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A Proofs and Derivations (cont’d)

A.3 Optimal Attention Choice

Proof of Lemma 2: We consider the minimized expected loss at the start of period ¢:

LI=E {minE [(ait . a;)2] Qit] } . (OA1)

it

The minimizer to this problem is
Q¢ — E [aﬂﬁzt] .

Substituting this expression into (OA1) shows that

Li =E|(af ~Elaj|)’] = E[E|(a - B[af|u])* | Q]|
= E[Var[a;| Q)] = Var [a}| Qi].

Now, using the law of total variance, we can decompose L} into
L? = Var [af | Qit, Qt] + Var [E [af ’ Qit, Qt] | ta] . (OA2>

To complete the proof, we need to derive expressions for the two components of (OA2).
To do so, we first note that
l‘jt’et ~ N (ajet, b?) .

Agent i’s information set §2;; contains the unbiased signal z;;; of xj, defined in (9), which has
precision qj_z. All other elements of €2;; are independent of x;; conditional on 6;.

We can therefore use Bayes’ law for Gaussian variables to show that

Cov [.%'jt, Zijt| Qt]

E[zjt|zije, 0] = E[rji|0:] + (zijt — E[z¢]0])

Var [ z;;¢| 04]
2
= (Ij@t + 55 J 5 (Zijt — ajﬁt) = (1 — mj)a]ﬂt + Mzt
bj +4;

and
(COV [Cl?jt, Zijt’ «9t]2
Var [Zijt | 9t]
b4 b2
J

A R 2 (1_J> =b2(1—my).
3T 2 2 2 2 J J
bj+qj bj+qj

We are now ready to compute the two components of (OA2).

Var [fbjt ‘ Qit,et] = Var [xjt ‘ (9,5] -




Computing the first term in (OA2):

Var [CL: ‘ Qit,et] = Var wget—l—Zijxﬁ Qit,et = Var wajl'jt Qihgt
J J
= Zw Var [z| Qit, 04] —|—ZZ(COV Tjt, Tie| Qi O]
J k#j -0

= waj %( (OA3)

Computing the second term in (OA2):

Elaf | Qe 0] =E |webs + > wejaje | Qir, 0

J
= wyby + Z Wi B [ | Qir, O]
J
= wyby + Y waj (1 —my)a s +mjzije)
J
so that
Var [E a7 | Qir, 0] | Qit] = Var [ weby + > wa; (1 — my)a 0y + mjzije) | Qi
L J
= Var | [ wyg + Z Wi (1 —my)a; | O Qi
L J
2
= |wy + waj(l —mj)aj| Var[f; | Q. (OA4)
J
Substituting (OA3) and (OA4) into (OA2) then yields the desired expression. O

Proof of Proposition 3: An individual agent i’s attention choice problem can be written as

Vo - K
(mgl%/)fa - Z ww] J a? (m)
a?
st. V>V(r), a>ws+ wajaj (I-my), 7< Z b—;mj
J j o
The Lagrangian for this problem is
Z w07 ( —Va? = K(m) +py [V = V()]
a?
o |@=wp = 3 wajag (L=my) | +pr | D samy =7
J jJ



The desired first-order condition is now obtained by rearranging % = 0. O
J

A.4 Macroeconomic Example

Proof of Proposition 4: We start with a firm’s output choice,’

PY

1—1 1
AN RAY
Y PY \ A;

w
Vi =V <Y£7Y7Ai7 P) .

1 1
Y; = argmazV;, = R, [ <Pyi1gl 7 WNi)]

-

Thus,

A second-order log-linear approximation of ¥V then results in

V11

2 YP + vi2yiy + visyiai + viayiw + ti.a, (OAS5)

v (yi7y7aiaw) R Uy +

where w = w — p and t.i.a stands for terms independent of the firm’s action y;.

As a result of (OA5), a firm’s optimal, full-information choice of output is

v v v
V= eyt T+ W, (OAG6)
[ v [T [on | | 11 |
while a firm’s optimal choice under imperfect information is, because of certainty-equivalence,
v = [y (0AT)

It remains to derive the optimal output choice under full information in (OAG). A few simple

but tedious derivations combine to show that
yr =ra; + ar (a_ly — w) = x;1 + To. (OA8)

We note for later use that the equilibrium expression for the real wage is w = Epy + u”.
Finally, we can use (OAG) and (OAT) to derive the difference between a firm’s valuation of

its profits v; = v (¥4, ¥y, a;,w) and those that would have arisen under full information v;:

* V11 o V11l 49

ViT U = i T Y T (vi2y + visai + viaw) (yi — ¥;)
v11 V11 V11
= U vl oy i) = 5 - v’ (0A9)
where we have used the first-order condition for optimal output in (OA5). g
Proof of Proposition 5: Follows immediately from (OA7) and (OA9). O

Since all actions are taken within period, we remove time subscripts to economize on notation.



B Over- and Underreactions in a General Linear Model

We extend the results from Section 2 to economies in which output is driven by several latent
factors, correlated disturbances, and to where the structural components themselves can depend
on their own history. This allows us to encapsulate most linearized macroeconomic models,

including several with imperfect information.

Setup: We once more consider a discrete-time economy with a continuum of agents i € [0, 1].

Output y; and its components x; are given by

yi = DO+ Exy + Fuy (OA10)
vy = Al + Bxi 1+ Cuy, (OAll)

where 1y is a scalar variable, 6; is an ng x 1 vector of fundamental states, x; is an n, x 1 vector
of structural components, and lastly u; is a n, x 1 vector of i.i.d. standard normal random
variables. Most linear DSGE models can be written in this form ( Fernandez-Villaverde et al.,

2007). The vector of fundamentals follows a simple VAR(1),
Oy = M0O;_1 + Nuy, (OA12)

where M and N are conformable matrices.

Each agent i € [0, 1] observes the vector of signals
zip =+ Qeir,  Q = diag (q) (OA13)

where €;; is an n, X 1 vector of i.i.d. standard normal random variables.

It is useful to re-write the system, comprised of (OA10) to (OA12), as
yr = by + Puy, (OA14)

_ !/
where a = [ D E }, 0; = [ 0, ) ] and 8 = F. We further have that

0p = MOy_1 + Nuy, (OA15)
where
[ M 0 N
AM B |’ AN +C |
We can now also re-write (OA13) as
zit = Lo + L10; 1 + Ruy + Qeir, (OA16)

where Lo, L1 and R are implicitly defined.



General Result: We can now extend Proposition 2 to this more general case.

Proposition B.1. If the economy evolves according to (OA10)-(OA13), then the population

coefficients in the regression equations (1) and (2) satisfy:

7<0 <= aMF(GQQ'E +%4D +9Q) <0 (OA17)
§>0 <= dgj€(0,00), (OA18)

where G is the Kalman gain on zy when forming expectations about 0y, Ygg, denotes the covari-
ance term ¥y = Cov (Qt, ét) , and Q) = [N -G (L()N + R)] F'.

Similar to the results in Proposition 2, expectations are generically underreactive in Propo-
sition B.1; § > 0 whenever agents pay limited attention to structural components. Furthermore,
limited attention to countercyclical components (that is, those that are assigned a negative weight
in G, or directly have a negative element in E) once more tend to push expectations towards
measured overreactions to recent outcomes (7 < 0). This generalizes the key insight from the
body of this paper. In deriving this proposition, we have in effect adjusted the y—condition in
Proposition 2 for (7) the direct impact that several, persistent latent factors can have on output
itself (D # 0),% (i) for any cross-correlation in errors between the signal vector and output
(Q # 0); and lastly (éii) for any effects that lagged components may have on output (see the
expression for M). The business cycle model in Section 5 provides an example of a model in

which the second extension is relevant.

Proof of Proposition B.1: The proof proceeds in three steps: First, we derive an expression
for one-period ahead forecast errors and the corresponding one-period ahead forecast revision.
Then, we compute the extrapolation coefficient v in (1). Finally, we also use our results to
calculate the underreaction coefficient § in (2).

As a preliminary step, we note that for any random variable Z, the covariance of individual

forecast errors with Z equals the covariance of average forecast errors with Z:

Cov (Ys11 — EitYerk, Z2) = Cov (yey1 — Beyeyr, Z) -

This follows because the right-hand side is the integral of the left-hand side across individuals,
and because the signals in (OA16) have the same steady-state distribution for all i. In the
remainder of the proof, we therefore use individual and average errors interchangeably.

To start, we use the Kalman Filter for systems with lagged states in the measurement equation

2As an unnamed referee has pointed out to us, our central insight about asymmetric attention can also be
seen in a reductionist manner in the case of several, independent latent factors. Suppose 61: and 62 follow
independent AR(1) processes with persistence parameters p;, in which p1 > 0 and p2 < 0. We further assume
that D = A = Iaxa , E = B = C = F = 0242, and that agents pay full attention to their first signal but
none to their second (g1 — 0, g2 — o), as in Example 1. Then, condition (OA17) shows that v < 0 because
p2Var [02:] < 0. Thus, as in the body of this paper, the overreaction to recent output documented in the survey
data can be interpreted as an underreaction to countercyclical components (p2 < 0).



(Nimark, 2015). This directly provides us with
Eit [yesr] = 0B (0] = a{Bi—1 [0sr] + Gr (20 — Bir—1 [2it]) }
= Ei-1[yir] + oGy (zit — Eir—1 [2it]) ,
where G, is equal to
Gr, = Cov (O — Bit—1014k, 2t — Bir—12¢) V [0t — Eit_12:) " (OA19)

We note that
Bt [Ysrk] = Beo1 [yesr] + oGy (20 — Eey [24]) - (OA20)

We can now use (OA20) to show that
Ei [yek] — Br1 [yesr] = aGr (ze — Bio1 [a4]) (OA21)

Yook — Et [Yyien] = o (Oprr — Ei [Oirk]) + Fugsp. (OA22)

This completes the first step.

We are now ready to derive the overreaction coefficient ~:

v o< Cov(ysr — Eit [Yevr], yt) = Cov (yern — Eit [yer] s B (zie — Qeir) + DO + Fuy)
= Cov (a (0 — Eitbiix) , —EQeir + DO, + Fuy)
= OéMk {(COU (Q_t — Eit§t7 _Eit) Q,E/ + Cov (0_15 — Eit§t7 Gt) D, + Cov (ét — Eit‘gt; ut) F/} s

where the second line used that z; = z;; — Qe;¢. But since

Cov (ét - Eitéh 9,5) = Cov (ét - Eitéta 9,5 - Eitet) = 29‘9
Cov (ét — Eitéta Ut) = N -G (LON + R)
Cov (0; — Eitly, —ei) = GQ,
where the last two equalities follow from
Eit [0:] = Eit—1 [0¢] + G (2it — Eir—1 [2it]) -
We note that G, = M*G. Thus,

v o< aM* {GQQ'E' + X4D' + [N — G (LoN + R)] F'}.

This completes the second step of the proof.
Lastly, we compute the underreaction coefficient 6. Equation (OA21), (OA22) show that



§ o< Cov (yetk — Et [yevk], Bt [Yerk] — Ee—1 [yr4k]) can be rewritten as

6 x aCov (éHk —EiOpyr, ¢ — Et_lwt) Go
= aCov (O — Er10i1k — G (v — Eoo1 [24]) , 20 — Bpqwy) G
= « {Gkv [fL’t - I_Et_l.flit] - Gkv [.Tt — ]Et—lmt] } Gﬁgo/,
where we define

G = Cov (O — Bt—10i4s, 3¢ — Ey12y) V 1y — By g2y -

Notice that G}, corresponds to the Kalman gain of a hypothetical agent who at time ¢ has the
prior belief that 6,1 ~ N (Et_1§t+k, P), where P =V [§t+k | zf_l], but observes x; perfectly
(i.e. without noise ) = 0). We conclude that

d X « (C_?k — Gk) \% [wt — Et_lxt] G.o
= (Jk — dk) \Y% [l‘t — Et_lxt] d;c, (OAQ?))

where dj, = aG}, and di, = aGj,. We note that the sign of dj, is the same as that for dj, because
| Gk |>| Gjk | (due to the noise in private signals) and sign(Gj ) = sign(Gjx). We also note
for the same reasons that | dy |>| dj |. Combined, it now follows from (OA23) that, because
\Y [ZL‘t - Et_lxt] is positive semi-definite, § > 0 (Abadir and Magnus, 2005; Chpt.8). O

Alternative Proof of Proposition 2: The model in Section 3 is a special case of the above general

structure. In particular, we obtain the model in Section 3 by setting:
D=F=B=0, E=1ixn

A: 0N><1 diag(al,...jaN) :|, C: |: 0N><1 diag(bl,...,bN)

M= N[ o oux]

An application of Proposition B.1, with G evaluated according to the standard expression for

Kalman gains (Anderson and Moore, 2012), then also establishes Proposition 2.



C Additional Empirical Results

C.1 Robustness of Evidence

Table C.1: Regression of forecast errors on individual forecast revisions

All Observations

Excluding Outliers

(1) (2) (3) (4) (5) (6)
Current Realization —0.13 —0.12
(0.06) (0.05)
Average Revision 0.72 0.68
(0.24) (0.19)
Individual Revision —0.19 —0.02
(0.06) (0.08)
Observations 7,343 7,303 5,469 7,104 7,065 5,281
R? 0.02 0.05 0.02 0.02 0.06 0.00

Note: Estimates of regressions (1), (2), and (14) with individual (respondent) fixed effects. Columns (4) to (6)
remove the top and bottom one percent of forecast errors and revisions. Double-clustered robust standard errors
in parentheses. Sample period: 1970Q4-2019Q4.

10
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Table C.3: Estimates after removing trends in output growth

Panel a: individual forecast error

Benchmark Level detrend Linear detrend
Current Realization -0.12 -0.14 -0.12
(0.05) (0.05) (0.05)
Observations 7,104 7,190 7,190
F 169.2 253.8 185.4
R? 0.02 0.04 0.03

Panel b: average forecast error

Benchmark Level detrend Linear detrend
Constant 0.02 0.10 0.02
(0.19) (0.18) (0.19)
Current Realization -0.10 -0.13 -0.10
(0.05) (0.05) (0.05)
Observations 196 196 196
F 3.29 6.47 3.29
R? 0.02 0.03 0.02

Note: Estimates of regressions (1) using different methods for detrending output growth. Column (1): No
detrending. Column (2): Adjusting for the structural (level) increase in output growth between 1995 and 2000 (e.g.
Jacobson and Occhino, 2012). Column (3): Linear detrending. Panel a: Estimates with individual (respondent)
fixed effects. Panel b: Estimates with average forecast errors ys+x — fiys+x as the left-hand side variable. Robust
standard errors (double clustered in Panel a) in parentheses. The top and bottom one percent of forecast errors
and revisions have been removed in Panel a pre-estimation. Sample: 1970Q4-2019Q4.

12



Table C.4: Estimates before and after Great Moderation

Panel a: individual forecast error

Pre-Great Moderation

(1) 2)

Post-Great Moderation

(1) (2)

Current Realization

-0.13 -
(0.06) ()

-0.20 -
(0.08) )

Average Revision - 0.76 - 0.54

) (0.24) ) (0.32)
Observations 2,284 2,245 4,574 4,574
F 93.1 186.5 161.2 161.7
R? 0.04 0.08 0.04 0.04

Panel b: average forecast error

Pre-Great Moderation

(1) (2)

Post-Great Moderation

(1) (2)

Current Realization -0.15 — -0.11 —
(0.07) (0.08)
Average Revision - 0.94 - 0.56
(0.37) (0.34)
Observations 60 59 120 120
F 2.83 6.62 1.83 5.72
R? 0.05 0.10 0.02 0.05

Note: Estimates of regressions (1) before and after the Great Moderation. Panel a: Estimates with individual
(respondent) fixed effects. Panel b: Estimates with average forecast errors v+ — fiys+x as the left-hand side
variable. Robust standard errors (double clustered in Panel a) in parentheses. Sample: 1970Q4-2019Q4 (split into
1970Q4-1985Q1 and 1990Q1-2019Q4; Stock and Watson, 2002; Table I). We adjust for the structural increase in
output between 1995 and 2000 (Jacobson and Occhino, 2012). The top and bottom one percent of forecast errors

and revisions have been removed in Panel a pre-estimation. Constant term is included in Panel b.

13



Table C.5: Estimates of unconstrained version of regression (2)

(1) (2)

Individual errors  Average errors

Constant - 0.28
(0.39)
Avr. Forecast from Time ¢ (do) 0.70 0.84
(0.20) (0.26)
Avr. Forecast from Time ¢t — 1 (d1) —0.65 —0.96
(0.28) (0.31)
Observations 7,151 195
F Statistic 249.5 8.959
R? 0.07 0.09
Model Df. x> Pr(>x?

(1) Individual Forecast Errors 1  0.14 0.71

(2) Average Forecast Errors 1 092 0.34

Note: Upper table: Estimates of y¢ir — fitye+r = i + 5oﬂyt+k + 51ﬁ,1yt+k + €;¢. Column (1): Estimates with
individual (respondent) fixed effects. Column (2): Estimates with average forecast errors y;+x — fiysrr as the
left-hand side variable. Robust standard errors (double clustered in column (1)) in parentheses. The top and
bottom one percent of forecast errors and revisions have been removed in column (1) pre-estimation. Sample:
1970Q4-2019Q4. Lower table: Hypothesis tests of do + 1 = 0, which is imposed by regression (2) in the paper.

Table C.6: Estimates of concurrent version of regression (1)

Baseline Level Recent Detrend

1 | (2) (3) (4) (5)
Current Realization -0.12 -0.09 -0.13 -0.25 -0.11
(0.05) (0.05) (0.04) (0.09) (0.05)

Average Revision - - 0.73 - -

(0.17)

Observations 7,104 7.247 7,151 3,276 7,247
R2 0.02 0.01 0.09 0.07 0.02
F 169.2 98.2 326.5 220.5 146.4

Note: Estimates of (1) with individual (respondent) fixed effects. Column (1): baseline specification. Columns
(2-5) use only the BEA’s first release of output growth as the right-hand side variable in regression (1). Column
(4) considers the post-2000 sample. Column (5) adjusts for the structural increase in output growth between 1995
and 2000 (e.g. Jacobson and Occhino, 2012). The top and bottom one percent of forecast errors and revisions have
been removed pre-estimation. Double-clustered robust standard errors in parentheses. Sample: 1970Q4-2019Q4.

14
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Figure C.1:

Alternative version of Figure 3 based on Table C.7b (average errors)
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Note: Estimates of v and ¢ from (1) and (2) using average forecast errors ys1x — fty:+r as the dependent
variable. 0 = GDP forecasts, © = CPI inflation forecasts, x = GDP deflator inflation forecasts, and o =

MSC inflation forecasts that have been instrumented.

Figure C.2: Alternative version of Figure 3 based on Table C.9 (inflation data after 1992)
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Note: Estimates of v and ¢ from (1) and (2) using average forecast errors ys+x — fiy:+x as the dependent
variable. [0 = GDP forecasts, © = CPI inflation forecasts, x = GDP deflator inflation forecasts, and
o = MSC inflation forecasts that have been instrumented. Inflation and deflator estimates use post-1992
forecasts to account for the potential of a structural break in the inflation series; GDP growth estimates
by contrast employ the full sample. The Federal Reserve Bank of Philadelphia also took over ownership
of the SPF and LIV in 1992.




D Auxiliary Test of Underreactions

Coibion and Gorodnichenko (2012) propose two regressions that can be used to provide an
alternative test for the presence of underreactions to aggregate information (i.e. information
frictions). Consistent with the notation in our paper, let 7; denote a structural shock and y;

output growth. Coibion and Gorodnichenko (2012) propose the following two regressions:

H J
Yt = a+ Z Bryt—n + Z djne—j + e (OA24)
h=1 j=1
~ H ~ J
Yt — frok [p] = o+ Z B (Y- — fr—t—n [Y1—n]) + Z djnie—j + et (OA25)
h=1 j=1

Under the null hypothesis of full information and rational expectations, there should be an im-
mediate and complete adjustment of forecasts to shocks, and therefore zero systematic responses
of forecast errors after any shock. By contrast, under the hypothesis of informational frictions,
the conditional response of forecast errors to a shock should have the same sign as the response
of the variable being forecasted to the shock.

We report the results from estimates of (OA24) and (OA25) in Figure D.1. To operational-
ize (OA24) and (OA25), we use identified productivity shocks, consistent with our quantitative
model, as the structural shock 7;. As in Coibion and Gorodnichenko (2012), we use the identi-
fication approach from Gali (1999). Specifically, we estimate a trivariate VAR(4) on quarterly
data for output, the change in labor productivity, and hours, using the same sample as Coibion
and Gorodnichenko (2012). Technology shocks are identified from the restriction that only tech-
nology shocks have a long-run effect on productivity. In accordance with our baseline estimates,
and as in Coibion and Gorodnichenko (2012), we consider one-year ahead forecasts (k = 4).

Consistent with models of information frictions, the correlation between the conditional re-
sponse of forecast errors and the conditional response of output to identified productivity shocks
is positive in Figure D.1. This lends credence to our estimates based on regression (2).

The estimates in Figure D.1 are in line with models of information frictions, and hence also

our theory. We briefly document this result below for our baseline model.

Proposition D.1. The average forecast error of future output ys i1, — Eyyiir and output y; itself

are positively correlated in response to an innovation 1y to the latent factor 6.

Proof of Proposition D.1: The proof is simple. Notice that we can write the average nowcast

error of the latent factor 6, (e.g. productivity) in our model as

Qt — Etet =P 1-— Z gjaj ((915_1 — I_Et_let) + 1-— Zgjaj N — Z gjbjujt7 (OA26)
J J J
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Figure D.1: Coibion and Gorodnichenko (2012) test for information frictions

The left-hand panel depicts the ex-post output growth (measured as the year-over-year growth rate) response to a
one unit identified productivity shock, based upon (OA24). The right-hand panel depicts the mean forecast error
response to the same productivity shock, based upon (OA25), using the identification scheme from Gali (1999).
The shaded area indicates one-standard deviation error bounds. Consistent with the baseline in Section 2.1, we
set k = 4. Furthermore, as in Coibion and Gorodnichenko (2012), lag selection in (OA24) and (OA25) is done
so as to ensure that there is no residual serial correlation, and standard errors are computed using a parametric
bootstrap. We use the entire sample available from the SPF and the productivity shock series to estimate (OA24)
and (OA25). Finally, as in Coibion and Gorodnichenko (2012), because forecasts of output growth are from time
t to t + k, we drop the first k observations of the impulse response in (OA24) and (OA25).

where we have used that the average expectation of the latent factor equals
E0; = pEi—10,—1 + Zgj (zjt — Er—12ije)
J
with g; characterized in Lemma 1 in the paper. The average forecast error of output is thus
Yk — Eeyprr = a (9t - Etgt) +tnp,, a= Pk Z a; >0 (OA27)
J

where t.n.p. denotes terms from next period that are uncorrelated with information at time ¢.
Because the effective Kalman Gain weights g;a; sum to less than one,’ output 7; and average
forecast error of the latent factor 6, — E.0; in (OA26) react in the same direction in response to
an innovation to 7;. However, because the average forecast error of future output y; 5 — I_Etka
is simply proportional to that of the fundamental in (OA27), this also implies that the responses

of the average forecast error of output and output itself are positively correlated. O

E Analysis of Alternative Models

E.1 Expectations of Output in Maé¢kowiak and Wiederholt (2009)

Mackowiak and Wiederholt (2009) model nominal log-output (¢; in their notation) as an exoge-

3To see this result, first normalize the signals Z;;; = 0, +bj¢/ajuj +q;/ajciji, and then use the standard result
that when signals are of the form “latent factor + noise”, then the sum of Kalman Gain coefficients is less than
one (see, for example, Anderson and Moore, 2012 or Lemma 1).
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nous, stationary process. In their second case with an analytical solution, it is an AR(1) process.
Firms rationally allocate attention to acquire information about an economy-wide component
Ay = kogy, for some coefficients kg, and about idiosyncratic productivity shocks z;;, which also
follow an independent AR(1) process. In their paper, Mackowiak and Wiederholt conjecture and
later verify (see the discussion after their Proposition 4) that it is optimal for firms to acquire

two separate signals that convey “truth plus white noise” for each component:
s1it = D¢+ €it,  S2it = Zit + Vit (OA28)

Furthermore, Mackowiak and Wiederholt (2009) show that the price level p; is a linear function
of ¢ in equilibrium (see their equation (38)). Using y; = ¢; — p¢, it follows that output y; is also
proportional to ¢, and thus that the signal structure in (OA28) is equivalent to

Stit = Yt + Eit,  S2it = Zit + Vit (OA29)

for some shock &;; with a different variance to £;;. We note that because output y; is proportional
to an AR(1) process it too follows an AR(1) in reduced form.

The only difference between the information structure in (OA29) and our equations in Section
2.2 is the second signal so;;, which informs firms about idiosyncratic shocks. Notice that these
shocks are uncorrelated with aggregate variables by design. If agents (firms) are asked to forecast
output, these forecasts will be independent of so;;. Thus, forecast errors behave as if they were

determined by the noisy rational expectations case in Section 2.2:

Proposition E.1. Ezpectations about output in the analytical version of Mackowiak and Wieder-

holt (2009) underreact to output and average forecast revisions (y > 0 in (1) and § > 0 in (2)).

E.2 Expectations of Output in Lucas (1973)

Lucas (1973) considers a continuum of measure one of islands 7 € [0,1]. The supply of output

on island 7 is assumed to follow the supply equation:
vir = a (i — Epe | Qut]) + Ayie—1,  a, A >0, (OA30)

where p; = fol pirdi denotes the economy-wide price level, and E[- | Q] island inhabitants’
expectations conditional on their information set ;; (described below).

The price level on island i is exogenous and equal to
Dit = Pt + €ipt,  Eipt ~N (O,Tp_l) )
while the central bank directly sets nominal demand my, so that

my = yf +pe=mi1+€mt,  €mt ~ N (077—;1,1) :
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Finally, the information structure is as follows: On each island, all agents observe the (infinite)

history of local prices, in addition to m;_1 and 3;_1, so that

T=t

Qit = {p’iTaprly Mr—1, Y71 7=—o -
As is well-known, the equilibrium price level for this economy follows’
Dt = T1My + TaMy—1 + T3Yi—1,

where the coefficients 7, solve

Yw A
= T3 — .
1+ yw 1+ ~yw

1 yw
_= s 7'['2 =
1+ ~yw 1+ yw

Us! (m1 +m2), w3

and where w denotes the weight on island inhabitants’ prior expectation about p; at time t.

As a result, economy-wide output, our key variable of interest, equals

Yy =my —pp = (1 —m) my — momy—1 — may—1 = komy + kimy—1 + kayi—1,

where the coefficients k; satisfy kg > 0, k1 <0, k2 > 0, and kg + k1 = 0.
We conclude that output follows the AR(1) process

Yt = ko€me + kaye—1- (OA31)

We now turn to agents’ expectations about future output. To start, notice that the expecta-

tion of the nominal demand shock €,,; in (OA31) is

1
Eit [emi] = E [emt | pit] = E [eme | 56] = v (emt + meipt> |
where we have defined

1
sit = — (pit — T1My—1 — TeMy—2 — T3Yt—1) = Emt + —Eipt,
m m

and v denotes the associated signal extraction weight.

Thus, agent i’s expectation of next period’s output equals

1
Eit [yr+1] = ka2 (koEit [emt] + koyi—1) = k2 <k0U€mt + koyr—1 + k’OUmfz’pt>

so that her forecast error becomes

1
Yer1 — Eit [Yr+1] = kako (1 — v) €t + ko€me+1 — kaOU;leipt- (OA32)

*See, for example, Veldkamp (2011) Chapter 6.
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Finally, using (OA31) and (OA32) it immediately follows that

v x Cov (yi41 — Eit [ye41], yt) = k’gkg (1—v) 7'7;1 > 0.

A standard argument based on the dispersion of information (e.g., Coibion and Gorodnichenko,

2015) further implies that 6 > 0. We conclude that:

Proposition E.2. Ezpectations about future output in Lucas (1973) underreact to both current

output and average forecast revisions (i.e. v >0 in (1) and § >0 in (2)).

Intuitively, s;; provides island inhabitants with a noisy signal of the money supply shock, and
hence with a noisy signal of the innovation to output (see equation OA31). In this sense, the
Lucas (1973) island model is closely related to our results from the noisy rational expectations
case in Section 2. In fact, the only differences are that island inhabitants observe a private
signal of the innovation to output today rather than the level of output itself, and that island
inhabitants are assumed to observe the previous period’s output without noise. Despite these
distinctions, the intuitions from the noisy rational expectations case in Section 2 carry over, so

that we find both v > 0 and § > 0 for all admissible parameters.

E.3 Expectations of Output in Lorenzoni (2009)

Lorenzoni (2009) considers a continuum of measure one of islands ¢ € [0,1]. The model can be
log-linearized around a non-stochastic steady state, yielding the following equilibrium conditions
(see e.g. Lorenzoni, 2009; Nimark, 2014; Kohlhas, 2019):

1. An Euler equation determining the intertemporal allocation of consumption:
cit = Elciq1 | Qie] — it + E w41 | Qie] (OA33)

where 73441 is the inflation of the goods basket consumed on island 7 in period ¢ + 1

(defined below), and €2;; denotes the information set on island 4 (also defined below).

2. A labor supply condition equating the marginal disutility of labor supply with the marginal

utility of consumption multiplied by the real wage:
Wit — PByit = Cit + PNt (OA34)

where 1 denotes the inverse Frisch-elasticity of labor supply, and n;: labor supplied.

3. A demand schedule for the good produced on island i,

it = / cmtdm—a<pit— / pmtdm>, (OA35)
Cint C,it

where fc ;.1 Pmtdm is the logarithm of the relevant price subindex for consumers from other

islands buying goods from island 3.

23



4. An interest rate rule
it = pmit—1 + ¢, T =m+e, € ~N(0,02), (OA36)

where 7 denotes the publicly observable noisy signal of inflation.

5. Lastly, a Phillips curve relating inflation on each island ¢ to the nominal marginal cost on

island 4 and expected future inflation on island 1,
pit — Pit—1 = K (PB.t + Cit — Pit — ait) + K (Yir — ait) + BE [pit41 — pir | Q] ,  (OA3T)

(1=5)(

where xk = %fm denotes the slope of the Phillips curve and f the Calvo parameter.

Information Structure: Asin Nimark (2014), we adopt the information structure from Loren-
zoni (2009) but adjust the mean of the normally distributed shocks so that all signals are con-
ditionally stationary. This does not change any of the economics of what follows, but simplifies
the representation of agents’ filtering problems as all variables (except for the price level) are

stationary. Agents on island ¢ observe the following signals:

1. Their own island-specific productivity
ait = Op + €, ey ~ N (0, 02)
O = pbp—1+m, m~N (0703)

2. The demand for island goods (C is drawn such that the below is true)
Yit =yt — 0 (pit — pt) + €5y, € ~ N (0 (it—1 — pr—1) 705) .
3. The price index for the goods basket consumed on island i (B is drawn such that)
pBit =Dt + €y, €~ N (pit—l —pt—1,0§) .
4. The public signal of inflation
T =T+ €, € NN(O,O'?T).
5. The public signal of the common, persistent component of productivity
ss=0+¢, € ~N(002).

6. The interest rate i;.
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Thus,
Qit = {ait, Yit, PB.its Tt» St t5 Qit—1} -
Model Solution: We solve the model using the truncated state-space solution method proposed

in Nimark (2017). For the details of this method applied to the Lorenzoni (2009) model, see
Nimark (2014) and Kohlhas (2019).

Simulation and Calibration: We simulate the model for one million periods, discarding the
first 100,000 observations. We then estimate regression (1) and (2) from our paper, using one-year

ahead forecasts of output growth.

Table E.1: Empirical Estimates Using Different Calibrations

Lorenzoni 2009  Nimark 2014  Kohlhas 2019  Calibrated

Constant 0.00 0.00 0.00 0.00
Current Realization 0.04 0.07 0.02 0.13

The table below shows that we consistently find v > 0 in regression (1) (including in several
alternative, unreported calibrations). The first three columns consider the baseline parameter-
izations in (i) Lorenzoni (2009),” (ii) Nimark (2014), and (iii) Kohlhas (2019). While these
columns show v > 0, we note that the estimates of § in (2) are an order of magnitude below
our estimates in Table 1. This is because, across all the three calibrations, the public signals
of productivity and inflation are substantially more precise than any of the private signals (see,
for example, Lorenzoni, 2009 and Nimark, 2014). As a result, island inhabitants put very little
weight on private information. The final column in the above table attempts to account for this
feature. Specifically, we directly calibrate the noise in individual-specific productivity to target
a 0—coefficients of 0.70 (see Table I of our paper), and mute all public signals (that is, we let the
standard deviation of the noise tend towards infinity). The rest of the parameters are set as in

Kohlhas (2019). We once more find that v > 0, which is inconsistent with our empirical results.

E.4 Expectations about Output in Angeletos et al. (2018)

Angeletos et al. (2018) study a simple deviation from rational expectations. In the version of

their model that is solved analytically, output in equilibrium is
Y't :At+Azzt+A§£t7 AZ7A§ >07

where A; denotes TFP, Z; the average signal of TFP, and & an exogenous process for agents’
confidence. The true data generating process is that log A; is a random walk, & = p&—1 + &,

and the average signal is z; = A;. Agents believe wrongly that z; = A; + &.

5Because our solution method requires the model to be stationary, we set the persistence of #; to that in
Kohlhas (2019). Indeed for p = 1 the above model is identical to that in Lorenzoni (2009). The only difference is
the adjustment of the mean of the signals.
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Thus, the common forecast errors of next-period output (for concreteness) is

Yirr —EtYipr = A — Eedppn + As (Aerr — EeAir — Eebiqr) + Ae (Ser1 — Eeéen)
= —A,p& + shocks at date t + 1.

As a result, the equivalent of the coefficient in regression (1) in our paper is
v x Cov(Yip1 — EtYiy1,Y:) = —pA,Cov (&,Y:) <O.
The corresponding forecast revision is

EYi1 —ErYipn = 1+ AL) (Ae — A1) + A (& — Ei&ea)
= (1 + Az) (At — At_l) + Ath

Hence, the equivalent of the coefficient in regression (2) in our paper is
§ o< Cov (Vg1 — EtYiq1, EYipr — Be1Yiq1) = —pAZCov (&, () <0

Angeletos et al. (2018) do not view & literally as a deviation from rationality, but rather as
a reduced form of higher-order uncertainty akin to that in models of dispersed information.

However, its implication for forecasts is that it generates overreactions across the board.

Proposition E.3. Ezpectations about output in the analytical version of Angeletos et al. (2018)

overreact to output and average forecast revisions (y <0 in (1) and § <0 in (2)).

F Extension of the Baseline Model with Overconfidence

We consider our baseline model in Section 3, but assume that instead of the Bayesian Kalman

filter in Lemma 1, agents form their forecasts of the latent factor 6, according to

fitgt = Eit—l [Qt] + (1 + w) Zgj (Z'ijt — Eit—l [Zijt]) . (OA38)
J

We assume that the bias parameter w > 0, so that agents overreact to each signal z;;; relative
to the associated Bayesian update. This specification is similar to the model in Bordalo et al.
(2018) and, more broadly, to the literature on overconfidence (e.g., Broer and Kohlhas, 2019).

As long as the bias w is not too large, the model replicates all of our findings, as well as the

overreactions to individual information documented in Bordalo et al. (2018) and others:

Proposition F.1. Suppose that attention to the components xj; of output is asymmetric, with
>_ja;(1 —my;) < 0. There exists a @ so that for all overconfidence parameters w € (0,w), the

coefficients of regressions (1), (2), and (14) in the paper satisfy 6 > 0, 6™ < 0, and v < 0.

26



This proposition extends the argument in Bordalo et al. (2018) to the case with asymmetric
attention, showing that agents with bias parameter w > 0 overreact to individual information,
consistent with §"? < 0 in regression (14). We show in the paper that asymmetric attention
explains 6 > 0 and v < 0 simultaneously in a rational model with w = 0. By continuity, we can
explain all three sets of facts as long as the bias parameter w is not too large.

Finally, we reiterate that, even in this extended model, asymmetric attention to different
components of output is necessary to generate this result: Our analysis in Section 2 shows
that if agents receive a signal directly of current output y;, then, for for all values of w > 0, the
coefficients § and ~y in regressions (1) and (2) have the same sign. This underlines the main insight
of our paper: A model with asymmetric attention can be consistent with several properties of

survey expectations, in particular the coexistence of extrapolation and underreactions.

Proof of Proposition F.1: The coefficient in regression (14) is

4 Cov — Ji ) Ji — Jit—
sind _ Wrk = it fitthsn = Jiv—19een] _ d1Cov [0y — firby, fir0r — fir—104]
Var [fityt-t,-k; - fitflyt-i-k}

2
where d; = <pk Zj aj) Var [fuysrr — fit—lyt+k]_1 > 0.
Using a parallel argument to Bordalo et al. (2018, Proposition 2), shows that

0 — fz‘t9t =0; —Ejb; —w (Eitet - Eit—let)
and
fitbs — fit—10y = (1 + w) (Eit9t - Eit—lgt) - pw (Eit—l [et—l] — K2 [et—Q]) .
Thus,

6" o —wCov [Eby — Eir—104, firbr — fir—104)
= —w(l + w)Var [EitQt - Eit_let} .

We conclude 6% < 0 for all w > 0. Proposition 2 in the paper shows that v o Zj a;j(1 —m;)

and § > 0 for w = 0, so the claim follows because v and § are continuous functions of w. O

G Optimal Attention Choice with Entropy Costs

Suppose that the costs of attention are equal to the reduction in relative entropy:°

Z =y lim %{H(GT, o) —H (07, 27 | 2]} (OA39)

T—o00

where H(z|y) denotes the conditional entropy of z given y, and 27 denotes the history of the

process {z; }7_ In this appendix, we first show that Z = K (m) for a well-defined cost function

—00"

6See, for example, Mackowiak et al. (2018).
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K(-), so that the reduction in entropy is merely a special case of our analysis in Proposition 3.
We then derive the comparable first-order condition to that in Proposition 3.

We use the following properties of conditional entropy:

Lemma G.1. Let X, Y, and Z be random vectors. Then:
1. Symmetry of mutual information: H(X) — H(X|Y)=H(Y) - H(Y|X)
2. Chain rule of conditional entropy: H(X,Y) = H(X) + H(Y|X)

3. Conditional independence: If Y is independent of Z conditional on X, then

H(Y|X,Z) = HY|X)

Proof of Lemma G.1: See Cover and Thomas (2012). O

To start, let s = {0, z}. Symmetry and the chain rule for entropy, then allows us to write

H(s")—H(s" | 2]) = H(z) — H(Z]|sT)

)

T
= H(ziul2l™") = H(za|z{ ", s7). (OA40)
t=1

Note that conditional on s; = {0, ¢}, the vector of signals z;; = x4 + diag(g;)e; is independent

of sy for t' # t, since €;; is serially uncorrelated. This, in turn, implies that

H(zig 2 ™") — H(zielzy ' s7) = H(zatl 2l 1) — H(zil2) ", se)
H(se|z™") — H(se|2})

H(0t|2’§_1) — H(9t|2’f) + H($t|2’£—1, Ht) - H($t|2’$, 9,5), (OA41)

where the second equality follows from symmetry and the third from the chain rule for entropy.

For the first term in (OA41), since all variables are jointly Gaussian, we have that

1
H(,|2Y) — H(0,|4) = Llog [

. Vari_1 [04] ]

VCLTt [Ht]

Now focus on the steady state where Var, [6;] = Var,_; [6;—1] = V(7), with 7 defined in (18).
Using the AR(1) dynamics of 6;, we have that

Var,—1 [0¢] = p2V(T) + ag,

which after substituting gives us

1 2
H(0y271) — H(0y|2!) = Slog [pQ + } = K(7), (0A42)

in which X'(7) > 0 since V' (1) < 0.
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For the second term in (OA41), note that z; is independent of 2/~ conditional on 6;, so that

H(xy|2i1,0) — H(wy|2t, 0;) =H (24)0) — H (4|23, 01)

1 det (Varf[z|6:]) | 1 o I, b?
=3 [det (Var[xt|c9t7zit])] = 5108 [Hg’il b2(1 — my)
1 1 1 —
:ilog Hj(l—m])] =-3 ;log(l —m;). (OA43)

Substituting (OA43) and (OA42) into (OA41) then shows that
1 m
I=K(7)-3 > log(1 —my) = K(m),
j=1

which is well-defined since 7 is a function of m. Finally, combining (OA40) with (OA39) and
using stationarity, we find that our cost function satisfies K(m) = Z.
We can now use Proposition 3 to see that the first-order condition for m; at an interior

optimum satisfies:

2
a; 1 1
272 N —
wjbj + pr b2 + HaWja; =
J

CEp— (OA44)

where the adjusted multiplier measuring learning spillovers is
flr = pir — ]C/(T),

with p, defined as in Proposition 3. The second term in (OA44) is specific to the entropy
cost formulation, because entropy reductions also depend on the sufficient statistic 7. The
comparative statics remain the same as in our version with a generic cost function: It is optimal
to pay attention to important components (high w;), and to volatile components (high b;) as
long as spillovers are not too strong. In addition, we see that an entropy cost function naturally
yields m; < 1 for all j: Attention is always imperfect because the entropy costs of full attention

m; — 1 are infinite. We summarize these results in Proposition G.1.

Proposition G.1. With the entropy attention costs in (OA39), the first-order condition for

agents’ optimal attention choice m; at an interior optimum satisfies:

2
a9

2
bj

a 1 1

— A4
T (OA45)

w?b? + /lq- -+ uawjaj =

where fir = pr — K'(7) and p, is defined in Proposition 3. We note that attention is always

imperfect because the entropy costs of full attention m; — 1 are infinite.
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H Flexible Information Design

We show how to apply the dynamic rational inattention results in Mackowiak et al. (2018) to
our environment with flexible information choice (Section 4.3).

To do so, first notice that an agent’s optimal action can be written as follows:

(I:f( = (w0 + Z '(U:pja])et + Z wijjujt = pa;_l + u_jent + w;ut _ pw;utfl.
=wy =Wa;
= paj_y +cour + v (OA46)

We conclude that af is an ARMA(1,1) process with a vector of white noise innovations v; =

[+ ue]’. Define the weighted sum of innovations in this expression as the scalar process
— /
Wt = ¢cyut + C1 V1.

Since the innovation vector v; is independently and identically distributed across time, w; is a

stationary process. The auto-covariance structure of this process is
Var [wy] = gZpco + €1 Sve1,  Cov (wy,wi—1) = gEpe1,  Cov (wy,wi—j) =0, j > 2,
where ¥,= Var [v;]. By Wold’s Representation Theorem, w; has an MA(1) representation:
wr = do&t + d1&¢—1,

where & is a Gaussian white noise sequence, and d; € R, j = {1, 2}.

We conclude that we can write af as the ARMA(1,1) process:
a; = pa;_y + do&t + di&i—1. (OA47)

We are now ready to state an agent’s flexible information design problem. Following Mackowiak

et al. (2018), we can specify this problem as follows:

: * * 1\2
in B |(af ~Eof | 9] (0A48)
subject to
1 _ _
Tlgréo T {H (a*" | ay) — H (a* | @}, s"7)} <k, (OA49)

where aj denotes the vector of initial conditions, and the signal vector observed by agent i follows

sff = Aa:’M + Bﬁév + ei]t{, (OA50)

. 7M_ / B !
with a)" = [ af afy ... 4 } L&V = [ & &1 .. &N } , and €ff ~ N (0,%,).
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Proposition H.1 now follows from the characterizations of optimal signals derived in Mac¢kowiak
et al. (2018), who consider the same problem as (OA47) - (OA50), but in a model in which the
optimal action follows a general ARMA (p,q) process.

Proposition H.1 (Mackowiak et al., 2018). The optimal signal vector sft( has the properties:
(i) Any optimal signal vector sff is a noisy signal of a linear combination of a} and & only.

(ii) An agent can attain the optimum with a one-dimensional signal (K = 1), which satisfies
sy =a; +h& +q"er, h#0, € ~N(0,1). (OA51)

(iii) Suppose k — oco. Then, h — 0, so that s7, is a signal only of a;.

(iv) Suppose wy > 0 and wy; = 0. Then, s}, satisfies s}, = 0y + ¢* €.

Proof of Proposition H.1: We refer to the corresponding proofs in Mackowiak et al. (2018).
(i) See the proof of Proposition 1 in Mackowiak et al. (2018).

(ii) See the proof of Proposition 2 and 5 in Mackowiak et al. (2018).

(iii) See the proof of Proposition 6 in Mackowiak et al. (2018).

(iv) See the proof of Proposition 2 and 3 in Mackowiak et al. (2018).

I Macroeconomic Example and Angeletos et al. (2016)

Our macroeconomic example in Section 5 considers a model similar to those considered in An-
geletos and La’O (2010, 2012) and Angeletos et al. (2016). To demonstrate why we view strategic
substitutability as a natural assumption, we generalize our baseline model to encompass both
our model from Section 5 as well as the features that determine the strategic considerations of
firms in Angeletos et al. (2016).” Consider our model in Section 5. Assume that firm productiv-
ity follows a common process with €;; = 0 (as in our baseline calibration). Replace households’
utility with u(C,N) = S . #Ntun. Relative to this overarching model, our analysis

1—¢ 1+n
in Section 5 restricts attention to log consumption utility () — 1) and linear disutility of labor

(n = 0).® Angeletos et al. (2016) allow for general values for ¢ and 7, but set a = 1 in firms’
production function, so that it has constant returns to scale in labor. We below abstract from
any labor supply shocks, which do not affect firms’ strategic behavior, without loss of generality.

We solve for the full-information equilibrium of this model:

"In addition to the features mentioned, Angeletos et al. (2016) include one additional layer of CES aggregation.

8We choose this parametrization for standard reasons. First, the calibration of 1) — 1 is the only value within
the iso-elastic utility class that is consistent with balanced growth (i.e. is within the well-known KPR-class).
Second, the calibration of 7 — 0 allows flex-price models to generate sufficient volatility in hours worked (e.g.
Prescott and Wallenius, 2012). As shown by Hansen (1985) and Rogerson (1988), linear disutility of labor can
arise from the iso-elastic framework (considered in Angeletos et al., 2016) when one accounts for the fact that
most of the variation in hours worked are due to changes in the extensive (rather than the intensive) margin. It
thus allows our model to have a higher Frisch elasticity, without simultaneously being subject to the criticism
that the labor supply elasticity is inconsistent with micro-evidence.
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Proposition 1.1. Let u(C,N) = Cll_:/;b_l — ﬁNtH”. Under full information, firm i’s optimal

output choice satisfies the best response function

Yit = koar + kiyt, (OA52)

where kg > 0 and the coefficient of strategic complementarity ky is

B a(l — o)
b= a(l—o)+o(l+n) (0A53)

We note that, because of certainty equivalence, we can use the full-information solution of
the generalized model in (OA52) and (OA53) to determine whether output choices are strategic
substitutes or complements even under imperfect information.

Equation (OA53) implies that firms’ output choices are strategic substitutes (k1 < 0) if and
only if o9 > 1. Standard parameter choices in macroeconomics (see, for example, Gali, 2008,
Chapter 3 p. 56) have o € [4,10] and ¢ € [1,4], so that o1 > 4 and k; < 0. Thus, we conclude

that strategic substitutes are pervasive for most popular parameterizations.

J Numerical Solution of Model with Imperfect Attention

We solve the model by repeated iteration of the two steps described in the main text. Below,
we detail these steps in reverse order. First, we solve for the imperfect information equilibrium

given a set of attention choices. Then, we solve for the optimal attention choices.

9

Step 2: Equilibrium Given Attention Choices:” Consider the equation for aggregate

output that arises under imperfect attention:

1
Yt = / yirdi = Ey [21; + 224] (OA54)
0
where z1; = fol x;1¢di and
ry = v +ruf, o =arc ly—ar (E? [y¢] + u?) .
!/ !/
Now let ; = { T Tpg ... ] where z; = { T1; Tor O ] . We look for linear equilibria

where the law of motion for the unobserved components and the fundamental takes the form of

the infinite dimensional vector

/
xy = Axy_ 1+ By, wp= { uf uF o oup } ; (OA55)

9The steps used to find this equilibrium are analogous to those described in Lorenzoni (2009).
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where

0 0 rpg O r r 0
A B
A= P , B= P : (OA56)
0 0 pg O 1 0 0
I 0

To solve for the rational expectations equilibrium, we conjecture and verify below that
Yt =YXy,  Tor = CoTy + C1U, (OA5T)

where 1, ¢y, and ¢; are vectors of coefficients.

Coefficients and Congectures: It follows from (OA54) that
w=[1 1 0]Ez]=va, (OA58)

where = denotes “should equal”. We conclude from (OA58) that to verify our conjecture we need

to find a matrix = such that

Now since
1 00 0 00
Ef ly] =¥ Az 1 +B |0 0 0 |wp=va—¢vB|0 1 0 |u,
0 01 0 0O
it also follows that
0 00
Tor = aro Way —ar{ Yy —YB | 0 1 0 | u+esus p = coms + cruy, (OA60)
0 0O
where e; denotes a row vector with a one in the I’s position but zeros elsewhere.
Individual and Average Inference: An individual firm’s signal vector is
€1 .
sit = xt + Qeir, Q= diag [ @ ] (OA61)
€2
= Lz + Qe
Thus,
Eit [x¢] = AEjy—1 [2¢] + K (85t — LAEs 1 [2¢-1]) (OA62)

where the Kalman Gain K is given by the standard expression (Anderson and Moore, 2012).
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Then, from (OA59) and (OA62) it has to hold for all ¢ that

E.’Z}t = (I — KL) AECBt_l + KLZI}t (OA63)

Fized Point: We have from (OA58) and (OA60) that

0 0
z,b:[l 1 O}E, co=ar(c ' =1y, ec=ar|¢YB|0 1 +ez|. (OA64)
0 0

o o O

Equilibrium and Computation: An equilibrium is characterized by (i) a set of coefficients that
describe aggregate dynamics {A,, By, ¥, co, c1}, and (ii) a set of coefficients that detail the learn-
ing dynamics {K,Z}. Computing the equilibrium requires truncating the infinite-dimensional

/
[T] — ! e~ 7!
t = | Tt-1 T2 - T

vector x;. Specifically, we instead consider the vector x

To find the equilibrium, we apply the following algorithm: We start with some initial values
for A, and B, (for simplicity, we use those from the corresponding full-information solution).
We then use these values to compute K from (OAG1) and (OA62). This, in turn, allows us to

find an expression for = from (OA63) since

=’ = (I - kL) A=M =" + KLal",
where
0 I
M = )
which gives us the following relationship that we solve for =:
E={—-KL)A=EM + K L. (OA65)

We can now use (OA64) to find an expression for ¢, cg, and ¢;.
Finally, we use these expressions to compute new values of A, and B, from (OA56), and then
repeat these steps until convergence is achieved. The criterion used is the maximum absolute

difference between the new and old elements of A, and B,,.

Step 1: Attention Choices Given Equilibrium: Given the above aggregate equilibrium, we

solve a firm’s ez-ante attention choice problem. That is, we solve

min B [yie — )"+ K (m), K(m) =p (e + %), (OA66)

where qj = V (¢ | 6;) [m; — V (¢ | 6,)] " for j = {1,2} and we have that

*
Yir = Tilr + T,
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in Which
9 xT a / 1 / — 1 b a
xilt 1 t 1 ut 1 eit 1 63w£ ] 7 eQCacut —_— a1w7[5 } 1ut eit

as a:,[fT] + boug,

Tt

and where a1 and by are implicitly defined, while as = ¢y and by = ¢;.

To minimize (OA66), we first derive an expression for the quadratic component
/
E [y — B [i)]* = UV [war | 2{] 1, i = [ Tiyy T }

where
V| 2] =V [%‘t | zf,m@] +V [IE [xit | zf,w?[tT}] | zf} (OA67)
by the Law of Total Variance.
It now follows that the first component in (OAGT) is
\% [:cit | zf,a:?q =V [mit | zit,m?q — o 7 — (b 4 7)) [BY 4+ QQ 4+ 7] T (b + )’
= b+ 7 —m (0 + )
!/ !/ B _1
where b = [ by bo } T = [ ro, 0 } ,and m = (b + 77 [bb' + QQ' + 77’ .
To derive the second component in (OAGT), notice that
E [:rit | zf,a:ET]} =F [xit | zit, :c,[fT]} = E [wit | w,ET]} +m (zit —E [zit ] :Bl[fT}D

= (I—m) a:c,[fT] + mzit,

!/
where a = { a; ao ] . Thus,
A% [E [ajit | zf,w,[;T}] | zf} = —m)aV [JZET] | zf] a (I —m),

in which V [wLT] | zﬂ can be found from the Kalman Filter run in (OA62).
In sum, we have that the quadratic term (OA66) becomes
Elys — Balysl” = 1[0+ — i (00 + 7)1

+ 1(I—m)aV [m@ | zf] a (I—m) 1,

which allows us to solve the problem in (OAGG).

Equilibrium: We iterate on two steps described in Step 1 and Step 2 until convergence. As a
convergence criteria, we use the maximum absolute difference in attention coefficients. We use

the full information case in which m; = mg = 1 as the initial values.
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