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A Data

− U.S. Total Population: All Ages including Armed Forces Overseas, obtained from the

FRED database (POP) from 1952Q1 to 2015Q2. Quarters from 1947Q1 to 1952Q1 are

obtained from linear interpolation of the annual series of National Population obtained

from U.S. Census, where the levels have been adjusted so that the two series match in

1952Q1.

− U.S. GDP and investment are obtained from the Bureau of Economic Analysis National

Income and Product Accounts. The investment/GDP ratio is computed as the ratio of

nominal gross private domestic investment to nominal GDP (Table 1.1.5). Real GDP

(used in Appendix F) is computed as nominal GDP (Table 1.1.5) over prices (Table

1.1.4.). Sample is 1948Q1-2015Q2.

− U.S. Non-Farm Business Hours, Total Hours, Unemployment Rate (16 years and over),

and the employment rate (employment-population ratio, 16 years and over) are ob-

tained from the Bureau of Labor Statistics. Sample is 1948Q1-2015Q2.

− U.S. TFP: utilization-Adjusted quarterly-TFP series for the U.S. Business Sector, pro-

duced by John Fernald, series ID: dtfp util, 1947Q1-2015Q2.
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†Department of Economics, Carleton University
‡Department of Economics, University College London and CEPR
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− U.S. Spread: Moody’s Seasoned Baa Corporate Bond Minus Federal Funds Rate, quar-

terly average, obtained from the FRED database, (BAAFFM). Sample is 1954Q3-2015Q2.

− U.S. AAA and BAA rates are from FRED (series names AAA and BAA). Samples are

from 1920Q1-2015Q2. Spreads are computed by subtracting the T-bill rate, which is

taken from Ramey and Zubairy [2018].

− U.S. National Financial Conditions Index: Chicago Fed National Financial Conditions

Index, Index, Quarterly, Not Seasonally Adjusted, obtained from the FRED database,

(NFCI). Sample is 1973Q1-2015Q2.

− U.S. National Financial Conditions Risk Subindex: Chicago Fed National Financial

Conditions Risk Subindex, Index, Quarterly, Not Seasonally Adjusted, obtained from

the FRED database, (NFCIRISK). Sample is 1973Q1-2015Q2.

− U.S. Policy rate : computed from the FRED database as Moody’s Seasoned Baa Cor-

porate Bond Yield (BAAFFM) minus the spread (BAAFFM). Sample is 1954Q3-2015Q2.

The real policy rate is obtained by subtracting realized inflation, computed using the

“Consumer Price Index for All Urban Consumers: All Items” (CPIAUCSL from the

FRED database).

− Price Earning ratio : computed as Real S&P Composite Stock Price Index divided

by Real S&P Composite Earnings. Data are described in Shiller [2015], and obtained

from Robert Shiller’s webpage (http://bit.ly/Shiller-data). Sample is 1971Q1-2015Q2.

− Business cycles reference dates: NBER for the U.S.A. (https://goo.gl/n7tS9s), Owyang,

Ramey, and Zubairy [2013] for Canada, Economic Cycle Research Institute

(https://goo.gl/RycWUt) for the other countries of the G7.

− Unemployment rates for the other countries of the G7: obtained from the FRED

database: LRUNTTTTDEQ156S for Germany (sample: 1962Q1-2017Q3), AURUKM for the

U.K. (sample: 1948Q1-2067Q4), ITAURHARMQDSMEI for Italy (sample: 1979Q4-2017Q3),

LRUN74TTFRQ156N for France (sample: 1967Q4-2017Q3), LRHUTTTTJPQ156S for Japan

(sample: 1960Q1-2017Q4), LRHUTTTTCAQ156S for Canada (sample: 1960Q1-2017Q4).
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B Conditional Probability of a Recession

In this Appendix, we discuss how to compute confidence intervals for the conditional prob-

abilities of recession (see panel (b) of Figure 1 in the main text), and present confidence

intervals for the 3- and 4-quarter window cases. The intervals were constructed as follows.

Fix a time horizon k and a window size x. Let rt be an indicator for whether the economy

is in recession at date t, and let yk,xt be an indicator for whether the economy is in recession

at some point in an x-quarter window around date t+ k. We may then run the regression

yk,xt = βk,x0 + βk,x1 rt + εk,xt .

Letting β̃k,x0 and β̃k,x1 denote the true values of the regression parameters, the quantity

p̃k,x ≡ β̃k,x0 + β̃k,x1 is the true probability of being in recession some time in the x-quarter

window around date t + k, conditional on being in recession at date t. Letting hats denote

estimates of these parameters, p̂k,x ≡ β̂k,x0 + β̂k,x1 is a point estimate of that probability

which, it can be verified, coincides asymptotically with the point estimates shown in Figure

1.i Letting Ω̂ denote an estimate of the variance-covariance matrix of (β̂k,x0 , β̂k,x1 )′, and

η ≡ (1, 1)′, then p̂k,x is approximately distributed as N(p̃k,x, η′Ω̂η). We can then construct

approximate confidence intervals from this distribution in the usual way. In practice, we use

the Newey and West [1994] HAC estimator for Ω̂.

In Figure B.1, we present 66%, 80%, and 90% confidence intervals for the x = 3 and

x = 4 quarter windows, point estimates for which are presented in panel (a) of Figure 1. In

both cases, the confidence intervals indicate that the general pattern we highlighted in Figure

1—namely, a local peak in the probability for k ≈ 36-40 quarters, followed by a local trough

around 56-60 quarters—is unlikely to have occurred simply by chance. Furthermore, in

conjunction with panel (b) of Figure 1 we see that as the window size increases, the estimates

become less uncertain and the aforementioned pattern becomes more starkly apparent.

We also perform a joint test of the null hypothesis that the conditional probability is

constant in k, focusing on the case where x = 5 (size of the window) for the sake of brevity.

The tests are structured as follows. Let K = {k1, . . . , kn} denote a set of “quarters since

iIndeed, even in our finite sample the two different ways of estimating this probability produce nearly
identical results.
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Figure B.1: Confidence Intervals for Recession Probability Plots

(a) x = 3 (b) x = 4
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Notes: Panels (a) and (b) shows 66%, 80%, and 90% confidence intervals (gray shaded areas) for window
widths x = 3 and x = 4, respectively. The solid black line in each panel gives the point estimates.

recession”. For a window x, let φj denote the true probability of being in a recession in the

window t+ kj ± x, and pj our estimate of that parameter. We test the null hypothesis

H0 : φj = p̄, ∀j = 1, . . . , n

where p̄ ≡ n−1
∑n

i=1 pj. That is, H0 is the null that all the probabilities are equal to the

average estimated probability. Let Φ and P denote the vectors of probabilities and their

estimates, Σ = V ar (P ), and

η ≡ Σ−1/2
(
P̂ − p̄en

)
where en is an n-vector of 1’s. Then under the null, η is approximately N (0, In), and thus

η′η is approximately χ2
n.

We report results using two different estimates Σ̂ of the unknown Σ. The first is a

Newey-West HAC estimator (the same method used to generate the CIs reported in the

paper). One might argue that the standard asymptotic HAC estimator might not be the

right approach for this type of data (i.e., binary data with a strong degree of persistence in

both the regressor and regressand). For this reason, we also provide results from using a

bootstrap procedure to estimate Σ. We do so in the following way. We split the actual data

series into full cycles from peak to peak (of which there are 11 total for the post-war US
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Table B.1: Joint Test for Recession Probability Plots

χ2 stat. r (d.o.f.) p-value
Case 1
Asymptotic 7.973 2 0.0186**
Bootstrap 5.878 2 0.0529*
Case 2
Asymptotic 56.110 8 0.0000***
Bootstrap 24.109 8 0.0022***

Notes: This Table reports test values and p-values for joint test of the null hypothesis that the conditional
probability is constant in k, focusing on the case where x = 5.

data). We then generate a simulated business cycle “history” by sequentially drawing full

cycles until the history is at least as long as the true data history (i.e., 286 quarters). From

this we can derive a series of zero-one recession indicators (truncating the histories at 286

quarters) and use it to estimate the recession probabilities just as in the data. We do this

many (N = 10, 000) times, and then use it to obtain a covariance matrix for the estimated

probabilities.

Results using both the asymptotic HAC estimator and the bootstrap procedure are re-

ported in Table B.1:

In Case 1, we compare whether the probability of a recession at 38 quarters (always ±x =

5 quarters) is different form the probability of a recession at 56 quarters (i.e., K = {38, 56}).

In Case 2, we compare whether the probability of a recession between 36 and 39 quarters is

equal to the probability of a recession between 55 and 58 quarters (i.e., K = {36-39, 55-58}).

In both cases these tests provide evidence against the null hypothesis that recessions are

time-independent, in favor of some form of cyclicality. One could argue that such a testing

procedure is cherry-picking particular horizons. We agree with this view, and that is why

we mainly view these test as providing the basis for a hypothesis about the potential timing

of cyclical forces. We thus maintain this range of timing when we go on to test for humps

in the spectral densities across different series. We also performed the above χ2 tests on a

longer sample that goes back to 1850 for the US. Here again we found evidence – at the 5%

level or less — against the hypothesis of a time-independent conditional probability.
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C Spectral Density Estimation

C.1 Schuster’s Periodogram

We estimate the spectral density of series {xt}T−1
t=0 of finite length T by first computing

the Discrete Fourier Transform (DFT) Xk, which results from sampling the Discrete Time

Fourier Transform (DTFT) at frequency intervals ∆ω = 2π
T

in [−π, π):

Xk = X
(
ei

2π
T
k
)

=
T−1∑
t=0

xte
−i 2π

T
kt, (C.1)

for k = 1, ..., T − 1. We then compute samples of the Sample Spectral Density (SSD) Sk

from samples of Schuster’s periodogram Ik
ii according to

Sk = Ik =
1

T
|Xk|2 (C.2)

Taking advantage of the fact that X is even, this amounts to evaluating the spectral density

at T frequencies equally spaced between 0 and π.iii

C.2 Zero-Padding to Increase the Graphic Resolution of the Spec-
trum

As we have computed only T samples of the DTFT X (eiω), we might not have a detailed

enough picture of the shape of the underlying function X (eiω), and therefore of the spectral

density |X (eiω) |2. This problem is particularly acute if one is interested in the behavior of

the spectrum at longer periodicities (i.e., lower frequencies). Specifically, since we uniformly

sample frequencies, and since the periodicity p corresponding to frequency ω is given by

p = 2π
ω

, the spectrum is sparser at longer periodicities (and denser at shorter ones). While

the degree of accuracy with which the samples of Xk describe the shape of X (eiω) is dictated

and limited by the length T of the data set, we can nonetheless increase the number of points

at which we sample the DTFT in order to increase the graphic resolution of the spectrum.

One common (and numerically efficient) way to do this is to add a number of zeros to the end

iiAnother approach for obtaining the spectral density is to take a Fourier transform of the sequence of
autocovariances of x. We show below that this method gives essentially the same result when applied to our
hours series.

iiiSee Priestley [1981] for a detailed exposition of spectral analysis, Alessio [2016] for practical implemen-
tation and Cochrane [2005] for a quick introduction.
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of the sequence xt before computing the DFT. This operation is referred to as zero-padding.

As an example, suppose that we add exactly T zeros to the end of the length-T sequence

{xt}. One can easily check that this has no effect on the DFT computed at the original

T sampled frequencies, instead simply adding another set of T sampled frequencies at the

midpoints between each successive pair of original frequencies.iv

If one is interested in the behavior of the spectral density at long enough periodicities,

zero-padding in this way is useful. We will denote by N the number of samples at which the

DTFT (and thus the SSD) is sampled, meaning that T ′ = N − T zeros will be added to the

sequence {xt} before computing the DFT. In the main text, we have set N = 1, 024.v

C.3 Smoothed Periodogram Estimates

We obtain the raw spectrum estimate of a series non-parametrically as the squared modulus

of the DFT of the (zero-padded) data sequence, divided by the length of the data set.vi This

estimate is called Schuster’s periodogram, or simply the periodogram. It turns out that the

periodogram is asymptotically unbiased, but is not a consistent estimate of the spectrum,

and in particular the estimate of the spectrum at a given frequency ωk is generally quite

unstable (i.e., it has a high standard error). Notwithstanding this fact, the overall pattern

of the spectrum is much more stable, in the sense that the average value of the estimated

spectrum within a given frequency band surrounding ωk is in fact consistent. In order to

obtain a stable and consistent estimate of the spectrum, we exploit this fact by performing

frequency-averaged smoothing. In particular, we obtain our estimate of the SSD S(ω) by

kernel-smoothing the periodogram I(ω) over an interval of frequencies centered at ω. Since

the errors in adjacent values of I(ω) are uncorrelated in large samples, this operation reduces

the standard errors of the estimates without adding too much bias. In our estimations, we

ivThis is true when the number of zeros added to the end of the sample is an integer multiple of T . When
instead a non-integer multiple is added, the set of frequencies at which the padded DFT is computed no longer
contains the original set of points, so that the two cannot be directly compared in this way. Nonetheless,
the overall pattern of the sampled spectrum is in general unaffected by zero-padding.

vAs is well known, standard numerical routines for computing the DFT (i.e., those based on the Fast
Fourier Transform algorithm) are computationally more efficient when N is a power of 2, which is why we
set N = 1,024 rather than, say, N = 1,000.

viNote that we divide by the original length of the series (i.e., T ), rather than by the length of the
zero-padded series (i.e., N).
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use a Hamming window of length W = 13 as the smoothing kernel.vii

C.4 Confidence Intervals

We compute bootstrap confidence intervals for our spectral density estimates as follows. Let

X = (x1, . . . , xT )′ be a sample from a (mean-zero) data series with (true) spectrum S(ω),

and let Ŝ(ωk;X), be our consistent estimator of this spectrum at the discrete frequencies

ω1, . . . , ωK computed from the sample X. We would like to know the sampling distribution

of the ratio of the estimated spectrum to the true smoothed spectrum, i.e., of

Ŝ (ωk;X)

S (ωk)
. (C.3)

To estimate this distribution, suppose that Ŝ(·;X) is the “true” spectrum, and then simulate

N data series of length T from a process that has this “true” spectrum. Letting Xj denote

the j-th simulated series, we can then use the empirical distribution of

Ŝ (ωk;Xj)

Ŝ (ωk;X)

as an approximation to the sampling distribution of (C.3).

To simulate data from a series with“true” spectrum Ŝ(·;X), we first take the inverse

Fourier transform of Ŝ(·;X) to recover the autocovariance function (ACF), R̂k ≡ E[xt, xt+k],

that is associated with Ŝ.viii Note that a series drawn from this estimated ACF will nec-

essarily have precisely the spectrum Ŝ(·;X). For a series of length T , this estimated ACF

implies a covariance matrix given by

Σ̂ =


R̂0 R̂1 · · · R̂T−1

R̂1 R̂0
. . .

...
...

. . . . . . R̂1

R̂T−1 · · · R̂1 R̂0

 .

Letting B denote the Cholesky decomposition of Σ̂, and εj a vector drawn from the N (0, IT )

distribution, the vector Xj ≡ Bεj is drawn from the above ACF function.

viiUsing alternative kernel functions makes little difference to the results.
viiiIt can be verified that, since in our case K > 2T − 1, given the way we compute the estimated spectrum

the inverse Fourier transform of the spectrum does indeed recover the associated ACF.
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D Other G7 Countries

In this appendix we examine whether the motivating evidence reported in the main text for

the U.S. also appears in other countries. In Figure D.1, we report report the probability

of a recession at time t + i conditional (plus or minus a window) on a recession at time t.

The data on business cycles reference dates are taken from Owyang, Ramey, and Zubairy

[2013] for Canada and from the Economic Cycle Research Institute for the other countries.

As can be seen, for most of these countries the conditional probability of a recession initially

increases, peaks around 40 quarters, and then starts to decrease, which is quite close to what

we observed for the U.S..

We also examine whether the spectral densities of cyclical sensitive variables in other G7

countries echo the observations for the U.S. labor market. Getting measures of hours worked

per capita over a sufficiently long period is difficult in many of these countries. We therefore

focus on the unemployment rate. Table D.1 shows p-values for the hump-shape tests with

peak at 32-40 quarters. With the exception of Canada and Italy, the results are again overall

supportive of the presence of important cyclical fluctuations in the 32-40 quarter range.

Table D.1: p-values for the Hump-Shaped Test with peak at 32-40 quarters in the Other
G7 Countries

Flat Null AR(1)

U.K. 0.1% 5.2%
Germany 0.6% 4.1%
France 2.2% 11%
Japan 0.2% 3.8%
Canada 18% 31%
Italy 5.3% 19%

Notes: Table displays simulated p-values for the hump-shaped test with peak at 32-40 quarters, under the flat
and AR(1) null hypotheses.
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Figure D.1: Conditional Probability of Being in a Recession: Other G7 countries

(a) Canada (b) France
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Notes: Each panel displays the fraction of time the economy was in a recession within an x-quarter window
around time t+ k, conditional on being in a recession at time t, where x is allowed to vary between 3 and 5
quarters.
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E Counter-Cyclicality of the AAA/FFR Spread at Peak

Frequencies

In this Appendix, we look at the co-movement between the BAA/FF spread and our hours

worked measured at various frequencies. To do so, we first filter the two series with a Band-

Pass filter (P, P + 26), for P going from 6 quarters to 32, and compute the correlation

between those two filtered series. The first correlation corresponds to the typical (6,32)

“business cycle” filter, while the last one (32,58) corresponds to the peak in spectral density

of hours and second peak in the spectral density of the spread. Panel (a) of Figure E.1

displays the correlation between the two filtered series when varying the band of the filter.

The spread is always counter-cyclical, even more so for the (32,58) band of periods that

correspond to the peak in spectral densities. Panel (b) shows the coherence between the two

series. The spectral coherence is a measure of the degree of relationship, as a function of

frequency, between the two time series. As we can see, over the periodicities 4 to 60 quarters,

coherence is maximum at 38 quarters.

Figure E.1: Correlations and Coherence Between (Filtered for Correlations, Level for Co-
herence) Hours and BAA/FFR Spread

(a) Correlations (b) Coherence
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Notes: Panel (a) of this Figure displays the correlation between filtered Hours and BAA/FFR Spread, when
the filter is a Band-Pass filter (P, P+26), for P going from 6 quarters to 42. Panel (b) displays the coherence
between the two series in levels. Sample is 1954Q3-2015Q2.
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F Spectral Properties of Detrended GDP

Our observations of a distinct peak in the spectral density of a set of macroeconomic vari-

ables may appear somewhat at odds with conventional wisdom. In particular, it is well

known, at least since Granger [1966], that several macroeconomic variables do not exhibit

such peaks, and for this reason the business cycle is often defined in terms of co-movement

between variables instead of reflecting somewhat regular cyclical behavior. According to

us, this perspective on business cycle dynamics may be biased by the fact that it often

relies on examining the spectral properties of transformed non-stationary variables, such

as detrended GDP. We instead have focused on variables—which we like to call cyclically

sensitive variables—where business cycle fluctuations are large in relation to slower “trend”

movements. For such variables, the breakdown between low-frequency trend and cycle is

potentailly less problematic if the series can still be considered stationary. In contrast, if one

focuses on quantity variables, for example GDP, one needs to believe that the detrending

proceedure used to make it stationary is allowing one to isolate the relevant cyclical prop-

erties. This is certainly questionable as the detrending proceedure most often changes the

spectral properties dramatically. To see this, in Figure F.1 we report the same information

we reported before regarding the spectral density, but in this case the series is real per capita

GDP. Here we see that the spectra of the non-detrended data and of the filtered data have

very little in common with each other. Since it does not make much sense to report the

spectral density of non-detrended GDP (it is clearly non-stationary), in Panel (a) of Figure

F.2 we focus on the spectral density of GDP after removing low-frequency movements using

the various high-pass filters. These spectral densities are in line with conventional wisdom:

even when we have removed very low-frequency movements, we do not detect any substantial

peak in the spectral density of GDP around 40 quarters. How can this be? What explains

the different spectral properties of filter-output versus the level of hours worked? There are

at least two possibilities. First, it could be that the filtering we implemented on GDP is

simply not isolating cyclical properties. Alternatively, if one believes that such a filtering

procedure is isolating cyclical properties, the answer to the puzzle may lie in the behavior

of (detrended) TFP. Panel (b) of Figure F.2 plots the spectral density of the (log of the)
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product of TFP by hours, after having removed low-frequency movements in the same way

we have done for GDP and other variables. Note that the spectral density of this variable

is very similar to the GDP one, as if, for periodicity below 80 quarters, GDP could be ap-

proximatively seen as being produced linearly with hours only, whose productivity would

be scaled by TFP. If Hours and TFP were uncorrelated, then the spectral density of GDP

(in logs) would be the sum of the ones of (log) Hours and TFP. This is approximatively

what we have, as shown in panels (c) and (d). The spectral density of TFP shows a quick

pick-up it just above periodicities of 40 quarters. As with GDP, we do not see any marked

peaks in the spectral density of TFP. An interesting aspect to note is that if we add the

spectral density of hours worked to that of TFP, we get almost exactly that of GDP. This

suggests that looking at the spectral density of GDP may be a much less informative way

to understand business cycle phenomena than looking at the behavior of cyclically sensitive

variables such as hours worked. Instead, GDP may be capturing two distinct processes: a

business cycle process associated with factor usage and a lower-frequency process associated

with movement in TFP. For this reason, we believe that business cycle analysis may gain by

focusing more closely on explaining the behavior of cyclically sensitive variables at business

cycle frequencies.
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Figure F.1: Spectral Density of U.S. GDP per Capita, Levels and Various High-Pass Filters
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Notes: This figure shows an estimate of the spectral density of U.S. GDP per capita in levels (black line) and
for 101 series that are high-pass (P ) filtered version of the levels series, with P between 100 and 200 (grey
lines). A high-pass (P ) filter removes all fluctuations of period greater than P .
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Figure F.2: Decomposing the Spectral Density of GDP

(a) GDP (b) TFP×Hours
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(c) TFP (d) Hours
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Notes: This figure shows an estimate of the spectral density of U.S. GDP per capita (panel (a) and Total
Factor Productivity (panel (b)) for 101 series that are high-pass (P ) filtered version of the levels series, with
P between 100 and 200 (grey lines). A high-pass (P ) filter removes all fluctuations of period greater than P .
TFP is the corrected quarterly TFP series of Fernald [2014].
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G More on Spectral Density Estimation

G.1 Smoothing and Zero-Padding with a Multi-Peaked Spectral
Density

To illustrate the effects of smoothing and zero-padding, in this section we compare the

estimated spectral density with the known theoretical one for a process that exhibits peaks

in the spectral density at periods 20, 40 and 100 quarters. We think this is a good description

of the factor variables we are studying (i.e., hours worked, unemployment), that display

both business cycle movements and lower-frequency movements unrelated to the business

cycle. We construct our theoretical series as the sum of three independent stationary AR(2)

processes, denoted x1, x2 and x3.

Each of the xi follows an AR(2) process

xit = ρi1xit−1 + ρi2xit−2 + εit,

where εi is i.i.d. N(0, σ2
i ). The spectral density of this process can be shown to be given by

S(ω) = σ2
i

{
2π[1 + ρ2

i1 + ρ2
i2 + 2(ρi1ρi2 − ρi1) cos(ω)− 2ρi2 cos(2ω)]

}−1

It can also be shown (see, e.g., Sargent [1987]) that for a given ρi2, the spectral density has

a peak at frequency ωi if

ρi1 = −4ρi2 cos(2π/ωi)

1− ρi2
We set ωi equal to 20, 40, and 100 quarters, respectively, for the three processes, and ρi2

equal to -0.9, -0.95, and -0.95. The corresponding values for ρi1 are 1.802, 1.9247, and 1.9449.

We set σi equal to 6, 2, and 1. We then construct xt = x1t+x2t+x3t. The theoretical spectral

density of x is shown in Figure G.1. While the spectral density shows some important long-

run fluctuations, the bulk of the business cycle movements is explained by movements at the

40-quarter periodicity, although we do observe another peak at periodicity 20 quarters.

We simulate this process 1,000,000 times, with T = 270 for each simulation, which is the

length of our observed macroeconomic series. We estimate the spectral density for various

values of N (zero-padding) and W (length of the Hamming window). Higher N corresponds

to higher resolution, and higher W to more smoothing. On each panel of Figure G.2, we
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Figure G.1: Theoretical Spectral Density (Sum of Three AR(2))
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Notes: Figure shows the theoretical spectral density of the sum of three independent AR(2)
processes, which have peaks in their spectral densities at, respectively, 20, 40 and 100
quarters.

report the mean of the estimated spectrum over the 1,000,000 simulations (solid grey line),

the mean ± one standard deviation (dashed lines), and the theoretical spectrum (solid black

line). As we can see moving down the figure (i.e., for increasing W ), more smoothing tends

to reduce the error variance, but at the cost of increasing bias. Effectively, the additional

smoothing “blurs out” the humps in the true spectrum. For example, with no zero-padding

(N = 270), the peak in the spectral density at 40 quarters is (on average) hardly detected

once we have any smoothing at all. Meanwhile, moving rightward across the figure (i.e., for

increasing N), we see that more zero-padding tends to reduce the bias (and in particular,

allows for the humps surrounding the peaks to be better picked up on average), but typically

increases the error variance. As these properties suggest, by appropriately choosing the

combination of zero-padding and smoothing, one can minimize the error variance while

maintaining the ability to pick up the key features of the true spectrum (e.g., the peaks at

20 and 40 quarters).
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Figure G.2: Effects of Smoothing and Zero-Padding (Sum of Three AR(2))
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Notes: Figure shows estimates of the spectral density using simulations of the sum of three indepen-
dent AR(2), which have peaks in their spectral densities at, respectively, 20, 40 and 100 quarters.
The black line is the theoretical spectrum, the solid grey line is the average estimated spectrum
over 1,000,000 simulations, and the dotted grey lines corresponds to that average ± one standard
deviation, and bounded below by zero. W is the length of the Hamming window (smoothing pa-
rameter) and N is the number of points at which the spectral density is evaluated (zero-padding
parameter).
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G.2 Smoothing and Zero-Padding with Non-Farm Business Hours
per Capita

Figure G.3 presents estimates of the spectral density of U.S. non-farm business hours per

Capita for different choices of the zero-padding parameter (N) and different lengths of the

Hamming window (W ). The results indicate that, as long as the amount of zero-padding

is not too small (i.e., N larger), we systematically observe the peak at around 40 quarters

in the spectral density. In fact, it is only with minimal zero-padding (N low) and a wide

smoothing window (W high) that the peak is entirely washed out. We take this as evidence

of the robustness of that peak.

19



Figure G.3: Changing Smoothing and Zero-Padding
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Notes: Figure shows estimates of the spectral density of U.S. Non-Farm Business Hours per Capita
over the sample 1947Q1-2015Q2. The different lines correspond to estimates of the spectral density
of hours in levels (black line) and of 101 series that are high-pass (P ) filtered version of the levels
series, with P between 100 and 200 (thin grey lines). W is the length of the Hamming window
(smoothing parameter) and N is the number of points at which the spectral density is evaluated
(zero-padding parameter).
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G.3 Detrending with a Polynomial Trend

In this section, we check that detrending our hours series with a polynomial trend of degrees

1 to 5 does not affect our main finding; namely, the existence of a peak in the spectrum at

a periodicity around 40 quarters. Plots confirming that our finding is robust to polynomial

detrending are shown in Figure G.4.
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Figure G.4: Using a Polynomial Trend of Various Orders for Benchmark Smoothing (W =
13) and Zero-Padding (N = 1024)
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(c) Order 3 (d) Order 4
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Notes: Figure shows estimates of the spectral density of U.S. Non-Farm Business Hours per Capita
over the sample 1947Q1-2015Q2, when polynomial trends of order 1 to 5 have been removed from
the data. The different lines correspond to estimates of the spectral density of hours in levels
(black line), of hours detrended with a polynomial trend (thick grey line) and of 101 series that are
high-pass (P ) filtered version of the levels series, with P between 100 and 200 (thin grey lines).
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G.4 Alternative Estimators

As another robustness test, we estimate the spectrum using the SPECTRAN package (for

Matlab), which is described in Marczak and Gómez [2012]. The spectrum is computed

in this case as the Fourier transform of the covariogram (rather the periodogram as we

have done thus far). Smoothing is achieved by applying a window function of length M

to the covariogram before taking its Fourier transform.ix Three different window shapes

are proposed: the Blackman-Tukey window, Parzen window, and Tukey-Hanning window.

The width of the window used in estimation is set as a function of the number of samples

of the spectrum. In the case where no zero-padding is done (N = 270), these “optimal”

widths correspond to lengths of, respectively, M = 68, 89, and 89 quarters for the three

methods.x Figure G.5 shows the estimated spectrum of Non Farm Business hours for the

three windows and with or without zero-padding (N = 270, 512, or 1024). Results again

confirm the existence of a peak at a periodicity around 40 quarters, as long as there is enough

zero-padding.

ixSpecifically, the k-th-order sample autocovariance is first multiplied by w(|k|), where the window function
w is an even function with the property that maxkw(k) = w(0) = 1, and the window length M > 0 is such
that w(|k|) 6= 0 for |k| = M − 1 and w(|k|) = 0 for |k| ≥M .

xNote that, in contrast to the kernel-smoothing case, in this case a wider window corresponds to less
smoothing.
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Figure G.5: Non-Farm Business Hours with Various Windows and Estimation Using the
Covariogram
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Notes: Notes: This Figure shows estimates of the spectral density of U.S. Non Farm Business
Hours per Capita over the sample 1947Q1-2015Q2, as computed from the covariogram using the
SPECTRAN package. The different lines correspond to estimate of the spectral density of hours in
levels (black line) and of 101 series that are high-pass (P ) filtered version of the levels series, with
P between 100 and 200 (thin grey lines). N is the number of points at which is evaluated the
spectral density (zero padding).
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H Non Normality

Here we also examined whether the business cycle fluctuations which we have been focusing

upon are approximately normally distributed. To this end, we perform Bai and Ng [2005]

test, which combines skewness and kurtosis into a single statistic for serially dependant data.

This is done on hours and spread after using a high-pass linear filter to remove periodicities

greater than 60 quarters, which allows us to retain all the variation that we have argued

is relevant for the business cycle, while removing more medium- and long-run fluctuations.

The null hypothesis for the test is normality. For non-farm business hours and spread, the

p-values we find are, respectively, 1.2% and .02%. This indicates that linear-Gaussian models

might not be an appropriate way to describe these data, and that one may need to allow

for some type of non-linearity in order to explain these movements. Accordingly, we explore

a class of explanation that allows for such non-linearities. Moreover, when we estimate our

model, we use the skewness and kurtosis properties of the data to help identify parameters.

I Steps in Deriving the Model of Section III

The model can be seen as an extension of the canonical three-equation New Keynesian

model. The extra elements we add are habit persistence, the accumulation of durable goods

(or houses), and a credit market imperfection that generates a counter-cyclical risk premium.

I.1 Model Summary

The economy is populated with a continuum of households of mass one, final good and in-

termediate services firms, commercial banks and a central bank. Each household (or family)

will be composed of a continuum of mass one of worker members and an atomless family

head who coordinates family activities. Time is discrete, and a period of time is divided into

four sub-periods.

Final good firms

Final good firms buy consumption services from the set of intermediate firms, and bundle

them into a final good according to a Dixit-Stiglitz aggregator.
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Intermediate firms

Intermediate firms produce a set of differentiated consumption services using durable goods

as input. These durable goods will be composed of existing durable goods rented from the

households and new ones produced by these intermediate firms using labor. After the pro-

duction of consumption services occurs, the remaining un-depreciated stock of new durable

goods will be sold to households. We assume that firms are price takers on the market

for durable goods, but that they are monopolistic competitors when selling their variety of

consumption services. As standard in a New Keynesian framework, they will only be able

to adjust their prices upon the arrival of price change opportunity, which occurs according

to a Poisson distribution.

Commercial Banks

Orders for final goods and new durable goods are made by each individual household member

before going to the labor market, and these orders are financed by credit granted by banks at

interest rate r. To finance their lending, banks take deposits on which they pay the risk-free

nominal rate i. Because some workers will not find a job and may as a result default on their

debt, the interest rate r charged by banks to borrowers will include a risk premium rp over

and above the risk-free rate. We assume free entry and perfect competition in the banking

market, so that banks make no profits.

Central Bank

The central bank sets the risk free nominal interest rate i according to a type of Taylor rule.

Households

A family purchases consumption services and durable goods. At the beginning of each

period, after the resolution of aggregate uncertainty and the clearing of the last period’s

debts and deposits, each worker in the family places orders for consumption services and

newly produced durable goods, financed by borrowing from banks against their uncertain

labor income, with the imperfect backing of their family. Because of a financial imperfection

that we describe below, the cost of borrowing will be the risky rate r = (1 + rp)(1 + i)− 1.
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The uncertainty at this stage is only idiosyncratic, and comes from the fact that jobs are

indivisible. All the workers inelastically supply one unit of labor, but firms will demand only

et ≤ 1 jobs, so that a fraction 1 − et of workers will be unemployed, and will not be able

to repay their debt the next period. We assume that each employed worker works a fixed

number of hours normalized to one, so that et is also hours.

The financial friction

We assume that for workers that were employed the last period, loan contracts are fully

enforceable, so that their debt is always repaid. The financial friction takes the form of a

costly enforcement of debt repayments by the family for the household members that do not

find a job. In particular, not all non-performing loans can be recovered by going after the

family. When a household member cannot pay back a loan—which will be the case when

they were unable to find a job—then with exogenous probability φ the bank can pay a cost

Φ < 1 per unit of the loan to recover the funds from the household (which the bank will

always choose to do), while with probability 1− φ it is too costly to pursue the household,

in which case the bank is forced to accept a default. To fix ideas, we assume that, for

unemployed workers who have their debt covered by the household, the household transfers

to the unemployed worker the funds necessary to cover the debt.xi

I.2 Timing

Borrowing is in one-period bonds. A family enters the period with outstanding debt and

bank deposits for each of its workers, and a stock of durable goods that is managed by the

family head.

In the first sub-period, interest on last-period deposits are paid, and past debts with

banks are settled. Workers that were employed in the previous period pay back their loans,

and return any remaining cash balances to the household.

In the second sub-period, workers first borrow from banks, and then use the proceeds

to order consumption services and durable goods. Final good services firms receive demand

(paid orders) and make orders to intermediate good firms, which also receive the orders for

xiAn equivalent formulation would have the household simply absorbing that workers debt, to be repaid
in a future period.
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new durable goods from the households. A worker who wants to borrow can try to do it on

his own, or can get backing from his family. If there is no backing by the family, a worker

who borrows but does not find a job will not be able to repay loans. Backing by the family

will therefore reduce the risk premium on loans, and in equilibrium will always be chosen

by the workers. As we have explained above, backing by the family will be imperfect: with

probability φ the bank will pursue the household, and with probability 1− φ it is too costly

to pursue the household.

In the third sub-period, intermediate good firms rent durable goods from the household

head and hire workers to produce any new durable goods. As noted above, there will always

be a measure one of workers looking for a job, but because of job indivisibility, only a fraction

et of workers will find a job. Within a match, the firm makes a take-it-or-leave-it wage offer

to the worker, the equilibrium level of which will be at a reservation wage, which will be

decided by the family head.

Finally, in the fourth sub-period, production takes place, wages are paid to workers,

rental payments for durable goods are made to the household head, orders are fulfilled,

and all consumption services and durable goods are brought back to the household and

shared equally among family members. Firms’ and banks’ profits, if any, are returned to the

household.

I.3 Households

There is a continuum of mass one of households (families) indexed by h who purchase

consumption services from the market and accumulate durable goods. The preferences of

family h are given by U(h) = E0

∑
t β

tξt−1[U (Cht − γCt−1) + ν(1 − eht)], with U ′(·) >

0, U ′′(·) < 0, ν ′(·), ν ′′(·) < 0 and 0 ≤ γ < 1 − δ, where δ is the depreciation rate of the

durable good. Cht represents the consumption services purchased by household h in period

t, Ct ≡
∫ 1

0
Chtdh denotes the average level of consumption in the economy, β is the discount

factor, and ξt denotes an exogenous shock to the discount factor at date t. Note that this

preference structure assumes the presence of external habit. Each family owns a stock of

durable goods Xht that is rented to firms in order to produce intermediate services. This
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stock of durable goods is accumulated according to the equation

Xht+1 = (1− δ)Xht + Iht . (I.1)

A family is composed of a continuum of measure one of workers indexed by j. All the

members of the family share the utility U(h), where Cht =
∫ 1

0
Cjhtdj is the total consumption

services bought by the workers (Cjht for each worker) in household h, and total purchases of

new durable goods is similarly given by Iht =
∫ 1

0
Ijhtdj.

We go into details of a family behavior starting with the second sub-period of period t,

when family i has inherited from the past a net debt position given by Dht; that is, the family

owes a bank the amount Dht. It is useful to note at this stage that, because all families are

identical, Dht will be zero in equilibrium.

The outstanding debt of the family Dht is equally shared among the unit measure of

workers. Worker j is told by the family head to go to bank with its share of existing debt

Djht ( = Dht) to apply for a new loan Ljht ≥ Djht, where the first Djht units of that loan are

used to settle the past debt and Ljht−Djht is left and available for spending. When granting

the loan, the bank opens the worker a checking account (which cannot have a negative

balance), where the initial amount in the deposit would be Ljht −Djht. As noted above, a

worker can apply for their loan either with or without family backing. We only consider the

case where all workers apply for loans with family backing. This is not restrictive, as the

risk premia on backed and non-backed loans will be such that workers will never choose a

non-backed loan.

Banks can transfer the balances in the checking account to other agents, and these de-

posits earn the safe (central bank-determined) interest rate i at the beginning of next period.

The workers can then use this bank money to order consumption goods Cjht at nominal price

Pt and new durable goods Ijht at nominal price PX
t . When a firm receives an order, the

bank money is transferred to that firm, which then uses it to similarly place orders with

the intermediate good firms (in the case of a final good firm) or to pay workers and rent

durables (in the case of an intermediate good firm). With these latter payments, much of the

bank money will be transferred back to (employed) workers and the household head (who

maintains a family bank account) at the end of the period. The remaining bank money
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(reflecting intermediate good firm profits) is also transferred to the household head. After

paying off their own loans, employed workers are asked by the family head to transfer their

remaining bank money back to the family account.

The head of the family coordinates the family activities by telling workers how much to

borrow, how much to purchase and how much of the bank money to transfer to the family.

On top of that, the family head manages the stock of durable goods (or houses) Xht of the

family. She does so by renting it on the market at rate RX
t .

In the third sub-period, firms wish to hire et workers from of the unit measure pool of

workers, so that 1 − et workers will be left unemployed.xii Firms make take-it-or-leave-it

offers to the workers in the form of a nominal wage Wt, who accept it as long as it is not

below a reservation level set by the head of the family. In equilibrium, all offered jobs will be

accepted. Because there is a unit measure of families with a unit measure of workers each,

we will have eht = et, so that et is the probability of a worker in family h being employed.

Finally, as noted above, in the fourth sub-period, production takes place, all wage and

rental payments are made, profits are transferred, an consumption and new durable goods

are delivered to those who ordered them, which in turn are returned to the family to be split

equally among its members.

In the first sub-period of the next period, debts need to be settled after interest on bank

money is paid. Workers who were employed the last period ended it with a bank account

balance of Wt + Ljht − Djht − PtCjht − PX
t Ijht. This balance receives an interest payment

1 + it at the beginning of period t + 1. The worker, meanwhile, owes the bank (1 + rt)Ljht

at this point. The bank will limit its lending such that (1 + rt)Ljht ≤ (1 + it)Wt so as

to ensure that employed workers can always pay back their loans. Further, since rt ≥ it

(reflecting the risk premium), it will never be optimal for workers to borrow more than they

intend to spend, and thus we will have Ljht = Djht + PtCjht + PX
t Ijht. Thus, an amount

T ejht = (1+ it)Wt− (1+rt)(Djht+PtCjht+PX
t Ijht) > 0 will be transferred back to the family

account by each employed worker.

The bank account balance of an unemployed worker at the end of period t, meanwhile,

xiiAs the supply of workers is always inelastically one, equilibrium et must be less than or equal to one.
To simplify notation, we will also let et denote the probability that a worker is offered a job, whereas it
technically should be written min{et, 1} to allow for off-equilibrium labor demand.
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is given by Ljht−Djht−PtCjht−PX
t Ijht = 0, which as noted above is optimally set to zero.

Further, as with employed workers, unemployed workers owe an amount (1 + rt)Ljht to the

bank at the beginning of period t+ 1. For these workers, the bank decides whether or not to

pursue the family for repayment. If it is too costly (which which happens with probability

φ), the loan is not repaid. With probability 1− φ, pursuing the household is worthwhile for

the bank, in which case the family transfers T ujht = (1 + rt)(Djht + PtCjht + PX
t Ijht) to the

worker so they can repay the loan.

Therefore, family h’s net debt at the beginning of period t+ 1 will be given by

Dht+1 = (1− et)φT ujht − etT ejht − (1 + it)
(
RX
t Xht + Πt

)
which rewrites

Dht+1 = [et + (1− et)φ] (1 + rt)
(
Dht + PtCht + PX

t I
X
ht

)
(I.2)

− (1 + it)
(
etWt +RX

t Xht + Πt

)
,

where Πt is total profits of all firms and banks.

I.4 Banks

Banks remunerate deposits at rate it, receive interest rt on the fraction et+(1−et)φ of loans

that are repaid, and incur processing costs of Φ per unit of loans to bailed-out workers (i.e.,

those made to the fraction (1− et)φ of workers who end up unemployed and are bailed out

by the household). Thus, bank profits are

Πbanks
t = {[et + (1− et)φ] (1 + rt)− (1 + it) [1 + (1− et)φΦ]}Lt ,

where Lt is the total volume of loans. Free entry into banking implies zero profits, i.e.,

1 + rt = (1 + it)
1 + (1− et)φΦ

et + (1− et)φ
. (I.3)

Defining the risk premium as (1 + rt) = (1 + it)(1 + rpt ), the above equation implies

1 + rpt =
1 + (1− et)φΦ

et + (1− et)φ
(I.4)

If there is no unemployment risk (et = 1), or no default or recovery costs (φ = 1 and Φ = 0),

one can check that there is no risk premium (rpt = 0).

31



I.5 Firms

The final good sector is competitive. This sector provides consumption services to households

by buying a set of differentiated intermediate services, denoted Ckt, from intermediate service

firms and combining them using a Dixit-Stiglitz aggregator. We assume a measure one of

intermediate service firms, indexed by k. The objective of the final good firm is thus to solve

maxPtCt −
∫ 1

0

PktCktdj

subject to

Ct =

(∫ 1

0

Cη
ktdk

) 1
η

with η ∈ (0, 1) and where Pkt is the nominal price of intermediate service k. This gives rise

to demand for intermediate service k given by

Ckt =

(
Pkt
Pt

)− 1
1−η

Ct.

Details of intermediate firms are presented in the main text.

I.6 Equilibrium Outcomes

As noted in the text, the equilibrium outcome for this model is determined from a set of nine

equations in the endogenous variables. The first two equilibrium conditions are the bank

zero-profit condition (I.3) and the intermediate goods optimality condition (I.5).

RX
t =

Wt

Fe(ekt, θt)
− ψPX

t (I.5)

We derive the three next equilibrium conditions from the household’s behavior. The head

of family h maximizes

E0

∞∑
t=0

βtξt−1 [U (Cht − γCt−1) + v (1− eht)]

subject to the intertemporal budget constraint (I.2) and the durables accumulation equation

(I.1). We can use the first-order conditions of this problem and the equilibrium conditions

32



(the bank zero profit condition (I.3), Dht = 0 and Cht = Ct) to obtain

U ′ (Ct − γCt−1) = β
ξt
ξt−1

(1 + it) [1 + (1− et)φΦ]Et
[
U ′ (Ct+1 − γCt)

1 + πt+1

]
, (I.6)

U ′ (Ct − γCt−1) = β
ξt
ξt−1

Et
[
U ′ (Ct+1 − γCt)
(1 + πt+1)PX

t

{
RX
t+1

1 + (1− et+1)φΦ
+ (1− δ)PX

t+1

}]
(I.7)

with an additional wage condition given by (I.8)

Wt

Pt
≥ v′ (1− et)
U ′ (Ct − γCt−1)

[et + (1− et)φ] (1 + rt)

(1 + it)
+

1 + rt
1 + it

(1− φ)

(
Ct +

PX
t

Pt
IXt

)
. (I.8)

Equation (I.6) is derived from the Euler equation for debt accumulation, (I.7) is derived

from the Euler equation for the durable good accumulation, and the wage condition is the

reservation wage of the household, which is in equilibrium the actual wage offered by firms.

We also have the aggregate law of motion for the stock of durable goods (I.9)

Xt+1 = (1− δ)Xt + ψF (et, θt) , (I.9)

and the consumption services market-clearing condition

Ct = s [Xt + F (et, θt)] . (I.10)

The last two equations will be given by the nominal interest rate policy rule of the central

bank (I.11), and the optimal pricing decision of firms under Calvo adjustment costs which,

as noted in the text, we do not need to explicitly obtain.

Block Recursive Structure Using the monetary policy rule (I.11),xiii

1 + it ≈ ΘEt
[
eϕet+1 (1 + πt+1)

]
(I.11)

, the equilibrium equations have a block recursive structure whereby the variables Ct, et,

Xt+1 and rpt can be solved for first using equations (I.3), (I.4), (I.10) and the combination of

xiiiThe precise form of the Taylor rule we use to obtain the block recursive property is

1 + it = ΘEt

eϕe

t+1

U ′ (Ct+1 − γCt)

Et
[
U ′(Ct+1−γCt)

1+πt+1

]
 .

This deviates slightly from the Taylor rule we write in the main text: 1 + it ≈ ΘEt
[
eϕe

t+1 (1 + πt+1)
]

due to
Jensen’s inequality, which is why that is expressed with an ≈ symbol.
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(I.6) and (I.11), which is given by

U ′ (Ct − γCt−1) = β
ξt
ξt−1

Θ [et + (1− et)φ] (1 + rpt )Et
[
U ′ (Ct+1 − γCt) eϕet+1

]
(I.12)

Given that the above equations determine the quantity variables, the rest of the system then

simultaneously determines the remaining variables
{
RXt
Pt
,
PXt
Pt
, Wt

Pt
, πt

}
. In particular, as we do

not consider the implications of the model for inflation, we do not need to explicitly derive

the optimal pricing behavior of firms. Finally, using (I.10) to eliminate C from the system,

we end up with the three equations (15), (16) and (17) in the main text.

J Solving and Estimating the Model

J.1 Deriving the Estimated Equations

Substituting the functional forms U(c) = (c1−ω − 1)/(ω − 1) and F (e, θ) = θeα, as well as

the normalizations s = θ = 1 and the definition X∗t ≡ X
ψ/(αδ)
t into equations (I.9) and (J.1)

from the main text

U ′ (s (Xt + F (et, θt))− γs (Xt−1 + F (et−1, θt−1))) = βΘ
ξt
ξt−1

[et + (1− et)φ] (1 + rpt )

× Et
[
U ′ (s (Xt+1 + F (et+1, θt+1))− γs (Xt + F (et, θt))) e

ϕe
t+1

]
, (J.1)

equations (J.2) and (J.3)

X̂?
t+1 = (1− δ) X̂?

t + ψêt , (J.2)

êt = α1X̂
?
t + α2êt−1 + α3êt+1 − α4r̂

p
t + α4µt , (J.3)

can then be obtained by linearizing these two equations around the non-stochastic steady

state with respect to log(et), log(X∗t ), rpt , and µt ≡ −∆ log(ξt). In particular, the coefficients

in (J.3) are given by

α1 ≡ −
αδ2 (1− δ − γ)

(1− δ)κ
,

α2 ≡
γαδ (1− δ − ψ)

(1− δ)κ
,

α3 ≡
αδ − τϕe

κ
,

α4 ≡
τ

κ
,
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where τ ≡ (1− γ)(ψ + δ)/ω, κ ≡ (1 + γ − ψ)αδ + τΞ , Ξ ≡ (1− φ)es/[es + (1− es)φ], and

es is the steady state employment rate.

For the linear RP model, we may obtain the (log-)linearized version of equation (J.4)

1 + rpt =
1 + (1− et)φΦ

et + (1− et)φ
(J.4)

as r̂pt = %1êt, where %1 = −(1 − φ + φΦ)es/[es + (1− es)φ]2. For the non-linear RP model,

we have φt = φ(et) and rpt = f(et), where

f(e) =
1 + (1− e)φ (e) Φ

e+ (1− e)φ (e)
− 1 .

Letting ẽ ≡ log e and g(ẽ) ≡ f(exp{ẽ}), and noting that φ′(es) = 0 by assumption, the

third-order approximation to (J.4) is given by

r̂pt = %1êt +
1

2
g′′ê2

t +
1

6
g′′′ê3

t ,

where %1 is as in the linear RP model, and the derivatives of g are evaluated at the steady

state and are implicitly dependent on the corresponding derivatives of φ of the same order

or lower. In practice, we directly estimate %2 and %3 in the expression r̂pt = %1êt+%2ê
2
t +%3ê

3
t ,

and then solve for the values of φ′′ and φ′′′ such that g′′ = 2%2 and g′′′ = 6%3.

J.2 Solution Method

For the three linear versions of the model (linear RP, no friction, and canonical), we use

standard (linear) perturbation methods to solve the model (see, e.g., Fernández-Villaverde,

Rubio-Ramı́rez, and Schorfheide [2016]). For the non-linear RP model, since we would

like to allow for the possibility of local instability and limit cycles, standard non-linear

perturbation methods are not appropriate. In particular, as a first step, standard methods

require obtaining a rational-expectations solution to the linearized (i.e., linear RP, in this

case) model. If the model is locally unstable (as is necessarily the case if it features limit

cycles), such a solution cannot exist. We therefore instead use the perturbation method

discussed in Galizia [2018]. The method differs from standard methods in that it does not

require that the linear approximation to the solution of the non-linear model also be a

solution to the linearized model, an assumption implicit in standard methods. See Galizia

[2018] for further details.
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In practice, we solve the non-linear RP model in this manner to a third-order approxi-

mation. Given a parameterization and an associated solution in state-space form, as part

of the Galizia [2018] method we need to verify that the system indeed remains bounded (in

expectation). It is not possible to confirm this analytically, so we employ numerical methods

instead. In particular, to minimize computational burden, we simply check whether, for a

given initial (non-zero) state of the system,xiv the deterministic path for hours (i.e., the one

obtained by feeding in a constant stream of zeros for the shock) explodes, where we define

an explosion as a situation where, within the first 270 simulated quarters (the length of our

data set), the absolute value of hours exceeds 10 × L̄, where L̄ is the maximum absolute

value of hours (in log-deviations from the mean) observed in our data set (L̄ = 0.146).

J.3 Estimation Procedure

To estimate the model, we use an indirect inference method as follows. Let xt ∈ Rn denote

a vector of date-t observations in our data set, t = 1, . . . , T , and let xT ≡ (x′1, . . . , x
′
T )′

denote the full data set in matrix form. Let F : RT×n → Rq be the function that generates

the q-vector of features of the data we wish to match (i.e., F (xT ) is a vector containing all

relevant spectrum values, plus, for the non-linear RP model, the correlation, skewness and

kurtosis for hours and the risk premium).

Suppose we simulate M data sets of length T from the model using the parameterization

θ. Collect the m-th simulated simulated data set in the matrix x̃mT (θ) ∈ RT×n, m = 1, . . . ,M .

The estimation strategy is to choose the parameter vector θ to minimize the Euclidean

distance between F (xT ) and the average value of F (x̃mT (θ)), i.e., we seek the parameter

vector

θ̂ = argmin
θ∈Θ

[
F (xT )− 1

M

M∑
m=1

F (x̃mT (θ))

]′ [
F (xT )− 1

M

M∑
m=1

F (x̃mT (θ))

]
,

where Θ is the parameter space. In practice, we simulate M = 3,000 data sets for each

parameter draw, and estimate θ̂ using Matlab ’s fminsearch optimization function. We

explored several different weighting matrices in estimation which all gave similar results. In

the main text, we report results based on using an identity matrix as the weighting matrix.

xivWe use the same initial point for every parameterization.
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The Parameter Space

We estimate the parameters of the model imposing several restrictions on the parameter

space Θ. First, we require that 0 ≤ γ, ψ < 1. Second, we require that the policy rate

reacts positively to expected hours, but not so strongly as to cause current hours to fall in

response to an increase in expected hours, i.e., 0 < ϕe < αδ/τ , where τ is defined above.

Third, we impose that the degree of complementarity is never so strong as to generate

temporary multiple equilibria.xv This latter property is ensured if the function êt + τ
κ
Rp(êt)

(see equation (22) in the main text) is strictly increasing in ̂̀ (so that it is invertible). This

in turn requires 1 + τ
κ
Rp

1 > 0 and Rp
3 ≥ Rp2

2 /[3(κ/τ + Rp
1)]. Fourth, we impose that the

shock process is stationary, i.e., |ρ| < 1. Finally, we require that the parameters be such

that a solution to the model exists and is unique (see Appendix J.2). Note that none of the

estimated parameters in either the linear or non-linear RP models is on the boundary of the

set of constraints we have imposed.

xvBy temporary multiple equilibria, we mean a situation where, for a given Xt, et−1 and expectation about
et+1, there are multiple values of et consistent with the dynamic equilibrium condition.
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