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A3 Outcomes

A3.1 Convergence

Figure A1 shows the number of iterations required to achieve convergence, as defined in the text.
Convergence typically takes a large number of iterations, being achieved practically only when
exploration has already faded away almost completely. The number of iterations ranges from
400,000 when β is largest (and hence exploration is limited) to several millions when exploration
is very extensive.

A3.2 Profits

Figure A2 shows the prices observed upon convergence. Typically, prices are somewhat below the
monopoly level but substantially above the one-shot Bertrand equilibrium.

Figure A3 shows the fraction of sessions in which the algorithms settle to a constant price (not
necessarily the same for both algorithms). The other sessions converge to cycles, most of which
have a period equal to 2.
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Figure A1: Number of iterations (in millions) needed to achieve convergence for a grid of values of α and

β.
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Figure A2: Long-run prices in our representative experiment. The one-shot Bertrand equilibrium price lies

somewhere in between the second and third lowest prices, the monopoly price between the second and third

highest.
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Figure A3: Fraction of sessions in which the algorithms settle to a constant price (not necessarily the same

for both algorithms).

A3.3 Equilibrium play

Figure A4 and A5 compare the algorithms’ limit strategies to the true best response to the rival’s
limit strategy. In particular, Figure A4 shows the Q-loss from not playing a best response on
path, i.e. in those states that are actually reached upon convergence. This is a measure of how
far the algorithms are from playing a Nash equilibrium. It is equal to zero when the algorithms
are best responding, strictly positive otherwise. Figure A5 provides the same information for all
states. Thus, it provides a measure of the distance from a sub-game perfect equilibrium. In fact,
the algorithms almost never learn to play a sub-game perfect equilibrium. However, one can count
the number of states in which they are playing a best response. This information is represented in
Figure A6, showing the fraction of states for which at least one algorithm is playing a best response,
and A7, showing the fraction of states where both algorithms are best responding to the rival.
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Figure A4: The average Q-loss for states that are reached on path, for a grid of values of α and β. The Q-

Loss is the percentage difference between the maximum theoretical payoff that could be achieved by playing

a best response to the rival’s limit strategy and the actual payoff achieved by playing the limit strategy.
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Figure A5: The average Q-Loss for all states, for a grid of values of α and β.

A4 Anatomy of collusion

The results in this section refer to the representative experiment with α = 0.15 and β = 4× 10−6

discussed in section 5, unless differently specified.

A4.1 Competitive environments

With memoryless algorithms (k = 0), there is no loss of generality in setting the discount factor
δ to 0. Furthermore, the Q-matrix is much smaller than in the baseline case, as it reduces to a
vector of 15 elements. This means that we can greatly speed up the learning process, which now
requires much less exploration. For example, to get the same value of ν as in our representative
experiment, one must set β = 10−4. And we have already noted that with less exploration, the
learning parameter α can be safely raised, which further increases the speed of learning. Thus,
Table A1 reports the results for the case k = 0 with δ = 0, β = 10−4 and α = 0.25: for these values,
convergence is achieved in just 5,000 periods.

In this relatively short time span, the algorithms do not learn perfectly to play the unique sub-game
perfect Nash equilibrium, which is to play the one-shot Nash equilibrium in all periods, but come
quite close. The Nash equilibrium is played in slightly more than a quarter of the sessions. In the
other sessions, one or both algorithms would have profitable deviations, but the Q-loss is less than
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Figure A6: Fraction of all states where agents are mutually best-responding, for a grid of values of α and

β.
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Figure A7: Fraction of all states where at least one agent’s limit strategy is a best-response to the rival’s

one, for a grid of values of α and β.
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Table A1:

Average Average Average
Profit Gain Equilibrium Play Q-Loss

0.185 0.273 0.013
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Figure A8: Impulse-response functions for the case of a 5-period deviation to the one-shot Bertrand-Nash

equilibrium price (average across all sessions of our representative experiment).

2%. Overall, the average profit gain is less than 20%, i.e. about 5% above what it would be if the
Bertrand equilibrium price in continuous action space were simply approximated by excess rather
than by defect.

A4.2 Deviations and punishments

Figure A8 shows the average impulse response function for 5-period deviations to the one-shot
Bertrand-Nash equilibrium price. The qualitative shape is similar to that observed in the case of
one-period deviations.

Going back to the case of one-period deviations discussed in the main text, Figure A9 shows more
moments of the distribution of the impulse responses. As explained in footnote 33, attention is
restricted to sessions that converge to a constant pair of prices rather than a cycle. In spite of the
heterogeneity across sessions, Figure A9 confirms that the pattern of punishment is robust.

Table A2 reports the prices charged by the two algorithms immediately after the defection (i.e., in
period τ = 2).
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Figure A9: Fan chart of impulse responses, for sessions converging to a constant pair of prices. The variable

on the vertical axis is the percentage price change relative to the long-run prices.

Table A3 shows that deviations considered in table A3 are almost always unprofitable.

Table A4 reports the length of the punishment phase for a range of long-run prices and price cuts.
The duration of the punishment is not very sensitive to these variables.
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Figure A10: Average best response functions. Prices are denoted by their position in the discretized grid:

for example, the 3rd price is 1.51, while 10th price is 1.78.

A4.3 The graph of strategies

Figure A10 depicts the average best response functions, for those sessions where the algorithms
converge to the same pair of supra-competitive prices. In particular, the figure represents case in
which both algorithms converge to the 10-th price of the grid, which is the most frequent outcome.
The average function F exhibits a spike at that point. Elsewhere prices are much lower. This
reflects the punishment of deviations. The punishment is harshest for large price cuts, and less
harsh in case of upwards deviations. But apart from that, there emerges no recognizable pattern.

We next provide support to the claim that cooperation eventually resumes both after unilateral
and multilateral deviations, Figure A11 shows the distribution of the number of states (that is,
nodes in the graph) starting from which this does not happen. In more than 90% of the session,
this number is zero, and in almost 98% of the sessions, it is not greater than 3.

Figure A12 reports the histogram of the number of periods it takes to go back to the absorbing state
starting from any possible state. The distribution includes all 1,000 sessions of our representative
experiment, for a total of 225,000 trajectories. The median is 5 periods, and rarely it takes more
than 10 periods to return to the long-run prices.

The main text claims also that there are a few key nodes that act as gateways, either directly or
indirectly, to the absorbing node. This claim can be supported by measuring a node’s centrality and
then looking at the concentration of centrality. We measure a node’s centrality by its betweenness
with respect to the limit path; in other words, the centrality of a node is given by the number of
shortest paths that pass through it between any node in the network and one of the limit path
nodes. Figure A13 illustrates the concentration of node centrality by means of the concentration-
ratios curve. This curve represents the fraction of total betweenness centrality associated with a
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Figure A11: Distribution of the number of states from which the system does not return to the long-run

prices. In our baseline experiment, there are 225 states. The distribution includes all 1,000 sessions of the

experiment.

varying number of most central nodes. As shown, the five most central nodes account for more
than half of total centrality.

A5 Robustness

This section reports evidence backing up the claims made in Section 6 of the text. The following
tables typically report the same statistics for each experiment considered: the profit gain (denoted
by ∆), the fraction of sessions converging to a Nash equilibrium, and three variables that capture the
algorithms’ reaction to exogenous price cuts in period τ = 1 (specifically, a deviation to the static
best-response to the rival’s price). These variables are the average price drop by the non-deviating
algorithm in period τ = 2 (denoted by IR), the fraction of sessions in which the punishment makes
the deviation unprofitable (denoted by IC), and the length of the punishment.

A5.1 Number of players

Table A5 reports the results of experiments with three or four firms.

As noted in the main text, in interpreting the results reported in Table A3 one must keep in mind
that with n = 3 or m = 4 the Q-matrix becomes significantly larger, which means that holding
β constant the effective level of experimentation is in fact much lower. Table A6 describes, for
the case n = 3, the effect of decreasing β so as to achieve a level of exploration comparable to
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Table A5

∆ Equil. Play on path IR IC Punishment length

n = 2 0.849 0.505 −0.127 0.936 5.705
n = 3 0.643 0.184 −0.078 0.882 11.686
n = 4 0.559 0.717 −0.080 0.899 18.379

the case of duopoly, with a corresponding adjustment in the learning rate (with more exploration,
learning must be more persistent to be equally effective, so α should be lowered). Table A4 confirms
that increasing the level of exploration restores at least part of the profit gain that is lost when
the number of players increases. We observe also an increase in the rate of equilibrium play, and
stronger but shorter (and, in the end, more effective) punishments.

Table A6:

Equilibrium Play Punishment
n α β ∆ on Path IR IC Length

3 0.15 0.4 0.643 0.184 −0.078 0.882 11.686
3 0.05 0.024 0.750 0.306 −0.146 0.908 7.548

Notes: The values of β2 are premultiplied by 105.

Figure A14 shows the average impulse-response function for the case of three firms; the case of four
firms is similar. Clearly, deviations are punished. In period τ = 2, the intensity of the punishment
is similar to the case of duopoly, but in subsequent periods cooperation re-starts much more slowly.
Overall, then, the punishment seems more intense than in a duopoly.

A5.2 Asymmetric firms

The main text reports the effects of cost asymmetries. Table A7 instead focuses on demand asym-
metries. In particular, it considers the case in which the product supplied by firm 2 is of greater
quality, and hence in higher demand, than that of firm 1. In addition to the standard variables, the
table reports also an index of asymmetry (namely, firm 2’s market share in the Bertrand equilibrium
of the one-shot game) and an index of the way the gains from cooperation are divided between the
two firms. The table confirms that cost and demand asymmetries have almost identical effects.
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Figure A14: Average impulse-response function for the case of three firms

Table A7

Agent 2’s Equilibrium
Nash market play

a2 share ∆
π1/πN

1

π2/πN
2

on path IR IC

2.00 0.50 0.85 1.00 0.50 -0.13 0.94
2.12 0.55 0.84 1.05 0.54 -0.15 0.92
2.25 0.59 0.81 1.12 0.52 -0.16 0.92
2.38 0.63 0.78 1.19 0.55 -0.17 0.91
2.50 0.66 0.76 1.27 0.56 -0.19 0.93
2.75 0.72 0.71 1.44 0.57 -0.21 0.89

A5.3 Stochastic demand

Table A8 reports the results for the case in which the aggregate demand parameter a0 takes on
three values, i.e. aL0 = −aH0 , 0 and aH0 , with the same probability, thus generating both negative
and positive demand shocks. The shocks are purely idiosyncratic and have no persistency. Demand
variability does hinder collusion (lower profit gains), as one would have expected, but it does not
eliminate it. We observe less equilibrium play on path. As for the punishments, intensity and
duration are almost unaffected but overall the punishment seems to be less effective.
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Table A8:

Equilibrium Play Punishment
aH0 ∆ on Path IR IC Length

0.00 0.848 0.509 −0.125 0.916 5.708
0.05 0.848 0.485 −0.129 0.906 5.657
0.10 0.832 0.462 −0.134 0.896 5.792
0.15 0.797 0.433 −0.134 0.879 5.737
0.20 0.750 0.407 −0.130 0.867 5.726
0.25 0.695 0.337 −0.127 0.842 5.675

A5.4 Variable market structure

Table A9 reports the results for the case of serially correlated entry or exit. The parameter ρ is the
probability of entry when there are two active firms, and of exit when there are three active firms.

The average profit gain decreases to 58% and 56% when ρ is set at 0.1% or at 0.01%, respectively.
Equilibrium play is observed on path in less than 5% of the sessions in the first case, and about
7% of the sessions in the second. In both cases, punishments are substantially milder than in the
baseline experiment, and this makes exogenous deviations profitable in more than 50% of the cases.

Table A9

Equilibrium Play Punishment
ρ ∆ on Path IR IC Length

0.001 0.583 0.048 −0.006 0.432 9.620
0.0001 0.566 0.070 −0.009 0.450 9.829

A5.5 Product substitutability

Table A10 explores the effects of changing the parameter µ, which is an index of the degree of
product differentiation. In the baseline model, we have µ = 0.25. Here we let the parameter range
from µ = 0.5 to µ = 0 (the case of perfect substitutes). For this latter case, the system of demand
functions is obtained by taking the limit for µ→ 0 and using L’Hopital’s rule.

The profit gain slightly decreases with product substitutability but still remains quite high even
in the case of perfect substitutes. The punishment price drops significantly and the punishment
length slightly decreases. Equilibrium play is highest in the case of perfect substitutes.
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Table A10

Equilibrium Play Punishment
µ ∆ on Path IR IC Length

0.50 0.856 0.331 −0.095 0.906 6.170
0.45 0.860 0.371 −0.099 0.912 6.063
0.40 0.859 0.405 −0.102 0.914 5.954
0.35 0.853 0.414 −0.108 0.912 5.944
0.30 0.859 0.433 −0.118 0.919 5.804
0.25 0.849 0.505 −0.127 0.936 5.705
0.20 0.839 0.532 −0.139 0.918 5.562
0.15 0.835 0.582 −0.157 0.911 5.449
0.10 0.829 0.660 −0.171 0.897 5.465
0.05 0.827 0.694 −0.201 0.919 5.677
0.01 0.805 0.654 −0.220 0.875 5.560
0.00 0.774 0.631 −0.214 0.879 5.484

A5.6 Alternative initializations

We consider different specifications of the Q0 matrix. Remember that in our baseline experiments
we initialize the Q-matrix on the assumption that the rival randomizes uniformly across the m
feasible prices, which implies

Qi,0(s, ai) =

∑
a−i∈An−1

πi(ai, a−i)

(1− δ) |A|n−1

One alternative is to assume instead that the rival always charges a constant price p̄. In this case,
we simply set

Qi,0(s, ai) =
πi(ai, p̄)

1− δ
.

In particular, we have implemented this initialization setting p̄ at the static equilibrium Bertrand
price. This is best approximated (by excess) by the third lowest price of our grid. The alternative
of using the second lowest price (approximation by defect) leads to very similar results.

We have also considered the case where the rival is playing a grim-trigger strategy (that is p−i,t = pH

if pi,t−1 = p−i,t−1 = pH and p−i,t = pL otherwise, with some prices pH > pL). When δ is large, the
corresponding initial matrix may be approximated by

Qi,0(s, ai) =

{
πi(ai,p

H)
1−δ if ai = pH

πi(ai,p
L)

1−δ if ai 6= pH .
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(In fact, our simulations use the exact formulas that accounts also for the profits obtained in the
first period.) We have implemented this initialization setting pH at the monopoly level and pL at
the static equilibrium Bertrand level. Again, these prices may be approximated by excess or by
defect. The table reports the results for the closest approximation (where the Bertrand price is
approximated by excess and the monopoly price by defect), but we have considered all possible
combinations of approximations, obtaining very similar results.

Finally, we have considered the case in which the initial Q-matrix is constant, i.e.

Qi,0(s, ai) = Q̄

with Q̄ = 5 (which is close to the average Q value in our benchmark case) and Q̄ = 10, and the
case where Qi,0(s, ai) is a random draw from a uniform distribution on [0, 10].

Table A11

Equilibrium Play Punishment
Q initialization ∆ on Path IR IC Length

Benchmark 0.849 0.505 -0.127 0.936 5.705
Nash 0.731 0.647 -0.104 0.915 5.244
Grim Trigger 0.724 0.640 -0.104 0.925 5.350
Random (0,10) 0.877 0.238 -0.113 0.853 5.604
Uniform at Q=5 0.793 0.621 -0.119 0.928 5.481
Uniform at Q=10, no expl. 0.978 0.525 -0.120 0.951 9.619

Our results are rather robust with respect to these changes in the initialization of the Q-matrix.
The profit gain is lowest when the Q-matrix is initialized at Nash, or at grim-trigger strategies.
However, in both cases ∆ exceeds 70% and the impulse response functions are very similar to the
baseline case. By way of contrast, collusion is almost perfect when when Q0 is a constant matrix
and Q̄ = 10. In this case, even if exploration is shut down, the algorithms visit systematically all
cells of the matrix and thus are able to learn in a very effective way.

A5.7 Alternative action sets

Table A12 shows the results obtained by varying the grid of feasible prices. First, we have considered
an enlargement of the grid while keeping the number of feasible prices constant at m = 15. We
have considered both a symmetric enlargement, which simply amounts to an increase in ξ, and
one biased downwards. In this latter case, the lowest price is set at p = 0.99, i.e. just below the
marginal cost. Next, we have increased the number of feasible prices from m = 15 to m = 50 and
m = 100.

When m is kept constant, increasing ξ has a limited impact. The effect of using a price grid biased
downwards is more substantial, but the profit gain is still close to 60%. With a larger action space
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Table A12:

Equilibrium Play Punishment
Number of prices ∆ on Path IR IC Length

15 (benchmark) 0.849 0.505 -0.127 0.936 5.705
15, ξ=0.5 0.761 0.730 -0.125 0.947 4.694
15, lowest price set at 0.99 0.612 0.871 -0.112 0.942 4.258
50, ξ=0.1 0.709 0.154 -0.059 0.931 12.713
100, ξ=0.1 0.704 0.684 -0.071 0.986 23.301

the average profit gain is still around 70%. In these cases, however, the Q-matrix is substantially
larger than in the baseline case, so learning off path is inevitably more limited.

A5.8 Memory

Table A13 reports the results of our simulations for the case of two-period memory (k = 2).

Table A13

Equilibrium Play Punishment
k ∆ on Path IR IC Length

1 0.849 0.505 −0.127 0.936 5.705
2 0.574 0.371 −0.030 0.441 24.038

With n = 2 and k = 2, the Q-matrix is as large as with one-period memory and four active firms.
Like in that case, some of the profit gain can be restored by allowing for more experimentation.

A5.9 Linear demand

We repeated the analysis for the case of duopoly with linear demand functions derived from a
quadratic utility function of the Singh and Vives (1984) type, i.e.

u = q1 + q2 −
1

2
(q21 + q22)− γq1q2

for various values of the horizontal differentiation parameter γ. The results are reported in Table
A14. The average profit gain is non-monotone in γ: it is well above 80% when the products are
good substitutes or fairly independent, but reaches a minimum for intermediate degrees of product
differentiation (to be precise, the average profit gain is 63% when γ = 3

4).
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Table A14

Equilibrium Play Punishment
γ ∆ on Path IR IC Length

0.01 0.856 0.224 −0.003 0.666 6.445
0.05 0.843 0.215 −0.013 0.874 6.305
0.10 0.843 0.235 −0.027 0.865 6.357
0.15 0.839 0.219 −0.042 0.867 6.367
0.20 0.837 0.249 −0.058 0.884 6.391
0.25 0.823 0.265 −0.074 0.877 6.270
0.30 0.816 0.274 −0.090 0.873 6.210
0.35 0.807 0.270 −0.109 0.871 6.208
0.40 0.808 0.282 −0.131 0.886 6.274
0.45 0.791 0.316 −0.154 0.884 6.284
0.50 0.770 0.318 −0.173 0.885 6.305
0.55 0.742 0.315 −0.188 0.865 5.988
0.60 0.725 0.343 −0.210 0.866 5.985
0.65 0.686 0.356 −0.232 0.859 5.892
0.70 0.651 0.406 −0.255 0.848 5.650
0.75 0.634 0.429 −0.289 0.849 5.723
0.80 0.649 0.417 −0.329 0.809 5.724
0.85 0.677 0.396 −0.341 0.767 5.584
0.90 0.753 0.385 −0.345 0.715 5.256
0.95 0.854 0.412 −0.410 0.804 5.603
0.99 0.871 0.389 −0.380 0.783 5.687

A5.10 Boltzmann experimentation

We have repeated our experiments for algorithms that explore according to the Boltzmann model
(see footnote 13). For consistency with the baseline analysis, in which exploration diminishes as
time passes, we have let the algorithms’ “temperature” decrease over time according to

Tt = λ0 × tλ1

where we used λ0 = 1000 everywhere. Like we did for the ε-greedy model, we have considered a
grid of possible values of α and λ1. Specifically, for α we have considered the same range as in our
baseline analysis, whereas λ1 varies from 0.999 to 0.999999596. Figure A15 shows the level of the
average profit gain obtained, upon convergence, in our grid. The level of collusion compares to that
of the baseline case. Like in the ε-greedy model, more exploration facilitates collusion, but now it
seems that more persistent learning (i.e., lower values of α) has an unambiguous negative effect.
This is probably due to the fact that exploration is no longer purely random. This guarantees that
the learning process is sufficiently persistent even for larger values of α.
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Figure A15: The average profit gain for a range of values of α and λ1 with Boltzmann exploration.

Table A15 singles out one experiment that leads to a level of the profit gain similar to that of
our representative experiment for the ε-greedy model. There are several notable differences. First,
convergence is much faster, being achieved on average in less than 400,000 repetitions (this con-
trasts with the more than 1,500,000 repetitions required on average to achieve convergence in our
representative baseline experiment). Second, there is much less equilibrium play (but again, the
loss from not playing a true best response is less than 1%). Third, the punishment of deviations
is less harsh, implying that now unilateral price cuts can be profitable in more than 15% of the
sessions. Overall, these results suggest that with Boltzmann exploration learning is faster but less
complete than in the ε-greedy model.

Table A15

Equilibrium Play Punishment
α λ0 λ1 ∆ on Path IR IC Length

0.05 1000 0.999961 0.856 0.094 −0.090 0.841 6.554

A5.11 Asymmetric learning

Table A16 reports the results for the case in which the two algorithms have different learning rates
α, or different levels of experimentation β. In all cases, the α and β parameters are kept at their

23



baseline values for algorithm 1 and varied for algorithm 2 (the first line of the table is benchmark).

Collusion appears to be robust to these changes. The average profit gain is lower when the algo-
rithms are asymmetric, but the effect is modest. Interestingly, the algorithm that updates more
slowly α gains more, whereas the algorithm that explores more under-performs relative to the other.

Table A16

Equilibrium Play Punishment
α2 β2 ∆ on Path IR IC Length

0.15 0.40 0.849 0.505 −0.127 0.936 5.705
0.05 0.40 0.821 0.304 −0.114 0.864 5.206
0.30 0.40 0.797 0.523 −0.112 0.900 6.060
0.15 0.20 0.771 0.423 −0.112 0.882 5.333
0.15 0.80 0.798 0.310 −0.109 0.853 5.599

Notes: The values of β2 are premultiplied by 105.

A6 The time scale of learning

Table A17 confirms that if exploration is reactivated after the algorithms have been re-matched as
described in the main text, comparable levels of collusion are achieved.

Table A17:

Equilibrium Play Punishment
Q initialization ∆ on Path IR IC Length

Benchmark 0.849 0.505 −0.127 0.936 5.705
Rematching 0.837 0.541 −0.128 0.932 5.674
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