A Model of Competing Narratives: Online Appendix

Kfir Eliaz and Ran Spiegler

August 3, 2020

This appendix contains proofs omitted from the main file.

Proof of Proposition 1

Consider an auxiliary two-player game. Player 1's strategy space is D, and α denotes an element in this space. Player 2's strategy space is $\Delta(\mathcal{G} \times D)$, and σ denotes an element in this space. The payoff of player 1 from the strategy profile (α, σ) is $-[\alpha - \sum_{G,d} \sigma(G, d)d]^2$. The payoff of player 2 from (α, σ) is equal to $\sum_{G,d} \sigma(G, d)\widetilde{U}(G, d; \alpha)$, where $\widetilde{U}(G, d; \alpha) = U(G, d; \alpha)$ if $V(G, \alpha; \alpha) = \mu$ and $\widetilde{U}(G, d; \alpha) = -\infty$ otherwise.

Note that $\sum_{G,d} \sigma(G,d)d = \alpha(\sigma)$ by definition. Therefore, when player 1 chooses α to best-reply to σ , we have $\alpha = \alpha(\sigma)$. Non-nullness ensures that \mathcal{G} includes a DAG G^* that induces $V(G,\alpha;\alpha) = \mu$. It follows that when player 2 chooses σ to best-reply to α , it maximizes $U(G,d;\alpha)$ subject to $V(G,\alpha;\alpha) = \mu$. Therefore, a Nash equilibrium in this auxiliary game is equivalent to our notion of equilibrium.

Our objective is thus to establish existence of a Nash equilibrium (α, σ) in this auxiliary game. Since p_G is a continuous function of α , so is U. In addition, the strategy spaces and payoff functions of the two players in the auxiliary game satisfy standard conditions for the existence of Nash equilibrium.

Proof of Step 2 in the proof of Proposition 4

Let G be the lever DAG $a \to x \to y$. Denote $p_{ay} \equiv p(x = 1 \mid a, y)$. Our objective is to find the maximal values for $p_G(y = 1 \mid a = 1)$ and $p_G(y = 1 \mid a = 0)$ subject to the constraint that either $p_{a^*1} = p_{a^*0} \in \{0, 1\}$ for some a^* , or $p_{1,y^*} = p_{0,y^*} \in \{0, 1\}$ for some y^* . We use the shorthand notation $\alpha = \alpha(\sigma)$.

Recall that

 $p_G(y = 1|a = 1) = p(x = 1|a = 1)p(y = 1|x = 1) + p(x = 0|a = 1)p(y = 1|x = 0)$

and by NSQD,

$$p_G(y = 1|a = 0) = \frac{\mu - \alpha p_G(y = 1|a = 1)}{1 - \alpha}$$

Since we are free to choose what outcome of x to label as 1 or 0, there are four cases to consider.

Case 1. Let $X_{a=1,x=1}$ be the set of lever variables that satisfy $p_{11} = p_{10} = 1$. It follows that for every $x \in X_{a=1,x=1}$, p(x = 1|a = 1) = 1 while p(x = 0|a = 1) = 0. Hence,

$$\max_{x \in X_{a=1,x=1}} p_G(y = 1 | a = 1) = \max_{x \in X_{a=1,x=1}} p(y = 1 | x = 1)$$
$$\max_{x \in X_{a=1,x=1}} p_G(y = 1 | a = 0) = \frac{\mu - \alpha \min_{x \in X_{a=1,x=1}} p_G(y = 1 | x = 1)}{1 - \alpha}$$

where

$$p(y=1|x=1) = \frac{\alpha\mu + (1-\alpha)\mu p_{01}}{\alpha\mu + (1-\alpha)\mu p_{01} + \alpha(1-\mu) + (1-\alpha)(1-\mu)p_{00}}$$

The R.H.S. of this equation is maximized when $p_{01} = 1$ and $p_{00} = 0$, and it is minimized when $p_{01} = 0$ and $p_{00} = 1$. Therefore,

$$\max_{x \in X_{a=1,x=1}} p_G(y=1|a=1) = \frac{\mu}{\mu + \alpha(1-\mu)}$$

where this maximum is attained by $p_{11} = p_{10} = p_{01} = 1$ and $p_{00} = 0$ (which

is equivalent to a lever variable defined as x = y + a(1 - y), while

$$\max_{x \in X_{a=1,x=1}} p_G(y=1|a=0) = \frac{\mu - \alpha \frac{\alpha \mu}{\alpha + (1-\alpha)(1-\mu)}}{1-\alpha} = \frac{\mu(\alpha + 1-\mu)}{1-\mu(1-\alpha)}$$

where this maximum is attained by $p_{11} = p_{10} = p_{00} = 1$ and $p_{01} = 0$ (which is equivalent to a lever variable defined as x = a + (1 - a)(1 - y)).

Case 2. Let $X_{a=0,x=0}$ be the set of lever variables that satisfy $p_{01} = p_{00} = 0$. Hence,

$$\max_{x \in X_{a=0,x=0}} p_G(y=1|a=0) = \max_{x \in X_{a=0,x=0}} p(y=1|x=0)$$

and by NSQD,

$$\max_{x \in X_{a=0,x=0}} p_G(y=1|a=1) = \frac{\mu - (1-\alpha) \min_{x \in X_{a=0,x=0}} p(y=1|x=0)}{\alpha}$$

where

$$p(y=1|x=0) = \frac{\alpha\mu(1-p_{11}) + (1-\alpha)\mu}{\alpha\mu(1-p_{11}) + (1-\alpha)\mu + \alpha(1-\mu)(1-p_{10}) + (1-\alpha)(1-\mu)}$$

Since the R.H.S. of this equation *decreases* in p_{11} and *increases* in p_{10} we have that

$$\max_{x \in X_{a=0,x=0}} p_G(y=1|a=0) = \frac{\mu}{\mu + (1-\alpha)(1-\mu)}$$

which is attained by $p_{01} = p_{00} = p_{11} = 0$ and $p_{10} = 1$ (which is equivalent to a lever variable x = a(1 - y)), while

$$\max_{x \in X_{a=0,x=0}} p_G(y=1|a=1) = \frac{\mu - (1-\alpha)\frac{(1-\alpha)\mu}{(1-\alpha)\mu + (1-\mu)}}{\alpha} = \frac{\mu(2-\alpha-\mu)}{1-\alpha\mu}$$

which is attained by $p_{01} = p_{00} = p_{10} = 0$ and $p_{11} = 1$ (which is equivalent to a lever variable x = ay).

Case 3. Let $X_{y=1,x=1}$ be the set of lever variables that satisfy $p_{01} = p_{11} = 1$. Hence,

$$\max_{x \in X_{y=1,x=1}} p_G(y=1|a=1) = \max_{x \in X_{y=1,x=1}} p(x=1|a=1)p(y=1|x=1)$$

By NSQD,

$$\max_{x \in X_{y=1,x=1}} p_G(y=1|a=0) = \frac{\mu - \alpha \min_{x \in X_{y=1,x=1}} p(x=1|a=1)p(y=1|x=1)}{1 - \alpha}$$

where for $x \in X_{y=1,x=1}$,

$$p(x=1|a=1)p(y=1|x=1) = (\mu + (1-\mu)p_{10}) \cdot \frac{\mu}{\mu + \alpha(1-\mu)p_{10} + (1-\alpha)(1-\mu)p_{00}}$$

Since the R.H.S. of this equation is *increasing* in p_{10} and *decreasing* in p_{00} it follows that

$$\max_{x \in X_{y=1,x=1}} p_G(y=1|a=1) = \frac{\mu}{\mu + \alpha(1-\mu)}$$

which is attained by $p_{01} = p_{11} = p_{10} = 1$ and $p_{00} = 0$ (which is equivalent to a lever variable x = y + a(1 - y)), whereas,

$$\min_{x \in X_{y=1,x=1}} p_G(y=1|a=1) = \frac{\mu^2}{\mu + (1-\alpha)(1-\mu)}$$

which is attained by $p_{01} = p_{11} = p_{00} = 1$ and $p_{10} = 0$ (which is equivalent to a lever variable x = y + (1 - y)(1 - a)) such that

$$\max_{x \in X_{y=1,x=1}} p_G(y=1|a=0) = \frac{\mu}{\mu + (1-\alpha)(1-\mu)}$$

Case 4. Let $X_{y=0,x=0}$ be the set of lever variables that satisfy $p_{00} = p_{10} = 0$. Maximizing $p_G(y = 1|a = 1)$ is equivalent to minimizing $1 - p_G(y = 0|a = 1)$. Since p(y = 0|x = 1) = 0 it follows that

$$p_G(y=0|a=1) = p(x=0|a=1)p(y=0|x=0)$$

where

$$p(x = 0|a = 1) = \mu(1 - p_{11}) + (1 - \mu) = 1 - \mu p_{11}$$

$$p(y = 0|x = 0) = \frac{1 - \mu}{1 - \mu + \alpha \mu (1 - p_{11}) + (1 - \alpha) \mu (1 - p_{01})}$$

$$= \frac{1 - \mu}{1 - \mu (\alpha p_{11} + (1 - \alpha) p_{01})}$$

Hence, we want to find p_{11} and p_{01} that minimize

$$\frac{(1-\mu)(1-\mu p_{11})}{1-\mu(\alpha p_{11}+(1-\alpha)p_{01})}$$

This expression *increases* in p_{01} and *decreases* in p_{11} . Therefore,

$$\max_{x \in X_{y=0,x=0}} p_G(y=1|a=1) = 1 - \frac{(1-\mu)^2}{1-\alpha\mu} = \frac{\mu(2-\alpha-\mu)}{1-\alpha\mu}$$

which is attained by $p_{10} = p_{00} = p_{01} = 0$ and $p_{11} = 1$ (which in turn is equivalent to a lever variable x = ay)

Similarly,

$$\max_{x \in X_{y=0,x=0}} p_G(y=1|a=0) = 1 - \min_{x \in X_{y=0,x=0}} p_G(y=0|a=0)$$

where

$$p_G(y = 0|a = 0) = p(x = 0|a = 0)p(y = 0|x = 0)$$

=
$$\frac{(1 - \mu)[(1 - \mu) + \mu(1 - p_{01})]}{(1 - \mu) + (1 - \alpha)\mu(1 - p_{01}) + \alpha\mu(1 - p_{11})}$$

Since the R.H.S. of this expression *decreases* in p_{01} and *increases* in p_{11} , we have that

$$\max_{x \in X_{y=0,x=0}} p_G(y=1|a=0) = 1 - \frac{(1-\mu)^2}{1-\mu(1-\alpha)} = \frac{\mu(1+\alpha-\mu)}{1-\mu(1-\alpha)}$$

which is attained by $p_{10} = p_{00} = p_{11} = 0$ and $p_{01} = 1$ (which is equivalent to a lever narrative x = y(1 - a)).

From the above four cases we obtain two candidate lever variables for maximizing $p_G(y = 1|a = 1)$: x = ay and x = y + a(1 - y). The latter leads to a higher expected anticipatory payoff if and only if

$$\frac{\mu}{\mu + \alpha(1-\mu)} > \frac{\mu(2-\alpha-\mu)}{1-\alpha\mu}$$

which holds if and only if $\mu < 1 - \alpha$. Similarly, we obtain two candidate lever variables for maximizing $p_G(y = 1|a = 0)$: x = y(1 - a) and x = y + (1 - y)(1 - a). The latter leads to a higher expected anticipatory payoff if and only if

$$\frac{\mu}{\mu + (1 - \alpha)(1 - \mu)} > \frac{\mu(1 + \alpha - \mu)}{1 - \mu(1 - \alpha)}$$

which holds if and only if $\mu < \alpha$.