

In other words, we have Cdt = yt + 1−ηd
ηd

µtVt as in the main text. Market clearing, then implies that

Cndt = yt − µtVt. As claimed in the main text, J = 1−ηd
ηd

D implies that V = 0 in steady state and average

consumption of stockholders and nonstockholders is the same Cd = Cnd. Thus, as in the main text, we can

rewrite the definition of Vt as:

Vt = (Dt −D) +
ϑ

Rt
Vt+1 (G.7)

Since aggregate dividends Dt = yt − (1− τ?)w̃tnt can be written as:

Dt = yt −
(ε− 1)wt
ε(1− τw)

yt
zt

[
1 +

Ψ

2
(Πt − 1)2

]
=

(
1− ε− 1

ε (1− τw)

wt
zt

)
yt −

ε− 1

ε (1− τw)

wt
zt

Ψ

2
(Πt − 1)2 yt,

we can write the level-deviation D̂t as:

D̂t

y
=

[
1

ε
−
(
ε− 1

ε

)
1 + γρ

ρ/y

]
︸ ︷︷ ︸

=Dy

ŷt +

[(
ε− 1

ε

)
1 + ρ/y

ρ/y

]
︸ ︷︷ ︸

=Dz

ẑt (G.8)

Using this it is straightforward to derive Ṽt = Dyŷt + Dz ẑt + β̃Ṽt+1, where Ṽt = V̂t/y and V̂t denotes the

level deviation of Vt from its steady state value of 0.

33



G.1 Derivation of the Σ recursion

Even in this case, the objective function of the planner can be written as:

W0 =
∞∑
t=0

βtu
(
ct, nt; ξ

)
Σt

where, as before, Σt is defined by:

Σt = (1− ϑ)

t∑
s=−∞

∫
ϑt−se−γ(cst (i)−ct)di

Since we have stockholders and nonstockholders, this can be further expanded:

Σt = (1− ϑ)

{
t−1∑

s=−∞

∫
ϑt−se−γ(cst (i)−yt)di+

∫
e−γ(c

t
t(i)−yt)di

}

= (1− ϑ)

{
t−1∑

s=−∞

∫
ϑt−se−γ(cst (i)−yt)di+ ηd

∫
e−γ(c

t
t(i;d)−yt)di+

(
1− ηd

)∫
e−γ(c

t
t(i;nd)−yt)di

}

Since xtt (i) = wt
(
ξtt (i)− ξ

)
, we have:

Σt = (1− ϑ)
t−1∑

s=−∞

∫
ϑt−se−γ(cst (i)−yt)di

+ (1− ϑ)

{
ηd
∫
e−γ(C

d
t−yt+µtwt(ξtt(i)−ξ))di+

(
1− ηd

)∫
e−γ(C

nd
t −yt+µtwt(ξtt(i)−ξ))di

}
For dates t > 0, we can additionally write Σt as:

Σt = (1− ϑ)
t−1∑

s=−∞

∫
ϑt−se−γ(c

s
t−1(i)−yt−1)e−γ(c

s
t (i)−cst−1(i)−yt+yt−1)di

+ (1− ϑ)

{
ηd
∫
e−γ(C

d
t−yt+µtwt(ξtt(i)−ξ))di+

(
1− ηd

)∫
e−γ(C

nd
t −yt+µtwt(ξtt(i)−ξ))di

}
= (1− ϑ)

t−1∑
s=−∞

∫
ϑt−se−γ(c

s
t−1(i)−yt−1)e−γµtwt(ξ

s
t (i)−ξ)di

+ (1− ϑ)

{
ηd
∫
e−γ(C

d
t−yt+µtwt(ξtt(i)−ξ))di+

(
1− ηd

)∫
e−γ(C

nd
t −yt+µtwt(ξtt(i)−ξ))di

}
= ϑ (1− ϑ)

t−1∑
s=−∞

e
γ2µ2

t w
2
t σ

2
t

2

∫
ϑt−1−se−γ(c

s
t−1(i)−yt−1)di

+ (1− ϑ) e
γ2µ2

t w
2
t σ

2
t

2

[
ηde−γ(C

d
t−yt) +

(
1− ηd

)
e−γ(C

nd
t −yt)

]
= [ϑΣt−1 + (1− ϑ)Bt] e

γ2µ2
t w

2
t σ

2
t

2

or

ln Σt =
γ2µ2

tw
2
t σ

2
t

2
+ ln [ϑΣt−1 + (1− ϑ)Bt] for t > 0
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where Bt = ηde−γ(C
d
t−yt) +

(
1− ηd

)
e−γ(C

nd
t −yt). Given the properties, of Cdt and Cndt , we have:

Bt = B (µtVt) ≡ ηde
−γ
(

1−ηd

ηd

)
µtVt

+
(

1− ηd
)
eγµtVt

At date 0, since the utilitarian planner sets τa0 = 1, there is no pre-existing wealth inequality and xs0 (i) =

w0

(
ξs0 (i)− ξ

)
for stockholders and nonstockholders born at some date s ≤ 0. Thus, we have:

Σ0 = (1− ϑ)
0∑

s=−∞

∫
ϑ−se−γ(c

s
0(i)−y0)di

= (1− ϑ)

0∑
s=−∞

ϑ−se
1
2
γ2µ2

0w
2
0σ

2
0

{
ηde−γ(C

d
0−y0) +

(
1− ηd

)
e−γ(C

nd
0 −y0)

}
= e

1
2
γ2µ2

0w
2
0σ

2
0B0

or

ln Σ0 =
1

2
γ2µ2

0w
2
0σ

2
0 + lnB (µ0V0)

Note that B (0) = 1,B′ (0) = 0 and B′′ (0) = γ2
(

1−ηd
ηd

)
> 0

G.2 Planning problem

The planner maximizes

W0 =

∞∑
t=0

βt
{
−1

γ
(1 + γρwt)e

−γytΣt

}
s.t.

γyt = γyt+1 − lnβϑ+ lnµt+1 + ln
[
µ−1
t − (1 + γρwt)

]
−
γ2µ2

t+1w
2σ2

2
e2ϕ(yt+1−y)

(Πt − 1) Πt =
εt
Ψ

[
1− ε(εt − 1)

(ε− 1)εt

(1− τw)zt
wt

]
+ β

(
ztyt+1wt+1

zt+1ytwt

)
(Πt+1 − 1) Πt+1

ln Σ0 =
γ2µ2

tw
2σ2

2
e2ϕ(yt−y) + lnB(µ0V0) for t = 0

ln Σt =
γ2µ2

tw
2σ2

2
e2ϕ(yt−y) + ln [(1− ϑ)B(µtVt) + ϑΣt−1] for t > 0

yt = zt
ρ lnwt + ξ

1 + γρzt + Ψ
2 (Πt − 1)2

Vt =

[
1− ε− 1

ε (1− τw)

wt
zt

]
yt −

ε− 1

ε (1− τw)

wt
zt

Ψ

2
(Πt − 1)2 yt −

η

1− η
J +

[
µ−1
t − 1− γρwt

µ−1
t+1

]
Vt+1

where 1− τw is determined by (29) in the paper. The first order condition for Vt for t > 0 is:

0 = M3,t
(1− ϑ)µtB′ (µtVt)

(1− ϑ)B (µtVt) + ϑΣt−1
−M5,t + β−1 ϑ

Rt−1
M5,t−1

In steady state Vt = 0, and thus we have M5 = 0 in steady state since B′(0) = 0, where M5,t denotes

the multiplier on the Vt recursion. Taking the rest of the first order conditions and linearizing around the
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steady state in which the average consumption of stockholders and nonstockholders is equal, we have the

following.

FOC wrt wt:

−γy
(

1 +
Ω

1− β̃

)
ŷt +

(
1 +

Ω

1− β̃

)
Σ̂t −

(
1− β̃ + Ω

β̃

)
m̂1,t −m1

(
1− β̃ + Ω

β̃

)2
γρ

1 + γρ
ŵt

−

(
1− β̃ + Ω

β̃2

)
m1µ̂t +

κ

γ
m̂2,t −

m̂4,t

γ
+
m4

γ
ŵt −

m4

γ

1

(1 + γρ)
ẑt −

1 + γρ

γρ
m̂5,t

yε

ε− 1
= 0 (G.9)

FOC wrt yt:

−
γρ
(

1 + Ω

1−β̃

)
1 + γρ

ŵt + γ

[
1 + 2

(1−Θ)2

Λ

(
m3 −

m1

β

)]
ŷt −

Σ̂t

Σ
− m̂1,t +

Θ

β
m̂1,t−1

+2 (1−Θ)

(
m3 −

m1

β

)
µ̂t + (1−Θ) m̂3,t +

m̂4,t

γ
+
m̂5,t

γ

1

ε
= 0 (G.10)

FOC wrt Σt:

γρw

1 + γρw
ŵt − γŷt − m̂3,t + β̃m̂3,t+1 +

1− β−1β̃2

1− β̃
Σ̂t = 0 (G.11)

FOC wrt Πt:

m̂2,t =

(
1− β−1β̃

)
(1− Λ)

1− β−1β̃ (1− Λ)

(
1 +

Ω

1− β̃

)
(γy) Ψ

1 + γρ
p̂t (G.12)

FOC wrt µt:

−

(
1− β̃ + Ω

β̃2

)
γρ

1 + γρ
m1ŵt +

[
2Λ

(
m3 −

m1

β

)
− 1− β̃

β̃2
m1

]
µ̂t + Λm̂3,t

+2γ (1−Θ)

(
m3 −

m1

β

)
ŷt −

1

β̃

(
m̂1,t −

β̃

β
(1− Λ) m̂1,t−1

)
= 0 (G.13)

FOC wrt Vt:

γ2 µ2

1− β̃

(
1− ηd

ηd

)
V̂0 − m̂5,0 = 0 for t = 0

γ2 µ2

1− β̃
1− ϑ

1− ϑ+ ϑΣ

(
1− ηd

ηd

)
V̂t − m̂5,t + β−1β̃m̂5,t−1 = 0 for t > 0 (G.14)

where m̂5,t = M̂5,t/U. Following the same steps as in Appendix E.4.1, we can arrive at the following

expression which is the analog of equations (E.37)-(E.38) in that Appendix:

Υ (Ω)xt + εp̂t = − ρ

m4

(
∂D

∂y

)
m̂5,t
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where xt = ŷt − δ(Ω) y+ρ
1+γρ ẑt. Next, for t = 0, combining this expression with equation (G.14), one gets the

target criterion for date t = 0:

Υ (Ω)x0 + εp̂0 + K(ηd)

(
∂D

∂y

)(
V̂0

y

)
= 0

where K(ηd) = γρ 1−β−1β̃(1−Λ)

(1−β−1β̃)(1−Λ)(1−β̃+Ω)

(
1−ηd
ηd

)
µ2 ≥ 0. Similarly for dates t > 0 we have:

Υ (Ω)

(
xt −

β̃

β
xt−1

)
+ ε

(
p̂t −

β̃

β
p̂t−1

)
+ K(ηd)

(
1− β̃

β

)(
∂D

∂y

)(
V̂t
y

)
= 0

which is the same as in Proposition 7 in the paper. Clearly, K(1) = 0 and K′(ηd) = − ρ
m4

γ2µ2

1−β̃

(
1
ηd

)2
< 0.

Finally, it is easy to see that with no idiosyncratic risk (σ = 0⇒ Ω = 0), the target criterion becomes:

x0 + εp̂0 + K(ηd)

(
∂D

∂y

)(
V̂0

y

)
= 0 for t = 0(

xt −
β̃

β
xt−1

)
+ ε

(
p̂t −

β̃

β
p̂t−1

)
+ K(ηd)

(
1− β̃

β

)(
∂D

∂y

)(
V̂t
y

)
= 0 for t > 0

As is clear, even in this case, the target criterion is different from RANK and there is a motive to stabilize

Vt since K 6= 0.

G.3 LQ representation

Relative to the derivation of the LQ problem in our baseline model in Appendix E.2, the only difference

is that unequally distributed profits introduce an additional term in the second-order Σt recursion, which

can now be written as:

gΣ
t ≈ Λµ̂t + γy(1−Θ)ŷt + β−1β̃Σ̂t−1 − Σ̂t +

1

2
Σ̂2
t −

1

2

(
β−1β̃

)2
Σ̂2
t−1 + (γy)2 (1−Θ)2

Λ
ŷ2
t

+2γy (1−Θ) µ̂tŷt +
Λ

2
µ̂2
t +

1

2
(γy)2

(
1− ηd

ηd

)
µ2
[
I(t = 0)Ṽ2

0 + I(t > 0)(1− β−1β̃)Ṽ2
t

]
(G.15)

The rest of the equations remain unchanged. Thus, the purely second-order approximation to the planner’s

objective is as described in (E.22) plus the additional terms involving Ṽt (multiplied by m3). Thus, following

the same steps above, we can arrive at the same expression as in Proposition 7 in the paper:

1

2

∞∑
t=0

βt
{

Υ (Ω)
(
ŷt − δ(Ω)ŷet

)2
+
ε

κ
π2
t

}
+

K
(
ηd
)

2

{
Ṽ2

0 +

∞∑
t=1

βt
(

1− β−1β̃
)
Ṽ2
t

}
(G.16)
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The optimal policy problem can now simply be specified as minimizing (G.16) subject to the linearized

Phillips curve (30) in the paper and valuation equation (40) in the paper. In Lagrangian form:

L =
1

2

∞∑
t=0

βt
{

Υ (Ω)
(
ŷt − δ(Ω)ŷet

)2
+
ε

κ
π2
t

}
+

K
(
ηd
)

2

{
Ṽ2

0 +

∞∑
t=1

βt
(

1− β−1β̃
)
Ṽ2
t

}

+
∞∑
t=0

βtz1,t

{
βπt+1 + κ

[
ŷt − ŷet +

ρ/y

1 + γρ
ε̂t

]
− πt

}
+

∞∑
t=0

βtz2,t

{
Dyŷt +

ε− 1

ε

1 + γρ

ρ/y
ŷet + β̃Ṽt+1 − Ṽt

}
The FOC w.r.t. ŷt can be written as:

Υ(Ω) (ŷt − δ(Ω)ŷet ) + κz1,t + z2,tDy = 0

The FOC w.r.t. πt can be written as:

ε

κ
πt −z1,t + z1,t−1 = 0 ⇔ z1,t =

ε

κ
p̂t

where κ = ε
Ψ

1+γρ
ρ/y . Finally the FOC w.r.t. Vt can be written as:

K(ηd)Ṽ0 −z2,0 = 0 for t = 0(
1− β−1β̃

)
K(ηd)Ṽ0 −z2,t + β−1β̃z2,t−1 = 0 for t > 0

Combining these three FOCs, we can derive the target criterion in Proposition 7 in the paper:

Υ (Ω)x0 + εp̂0 + K(ηd)DyV̂0 = 0 (G.17)

and for t > 0:

Υ (Ω)
(
xt − β−1β̃xt−1

)
+ ε

(
p̂t − β−1β̃p̂t−1

)
+ K(ηd)Dy

(
1− β−1β̃

)
V̂t = 0 (G.18)

where xt = ŷt − δ(Ω)ŷet .

H Hand to Mouth households

Our baseline model deliberately abstracts from MPC heterogeneity and shows that even absent such

heterogeneity, optimal policy sharply differs from RANK. We now study how MPC heterogeneity, a feature

of quantitative HANK models that has received much attention since Kaplan et al. (2018), affects optimal

monetary policy. We do so by introducing a fraction ηh of hand-to-mouth (HtM) households who cannot

trade bonds and consume their after tax-income. These households are otherwise identical to the remaining

1 − ηh unconstrained households who trade bonds as in the baseline – in particular, both groups draw

idiosyncratic shocks from the same distribution and receive the same dividends and transfers per capita.

While the MPC of unconstrained households µt is still described by (18) in the paper, the MPC of
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constrained households is µ̃t = (1 + γρwt)
−1. These households can still self-insure to some extent by

adjusting hours worked, implying that µ̃t < 1. However, since they cannot insure using the bond market,

their MPC is higher than that of the unconstrained households, i.e. µ̃t > µt.

Appendix H.1 and H.2 show that the presence of HtM households does not change the dynamics of

aggregate variables, given a path of interest rates. These dynamics are still given by (23)-(25) in the paper –

in equilibrium, since HtM households consume their income, and aggregate consumption equals aggregate

income, the average consumption of unconstrained households must equal aggregate income as in our

baseline.2 However, introducing HtM households does affect social welfare, and therefore optimal policy.

While the period t felicity function of the utilitarian planner can still be written as Ut = u(ct, nt; ξ)× Σt,

the welfare relevant measure of consumption inequality is now Σt = (1−ηh)Σnh
t +ηhΣh

t where Σnh
t denotes

consumption inequality among unconstrained households and evolves according to (27) in the paper, while

Σh
t denotes consumption inequality among HtM households, and equals Σh

t = 1
2γ

2µ̃2
tw

2
t σ

2
t . Since there

is no wealth inequality among HtM households, unlike Σnh
t , Σh

t depends only on current consumption

risk. However, since µ̃t > µt, consumption inequality moves more for this group in response to changes in

income risk. While the tradeoffs facing the planner are qualitatively the same as in our baseline economy,

quantitatively, monetary policy has even larger effects on Σt in the presence of HtM households:

Lemma 4. The effect of a one-time increase in output engineered by monetary policy reduces inequality Σt

by a larger amount, the larger the fraction of HtM households ηh: ∂2Σ̂t
∂ŷt∂ηh

< 0 when income risk is acyclical

or countercyclical.

Proof. See Appendix H.3.

Since the main differences in optimal policy in HANK relative to RANK arise because monetary policy

can affect inequality, a higher sensitivity of inequality to monetary policy magnifies these differences.

Productivity Shock Figure H.1 shows the dynamics under optimal policy following a negative produc-

tivity shock in RANK (dashed red curves), HANK with no HtMs (solid blue curves) and HANK with 30%

HtMs (dot-dashed magenta curves).3 In our baseline (ηh = 0), monetary policy already prevents output

from falling as much as ŷnt on impact, permitting some inflation. With ηh > 0, policy cushions the fall in

output even more (see panel a), resulting in even higher inflation responses initially (see panel b). Quan-

titatively, the impact response of the output gap is about twice as large with HtM households, and that of

inflation about two and a half times as large. Intuitively, a fall in output is more costly with ηh > 0 because

it increases consumption inequality more for HtMs who cannot self-insure using the bond market. This

can be seen by comparing the dot-dashed magenta curves in panel c), which plots consumption inequality

amongst unconstrained households, with panel d) which plots inequality among the HtMs. At its peak,

the percentage increase in Σh
t is around ten times the increase in Σnh

t . Thus, the benefit of mitigating

the fall in output, in terms of the effect on Σt, is much higher in the economy with HtMs. To see this,

compare the dot-dashed magenta curve in panel e), which plots inequality under optimal policy with 30%

HtMs, to the dotted-black curve, which plots inequality if monetary policy uses the target criterion which

2This is for the same reasons as in Bilbiie (2008); Werning (2015); Acharya and Dogra (2020).
3ηh = 0.3 is in line with Kaplan et al. (2014) who find that approximately 30% of U.S. households are hand-to-mouth. Given

our calibration, this implies an average MPC of around 17% (around 40% for HtMs and 7% for unconstrained households),
which is in line with the range of MPCs reported in the empirical literature.
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would be optimal in an economy with no HtMs. The difference between these curves – the reduction in

overall inequality due to a higher path of output – is much larger than the reduction in inequality amongst

the unconstrained households, shown by the difference between the curves in panel c). Since inequality is

more sensitive to the level of output in the presence of HtMs, the planner tolerates larger deviations from

productive efficiency and price stability to mitigate the rise in inequality following an adverse shock.
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Figure H.1: Optimal policy in response to productivity shocks In panels a and b, solid blue curves
depicts dynamics in HANK with Ω > 0 and no HtM agents; red-dashed curves depict dynamics in RANK;
and dot-dashed magenta lines depict the optimal response of an economy with 30% HtM households
following a negative productivity shock. In panels c,d and e, the dot-dashed magenta line presents the
evolution of Σnh

t ,Σh
t and Σt resp. under optimal policy in the economy with 30% HtMs, while the dotted-

black line depicts the evolution of these variables in the economy with 30% HtMs if monetary policy
implements the target criterion which would be optimal in an economy with no HtMs. All panels plot
log-deviations from steady state ×100.

Markup Shocks Similarly, when studying markup shocks in our HANK economy with HtMs, the dif-

ference between optimal policy in HANK and RANK is qualitatively the same as in our baseline, but

quantitatively amplified. To mitigate the increase in inequality, particularly amongst HtMs, monetary

policy stabilizes output more (dot-dashed magenta curve relative to solid blue curve in panel a), Figure

H.2) at the cost of higher inflation (dot-dashed magenta curve relative to solid blue curve in panel b)).

Quantitatively, in the presence of HtMs, optimal policy shaves off around half the initial fall in output in

RANK while optimal policy only shaves off about a quarter in our baseline (absent HtMs). Similarly, the

increase in inflation is larger with HtMs.

Overall, introducing MPC heterogeneity does not qualitatively change the tradeoffs analyzed in our

baseline. In fact, it accentuates the differences relative to RANK: with higher MPCs, i.e., higher passthrough

from income to consumption risk, consumption inequality is even more sensitive to monetary policy. Con-

sequently, policy deviates even further from RANK to stabilize inequality. This suggests that the tradeoffs

we study analytically would be even more important in quantitative HANK economies with a substantial

fraction of high MPC households.

H.1 Decision problem of HtM households

A HtM agent’s problem at any date t can be written as:

max
cst (i;h),`st (i;h)

−1

γ
e−γc

s
t (i;h) − ρeρ(`st (i)−ξst (i))
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Figure H.2: Optimal policy in response to markup shocks In panels a and b, solid blue curves depicts
dynamics in HANK with Ω > 0 and no HtM agents; red-dashed curves depict dynamics in RANK; and
dot-dashed magenta lines depict the optimal response of an economy with 30% HtM households following a
positive markup shock. In panels c,d and e, the dot-dashed magenta line presents the evolution of Σnh

t ,Σh
t

and Σt resp. under optimal policy in the economy with 30% HtMs, while the dotted-black line depicts
the evolution of these variables in the economy with 30% HtMs if monetary policy implements the target
criterion which would be optimal in an economy with no HtMs. All panels plot log-deviations from steady
state ×100.

s.t.

cst (i;h) = wt`
s
t (i;h) +Dt − Tt

The optimal labor supply can be written as:

`st (i;h) = ρ lnwt − γρcst (i;h) + ξst (i;h) (H.1)

which is the same as that for the non-HtM households (16) in the paper. Aggregating the individual labor

supply across all HtM and non-HtM households, multiplying by wt and adding Dt − Tt:

wt`t +Dt − Tt = wt lnwt − γρwtyt + wtξ +Dt − Tt

The LHS of this expression is simply yt, so we have

yt =
wt
(
lnwt + ξ

)
+Dt − Tt

1 + γρwt

Using this and the individual labor supply in the budget constraint for HtM households yields:

cst (i;h) = yt + µ̃tx
s
t (i;h)

where xst (i;h) = wt
(
ξst (i)− ξ

)
and µ̃t = (1 + γρwt)

−1.

Since the average consumption of HtM households is yt, market clearing implies that the average

consumption of unconstrained households is also Cnht = yt. Thus, it follows that the same aggregate Euler

equation as in the baseline still holds with a fraction ηh > 0 of HtM households.
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H.2 Deriving the Σ recursion

Even in this case, the objective function of the planner can be written as:

W0 =
∞∑
t=0

βtu
(
ct, nt; ξ

)
Σt

where, as before, Σt is defined by:

Σt = (1− ϑ)

t∑
s=−∞

∫
ϑt−se−γ(cst (i)−ct)di

Since we have HtM and non-HtM households, this can be further expanded:

Σt = (1− ηh) (1− ϑ)

t∑
s=−∞

∫
ϑt−se−γ(cst (i;nh)−yt)di︸ ︷︷ ︸
Σnht

+ηh (1− ϑ)

t∑
s=−∞

∫
ϑt−se−γ(cst (i;h)−yt)di︸ ︷︷ ︸
Σht

Since cts (i;h) = yt + µ̃twt
(
ξtt (i)− ξ

)
, we have Σh

t :

Σh
t = (1− ϑ)

t∑
s=−∞

ϑt−s
∫
e−γµ̃twt(ξ

s
t (i;h)−ξ) = e

1
2
γ2µ̃2

tw
2
t σ

2
t

Since the consumption function of unconstrained households is the same as in the baseline model, it follows

that Σnh
t evolves as:

ln Σnh
t =

γ2µ2
tw

2
t σ

2
t

2
+ ln[1− ϑ+ ϑΣnh

t−1]

H.3 Sensitivity of inequality w.r.t. monetary policy with HTMs

In the presence of HTMs, the welfare relevant measure of inequality at any date t (up to first order) is

given by:

Σ̂t = (1− ηh)
Σnh

Σ
Σ̂nh
t + ηh

Σh

Σ
Σ̂h
t

where (31) in the paper describes the evolution of Σ̂nh
t . Up to first order, the relationship between Σh

t =

1
2

(
γwtσt

1+γρwt

)2
and yt can be expressed as:

Σ̂h
t = − γy(

1− β̃
)2

[
(Θ− 1 + Λ) + Λ

(
w − 1

1 + γρw

)]
ŷt
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where we have used the equilibrium relationship between wages and output (E.3) (we have also set all

shocks to zero without loss of generality). Thus, we have:

Σ̂t = − γy(
1− β̃

)2

{(
1− β̃

)2 (
1− ηh

) Σnh

Σ
(Θ− 1) + ηh

Σh

Σ

[
(Θ− 1 + Λ) + Λ

(
w − 1

1 + γρw

)]}
ŷt

+
(

1− ηh
) Σnh

Σ
Λµ̂t +

(
1− ηh

) Σnh

Σ
β−1β̃Σ̂nh

t

We consider a one-time change in ŷt > 0 engineered by monetary policy. Since equations (23)-(25) in the

paper which describe the evolution of macroeconomic aggregates are purely forward looking, monetary

policy can implement this with a change in the nominal interest rate only at date t without affecting the

trajectory of macroeconomic aggregates in the future. The change in nominal rates which implement this

one time increase in date t output can be derived by setting all t+ 1 variables (and all shocks) in (23)-(24)

in the paper to zero:

ŷt = − 1

γy
it

µ̂t = −γµwy(1 + γρ)ŷt + β̃it

where the first equation is (23) and the second is (24) in the paper. Combining the three equations and

eliminating ŵt yields

µ̂t = −γy
[
1 +

(
1− β̃

)( w − 1

1 + γρw

)]
ŷt

Using this in the expression for Σ̂t yields

Σ̂t = −γy
(

1− ηh
) Σnh

Σ

[
(Θ− 1 + Λ) + Λ

(
1− β̃

)( w − 1

1 + γρw

)]
ŷt

−γyηhΣh

Σ

1(
1− β̃

)2

[
(Θ− 1 + Λ) + Λ

(
w − 1

1 + γρw

)]
ŷt +

(
1− ηh

) Σnh

Σ
β−1β̃Σ̂nh

t ,

Taking the derivative w.r.t ηh, we get:

∂2Σ̂t

∂ηh∂ŷt
= −γy


[
Θ− 1 + Λ + Λ

(
w − 1

1 + γρw

)]
1

Σ

 Σh(
1− β̃

)2 − Σnh

+ Λ

(
w − 1

1 + γρw

)
β̃

Σnh

Σ

 ,

which is negative for countercyclical and acyclical risk (Θ ≥ 1) for β sufficiently close to 1.4 Thus, a

higher fraction of HTMs (ηh) implies that Σt falls more in response to the same increase in output.

4To see this, note that Σh 1

(1−β̃)2 − Σnh = e

Λ
2

(
1−βϑe

Λ
2

)−2

(
1−βϑe

Λ
2

)2 − 1−ϑ

1−ϑe
Λ
2

e
Λ
2 is increasing in β, negative at β = 0 and positive at

β = 1 for any ϑ,Λ satisfying ϑeΛ/2 < 1.
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H.4 Planning Problem

The utilitarian planner maximizes:

W0 =
∞∑
t=0

βt
{
−1

γ
(1 + γρwt)e

−γyt
[
(1− ηh)Σnh

t + ηhΣh
t

]}
s.t.

γyt = γyt+1 − lnβϑ+ lnµt+1 + ln
[
µ−1
t − (1 + γρwt)

]
−
γ2µ2

t+1w
2σ2

2
e2ϕ(yt+1−y)

(Πt − 1) Πt =
εt
Ψ

[
1− ε(εt − 1)

(ε− 1)εt

(1− τw)zt
wt

]
+ β

(
ztyt+1wt+1

zt+1ytwt

)
(Πt+1 − 1) Πt+1

ln Σnh
t =

γ2µ2
tw

2σ2

2
e2ϕ(yt−y) + ln

[
(1− ϑ) + ϑΣnh

t−1

]
ln Σh

t =
γ2(1 + γρwt)

−2w2σ2

2
e2ϕ(yt−y)

yt = zt
ρ lnwt + ξ

1 + γρzt + Ψ
2 (Πt − 1)2

Fiscal policy sets τw such that the planner finds it optimal to implement Π = 1 in steady state, as in our

baseline. To plot Figures H.1 and H.2, we first solve for τw numerically, then we linearize the first order

conditions and compute the optimal dynamics to shocks numerically.

I Persistent income risk

Our baseline model described in the main paper featured i.i.d. idiosyncratic income risk, whereas empirical

studies find that idiosyncratic income risk is highly persistent (Heathcote et al., 2010; Guvenen et al., 2021).

We now relax this assumption by allowing for persistent idiosyncratic disutility shocks. Specifically, we

assume that

ξst (i)− ξ = σte
s
t (i) where est (i) = %ξe

s
t−1(i) + υst (i), υst (i) ∼ i.i.d. N(0, 1), ess−1(i) = 0(I.1)

We allow for 0 ≤ %ξ ≤ 1. Setting %ξ = 0 corresponds to the baseline model. As in the baseline model,

we allow for a flexible specification for the cyclicality of income risk by assuming that wtσt = wσeϕ(yt−y).

Appendix I.1 shows that the optimal consumption decision rule of a household is described by

cst (i) = Ct + µt

(
ast (i) + hst (i)

)
(I.2)

and the aggregate Euler equation is now given by

Ct = −1

γ
lnβRt + Ct+1 −

γµ2
t+1σ

2
h,t+1

2
(I.3)
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where ast (i) is the household’s financial wealth and hst (i) ≡ σh,test (i) denotes the household’s human wealth,

defined as the expected present-discounted value of their labor endowment

hst (i) = Et
∞∑
τ=0

Qt+τ |twt+τ
(
ξst+τ (i)− ξ

)
=

[ ∞∑
τ=0

Qt+τ |twt+τσt+τ%
τ
ξ

]
︸ ︷︷ ︸

σh,t

est (i) (I.4)

where Qt+τ |t =
∏τ−1
k=0

ϑ
Rt+k

. As in the baseline model, the MPC out of household financial and human

wealth, µt is still given by (18). The consumption risk faced by households, the last term in (I.3) depends

on the passthrough from human wealth to consumption (measured by µ2
t+1) and the variance of shocks to

human wealth σ2
h,t+1. In our baseline model (%ξ = 0), human wealth hst (i) is simply wt(ξ

s
t −ξ), making (I.2)

identical to (15) in the paper, and the variance of shocks to human wealth is simply σ2
h,t+1 = w2

t+1σ
2
t+1.

However, with persistent idiosyncratic income, a positive shock to the household’s current labor endowment

also increases the expected value of their endowment in the future. This is reflected in the fact that σh,t

depends on not just wtσt, but the whole future path {wt+kσt+k}∞k=0.
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Figure I.1: Optimal policy in response to productivity shocks In all panels, red-dashed curves
depict dynamics in RANK; solid blue curves depicts dynamics in HANK with %ξ = 0; black lines with
circle markers depicts dynamics in HANK with %ξ = 0.5 and the magenta dotted line depicts dynamics in
HANK with %ξ = 1. All panels plot log-deviations from steady state ×100.

Appendix I.2 shows that, as in our baseline, a utilitarian planner’s felicity function can be decomposed

into the flow utility of a notional representative agent and a welfare-relevant measure of consumption

inequality Σt, which now evolves according to

ln Σt =
γ2µ2

tσ
2
h,t

2
+ ln [1− ϑ+ ϑΣt−1] (I.5)

It is worth nothing that with %ξ > 0, our economy features not one, but two dimensions of persistent wealth

inequality: financial and human wealth inequality. In principle, this means that the planner must forecast

the evolution of the joint distribution of financial and human wealth, not just the distribution of financial

wealth as in the baseline. However, as (I.5) indicates, the evolution of this joint distribution can still be

summarized by a single scalar Σt which depends on its own lagged value. This highlights the analytical

tractability of our framework.

Equation (I.5) along with the definition of σh in (I.4) reveals that persistence (%ξ > 0) modifies the

effect of monetary policy on consumption inequality in two ways. First, lower real interest rates, holding

the path of aggregate output and wages fixed, now tend to increase the variance of human wealth σ2
h,
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putting more weight on the value of future labor endowments. Thus, while the effect of interest rates on

passthrough µt remain unchanged (relative to the baseline i.i.d. case), %ξ > 0 tends to weaken the overall

effect of interest rates on consumption risk, given the level of output. But this is not the only effect of

higher persistence. Lower real interest rates also increase output, which reduces human capital risk (in

the countercyclcial income risk case) as in our baseline model. This effect becomes more pronounced, the

higher the level of human capital risk σh. Higher %ξ tends to increase the level of human capital risk (for the

same sequence of {wt+k, σt+k}∞k=0), since the same shock to current income has a larger effect on lifetime

income: σh,t(%ξ > 0) > σh,t(%ξ = 0). Thus, higher %ξ amplifies the effect of monetary policy on Σt via the

level of output. Overall, this second effect dominates and higher persistence increases the sensitivity of Σt

to changes in output induced by monetary policy. This effect is itself long-lived–
∂Σ̂t+k
∂ŷt

is larger in absolute

value at all horizons k > 0 when %ξ is higher– because consumption inequality is only slow to revert to its

mean value following an increase in consumption risk (cf. equation (I.5)).

Lemma 5. The effect of a one-time increase in output engineered by monetary policy reduces inequality

Σt+k at all horizons k ≥ 0 by a larger amount, the larger the persistence of idiosyncratic income %ξ:

∂

∂%ξ

(
∂Σ̂t

∂ŷt

)
< 0 with acyclical/countercyclical income risk, Θ ≥ 1

and
∂

∂%ξ

(
∂Σ̂t+k

∂ŷt

)
=
(
β−1β̃

)k ∂

∂%ξ

(
∂Σ̂t

∂ŷt

)
∀k > 0

Proof. See Appendix I.4.

Consequently, since the sensitivity of consumption risk to monetary policy is the main force leading

optimal monetary policy to differ in HANK and RANK, introducing persistent idiosyncratic income risk

magnifies these differences. Figure I.1 shows the dynamics under optimal policy following a negative

productivity shock in RANK (dashed red curves), and HANK with %ξ = 0 (blue line), %ξ = 0.5 (black

line with circle markers) and %ξ = 1 (magenta dotted line). Recall that in our baseline with %ξ = 0,

the HANK planner already cushions the fall in output relative to the RANK planner, resulting in higher

inflation on impact. The black line with circle markers and magenta dotted line indicate that higher %ξ

leads the HANK planner to cushion the fall in output even more, leading to higher inflation on impact. To

understand why, note that the steady state level of human capital risk σh is the highest for the economy

with %ξ = 1 and the lowest when %ξ = 0. Thus, panel (d) shows that by curtailing the fall in output, the

HANK planner permits a smaller proportional increase in σh,t when the level of σh is already high, i.e.,

in the economy with %ξ = 1 (compare the magenta dotted and blue lines). The planner does not allow a

large increase in the level of σh,t, even temporarily, since doing so would persistently increase consumption

inequality Σt (cf. Lemma 5). This more moderate decline in output (and smaller proportional increase in

σh,t) also results in a smaller increase in passthrough µt (panel (c)). The case with %ξ = 0.5 lies between

the i.i.d and random walk extremes. A higher %ξ modifies the optimal response to a markup shock in a

similar fashion; we omit the results for the sake of brevity.

Overall, persistent income risk, like MPC heterogeneity, does not change the tradeoff facing the planner

qualitatively. In fact, it also accentuates the difference relative to RANK, compared to the case with i.i.d.
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income risk. Again this suggests that the tradeoffs we study analytically would be even more important

in quantitative HANK models with realistic income processes.

I.1 Derivation of household decision rules

The date s problem of an individual i born at date s is now

max
cst (i),`

s
t (i),a

s
t+1(i)

−Es
∞∑
t=s

(βϑ)t−s
{

1

γ
e−γc

s
t (i) + ρe

1
ρ

(`st (i)−ξst (i))
}

subject to

cst (i) + qta
s
t+1 (i) = wt`

s
t (i) + (1− τat ) ast (i) +Dt − Tt

where ξst (i)− ξ = σte
s
t (i) and

est (i) = %ξe
s
t−1 (i) + υst (i) υi,t ∼ N (0, 1)

The derivation of the consumption function follows that in Appendix A. Guess that the consumption

function takes the form:

cst (i) = Ct + µt (ast (i) + hst (i))

where hst (i) denotes the expected present-discounted value of the household’s labor endowment:

hst (i) = Et
∞∑
k=0

Qt+k|twt+k
(
ξst+k (i)− ξ

)
≡ σh,test (i) Qt+k|t =

τ∏
k=0

ϑ

Rt+k

Using the budget constraint, labor supply and the household’s Euler equation, we have:

yt +

{
µt − µt+1

Rt
ϑ

[1− (1 + ργwt)µt]

}
ast (i) = −1

γ
lnβRt + yt+1

+

{
µt+1

Rt
ϑ

[σtwt − (1 + ργwt)µtσh,t] + %ξµt+1σh,t+1 − µtσh,t
}
est (i)

− γ

2
µ2
t+1σ

2
h,t+1

Matching coefficients yields the standard µt recursion:

µ−1
t = 1 + γρwt +

ϑ

Rt
µ−1
t+1 (I.6)

In addition, we have the following equation describing σh,t

σh,t = σtwt +
ϑ

Rt
%ξσh,t+1 (I.7)
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and the aggregate Euler equation is now given by

yt = yt+1 −
1

γ
lnβRt −

γµ2
t+1σ

2
h,t+1

2
(I.8)

where we have used Ct = yt from market clearing.

I.2 Deriving the Σ recursion

As in our baseline, we assume that the planner is utilitarian and puts identical weight (equal to 1) on the

welfare of all individuals on individual i both at date s ≤ 0 and βs on the welfare of individuals who will

be born at date s > 0. Recall that in our baseline we allow the planner to set a date 0 tax on financial

wealth to focus on the role of monetary policy in providing insurance, rather than redistribution between

borrowers and lenders. But when %ξ > 0, households alive at the beginning of date 0 differ not only in

financial wealth but also in terms of human wealth. To remove the planner’s incentive to use monetary

policy to redistribute between individuals with high and low human wealth, we allow the planner to tax

indivduals on their total wealth at the beginning of date 0. At the beginning of date 0, when the date 0

idiosyncratic shock υs0 (i) to household i’s time endowment has not yet been realized, the household’s total

wealth is given by as0 (i) + σh,0%ξe
s
−1 (i) where we have used the fact that

hs0 (i) = σh,0e
s
0 (i) = σh,0%ξe

s
−1 (i) + σh,0υ

s
0 (i)

The planner levies a tax τa0 on this total amount implying that the hosuehold’s post-tax human wealth

after the realization of their date 0 idiosyncratic shock υs0 (i) is given by (1− τa0 )
[
as0 (i) + σh,0%ξe

s
−1 (i)

]
+

σh,0υ
s
0 (i). This also implies that the date 0 tax on financial wealth τa0 = 1. However, δ now measures the

extent to which the planner is willing to tolerate pre-existing human wealth inequality. δ = 0 implies that

the planner is also utilitarian towards human wealth inequality at date 0 while a higher δ implies that the

planner assigns higher weights to the welfare of those with higher human wealth as of date -1. As in the

baseline, the planner’s objective function can be written as:

W0 =

∞∑
t=0

βtu
(
c, n; ξ

)
Σt

where Σt is now defined as

Σt = (1− ϑ)

t∑
s=−∞

ϑt−s
∫
e−γ(cst (i)−ct)di

Next, subtracting the aggregate Euler equation from a household’s Euler equation for all dates t ≥ 0, we

get

cst+1 (i)− ct+1 = cst (i)− ct + µt+1σh,t+1υ
s
t+1 (i)
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Using this in the definition of Σt for t ≥ 1

Σt = (1− ϑ)
t−1∑

s=−∞
ϑt−s

∫
e−γ(c

s
t−1(i)−ct−1+µtσh,tυ

s
t (i))di+ (1− ϑ)

∫
e−γ(µtσh,tυ

t
t(i))di

= ϑe
1
2
γ2µ2

tσ
2
h,t

{
(1− ϑ)

t−1∑
s=−∞

ϑt−1−s
∫
e−γ(c

s
t−1(i)−ct−1)di

}
+ (1− ϑ) e

1
2
γ2µ2

tσ
2
h,t

= e
1
2
γ2µ2

tσ
2
h,t [1− ϑ+ ϑΣt−1]

Taking logs, we get

ln Σt =
γ2µ2

tσ
2
h,t

2
+ ln [1− ϑ+ ϑΣt−1]

Next, for t = 0, we have

Σ0 = (1− ϑ)
0∑

s=−∞
ϑ−s

∫
e−γ(c

s
0(i)−c0)di

= (1− ϑ)

0∑
s=−∞

ϑ−s
∫
e−γµ0(1−τa0 )(as0(i)+σh,0%ξe

s
−1(i))−γµ0σh,0υ

s
0(i)di

= e
1
2
γ2µ2

0σ
2
h,0

{
(1− ϑ)

0∑
s=−∞

ϑ−s
∫
e−γµ0(1−τa0 )(as0(i)+σh,0%ξe

s
−1(i))di

}

Clearly, since as0 (i)+σh,0%ξe
s
−1 (i) has zero mean, the planner chooses τa0 = 1 to minimize this expression,

implying that the date 0 Σ recursion is the same as at all future dates:

ln Σ0 =
1

2
γ2µ2

0σ
2
h,0 + ln [1− ϑ+ ϑΣ−1] where Σ−1 = 1

I.3 Planning Problem

The planning problem can be written as:

max

∞∑
t=0

βt
{
−1

γ
(1 + γρwt) e

−γytΣt

}
s.t.

γyt = γyt+1 − lnβϑ+ lnµt+1 + ln
[
µ−1
t − (1 + γρwt)

]
−
γ2µ2

t+1σ
2
h,t+1

2
(I.9)

(Πt − 1) Πt =
εt
Ψ

[
1− εt − 1

εt

(1− τw) zt
(1− τ?)wt

]
+ β

(
ztyt+1wt+1

zt+1ytwt

)
(Πt+1 − 1) Πt+1 (I.10)

ln Σt =
γ2µ2

tσ
2
h,t

2
+ ln [1− ϑ+ ϑΣt−1] (I.11)
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yt = zt
ρ lnwt + ξ̄

1 + ργzt + Ψ
2 (Πt − 1)2 (I.12)

σh,t = σtwt + %ξµt+1

[
µ−1
t − 1− γρwt

]
σh,t+1 (I.13)

Σ−1 = 1 (I.14)

This can be expressed as a Lagrangian:

L =
∞∑
t=0

βt
{
−1

γ
(1 + γρwt) e

−γytΣt

}

+

∞∑
t=0

βtM1,t

{
γyt+1 − lnβϑ+ lnµt+1 + ln

[
µ−1
t − (1 + γρwt)

]
−
γ2µ2

t+1σ
2
h,t+1

2
− γyt

}

+
∞∑
t=0

βtM2,t

{
εt
Ψ

[
1− εt − 1

εt

(1− τw) zt
(1− τ?)wt

]
+ β

(
ztwt+1yt+1

zt+1wtyt

)
(Πt+1 − 1) Πt+1 − (Πt − 1) Πt

}

+

∞∑
t=0

βtM3,t

{
γ2µ2

tσ
2
h,t

2
+ ln [1− ϑ+ ϑΣt−1]− ln Σt

}

+
∞∑
t=0

βtM4,t

{
yt − zt

ρ lnwt + ξ̄

1 + γρzt + Ψ
2 (Πt − 1)2

}

+

∞∑
t=0

βtM5,t

{
σweϕ(yt−y) + %ξµt+1

[
µ−1
t − 1− γρwt

]
σh,t+1 − σh,t

}
FOC wrt yt (equation is divided by −γ):

Ut +M1,t − β−1M1,t−1 + βγM2,t

(
ztwt+1yt+1

zt+1wty2
t

)
(Πt+1 − 1) Πt+1 − γM2,t−1

(
zt−1wt

ztwt−1yt−1

)
(Πt − 1) Πt

−M4,t

γ
− ϕ

γ
M5,twσe

ϕ(yt−y) = 0

FOC wrt wt (equation is multiplied by wt):

0 =
γρwt

1 + γρwt
Ut −M1,t

γρwt

µ−1
t − (1 + γρwt)

+M2,t
εt − 1

Ψ

(1− τw) zt
(1− τ?)wt

−βM2,t

(
ztwt+1yt+1

zt+1wtyt

)
(Πt+1 − 1) Πt+1 +M2,t−1

(
zt−1wtyt
ztwt−1yt−1

)
(Πt − 1) Πt

−M4,t

γ

γρzt

1 + ργzt + Ψ
2 (Πt − 1)2 −M5,t%ξµt+1γρwtσh,t+1
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FOC wrt Σt (equation is multiplied by Σt):

M3,t = −1

γ
(1 + γρwt) e

−γytΣt + β
ϑΣt

1− ϑ+ ϑΣt
M3,t+1

FOC wrt µt (equation is multiplied by µt):

−M1,t
µ−1
t

µ−1
t − (1 + γρwt)

+ β−1M1,t−1 −
(
β−1M1,t−1 −M3,t

)
γ2µ2

tσ
2
h,t − %ξ

µt+1

µt
M5,tσh,t+1

+β−1%ξµt
[
µ−1
t−1 − 1− γρwt−1

]
M5,t−1σh,t = 0

FOC wrt σh,t (equation is multiplied by σh,t):

0 = −
(
β−1M1,t−1 −M3,t

)
γ2µ2

tσ
2
h,t −M5,tσh,t + β−1%ξµt

[
µ−1
t−1 − 1− γρwt−1

]
M5,t−1σh,t

FOC wrt Πt:[
M2,t −

(
zt−1wtyt
ztwt−1yt−1

)
M2,t−1

]
(2Πt − 1) = M4,tzt

yt

1 + γρzt + Ψ
2 (Πt − 1)2 Ψ (Πt − 1)

Fiscal policy sets τw such that the planner finds it optimal to implement Π = 1 in steady state, as in our

baseline. We solve this system numerically, taking a first-order approximation of the first-order conditions

and the constraints (linearizing the multipliers and log-linearizing all other variables).

I.4 Proof of Lemma 5

We consider a one time change in output ŷt > 0 engineered by monetary policy. Since the equations (I.9),

(I.12) and (I.13) are forward looking, monetary policy can implement this with a change in nominal interest

rates only at date t without affecting macroeconomic aggregates in the future. Thus, the response of the

other variables to a one time change in ŷt are given by the solution to the following linearized equations,

where we have imposed that all variables return to their steady state values at date t+1 (except for Σ̂t+1):

γyŷt = − µ−1

µ−1 − (1 + γρw)
µ̂t −

γρw

µ−1 − (1 + γρw)
ŵt

ŵt =
1 + γρ

ρ/y
ŷt

σ̂h,t =
σw

σh
ϕyŷt − %ξµ̂t − %ξµγρwŵt

Using the steady state relationships between these variables, we have:

µ̂t = −γy
[
β̃ +

(
1− β̃

) (1 + γρ)w

1 + γρw

]
ŷt

σ̂h,t = γy

[(
1− β̃%ξ

) ϕ
γ

+ %ξ

[
β̃ +

(
1− β̃

) (1 + γρ)w

1 + γρw

]
−
(

1− β̃
)
%ξ

(1 + γρ)w

1 + γρw

]
ŷt
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Finally, log-linearizing (I.11)

Σ̂t = γ2µ2σ2
h (µ̂t + σ̂h,t) + β−1β̃Σ̂t−1

= − (γy) γ2µ2w2σ2

(
1

1− β̃%ξ

(
1− ϕ

γ

)
+

(
1− β̃

1− β̃%2
ξ

)
w − 1

1 + γρw

)
ŷt + β−1β̃Σ̂t−1

Thus, we have:

∂

∂%ξ

(
∂Σ̂t

∂ŷt

)
= −β̃γy

[
(Θ− 1 + Λ) + 2

(
ΛΩ

1− β̃%ξ

)]

where Λ = γ2µ2w2σ2

1−β̃%2
ξ

and Θ = 1 − ϕΛ
γ and Ω = (1 − β̃) w−1

1+γρw . With countercyclical risk and w > 1, this

derivative is negative, implying that higher %ξ increases the sensitivity of Σ̂t to ŷt (in absolute value).

Given that ŷt+k = 0 for k > 0 in the experiment considered, we have

∂

∂%ξ

(
∂Σ̂t+k

∂ŷt

)
=

∂

∂%ξ

(
∂Σ̂t+k

∂Σ̂t

∂Σ̂t

∂ŷt

)

=
(
β−1β̃

)k{
−β̃γy

[
(Θ− 1 + Λ) + 2

(
ΛΩ

1− β̃%ξ

)]}

J Optimal response to demand shocks

In Section 4 of the paper, we focused on productivity and markup shocks, both of which affect the natural

level of output ynt . The RANK literature also studies the optimal response to other shocks which do not

affect ynt , e.g. changes in households’ discount factor. Following the literature, we term these demand

shocks. Since these shocks do not induce a tradeoff between productive efficiency and price stability, the

RANK planner simply implements ŷt = ŷnt = πt = 0 in response to these shocks by setting the interest

rate equal to the natural rate of interest r?t , i.e. the interest rate consistent with yt = ynt at all dates.

As shown in Section 4, the HANK planner generally does not implement yt = ynt , even in response

to productivity shocks which do not induce a tradeoff between productive efficiency and price stability.

This is because responding one-for-one to fluctuations in the natural level of output would adversely affect

inequality. Similarly, in response to demand shocks, setting yt = ynt is in general not optimal, because

these shocks would affect inequality should monetary policy fully insulate output from them. Consequently,

optimal policy lets output vary in order to offset these undesirable changes in inequality.

We study two demand shocks: (i) changes in households’ discount factor and (ii) shocks to the variance

of idiosyncratic shocks faced by households. We now assume that household preferences are given by:

Es
∞∑
t=s

(βϑ)t−s
( t−1∏
k=s

ζk

)
u
(
cst (i), `

s
t (i); ξ

s
t (i)
)

where ζt is a shock to the individual’s discount factor between dates t and t + 1. Appendix A shows

that Proposition 1 in the paper remains true except that the aggregate Euler equation (17) in the paper

becomes:

Ct = −1

γ
lnβζtRt + Ct+1 −

γµ2
t+1w

2
t+1σ

2
t+1

2
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The preference shock is internalised by the utilitarian planner who puts weight βs
(∏s−1

k=0 ζk

)
on the lifetime

utility of a household born at date s > 0.

We also introduce a shock to the variance of idiosyncratic risk faced by households (ξ) by assuming that

this variance satisfies σ2
tw

2
t = σ2w2 exp {2 [ϕ(yt − y) + ςt]}. Higher ςt increases the cross-sectional variance

of cash-on-hand at date t. To the extent that the shock is persistent (%ς > 0), this can also be thought

of as a risk shock : higher ςt+1 increases the uncertainty households face at date t about the realization of

the shock to disutility (and hence to cash-on-hand) at date t + 1. When plotting IRFs, following Bayer

et al. (2020), we set the persistence and standard deviation of risk shocks and discount factor shocks to

%ς = 0.684, %ζ = 0.834, σς = 1.4 and σζ = 0.01.

Both discount factor shocks and risk shocks affect the evolution of consumption inequality. This can

be seen through the linearized Σt recursion (32) in the paper which now becomes:5

Σ̂t = −γyΩŷt −
β̃Λ

1− β̃%ζ (1− Λ)
ζ̂t +

(1− β̃%ς)Λ
1− β̃ (1− Λ) %ς

ς̂t + β−1β̃Σ̂t−1 (J.1)

An increase in ς̂t directly affects income risk and thus persistently affects consumption inequality.

More subtly, a fall in households discount factor ζ̂t < 0 increase the natural rate of interest, which in

our economy is given by r?t = − 1−β̃%ζ
1−β̃(1−Λ)%ζ

ζ̂t −
(1−β̃%ς)Λ

1−β̃(1−Λ)%ς
ς̂t+1. Thus, if monetary policy keeps output

unchanged in response to a fall in ζt, this entails a rise in interest rates which increases the passthrough

µt. For a given level of income risk, higher passthrough increases consumption risk and hence the level

of consumption inequality. A persistent increase in ςt also reduces r?t as households attempt to increase

their precautionary savings in response to the increase in risk. This decline in interest rates reduces µt

somewhat, offsetting some of the direct effect of a higher ςt on consumption risk. However, a higher ςt still

increases Σt on net.

Since demand shocks affect inequality, the planner generally deviates from keeping output equal to its

natural level and implementing zero inflation (even though this remains feasible) in order to mitigate the

impact on inequality. This is formalized in the following Proposition.6

Proposition J.1. In response to demand shocks, the planner sets nominal interest rates so that the

following target criterion holds at all dates t ≥ 0:

(ŷt − y?t ) +
ε

Υ(Ω)
p̂t = 0 (J.2)

where y?t = −χ(Ω)ζ̂t + Ξ(Ω)ς̂t is the desired level of output (in deviations from steady state). χ(Ω) and

Ξ(Ω) are defined in Appendix E.4.1 and satisfy χ(0) = Ξ(0) = 0. Υ(Ω) is the same as in Proposition 3.

When risk is countercyclical (Θ > 1⇒ Ω > Ωc), χ(Ω) > 0 and Ξ(Ω) > 0.

As described earlier, the target criterion (J.2) indicates that the planner seeks to minimize fluctuations

of the price level while also keeping output close to its desired level y?t . When risk is acyclical or counter-

cyclical, demand shocks which tend to increase consumption inequality – higher ςt or lower ζt – increase y?t .

5See Appendix E.1 for a derivation. We have implicitly set ẑt = 0 throughout this section.
6For this section, we do not derive a quadratic loss function but derive the target criterion by linearizing the non-linear first

order conditions of the planner’s problem. The target criterion in Proposition J.1 is a generalization of the target criterion
in (36) in the paper to include demand shocks but abstracting from productivity shocks (ẑt = 0). Appendix E.4.1 derives a
general target criterion which is valid in the presence of all four shocks that we study.
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That is, the planner targets a higher level of output because this tends to reduce consumption inequality

when Ω ≥ Ωc > 0, mitigating the increase in inequality due to the shock. Since demand shocks keep ynt

unchanged, adjusting output in response to these shocks entails some inflation; as discussed earlier, the

HANK planner puts a smaller relative weight on price stability Υ(Ω) > 1 relative to the RANK planner.

Risk shocks We start by describing the dynamics under optimal policy in response to a risk shock ς̂0 > 0.

Proposition J.2. Under optimal policy with acyclical or countercyclical income risk, following an increase

in risk (ς̂0 > 0), ŷ0 and π0 both increase. In addition, there exists T > 0 such that for all t ∈ (T,∞),

πt < 0 and ŷt < 0. Following a decline in risk (ς̂0 < 0) all these signs are reversed.

Figure J.1 plots the optimal response to a an increase in risk in RANK and HANK (with Ω ≥ Ωc). In

RANK, since households can trade Arrow securities, an increase in the cross-sectional dispersion of income

does not result in any increase in consumption inequality. Since risk shocks do not affect ynt , the RANK

planner keeps output fixed at ŷt = ŷnt = 0, implying zero inflation πt = 0 (dashed red lines).

In contrast, in HANK with Ω ≥ Ωc, monetary policy cuts nominal interest rates on impact (panel e)

to raise output above its natural level ŷ0 > ŷn0 = 0 in response to a positive risk shock (panel a). In

the acyclical or countercyclical case (Ω ≥ Ωc > 0), higher output tends to reduce consumption inequality,

partially offsetting the effect of the risk shock (see equation (32) in the paper). Lower interest rates and

higher output (which implies higher wages) also makes it easier for households to self insure, lowering the

passthrough from income to consumption risk, i.e., µ̂0 < 0 (panel f). Monetary policy trades off the benefit

from mitigating the increase in inequality against the cost of higher inflation (panel b) and productive

inefficiency (ŷt 6= ŷnt ). To mitigate this inflation, the planner commits to mildly lower output and inflation

in the future. If instead, monetary policy implements ŷt = ŷnt = 0 and πt = 0 (which was optimal under

RANK), this would result in higher inequality (dotted black curve in panel c).
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Figure J.1: Optimal policy in response to risk shocks in HANK with Ω > 0 (solid blue curves) and
RANK (dashed red curves). Black-dotted lines denote outcomes in HANK under non-optimal policy which
sets ŷt = ŷnt = 0, πt = 0 ∀t ≥ 0. All panels plot log-deviations from steady state ×100.
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Discount factor shock A decrease in households’ discount factor (ζ̂t < 0) increases r?t , the interest rate

consistent with ŷt = ŷnt = 0 and πt = 0. Consequently, the RANK planner raises interest rates one-for-one

with r?t , keeping inflation and output unchanged. However, in HANK, this rise in interest rates would

increase passthrough µt and hence consumption inequality. Thus, as with a positive risk shock, monetary

policy deviates from the flexible-price allocation (ŷt = ŷnt = πt = 0) to mitigate this rise in inequality.

Proposition J.3. Under optimal policy with acyclical or countercyclical income risk, following an decrease

in households’ discount factor (ζ̂0 < 0), ŷ0 and π0 both increase. In addition, ∃T > 0 such that for all

t ∈ (T,∞), πt < 0 and ŷt < 0. Following a rise in households’ discount factor, all these signs are reversed.

Figure J.2 plots the optimal dynamics following a negative discount factor shock. As in RANK, the

HANK planner raises rates (panel e), increasing passthrough µt (panel f). This in turn tends to increase

consumption inequality (panel c). However, the HANK planner does not increase rates one-for-one with

r?t (panel d) as this would result in a larger increase in inequality (black-dotted line in panel c). This lower

path of interest rates increases output on impact (panel a), reducing the level of risk faced by households

(when risk is countercyclical) and further curtailing the increase in inequality. To mitigate the rise in date

0 inflation, the planner commits to lower output and inflation in the future (panel b). However, these

differences relative to RANK are fairly small given our calibration.

0 2 4 6 8 10
-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

%
 p

ts

0 2 4 6 8 10
-1

0

1

2

3
10

-3

0 2 4 6 8 10
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 2 4 6 8 10
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

%
 p

ts

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10
0

0.5

1

1.5

Figure J.2: Optimal policy in response to discount factor shock in HANK with Ω > 0 (solid blue
curves) and RANK (dashed red curves). Black-dotted lines denote outcomes in HANK under non-optimal
policy which sets ŷt − ŷnt = πt = 0 ∀t ≥ 0. All panels plot log-deviations from steady state ×100.

Absence of self-insurance channel in zero-liquidity HANK models The optimal response to

discount factor shocks highlights an important difference between our economy with Ω ≥ Ωc > 0 and

zero-liquidity HANK economies (in which households cannot borrow and government debt is in zero net

supply). In zero-liquidity models, interest rates do not affect households’ ability to self-insure via the bond

market, since they always consume their income in equilibrium. Thus, as in RANK, interest rates perform

a single task in these economies: implementing the planner’s desired path of output growth, which in turn

affects inflation via the Phillips curve. Consequently, the planner can first choose output and inflation to
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maximize welfare subject to the Phillips curve, ignoring the IS curve. After this, the planner can use the

IS equation to back out the interest rates implementing the desired path of output and inflation. Since

discount factor shocks only affect the IS curve which can be dropped as a constraint, the planner in a

zero-liquidity or RANK economy leaves output and inflation unchanged following such a shock, raising

interest rates one-for-one with r?t .

In our HANK economy, the IS curve cannot be dropped as a constraint since the interest rate performs

two tasks: (i) it affects output via the IS curve (21) in the paper and (ii) it affects the passthrough

from income to consumption risk µt through (18) in the paper. Formally, Appendix D.2 shows that the

multiplier on the IS equation is non-zero in our HANK model but zero in RANK; it would also be 0

in a zero-liquidity HANK model. Our planner, therefore, faces a tradeoff absent in both RANK and

zero-liquidity economies: when choosing what path of output to target, they must also consider how the

interest rates which implement the desired path of output affect consumption inequality. Thus, in response

to a negative discount factor shock, the HANK planner raises interest rates less than one-for-one with

r?t , tolerating higher output and inflation to curtail the rise in inequality. While this difference relative

to zero-liquidity HANK models is easiest to see with discount factor shocks, the same difference is also

present in response to other shocks as well. For example, one reason the planner does not let output fall as

much as ynt following a negative productivity shock, is that this would require a steeper increase in interest

rates, impairing households’ ability to self-insure using the bond market.
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