
Mediation in reputational bargaining: Online Appendix, Jack Fanning

This online appendix provides a proof of Proposition 4 from the main text, and
also a proof of the inefficacy of ongoing mediation.

Proof of Proposition 4

Suppose the Proposition is not true, then there must exist some sequence of bar-
gaining games (zn

1, z
n
2) with zn

i → 0 and zn
1/z

n
2 ∈ [1/K,K] such that there is no

mediated equilibrium that benefits both agents. To prove the Proposition, there-
fore, I will consider an arbitrary sequence and establish that mediation is benefi-
cial for all sufficiently large n. To do this, I will establish a system of mediation
that ensures the frequency of demands and counterdemands is unchanged from
unmediated bargaining. Clearly, reputations after demand choices are also un-
changed, therefore. I refer to generic agent i’s updated reputation after demand
announcements α = (α1, α2) as ẑαi , and let ẑα = (ẑα1

1 , ẑ
α
2 ).

I first develop some preliminary results about mediation. I assume throughout
that rational agents always compromise, ραi = 1. These generalize the findings
about noisy mediation from Proposition 3. I then characterize unmediated bar-
gaining as the probability of commitment vanishes, and show this allows the
preliminary results on mediation to be applied.

Preliminaries: mediation systems

Consider the continuation game with an arbitrary demand pair α and reputa-
tions after demand announcements ẑα consistent with unmediated bargaining.
Suppose the mediator announcement probability is bα ∈ [0, 1), and continua-
tion payoffs are mα = (mα1 ,m

α
2 ) after an announcement. Let Uc,α

i (bα,mα) be
agent i’s expected payoff when she messages the mediator and Un,α

i (bα) when
she doesn’t. These expressions are developed more fully in various different
forms in the main text. They are continuous in mα and bα. Furthermore, let
ẑαi (bα) = ẑαi /(1− (1− ẑαi )bα), be agent i’s reputation (rational agent j’s belief that
i is committed) when there is no announcement from the mediator.

Let C1 = {α1 ∈ C1 : µ1(α1) > 0} be the set of demands made by rational agent
1 in unmediated bargaining, and given α1 let C

α1

2 = {α2 ∈ C2 : µα1
2 (α2) > 0}

be the set of demands made by rational agent 2. Given any α1 ∈ C1 I de-
fine a conditional mediation system to be a continuous function on some non-
degenerate interval domain [0, β

α1], specifying for each incompatible demand
pair α = (α1, α2) and β ∈ [0, β

α1], mediation probabilities b̂α(β) and mediation
shares m̂α(β) such that: b̂α(0) = 0; b̂α(β) = 0 if α2 < C

α1

2 ; each agent wants
to message the mediator, Uc,α

i (b̂α(β), m̂α(β)) ≥ Un,α
i (b̂α(β), m̂α(β)); each agent’s

payoff Uc,α
i (b̂α(β), m̂α(β)) is strictly increasing in β for all α2 ∈ C

α1

2 ; there is
no incentive for agent 2 to change her counterdemand choices from unmedi-
ated bargaining, Uc,α

2 (b̂α(β), m̂α(β)) = Uc,α′

2 (b̂α
′

(β), m̂α′(β)) for all α = (α1, α2),
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α′ = (α1, α
′
2) such that α2, α

′
2 ∈ C

α1

2 . Given the continuity of m̂α and b̂α we must
have that Uc,α

i (b̂α(β), m̂α(β)) is continuous in β.

Consider some demand α1 ∈ C1, and a conditional mediation system on domain
[0, β

α1]. Agent 1’s expected payoff from demanding α1 is:

(1) Uα1
1 (β) =

∑
α2>1−α1

(z2π2(α2) +µα1
2 (α2))Uα1 (b̂α(β),mα(β))) +

∑
α2<1−α1

z2π2(α2)α1,

where µα1
2 (α2) is determined by unmediated bargaining. It is clear given the

properties of a conditional mediation system that Uα1
1 (0) is agent 1’s payoff in

unmediated bargaining and that Uα1
1 is strictly increasing in β.

If we can establish a collection of conditional mediation systems, one for each
α1 ∈ C1, then the proof will be complete. To see this, let α̂1 ∈ arg minα1∈C1

Uα1
1 (β

α1)
then for each α1 ∈ C1 we must have a unique βα1 ∈ (0, β

α1], such that Uα1
1 (βα1) =

U α̂1
1 (β

α̂1) > Uα1
1 (0). The implied mediation probabilities and shares (b̂α(βα1), m̂α(βα1))

ensure that neither agent will adjust her demand choices from unmediated bar-
gaining and both agents strictly benefit from mediation. For α1 < C1, we can
clearly ignore mediation (i.e. impose bα = 0).

Preliminaries: residual claimant mediation

I next show how to construct a conditional mediation system for α1 ∈ C1 in
which for each α2 ∈ C

α1

2 , continuation payoffs after the mediator’s announce-
ment imply that one agent is indifferent between messaging the mediator and
not, while her opponent receives the residual share. I call this a residual claimant
conditional mediation system. The analysis closely follows Proposition 3.

Consider a continuation game after an arbitrary demand pair α and updated
reputations ẑα, such that agent i would immediately concede with strictly pos-
itive probability in unmediated bargaining. For some sufficiently small b > 0,
if the probability of mediator’s announcement is b ∈ [0, b], then agent i must
still immediately concede with strictly positive probability after no mediator an-
nouncement by continuity. For b ∈ [0, b] I define the function, m̌i,α(b) to be the
compromise shares that make agent i indifferent to compromising (i.e. it ensures
(Uc,α

i (b, m̌i,α(b)) − Un,α
i (b)))/b = 0). As established in Proposition 3, i’s share

must satisfy:

(2) m̌i,α
i (b) = (1 − α j)

(
1 +

ẑαj (b)(1 − (ẑαj (b))
ri
λ j )

1 − ẑαj (b)

)
,

which is clearly continuous in b. It is also strictly increasing in b, because a
larger b speeds up concession by rational agent j if there is no mediator an-
nouncement, and m̌i,α

i (b) is exactly the integral of discounted payoffs from such
concession (again, see Proposition 3). Clearly Uαi (b, m̌i,α(b)) and Uαj (b, m̌i,α(b))
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are also continuous in b, with Uαi (b, m̌i,α(b)) strictly increasing in b. To es-
tablish when agent j also benefits from mediation, let Uαj be her unmediated
bargaining payoff. We can then define a continuous function Dαj on [0, b], as a
normalization of the difference between agent j’s payoff under mediation and in
unmediated bargaining, following the logic of Proposition 3:

Dαj (b) =
Uc,α

j (b, m̌i,α(b)) − Uαj

bẑαi (ẑαj )
−
λαi
λαj (αi + α j − 1)

(3)

=
1 − (1 − (1 − ẑαj )b)

λαi
λαj

b
−

(ẑαj )
1+

λαi
λαj (1 − ẑαi )(1 − (ẑαj (b))

ri
λ j )λαj

ẑαi (1 − ẑαj )(1 − b)ri

where Dαj (0) = limb→0+ Dαj (b), is easy evaluated given limb→0+(1 − (1 − (1 −
ẑαj )b)λ

α
i /λ

α
j )/b = (1 − ẑαj )λαi /λ

α
j by l’Hopital’s rule. Agent j benefits from media-

tion conditional on demands α, if b > 0 and Dαj (b) > 0. Given that Uc,α
j (0,m) =

Uαj for any m, if Dαj (0) > 0 we must have that Uc,α
j (b, m̌i,α

i (b)) is strictly increas-
ing in b on some non-degerate interval [0, b].

We next define the continuous function Qαj on [0, b] as a normalization of the
difference between agent j’s payoff from messaging the mediator and not:

Qαj (b) =
(Uc,α

j (b, m̌i,α(b)) − Un,α
j (b))(1 − b)

bẑαi (ẑαj )
−
λαk
λαl (αi + α j − 1)

(4)

=(1 − (1 − ẑαj )b)
λαi
λαj − (ẑαj )

λαi
λαj −

(ẑαj )
1+

λαi
λαj (1 − ẑαi )(1 − (ẑαj (b))

ri
λαj )λαj

ẑαi (1 − ẑαj )ri

−
(ẑαj )

λαi
λαj (1 − (ẑαj (b))

r j
λαj )λαi

r j

Agent j is willing to compromise given α, if this is positive.

If (ẑαj )1+λα1 /λ
α
2 /ẑαi → 0 as zn

i → 0, then it is clear that for all sufficiently small
zn

i we have Qαj (0) > 0 and Dαj (0) > 0. A necessary condition for that conver-
gence is that ẑαj → 0 as zn

i → 0. In addition to that necessary condition: if
ẑαi /ẑ

α
j ∈ [1/L, L] for some constant L ≥ 1, then I say that updated reputations

are similar; if ẑαi (ẑαj )−λ
α
i /λ

α
j ≥ L for some constant L > 0 then I say that updated

reputations are slightly different; if ẑαj < ẑαi , then I say that there is a smaller win-
ner reputation. Notice that our assumption that agent i immediately concedes
with positive probability in unmediated bargaining ensures that ẑαi (ẑαj )−λ

α
i /λ

α
j < 1.

Similar reputations, a smaller winnner reputation, or slightly different reputa-
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tions, all imply (ẑαj )1+λα1 /λ
α
2 /ẑαi → 0 as zn

i → 0 and, therefore, ensure Qαj (0) > 0
and Dαj (0) > 0, for all sufficiently small zn

i .

Given α1 ∈ C1, we want to identify a conditional mediation system. Suppose
that in unmediated bargaining agent i immediately concedes with strictly pos-
itive probability after every counterdemand α2 > 1 − α1 made by agent 2. In
this case, I say that the conditions for residual claimant mediation are met if
Qαj (0) > 0, Dαj (0) > 0, for each α = (α1, α2) with α2 ∈ C

α1

2 . For such α

and b in some non-degenerate interval [0, b
α
] we must have that agent i im-

mediately concedes with positive probability if there is no mediator announce-
ment, Qαj (b) > 0, while Uαi (b, m̌i,α(b)) and Uαj (b, m̌i,α(b)) are strictly increas-

ing in b. Given this, choose some α̌ ∈ arg minα∈(α1,C
α1
2 ) Uα2 (b

α
, m̌i,α(b

α
)). We

can then define the continuous functions b̂α and m̂α on the non-degenerate
interval domain [0, b

α̌
] = [0, β

α1] by m̂α(β) = m̌i,α(b̂α(β)) and the equality
Uα2 (b̂α(β), m̂α(β)) = U α̌2 (β, m̌i,α̌(β)) for α2 ∈ C

α1

2 , and b̂α(β) = 0 for α2 < C
α1

2 .
Clearly, we always have b̂α(0) = 0.

Characterization of unmediated bargaining

We are now ready to start proving that collections of conditional mediation sys-
tems must exist as zn

i → 0. To do this, I will first partition the parameter space,
before carefully characterizing the limit of unmediated bargaining outcomes in
each partition element as commitment vanishes. These characterizations will
show that conditions for residual claimant mediation are met for each demand
α1 ∈ C1 for all sufficiently small zn

i , completing the proof.

If r2(1−minC1) > r1(1−maxC2), then define αα1
2 = min{α2 ∈ C2 : α2 > 1−α1}

and α1 = max{α1 ∈ C1 : r2(1 − α1) > r1(1 − αα1
2 )}. And so, αα1

2 is agent
2’s smallest counterdemand that is incompatible with α1 (this is always well
defined given maxC2 + minC1 > 1), while α1 is agent 1’s maximum demand
such that she will concede at a faster rate than agent 2 for any incompatible
counterdemand. If α1 < maxC1 we can further define α1 = min{α1 ∈ C1 :
α1 > α1} and α2 = max{α2 ∈ C2 : r1(1 − α2) > r2(1 − α1)}. And so, α1 is
agent 1’s smallest demand that is greater than α1, while α2 is agent 2’s largest
counterdemand against α1 such that agent 2 concedes at a faster rate than 1. I
say agent 2 is uniquely strong if r2(1 − minC1) < r1(1 − maxC2). I say that C1

is richer than C2 if agent 2 is not uniquely strong and either (i) α1 = maxC1 or
(ii) α1 > 1−α2. Finally, I say that C2 is richer than C1 if agent 2 is not uniquely
strong, and C1 is not richer than C2.

Agent 2 is uniquely strong

This is the easiest set of parameters to characterize unmediated bargaining out-
comes as zn

i → 0.

A first simple observation about unmediated bargaining from AG , which I will
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use repeatedly, is that given a pair of demands α, if agent i concedes at a slower
rate than j in the concession game (λαi < λ

α
j ) and her updated reputation vanishes

at a weakly faster rate than j’s (ẑαi → 0 and ẑαi /ẑ
α
j ≤ L for some constant L > 0)

then she must concede at time 0 with probability approaching one. To see this,
notice that 1 − Fα,ci (0) ≤ ẑαi (ẑαj )−λ

α
i /λ

α
j ≤ (ẑαi )1−λαi /λ

α
j Lλ

α
i /λ

α
j → 0 where Fα,ci =

(1 − ẑαi )Gα,ci .

A second simple observation from AG, is that if agent i makes a demand with
strictly positive limit probability as zn

i → 0 (lim µ1(α1) > 0 or lim µα1
2 (α2) > 0

along some subsequence if necessary for convergence), then her reputation does
vanish at a weakly faster rate than agent j’s (ẑαi → 0 and ẑαi /ẑ

α
j ≤ L for some

constant L > 0). To see this notice that ẑα1
1 /ẑ

α
2 ≈ µ

α1
2 (α2)/µ1(α1) for large n.

Given that agent 2 is uniquely strong, she must always concede at a faster rate
than agent 1 in any concession game, λα1/λ

α
2 = r2(1 − α1)/(r1(1 − α2)) < 1. If

agent 1 makes some demand with positive limit probability lim µ1(α1) > 0 as
zn

i → 0, therefore, she must subsequently immediately concede with probability
approaching one against any of agent 2’s counterdemands. This in turn implies
C
α1

= {maxC2} and C1 = C1 for all sufficiently large n, and that payoffs are
1 − maxC2 for agent 1, and approach maxC2 for agent 2 in the limit. Agent
1’s demand choice is slightly indeterminate, in that it doesn’t affect outcomes
whether she immediately accepts agent 1’s demand (action Q) or first makes a
counterdemand and then concedes at time 0 in the concession game. We may
assume, therefore, that she never plays Q and for sufficiently large n demands
each α1 ∈ C1 with probability 1/|C1|, and so ẑα1

1 /ẑ
max C2
2 ∈ [1/L, L] for some

constant L > 0.

The characterization above, means that updated reputations are similar (accord-
ing to our definition) for each demand pair α = (α1,maxC2) with agent 1 imme-
diately conceding with positive probability in the limit. And so, the conditions
for residual claimant mediation are met for each demand α1 ∈ C1 for all suffi-
ciently small zn

i .

C1 is richer than C2

We now consider characterizing unmediated bargaining demands as zn
i → 0 in

the more complicated case in which C1 is richer than C2. By the definition of
α1, if agent 1 demands α1 ≤ α1 then she concedes at a faster rate than agent
2 after any counterdemand. And so if α1 ≤ α1 and agent 2 makes some coun-
terdemand with positive limit probability, agent 2 must immediately concede
with probability approaching one (by AG’s simple observations). For large n
therefore, player 1 would get approximately α1, and player 2 would get exactly
(1 − α1). If agent 1 demands α1 > α1 with positive limit probability, however,
then agent 2 could counterdemand α2 and concede at a faster rate than 1, so that
1 would subsequently have to immediately concede with probability approach-
ing one. For large n, this would imply payoffs of approximately α2 to player 2
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and (1 − α2) < α1 to player 1 (where the inequality holds because C1 is richer
than C2). Hence, agent 1 must demand α1 with probability one in the limit,
giving limit equilibrium payoffs of α1 and (1 − α1) respectively.

There is again some indeterminacy in rational agent 2’s counterdemand to α1
(although again, not to outcomes), but we shall assume that she makes each
counterdemand with probability 1/|{α2 ∈ C2 : α2 > 1 − α1}| for all large n. This
implies that after α1, reputations are similar for all counterdemands. Given this,
conditions for residual claimant mediation are met for the demand α1 and all
sufficiently small zn

i .

Of course if α1 < maxC1, then agent 1 must demand α1 > α1 with positive
probability, albeit vanishing small as zn

i → 0. Indeed, we must have ẑα1
1 → 0,

otherwise for any counterdemand made with positive limit probability, the prob-
ability that agent 2 immediately concedes would converge one, giving agent 1 a
continuation payoff greater than α1 > α1, a contradiction. To see this, notice that
if ẑα1

1 → K > 0, then for any counterdemand α2 made with positive limit prob-
ability we would have ẑα2 → 0 and so the probability that 2 must immediately
concede in the concession game would be 1 − ẑα2 (ẑα1

1 )−λ
α
2 /λ

α
1 → 1.

Suppose that agent 1 demands α1 > α1, and that αα1
2 < α

α1
2 . I claim that agent

2 must then counterdemand α̃2 = max{α2 ∈ C2 : α2 < α
α1
2 } with probability

approaching (α1 + α
α1
2 − 1)/(αα1

2 − α̃2) in the limit and α
α1
2 with the remain-

ing probability. Agent 1 then immediately concedes with strictly positive limit
probability against any counterdemand. To establish this claim, suppose instead
that agent 1 does not concede with positive probability along some sequence
of bargaining games, then agent 2 must imitate every incompatible counterde-
mand with positive probability. We can allow any concession by 2 to occur
immediately after 1’s demand announcement (action Q), so that she never con-
cedes at time 0 in the concession stage. In order for neither player to concede at
time 0, we need (1 − Fα,ci (0)) = 1 = ẑα2 (ẑα1 )−λ

α
2 /λ

α
1 and so ẑα2 = (ẑα1

1 )λ
α
2 /λ

α
1 . Given

λα2/λ
α
1 > λα

′

2 /λ
α′

1 for α′2 > α2, α = (α1, α2) and α′ = (α1, α
′
2) we must have

that ẑα2/ẑ
α′

2 = (ẑα1
1 )λ

α
2 /λ

α
1−λ

α′

2 /λα
′

1 → 0. And so, the probability that agent 2 coun-
terdemands α2 > αα1

2 converges to zero, giving agent 1 a limit payoff greater
than (1 − αα1

2 ) > α1, a contradiction. Hence agent 1 must immediately concede
with positive probability for sufficiently large n. The probability that agent 1
does not concede after counterdemand α2 is ẑα1

1 (ẑα2 )−λ
α
1 /λ

α
2 ∈ [0, 1]. Agent 2 must

clearly be indifferent between each α2 ∈ C
α1

2 . The indifference condition for two
demands α′2 > α2, is:

(5) α′2 − α2 = ẑα1
1

(
(ẑα

′

2 )
−
λα
′

1
λα
′

2 (α1 + α′2 − 1) − (ẑα2 )
−
λα1
λα2 (α1 + α2 − 1)

)
.

If ẑα
′

2 ≤ Lẑα2 for some L > 0, then the above condition cannot hold unless
ẑα1

1 (ẑα2 )−λ
α
1 /λ

α
2 → 0 (or else the right hand side will become infinitely large given
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λα
′

1 /λ
α′

2 > λα1/λ
α
2 ). This implies that agent 2 can imitate at most two consecutive

counterdemands with positive probability in the limit (i.e. α2 and α′2, such that
there is no α′′2 ∈ (α2, α

′
2)). These must be α̃2 and αα1

2 , with the former demand
made with probability approaching (α1 + α

α1
2 − 1)/(αα1

2 − α̃2) so that agent 1’s
payoff from α1 approaches her limit equilibrium payoff α1.

For counterdemands α̃2 and αα1
2 , we must have a smaller winner reputation (ac-

cording to our definition), because agent 1 imitates demand α1 with probabil-
ity approaching zero, while agent 2 makes these counterdemands with strictly
positive probability in the limit (and so ẑα2/ẑ

α1
1 → 0). To ensure that agent 2

is indifferent between all counterdemands α2 > α̃2 and α̃2 we must have that
the probability that agent 1 does not immediately concede, ẑα1

1 (ẑα2 )−λ
α
1 /λ

α
2 , con-

verges to (α2 − α̃2)/(α1 + α2 − 1) ∈ (0, 1). For such counterdemands, therefore,
reputations are only slightly different (according to our definition). Given this
characterization of unmediated bargaining, for all small enough zn

i , conditions
for residual claimant mediation are met for the demand α1.

Next, suppose that agent 1 demands α1 > α1, but now αα1
2 = α

α1
2 . We must

eventually have that agent 2 concedes immediately with positive probability for
small zn

i , otherwise agent 2 counterdemands α2 ≥ α
α1
2 > 1 − α1, giving agent

1 a continuation payoff of at most, (1 − αα1
2 ) < α1, a contradiction. There is

again some indeterminacy regarding whether agent 2 concedes (with positive
probability) immediately after seeing α1 (action Q), or first counterdemands
α2 ≥ α

α1
2 and then concedes at time 0 in the concession stage. If we assumed no

time 0 concession in the concession stage, then we would have ẑα2 = (ẑα1
1 )λ

α
2 /λ

α
1

and so ẑα2/ẑ
α′

2 = (ẑα1
1 )λ

α
2 /λ

α
1−λ

α′

2 /λα
′

1 → 0 when α′2 > α2. In the limit, therefore,
agent 2 must immediately concede or counterdemand αα1

2 . To ensure that agent
1 receives a limit payoff of α1, agent 2 must therefore immediately concede with
probability (α1 + α

α1
2 − 1)/(α1 + α

α1
2 − 1) in the limit.

Assuming that any immediate concession by agent 2 occurred before making a
counterdemand was useful for establishing the distribution of limit outcomes,
however, it is now useful to make the reverse assumption that rational agent 2
never plays action Q and instead always first makes a counterdemand but then
sometimes concedes at time 0 in the concession stage. In fact, we can choose
the probabilities of agent 2’s counterdemands µα1

2 (α2) so that she subsequently
concedes at with the same conditional probability after each counterdemand. In
other words, we have ẑα2 (ẑα1

1 )−λ
α
2 /λ

α
1 = ẑα

′

2 (ẑα1
1 )−λ

α′

2 /λα
′

1 for all incompatible coun-
terdemands, which we know must approach (αα1

2 + α1 − 1)/(α1 + α
α1
2 − 1) as

zn
i → 0. This implies that after α1, agents’ reputations are only slightly different

for every counterdemand, and so for all small enough zn
i , conditions for residual

claimant mediation are met for the demand α1.

For all sufficiently small zn
i we have established the existence of a residual

claimant conditional mediation system, for each α1 ∈ C1 = {α1 ∈ C1 : α1 ≥ α1}.
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C2 is richer than C1

We finally turn to the most complicated case, when C2 is richer than C1. In
unmediated bargaining, suppose that agent 1 demands α1 with positive limit
probability as zn

i → 0. If agent 2 counterdemands α2 ≤ α2 with positive limit
probability then because she concedes at a faster rate than agent 1, agent 1 must
immediately concede with probability approaching one. On the other hand, if
agent 2 counterdemands α2 > α2 with positive limit probability, then because
she concedes at a slower rate than agent 1, agent 2 herself must immediately
concede with probability approaching one. Hence, agent 2 must counterdemand
α2 with probability approaching one, giving a payoff of 1 − α2 to agent 1 and
approximately α2 to agent 2. Given that C2 is richer than C1 we have 1−α2 > α1
and so agent 1, must certainly never imitate α1 < α1 (equivalently α1 ≤ α1) for
large n .

I claim that agent 1 does not demand α1 > α1 with positive limit probability.
Suppose otherwise, so agent 1 does make some demand α1 > α1 with posi-
tive limit probability. Agent 1 must concede with probability one in the limit
against any counterdemand with r1(1 − α2) > r2(1 − α1), and so in particular
against α2. If this is also true for some counterdemand α2 > α2, then agent 1
would receive a limit continuation payoff of less than (1 − α2) < (1 − α2), a
contradiction. Suppose, therefore, that there is no such counterdemand. For any
counterdemand α2 > α2 we must certainly have ẑα1,α2

2 → 0, otherwise agent 1
would concede with probability approaching one, giving agent 2 a limit payoff

greater than α2 > α2 and agent 1 a payoff strictly below 1 − α2, a contradiction.
For large enough n, agent 1’s expected payoff from imitating α1 is then:

Uα1 =
∑

α2<1−α1

z2π2(α2)α1 +
∑

α2>1−α1

((1 − z2)µα1
2 (α2) + z2π2(α2))(1 − α2)(6)

=(1 − α2) +
∑

α2<1−α1

z2π2(α2)(α1 + α2 − 1)

+
∑

α2∈(1−α1,α2)

z2π2(α2)(α2 − α2) −
∑
α2>α2

z2π2(α2)
ẑα1,α2

2
(α2 − α2),

where I use the fact that (1 − z2)µα1
2 (α2) + z2π2(α2) = z2π2(α2)/ẑα1,α2

2 . Notice
that 1 − α2 > α1 > 1 − maxC2, implies that maxC2 > α2. Equation (6) with
α1 = α1 also provides a lower bound on agent 1’s payoff when demanding α1.
Her actual payoff might, for instance, be µα1

2 (Q)(1 − z2)(α1 + α2 − 1) ≥ 0 larger
as we haven’t assumed she demands α1 with positive limit probability, although
it must clearly still converge to (1 − α2). For large n, the normalized difference
between this lower bound on agent 1’s payoff when she demands α1 and her
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payoff when demanding α1 > α1 with positive limit probability is then:

(7)
Uα1 − Uα1

z2
=

∑
α2∈(1−α1,1−α1)

π2(α2)(α1+α2−1)+
∑
α2>α2

π2(α2)(α2−α2)
1 − ẑα1 ,α2

2

ẑα1 ,α2
2

ẑα1,α2
2

.

Next consider the subclaim that ẑα1,α2
2 /ẑα1,α2

2 → 0 for all α2 > α2. If this subclaim
is established then as commitment vanishes, (7) must explode because we know
ẑα1,α2

2 → 0. The payoff to the demand α1, therefore, must eventually strictly
exceed that of α1, a contradiction which establishes the original claim: that
agent 1 cannot imitate α1 > α1 with positive limit probability.

To establish the subclaim, suppose that after the demand α1 ≥ α1, agent 2 does
not immediately concede with positive probability for large n. Rational agent 2
must then make all counterdemands α2 ≥ α2 with positive probability, or else
agent 1’s payoff from demanding α1 would be strictly below 1 − α2 in the limit,
a contradiction. Rearranging (5), the condition for indifference between these
demands, we must then have:

(8) ẑα1,α2
2 =


ẑα1

1 (α1 + α2 − 1)

(α2 − α2) + ẑα1
1 (ẑα1,α2

2 )
−
λ
α1 ,α2
1

λ
α1 ,α2
2 (α1 + α2 − 1)


λ
α1 ,α2
2
λ
α1 ,α2
1

,

On the other hand, suppose that agent 2 immediately concedes with positive
probability after the demand α1, and assume whenever 2 does this she chooses
action Q rather than first making a counterdemand. We must then have ẑα1,α2

2 =

(ẑα1
1 )λ

α1 ,α2
2 /λ

α1 ,α2
1 . Either way, for some constant Kα1,α2 > 1, we must have ẑα1,α2

2 ∈

[(ẑα1,α2
1 )λ

α1 ,α2
2 /λ

α1 ,α2
1 ,Kα1,α2(ẑα1,α2

1 )λ
α1 ,α2
2 /λ

α1 ,α2
1 ]. This implies:

(9)
ẑα1,α2

2

ẑα1,α2
2

≤
Kα1,α2(ẑα1

1 )
λ
α1 ,α2
2
λ
α1 ,α2
1

(ẑα1
1 )

λ
α1 ,α2
2

λ
α1 ,α2
1

.

Given α1 > α1, we have λα1,α2
2 /λα1,α2

1 > λα1,α2
2 /λα1,α2

1 and given the assumption
that agent 1 counterdemands α1 with positive limit probability, we have ẑα1

1 ≤

Lẑα1
1 for some constant L > 0. Together, these imply that the right hand side

of (9) vanishes as ẑα1
1 → 0. This establishes the subclaim, and so the original

claim: the probability that agent 1 demands α1 > α1 must vanish.

We have established that in equilibrium: agent 1 demands α1 with probability
approaching one, after observing α1 agent 2 must counterdemand α2 with prob-
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ability approaching one, and after observing counterdemand α2, agent 1 must
concede with probability approaching one. Given the demand α1 and counter-
demand α2, it is clear that updated reputations are similar. The probability that
agent 1 does not immediately concede after the demand α1 and counterdemand
α2 > α2 is ẑα1

1 (ẑα2 )λ
α
1 /λ

α
2 , which must converge to (α2 − α2)/(α1 + α2 − 1) > 0,

to ensure that agent 2 is indifferent between this counterdemand and α2. This
implies that updated reputations are only slightly different. And so, for all small
enough zn

i , conditions for residual claimant mediation are met for the demand
α1.

Next, I claim that if agent 2 observes the demand α1 > α1 she counterdemands
α2 with probability approaching one, and after observing the counterdemand α2

agent 1 immediately concedes with probability approaching one.

Clearly, for α1 > α1 we must have ẑα1
1 → 0, or agent 2 would immediately

concede with probability approaching one, giving agent 1 a continuation payoff

of α1 > (1 − α2), a contradiction. Suppose that given α1 > α1, agent 2 concedes
with positive probability along some sequence of bargaining games. Assuming
that any concession by agent 2 occurs immediately after 1’s demand (action
Q) rather than in the concession stage, we must have ẑα2 = (ẑα1

1 )λ
α
2 /λ

α
1 . This

implies ẑα2/ẑ
α′

2 = (ẑα1
1 )λ

α
2 /λ

α
1−λ

α′

2 /λα
′

1 → 0 where α = (α1, α
α1
2 ) and α′ = (α1, α

′
2)

for any α′2 > αα1
2 . And so, agent 2 must counterdemand αα1

2 with probability
approaching one. Clearly, in this case we must have αα1

2 = α2, or else agent
1’s limit payoff would be greater than (1 − α2), a contradiction. Also notice
that agent 2 cannot concede with positive probability in the limit or else agent 1
would get a payoff strictly greater than (1 − α2).

On the other hand, if agent 2 does not concede along some sequence of bar-
gaining games, in order for her to be indifferent between two arbitrary demands
α′2 > α2, (5) must be satisfied. As argued previously, if zα

′

2 ≤ Lzα2 for some
constant L > 0, then agent 1 concedes against α2 with probability approaching
one (i.e. ẑα1

1 (zα2 )−λ
α
1 /λ

α
2 → 0). And so, agent 2 can imitate at most two consec-

utive counterdemands with positive limit probability. Given this, agent 2 must
counterdemand α2 with probability approaching one so that agent 1 can receive
a limit payoff of (1 − α2).

The part of the claim to still establish is that after observing counterdemand
α2, agent 1 concedes with probability one in the limit. Suppose not. I first
establish a subclaim: assuming agent 1 concedes against α2 with probability
less than one in the limit, then for some constant Kα1,α2 > 0 we must have
ẑα1,α2

2 ≥ Kα1,α2(ẑα1,α2
2 )(1−α2)/(1−α2) for α2 ≥ α2 for all large n. This subclaim

is certainly true if agent 2 concedes with positive (but vanishing) probability
along some sequence of bargaining games, because (assuming any such con-
cession occur before making a counterdemand) we must have (ẑα2 )λ

α
1 /λ

α
2 = ẑα1

1 ,
which implies ẑα1,α2

2 = (ẑα1,α2
2 )(1−α2)/(1−α2). If agent 1 concedes against α2 along
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the sequence of bargaining games, but with limit probability less than one,
then ẑα1

1 (ẑα1,α2
2 )−λ

α1 ,α2
1 /λ

α1 ,α2
2 → L > 0 for some constant L. For the indiffer-

ence condition (5) to be satisfied, we must then have ẑα1
1 (ẑα1,α2

2 )−λ
α1 ,α2
1 /λ

α1 ,α2
2 →

((α2 − α2) + L(α1 + α2 − 1))/(α1 + α2 − 1). And so for some Kα1,α2 > 0 we must
have (ẑα1,α2

2 ) ≥ Kα1,α2(ẑα1,α2
2 )(1−α2)/(1−α2), as desired.

For large n, agent 1’s payoff when she demands α1 must be defined by (6).
This equation also defines a lower bound on agent 1’s payoff when she demands
α1 > α1. The normalized difference between agent 1’s payoff from demand-
ing α1 and the lower bound on her payoff after α1 > α1 is then given by (7).
If ẑα1,α2

2 /ẑα1,α2
2 → ∞ for all α2 > α2, therefore, then 1’s continuation payoff

after demanding α1 > α1 must eventually be strictly greater than after α1, a
contradiction. To show that ẑα1,α2

2 /ẑα1,α2
2 → ∞ for all α2 > α2, first notice that

after the demand α1, for agent 2 to be indifferent between counterdemand α2

and α2 > α2 requires ẑα1
1 (ẑα1,α2

2 )−λ
α1 ,α2
1 /λ

α1 ,α2
2 → (α2 − α2)/(α1 + α2 − 1) and so

ẑα1,α2
2 ≤ Nα1,α2(ẑα1

1 )λ
α1 ,α2
2 /λ

α1 ,α2
1 for some constant Nα1,α2 > 0. And so for α2 > α2

we have:

(10)
ẑα1,α2

2

ẑα1,α2
2

≥
Kα1,α2(ẑα1,α2

2 )
1−α2
1−α2

Nα1,α2(ẑα1
1 )

λ
α1 ,α2
2

λ
α1 ,α2
1

Because agent 1 demands α1 with probability approaching one, for some con-
stant M > 0 we must have ẑα1,α2

2 ≥ Mẑα1
1 → 0. We also have (1 − α2)/(1 − α2) <

λα1,α2
2 /λα1,α2

1 = r1(1 − α2)/(r2(1 − α1)) given that by definition r2(1 − α1) <
r1(1 − α2). Hence, the right hand side of (10) must explode, delivering a con-
tradiction and establishing the claim: after observing demand α1 > α1 agent
2 counterdemands α2 with probability approaching one, and after observing
that counterdemand agent 1 immediately concedes with probability approaching
one.

After the demand α1 > α1, agent 2 cannot demand α2 < α2 for all sufficiently
large n, as agent 1 would concede against the larger demand α2 with probability
approaching one. After the counterdemand α2 there is a smaller winner repu-
tation because the demand α1 > α1 is made with probability zero in the limit,
while the counterdemand α2 is made with probability one in the limit. After
the counterdemand α2 > α2, however, reputations are only slightly different,
because ẑα1

1 (ẑα1,α2
2 )−λ

α1 ,α2
1 /λ

α1 ,α2
2 → (α2 − α2)/(α1 + α2 − 1) in order to make agent

2 indifferent between this counterdemand and α2. Hence, for sufficiently small
zn

i conditions for a residual claimant conditional mediation system are met.

For all sufficiently small zn
i we have established that there is a residual claimant

conditional mediation system associated with each α1 ∈ C1 = {α1 ∈ C1 : α1 ≥

α1}, and so we are done. �
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Ongoing mediation

I next show that the negative result for simple mediation is robust to allowing
agents to privately compromise at any time over the infinite horizon. The me-
diator immediately suggest a deal when both parties have compromised. I call
this the ongoing mediation protocol.

I have to slightly modify the game’s extensive form to allow for this protocol.
First agent 1 announces a demand, a1 ∈ [0, 1]; then agent 2 can immediately
accept (giving payoffs a1 and 1 − a1 respectively) or make a counterdemand
a2 ∈ [0, 1]. After observing both demands, each agent i chooses two stopping
times, tc

i ∈ [0,∞] and ty
i ∈ [0,∞], where tc

i is the time at which she compromises
(= c) sending a private message to the mediator, and ty

i is the time at which
she yields (= y) to her opponent’s demand (or concedes) if the mediator has
not yet stopped the game. The mediator stops the game and publicly suggests
an agreement at time max{tc

1, t
c
2} when both agents have privately compromised,

so long as bargaining has not already concluded, max{tc
1, t

c
2} < min{ty

1, t
y
2}. If

max{tc
1, t

c
2} = min{ty

1, t
y
2}, the mediator makes her announcement before either

agent has a chance to concede. If the mediator stops the game at time t (sug-
gesting an agreement), first each agent i can simultaneously revise her demand
to a′i ∈ [0, 1], and then after observing demand changes, choose a new time
ty′
i ∈ [t,∞] to concede to her opponent’s revised demand.

I focus on what I call ongoing equilibria in which rational agents always receive
continuation payoffs (m1,m2) after the mediator’s announcement. Such equilib-
ria entail some loss of generality because those continuation payoffs could po-
tentially vary over time. Given this restriction, however, it is then without loss
of generality to assume mi ∈ (1−α j, αi), because if mi ≥ αi then rational i would
compromise with probability one at time 0 if this had any chance of affecting
the outcome. It is also without loss of generality to then assume that each agent
compromises before conceding tc

i ≤ ty
i because she would certainly do so if there

was any possibility of it affecting the outcome.

Agent i’s strategy can then be described by two c.d.f.s, Fc
i ∈ [0, 1][0,∞] and

Fy
i ∈ [0, 1][0,∞], where Fc

i (t) is the probability that agent i has compromised
before time t, and Fy

i (t) is the probability that agent i has conceded before time
t, where 1 − zi ≥ Fc

i (t) ≥ Fy
i (t) for t < ∞. Given agent j’s equilibrium strategy,

rational agent i’s expected utility from compromising at time s and conceding
at time t ≥ s is:

Ui(s, t) =

∫
v<s

e−rivαidFy
j(v) +

∫
v∈(s,t]

e−rivmidFc
j(v)(11)

+ (1 − Fc
j(t))e

−rit(1 − α j) + (Fc
j(s) − sup

v<s
Fy

j(v))e−ri smi

Of course, the unmediated bargaining equilibrium is still an ongoing equilib-
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rium, where Fc
i (t) = Fy

i (t) for all t. In fact, it is the only ongoing equilibrium.

Proposition 1. The distribution of outcomes in any ongoing equilibrium is iden-
tical to unmediated bargaining.

The idea of the proof is similar to that of Proposition 2, in that unless behavior
matches unmediated bargaining with Fc

i (t) = Fy
i (t), then indifference conditions

for compromising and non-compromising agents would imply a contradiction
to the fact that rational agents must concede within finite time. However, it is
somewhat more involved.

Proof of Proposition 1

Consider some particular equilibrium. We clearly must have Ai = {(s, t) :
Ui(s, t) = maxv,w Ui(v,w)} , ∅. Define T y

i = inf{t : Fy
i (t) = 1 − zi} and

T ∗ = max{T y
1 ,T

y
2}. As in the proof of Proposition 2, I will first prove a series of

claims, which ultimately help establish the result.

(a) We must have T y
i = T ∗ < ∞. This follows immediately from the proof of

Proposition 2, claim (a). A rational agent would immediately concede if she
knew she faced a committed opponent, and will not wait forever to concede
if her opponent might be committed.

(b) If Fy
i jumps at t ∈ [0,T ∗] then Fc

j is constant on [t − ε, t] for some ε > 0.
This follows because if agent j has not compromised before t−ε, she would
strictly increase her payoff by compromising an instant after t compared
to slightly before as this would give her α j rather than m j with positive
probability (at least Fy

i (t) − sups<t Fy
i (s) > 0).

(c) If Fc
i jumps at t ∈ (0,T ∗] then Fy

j is constant on [t − ε, t) for some ε > 0.
This follows because agent j would prefer to concede an instant after t rather
than slightly before as this would give her m j rather than 1−αi with positive
probability (at least Fc

i (t) − sups<t Fc
i (t) > 0).

(d) Let t′ ≤ t′′ < t′′′ ≤ T ∗. If Fc
i (t′′′) = Fc

i (t′) and Fc
j(t
′′) > Fy

j(t
′′) then

Fy
j(t
′′) = Fy

j(t
′′′). If this is not true so that Fy

j(t
′′) < Fy

j(t
′′′), then there must

exist some s ≤ t′′ and some t ∈ (t′′, t′′′] such that (s, t) ∈ A j. However, given
that Fc

i (t′′) = Fc
i (t′′′) the alternative strategy of conceding slightly earlier

(e.g. at (t′′ + t)/2) while still compromising at s is strictly more profitable
as it moves the concession payoff 1 − αi forward in time (with probability
greater than zi > 0).

(e) Let t′ < t′′′ ≤ T ∗. If Fc
i (t′′′) = Fc

i (t′) then either Fy
j(t
′) = Fy

j(t
′′′) or for all

t ∈ [t′, t′′′) we have Fc
j(t) = Fy

j(t). Suppose not, then for some t′′ ∈ [t′, t′′′)
we have Fy

j(t
′′) < Fc

j(t
′′) and Fy

j(t
′) < Fy

j(t
′′′). Define ťi = sup{t : Fc

i (t) =

Fc
i (t′)}. By claim (d) we have Fy

j(t
′′) = sups<t̂i Fy

j(s) and Fc
j(t
′′) > Fy

j(t
′′).
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This implies that Fc
i must be continuous at ťi, i.e. Fc

i (ťi) = sups<ťi Fc
i (s). To

see this, notice that compromising at ťi and conceding at some later date t
must give i a strictly lower payoff than compromising slightly earlier (e.g.
at (ťi + t′′)/2 and still conceding at t (with probability Fc

j(t
′′) − Fy

j(t
′′) > 0

she receives the payoff mi earlier). By claim (d), therefore, we must have
Fy

j(t
′′′) = Fy

j(ťi). But in that case any strategy in which agent i compromises
an instant after ťi cannot be optimal either, contradicting the definition of the
supremum ťi.

(f) Let T ∗ ≥ t′′ > t′. If Fy
i (t′′) = Fy

i (t′) and Fc
i (t′) > Fy

i (t′) then Fc
j(t
′) = Fc

j(t
′′)

Suppose not so that Fc
j(t
′) < Fc

j(t
′′). Then there exists (s, t) ∈ A j such

that s ∈ (t′, t′′]. However, given Fy
i (t′′) = Fy

i (t′), the alternative plan of
compromising slightly earlier (e.g. at ŝ = (t′ + s)/2) while still conceding at
t would be strictly better for j as this gives her the payoff m j with positive
probability (at least (Fc

i (t′) − Fy
i (t′)) > 0) at an earlier time.

(g) There is no jump in Fy
i at t ∈ (0,T ∗]. Suppose not, then by claim (b) Fc

j is
constant on [t − ε, t] for some ε > 0. Hence, by claim (e) either Fy

i (t) =

Fy
i (t − ε) (a direct contradiction) or Fc

i (s) = Fy
i (s) for s ∈ [t − ε, t). It

must then be that Fc
i also jumps at t, because we must have sups<t Fc

i (s) =

sups<t Fy
i (s) < Fy

i (t) ≤ Fc
i (t). Hence by claim (c), Fy

j is constant on [t − ε, t)
for some ε > 0 (assume the same εwithout loss of generality). Given that Fc

i
and Fy

i jump at t, we must have (t, t) ∈ Ai. However, the alternative strategy
for i of both compromising and immediately conceding slightly earlier (e.g.
at t − ε/2) delivers strictly higher expected profits as she gets the payoffs
(Fc

j(t − ε) − Fy
j(t − ε))mi and (1 − Fc

j(t − ε))(1 − α j) > 0 at an earlier date,
without affecting other payoffs.

(h) If Fy
i is continuous at s ≤ t then Ui(s, t) is continuous at s, and if Fc

i is con-
tinuous at t then Ui(s, t) is continuous at t. This follows from how Ui(s, t) is
defined.

For claims (i)-(m) suppose that Fc
1(t′) > Fy

1(t′) for some t′ ∈ [0,∞) (symmetric
arguments apply if Fc

2(t′) > Fy
2(t′)). Define t1 = inf{t ≥ t′ : Fc

1(t) = Fy
1(t)} and

t1 = inf{t : Fc
1(s) > Fy

1(s) ∀s ∈ [t, t′]}. Notice that by claim (g), the continuity of
Fy

1, we have Fc
1(t1) = Fy

1(t1). Also note that t1 > t′ ≥ t1 and Fc
1(t) > Fy

1(t) for all
t ∈ (t1, t1). Let t1 ≥ t′′′ > t′′ > t1.

(i) We must have Fc
2(t′′′) > Fc

2(t′′). Suppose not, and so let ť2 = sup{t : Fc
2(t) =

Fc
2(t′′)} ≥ t′′′. I first establish the subclaim (i’) that this must imply either

Fy
1(t′′) = Fy

1(ť2) or Fc
1(t) = Fy

1(t) for t ∈ [t′′, ť2). Suppose not (again), then
Fy

1(t′′) < Fy
1(ť2) and there is some t ∈ [t′′, ť2) such that Fy

1(t) < Fc
1(t). By

claim (g), the continuity of Fy
1, we must have Fy

1(t′′) < Fy
1(ť2 − ε) for all

ε > 0 sufficiently small. Choose such an appropriately small ε < ť2 − t,
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then we have Fc
2(t′′) = Fc

2(ť2 − ε), Fy
1(t) < Fc

1(t) for some t ∈ [t′′, ť2 − ε) and
Fy

1(t′′) < Fy
1(ť2 − ε), which contradicts claim (e).

By assumption we have Fc
1(t) > Fy

1(t) for all t ∈ [t′′, t1) so that subclaim
(i’) in fact implies Fy

1(t′′) = Fy
1(ť2). This in turn ensures t1 > ť2 because

Fy
1(ť2) = Fy

1(t′′) < Fc
1(t′′) ≤ Fc

1(ť2) whereas Fc
1(t1) = Fy

1(t1). I next claim
that it can’t be optimal for agent 2 to compromise at ť2 while conceding
at some t ≥ ť2. To see this, notice that agent 2 would do strictly better
compromising slightly earlier (e.g. at (ť2 + t′′)/2) while still conceding at t
as this would bring forward the payoff m2 with positive probability (at least
Fc

1(t′′) − Fy
1(t′′) > 0), without affecting other payoffs. Given claim (g), the

continuity of Fy
i , this argument similarly also implies that compromising

an instant after ť2 is strictly worse than compromising at (ť2 + t′′)/2. This
contradicts the definition of the supremum ť2.

(j) We must have Fy
1(t′′′) > Fy

1(t′′). Suppose not, then let ť1 = sup{t : Fy
1(t) =

Fy
1(t′′)} ≥ t′′′. Given claim (g), the continuity of Fy

i , we have Fy
1(ť1) =

Fy
1(t′′). Given Fy

1(ť1) = Fy
1(t′′) < Fc

1(t′′) ≤ Fc
1(ť1) we must have ť1 < t1. By

claim (f) we must then have Fc
2(ť1) = Fc

2(t′′) which contradicts claim (i), that
Fc

2 is increasing on (t1, t1].

(k) We must have Fy
2(t′′′) > Fy

2(t′′). Suppose not so that Fy
2(t′′′) = Fy

2(t′′). Given
that Fc

2 is increasing on the interval [t′′, t′′′] by claim (i), we must have
Fc

2(t) > Fy
2(t) for t ∈ (t′′, t′′′]. Define t2 = inf{t ≥ t′′′ : Fc

2(t) = Fy
2(t)} and

t2 = inf{t : Fc
2(s) > Fy

2(s)∀s ∈ [t, t′′′]}, then switching the labelling for 1 and
2, claim (i) implies Fc

1(t′′′) > Fc
1(t′′) and claim (j) implies Fy

2(t′′′) > Fy
2(t′′),

a contradiction.

(l) We must have Fc
1(t′′′) > Fc

1(t′′). Suppose not, and so Fc
1(t′′′) = Fc

1(t′′).
Let ť1 = inf{t : Fc

1(t) = Fc
1(t′′)}. The right continuity of Fc

1 ensures that
Fc

1(ť1) = Fc
1(t′′). Clearly, we have ť1 ≥ t1 (if ť1 < t1 then certainly at some

t ∈ (ť1, t′′] we must have Fc
1(t) = Fy

1(t) = Fc
1(t′′) ≥ Fy

1(t′′) ≥ Fy
1(t), which

contradicts Fc
1(t′′) > Fy

1(t′′)). By claim (e), we then have either Fy
2(t′′′) =

Fy
2(ť1), which contradicts claim (k), or Fc

2(t) = Fy
2(t) for all t ∈ [ť1, t′′′).

Notice that because Fy
1 is strictly increasing on [ť1, t′′′) by claim (j) while

Fc
1 is by assumption constant, for some s ≤ ť1 and some t ∈ (ť1, t′′′) we

must have (s, t) ∈ A1. Furthermore, if (s′, t′) ∈ A1 where s′ ∈ [s, ť1] then
(s′, t) ∈ A1. This is simply because at time s′ an agent who compromised at
s and another who previously compromised at s′ have the same incentives to
concede thereafter. I claim, however, that (ť1, t) < A1. To see this, notice that
such a strategy is strictly worse than both compromising and conceding at t,
which gives agent 1 the higher payoff of α1 instead of m1 from the positive
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concession of agent 2 on the interval [ť1, t). That is:

U1(t, t) − U1(ť1, t) ≥
∫

ť1≤v≤t
(α1 − m1)e−r1vdFc

2(v)(12)

≥ e−r1t(α1 − m1)(sup
v<t

Fc
2(v) − Fc

2(ť1)) > 0

where the first inequality follows from Fc
2(t) = Fy

2(t) on [ť1, t′′′), the second
from t ≥ v ∈ [ť1, t] and the third from claim (i). For the same reason,
compromising an instant before ť1 and conceding at t cannot be optimal
either. This either contradicts the definition of ť1 as an infimum or implies
ť1 = 0 and Fc

2(0) = 0. The latter possibility, however, clearly contradicts
Fc

1(v) > Fy
1(v) for all v ∈ (ť1, t′′′).

(m) Fc
i is continuous on (t1, t1]. If Fc

i did jump at t ∈ (t1, t1] then by (c), Fy
j is

constant on (t − ε, t) for some ε > 0, contradicting either claim (j) or (k).

We are almost done. Because Fc
1, F

y
1 are increasing on (t1, t1), established in

claims (j) and (l), while by assumption Fy
1(t) < Fc

1(t) on this interval, it follows
that there is some s′ ∈ (t1, t1) such that A1 is dense in the set {(s′, t) : t ∈
[s′, t1]}. Notice that regardless of whether agent 1 compromises at s′ or s ∈
(s′, t1), she faces the same incentives to concede after s if she has not already
done so. Notice also, that there is always a positive probability that agent 1
has compromised before s but has not conceded. From the continuity of Fc

2 on
(t1, t1] it follows that U1(s′, t) is constant on [s′, t1], and hence ∂U1(s′, t)/∂t = 0.
This implies:

(13)
f c
2 (t)

1 − Fc
2(t)

= λc
2 =

r1(1 − α2)
m1 − (1 − α2)

for t ∈ [t1, t1]. Solving this linear ODE gives (1 − Fc
2(s)) = (1 − Fc

j(t1))e−λ
c
2(s−t1).

By the same reasoning there must be some s′′ ∈ (t1, t1) such that A1 is dense in
the set {(s, s′′) : s, ∈ [t1, s

′′]}. The continuity of Fy
2 on (t1, t1] then implies that

U1(s, s′′) is constant on (t1, s
′′], and hence ∂U1(s, s′′)/∂s = 0. This implies:

(14)
f y
2 (s)

Fc
2(s) − Fy

2(s)
= λ

y
2 =

r1m1

α1 − m1

This should already suggest a problem. When Fc
2(s)− Fy

2(s) becomes arbitrarily
small f y

2 (s) must be similarly small. However, f c
2 (t) ≥ λc

2(1 − Fc
2(t)) ≥ λc

2z2 is
bounded above zero, implying Fc

2(t) − Fy
2(t) > 0 on (t1, t1]. To be more precise,
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the above linear ODE is solved to give:

(15) (1 − Fy
2(s)) =

φy
2e−λ

y
2(s−t1) + φc

2ψ2(e−λ
c
2(s−t1) − e−λ

y
2(s−t1)) if λy

2 , λ
c
2

(φy
2 + λ

y
2φ

c
2(s − t1))e−λ

y
2(s−t1) if λy

2 = λc
2

where, ψ2 = λ
y
2/(λ

y
2 − λ

c
2) and φy

2 = (1 − Fy
2(t1)) ≥ (1 − Fc

2(t1)) = φc
2. Define

the gap between Fc
2 and Fy

2 as d2(s) = Fc
2(s) − Fy

2(s), and consider the following
transformations of this gap:

d2(s)
eλ

y
2(s−t1)

ψ2 − 1
=
φ

y
2 − ψ2φ

c
2

ψ2 − 1
+ e(λy

2−λ
c
2)(s−t1) if λ

y
2 > λ

c
2(16)

d2(s)
eλ

c
2(s−t1)

φ
y
2 − ψ2φ

c
2

=e(λc
2−λ

y
2)(s−t1) +

ψ2 − 1
φ

y
2 − ψ2φ

c
2

if λ
y
2 < λ

c
2

d2(s)eλ
y
2(s−t1) =φ

y
2 + λ

y
2φ

c
2(s − t1) − φc

2 if λ
y
2 = λc

2

Each of these transformations is positive. To see this, notice that ψ2 − 1 =

λc
2/(λ

y
2−λ

c
2) > 0 when λy

2 > λ
c
2. Similarly φy

2−ψ2φ
c
2 ≥ −φ

c
2λ

c
2/(λ

y
2−λ

c
2) > 0 when

λ
y
2 < λc

2, where the first inequality follows from φ
y
2 ≥ φc

2. Each of the trans-
formed gaps is strictly increasing in s, implying that d2(s) > 0 for s ∈ (t1, t1].
Recall that we must have t1 ≤ T ∗ < ∞, and Fc

1(t1) = Fy
1(t1). Now define

t2 = inf{t > t1 : Fc
2(t) = Fy

2(t)} ≤ T ∗ < ∞, where this is consistent with the def-
inition of t2 in the proof of claim (k). We can now repeat the above arguments
with the roles of agent 1 and 2 reversed to find that d1(s) > 0 for s ∈ (t1, t2]
and Fc

2(t2) = Fy
2(t2). Let t = min{t1, t2}. For some i we must have t = ti, but

that implies both Fc
i (ti) = Fy

i (ti) and di(ti) = Fc
i (ti) − Fy

i (ti) > 0, a contradic-
tion. We must, therefore, have Fc

i (t) = Fy
i (t) for t ∈ [0,∞). Given this, the

unique equilibrium must match unmediated bargaining by standard arguments
(see AG). �
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