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Appendix A Details on the supply model

MVNOs’ retail marginal cost We first derive our model in the text from a model that does not normalize

the MVNO’s marginal cost to zero. The profits of an MNO f and its affiliated MVNO f0 are:

Πf =
∑
l∈Lf

(pl − cl)Dl (p) + (wf0 − cwf0)Df0 (p) ,

Πf0 = (pf0 − wf0 − crf0)Df0 (p) .

where wf0 denotes the actual wholesale cost paid by f0 to f , cwf0 denotes f ’s wholesale marginal cost of

serving f0, and crf0 denotes f0’s retail marginal cost.

The first-order conditions for the retail and wholesale prices are analogous to those obtained in the text:

∂Πf

∂pj
= Dj +

∑
l∈Lf

(pl − cl)
∂Dl

∂pj
+ (wf0 − cwf0)

∂Df0

∂pj
= 0, j ∈ Lf , f ∈ F ,

∂Πf0

∂pf0
= Df0 + (pf0 − wf0 − crf0)

∂Df0

∂pf0
= 0, f ∈ F .

dΠf

dwf0

= Df0 +
∑

j∈J\Lf

∑
l∈Lf

(pl − cl)
∂Dl

∂pj
+

(
wf0 − cwf0

) ∂Df0

∂pj

 ∂pj
∂wf0

= 0

We can make the following changes in variables: cf0 = cwf0 + crf0 and wf0 = wf0 + crf0 . These definitions imply

that wf0 − cwf0 = wf0 − cf0 and pf0 −wf0 − crf0 = pf0 −wf0 . Substitution of these margins results in the same

profit expressions and first-order conditions as in the text (i.e. (4)–(8)).

In sum, this shows that the marginal cost we identify, cf0 , is the sum of the MNO’s marginal cost of serving

the MVNO plus the MVNO’s retail marginal cost, cf0 = cwf0 + crf0 ; and the wholesale price we identify, wf0 , is

the sum of the wholesale price actually paid by the MVNO plus its marginal cost, wf0 = wf0 + crf0 . Therefore,

the MVNO’s retail marginal cost is not separately identified. However, the wholesale markup is identified since

the MVNO’s retail cost (included implicitly in the wholesale price and wholesale marginal cost) is cancelled

out (i.e. wf0 − cwf0 = wf0 − cf0).

Further details on the solution Based on the first-order conditions (6)–(8) in the text, we now discuss

further details on the solution of the wholesale prices and marginal costs.

We first differentiate Equation (6) for all f ∈ F with respect to the wholesale price wg0 of network g ∈ F ,

so that we obtain the following equations: for j ∈ Lf and f ∈ F ,

∑
k∈J

∂Dj

∂pk
+

∑
l∈Lf

(pl − cl)
∂2Dl

∂pj∂pk
+ (wf0 − cf0)

∂2Df0

∂pj∂pk

 ∂pk
∂wg0

+
∑
l∈Lf

∂pl
∂wg0

∂Dl

∂pj
= b1j , (1)
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where b1j = −∂Df0(j)

∂pj
if g = f(j), and 0 otherwise. Likewise, we differentiate Equation (7) w.r.t. wg0 to obtain

∑
k∈J

[
∂Df0

∂pk
+ (pf0 − wf0)

∂2Df0

∂pf0∂pk

]
∂pk
∂wg0

+
∂pf0
∂wg0

∂Df0

∂pf0
= b2f , (2)

for all f ∈ F , where b2f =
∂Df0

∂pf0
if g = f , and 0 otherwise.

The solution procedure begins by solving the wholesale prices wf0 for f ∈ F from Equation (7). Given the

wholesale prices, we subsequently solve Equations (6), (8), (1), and (2) to obtain the marginal costs cj for

j ∈ Lf and cf0 for all f ∈ F . The solution of the marginal costs in the second step relies on the trust region

algorithm.

For each MNO g ∈ F , we first solve (1)–(2) for the pass-through rates ∂pj/∂wg0 for all j ∈ J , taking the

marginal costs as input. To write the equations in matrix form, we let J denote the number of elements in

J and L the number of products contained in
⋃

f∈F Lf , the complete set of the MNO product lines. This

convention implies that L+ F = J . Under these notations, (1) and (2) can be expressed as

Ax = b, A =

[
A1

A2

]
, b =

[
b1

b2

]
,

where x = [∂p1/∂wg0 , ..., ∂pJ/∂wg0 ], b
1 = [b11, ..., b

1
L]

′, b2 = [b21, ..., b
2
F ]

′, and the submatrix A1 is defined as:

A1
ij =

∂Di

∂pj
+

∑
l∈Lf(i)

(pl − cl)
∂2Dl

∂pi∂pj
+ (wf0(i) − cf0(i))

∂2Df0(i)

∂pi∂pj
+ 1

{
j ∈ Lf(i)

}∂Dj

∂pi
,

for j = 1, ..., J and i = 1, ..., L. The submatrix A2 is defined as

A2
fj =

∂Df0

∂pj
+ (pf0 − wf0)

∂2Df0

∂pf0∂pj
+ 1

{
j = f0

}∂Df0

∂pf0
,

for f ∈ F and j ∈ J .

Then, by plugging the derivatives ∂p/∂w obtained from (1) and (2) into (8), we can fully characterize the

marginal costs by jointly solving Equations (6) and (8).

Appendix B Computational details

B.1 Simulation

Given the estimates for the wholesale prices and marginal costs, we use the same FOCs to solve for the

equilibrium retail and wholesale prices. Specifically, the second-stage game is solved by Equations (6) and

(7). This solution step is nested in the computation procedure for the first-stage game solved by (8). Given

the retail prices and marginal costs, the pass-through rates in Equation (8) can be obtained from Equations

(1) and (2). Due to numerical instability caused by extremely low income draws, we adjust the lower bound

y of the simulated incomes to be AC700 on average to ensure the convergence of the solution procedure.

3



B.2 Continuous updating procedure for optimal instruments

For given nonlinear parameters θ2 = (α, σν),

1. BLP contraction loop

(a) Solve for BLP fixed point δ(θ2) = (δjt)j,t s.t. sjt(δt, θ2) = sjt for all j, t .

2. Optimal instruments loop

(a) Given δ in step 1 and the optimal instrument zk−1 from the previous (k − 1)-th iteration, obtain

linear parameter estimates θk1 from the linear IV regression of Nevo (2000).

(b) Obtain zk = E
[∂δ̂(θk

1 ,θ2)
∂θ

∣∣zk−1
]

using the implicit function theorem, where δ̂ is the inverse of

predicted demand ŝ = Eξ[s(ξ, θ
k
1 , θ2)|zk−1].

(c) Repeat (a) and (b) until ∥θk1 − θk−1
1 ∥ < 10−8.

Appendix C Supplementary tables

Table A.1: Full results for Table 4

Estimate Logit IV logit RC logit I RC logit II

Random coefficients
Price/yit (–α) -3.333 -3.914

(0.345) (0.630)
Log 4G/yit -2.728 -3.495

(0.577) (1.624)
Forfait bloqué/yit 36.421 37.670

(3.928) (5.549)
Prepaid/yit -6.415

(4.996)
Intercept/yit 27.628

(14.998)

Price/ȳt -0.288 -1.593
(0.093) (0.505)

Log(2G antenna) 1.466 1.572 0.987 0.781
(0.129) (0.249) (0.295) (0.315)

Log(2G roaming) 1.401 1.370 0.958 0.743
(0.185) (0.398) (0.444) (0.484)

Log(3G antenna) 0.142 0.281 0.508 0.618
(0.097) (0.160) (0.182) (0.188)

Log(3G roaming) -0.048 0.182 0.209 0.341
(0.161) (0.350) (0.370) (0.408)

Log(4G antenna) -0.216 -0.183 0.245 0.345
(0.032) (0.057) (0.106) (0.178)

Log(4G roaming) -0.171 -0.173 0.140 0.301
(0.036) (0.066) (0.124) (0.221)

Forfait bloqué -6.001 -6.977 -11.778 -11.352
(1.253) (3.392) (2.847) (2.869)

Prepaid -4.654 -8.409 -10.623 -10.653
(1.262) (2.862) (2.524) (2.646)

Call allow. (1,000 min) 0.145 0.446 0.580 0.615

(Table continues on the next page.)
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Table A.1: Full results for Table 4

Estimate Logit IV logit RC logit I RC logit II

(0.047) (0.095) (0.099) (0.104)
Data allow. (1,000 MB) 0.193 -0.003 0.105 0.012

(0.057) (0.101) (0.112) (0.131)
Orange -0.965 -1.611 -1.387 -0.881

(1.019) (1.816) (1.731) (1.630)
SFR -0.786 -0.664 -1.231 -1.221

(1.025) (2.249) (2.311) (2.286)
Bouygues -1.327 -1.061 -2.012 -1.838

(1.046) (3.532) (2.223) (2.217)
Free 40.473 43.439 29.541 31.092

(13.051) (21.697) (19.567) (18.769)
Sosh 39.782 43.849 30.264 32.401

(13.056) (22.057) (19.655) (18.699)
B&You 41.519 44.941 28.826 30.958

(13.059) (21.700) (19.512) (18.682)
Red 37.970 44.121 25.115 27.135

(13.046) (22.429) (19.602) (18.818)
MVNO:Orange 0.193 -0.067 0.705 0.839

(0.059) (0.132) (0.181) (0.272)
MVNO:SFR 1.020 0.671 0.912 0.940

(0.051) (0.136) (0.141) (0.159)
Postpaid: age≤20 -9.998 -18.710 23.601 6.007

(3.203) (8.002) (7.390) (17.141)
Postpaid: 21≤age<30 -2.680 -4.402 9.507 2.677

(1.746) (4.483) (3.571) (9.314)
Postpaid: 30≤age<45 2.232 0.280 20.609 12.018

(1.259) (3.044) (3.201) (9.278)
Postpaid: 45≤age<60 -3.778 -7.717 47.772 24.053

(2.566) (5.988) (7.039) (24.991)
Prepaid: age≤20 -10.134 -16.673 29.854 10.198

(3.216) (7.468) (7.955) (17.526)
Prepaid: 21≤age<30 1.574 4.125 18.915 12.740

(1.751) (3.547) (4.006) (9.198)
Prepaid: 30≤age<45 6.619 7.053 27.650 18.985

(1.361) (3.002) (3.616) (9.022)
Prepaid: 45≤age<60 0.846 1.408 56.639 32.582

(2.587) (5.881) (7.722) (24.934)
F. bloqué: age≤20 -3.525 -12.170 36.716 17.820

(3.222) (8.578) (8.462) (16.694)
F. bloqué: 21≤age<30 2.477 2.217 19.415 12.299

(1.755) (4.891) (4.755) (9.714)
F. bloqué: 30≤age<45 8.376 6.575 28.346 19.060

(1.324) (3.612) (3.668) (8.747)
F. bloqué: 45≤age<60 1.581 -1.291 55.991 30.950

(2.585) (7.174) (8.295) (24.982)
Low cost: age≤20 -45.705 -58.941 -2.629 -24.165

(11.133) (19.132) (18.767) (27.418)
Low cost: 21≤age<30 -29.968 -34.263 -10.899 -17.746

(8.437) (14.662) (12.835) (16.480)
Low cost: 30≤age<45 -15.709 -20.146 6.620 -2.636

(6.407) (11.064) (10.180) (14.548)
Low cost: 45≤age<60 -19.084 -23.212 34.540 11.688

(4.193) (8.264) (8.718) (25.620)
Orange*age 0.630 0.779 1.122 1.098

(0.262) (0.471) (0.433) (0.426)
SFR*age 0.542 0.440 0.858 0.924

(0.263) (0.578) (0.589) (0.593)

(Table continues on the next page.)
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Table A.1: Full results for Table 4

Estimate Logit IV logit RC logit I RC logit II

Bouygues*age 0.578 0.497 1.052 1.098
(0.266) (0.908) (0.568) (0.579)

Free*age -5.016 -5.600 -3.793 -4.154
(1.934) (3.197) (2.898) (2.787)

Sosh*age -5.337 -6.159 -4.275 -4.701
(1.936) (3.260) (2.935) (2.794)

B&You*age -5.749 -6.456 -4.008 -4.446
(1.937) (3.190) (2.884) (2.774)

Red*age -4.827 -6.207 -2.953 -3.373
(1.934) (3.357) (2.910) (2.808)

1/Time since entry -2.883 -2.800 -2.522 -2.352
(0.097) (0.153) (0.220) (0.246)

Observations 3,324 3,324 3,324 3,324
J statistics 50.88 0.00 0.00
D.F. 7 0 0
Region & time fixed effects Yes Yes Yes Yes

Standard errors are clustered at the product–region level.
All columns include fixed effects for regions and quarters.
yit & ȳt denote individual & mean incomes scaled by AC100.
Tariff types are interacted with the proportion of each age group in the local population.

Table A.2: Average incomes conditional on observed and predicted product choice

Observed income Predicted income

Network Prepaid Postpaid F. Bloqué Prepaid Postpaid F. Bloqué

Orange 2,763 3,052 2,892 2,593 3,829 2,358
SFR 2,595 2,936 2,829 2,520 3,452 1,592
Bouygues 2,528 2,895 2,755 2,636 3,731 2,010
Free 3,023 2,190
Sosh 3,199 2,819
B&You 2,959 2,776
Red 3,058 2,667
MVNO:Orange 2,715 2,861 2,596 2,087 2,953 1,542
MVNO:SFR 2,927 2,923 2,796 1,127 2,840 1,074
MVNO:Bouygues 2,709 2,767 2,753 631 3,516 2,055

The predicted income is generated by 200 random draws of income from Model RC logit II
of Table 4.
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Table A.3: Diversion ratios

Network Product Orange SFR Bouygues Free

operator group Prepaid Postpaid F.bloqué Sosh Prepaid Postpaid F.bloqué Red Prepaid Postpaid F.bloqué B&You Postpaid

Orange Prepaid -100.00 5.43 6.59 5.22 6.04 5.70 5.68 4.99 6.16 4.91 5.68 5.13 5.95
Postpaid 10.66 -100.00 8.46 11.84 9.50 24.40 3.98 10.05 10.31 25.80 5.06 10.98 6.95
F. bloqué 9.86 6.64 -100.00 7.89 8.96 7.30 10.41 7.92 9.10 5.90 9.80 7.65 11.17
Sosh 3.10 3.62 3.00 -100.00 3.09 3.92 1.85 3.49 3.07 3.32 2.09 3.70 3.88

SFR Prepaid 2.46 2.02 2.43 2.10 -100.00 2.24 2.25 2.34 2.37 1.88 2.17 2.09 2.51
Postpaid 12.99 28.05 10.86 15.07 12.20 -100.00 5.50 13.36 12.45 24.40 6.77 14.21 10.22
F. bloqué 6.12 2.54 7.72 4.40 6.09 3.08 -100.00 5.17 5.81 2.35 9.87 4.70 11.13
Red 2.28 2.21 2.32 2.68 2.42 2.55 1.98 -100.00 2.25 2.14 1.93 2.72 3.50

Bouygues Prepaid 2.44 2.14 2.38 2.03 2.30 2.23 2.05 1.93 -100.00 1.96 2.19 2.10 2.34
Postpaid 6.84 18.18 5.31 7.73 6.28 14.98 2.60 6.71 6.65 -100.00 3.39 7.63 4.81
F. bloqué 2.43 1.21 2.84 1.77 2.31 1.41 3.78 1.97 2.43 1.15 -100.00 1.94 3.59
B&You 2.74 2.83 2.65 3.33 2.76 3.18 1.95 3.16 2.70 2.80 2.09 -100.00 3.91

Free Postpaid 17.98 10.97 21.10 19.07 18.91 13.85 28.38 20.98 17.93 10.87 23.94 20.91 -100.00
MVNO:Orange Prepaid 0.90 0.47 1.09 0.67 0.82 0.54 1.22 0.69 0.87 0.43 1.11 0.71 1.21

Postpaid 2.44 3.14 2.28 2.62 2.24 3.10 1.38 2.49 2.37 2.77 1.64 2.51 2.39
F. bloqué 2.26 0.91 2.92 1.65 2.21 1.09 4.78 1.87 2.24 0.82 3.81 1.75 4.29

MVNO:SFR Prepaid 2.50 0.73 3.57 1.60 2.36 0.90 5.16 1.92 2.34 0.66 4.12 1.54 4.32
Postpaid 5.20 6.46 4.98 5.70 5.05 6.71 3.71 5.52 4.94 5.66 3.82 5.09 5.50
F. bloqué 1.79 0.54 2.64 1.18 1.76 0.67 4.00 1.59 1.55 0.47 3.01 1.17 3.33

MVNO:Bouygues Prepaid 0.77 0.14 1.13 0.45 0.75 0.19 1.73 0.59 0.68 0.15 1.42 0.51 1.61
Postpaid 0.27 0.54 0.23 0.30 0.22 0.46 0.09 0.27 0.22 0.45 0.11 0.28 0.23
F. bloqué 1.02 0.49 1.19 0.66 0.92 0.55 1.31 0.66 0.94 0.45 1.18 0.68 1.14

Outside good 2.95 0.74 4.31 2.04 2.81 0.95 6.21 2.33 2.62 0.66 4.80 2.00 6.02

Percentage of sales diverted toward products (rows) due to price increase (columns).
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Table A.4: Elasticity of retail demand

Network Product Orange SFR Bouygues Free

operator group Prepaid Postpaid F.bloqué Sosh Prepaid Postpaid F.bloqué Red Prepaid Postpaid F.bloqué B&You Postpaid

Orange Prepaid -2.271 0.874 0.268 0.195 0.033 0.435 0.058 0.072 0.033 0.271 0.025 0.097 0.600
Postpaid 0.046 -2.892 0.099 0.109 0.014 0.441 0.009 0.035 0.015 0.339 0.005 0.051 0.165
F. bloqué 0.112 0.797 -4.245 0.204 0.036 0.409 0.094 0.081 0.036 0.231 0.033 0.099 0.790
Sosh 0.084 0.888 0.211 -2.327 0.029 0.457 0.042 0.072 0.029 0.270 0.017 0.097 0.505

SFR Prepaid 0.102 0.826 0.266 0.212 -2.446 0.428 0.072 0.088 0.034 0.260 0.027 0.107 0.686
Postpaid 0.059 1.156 0.130 0.144 0.019 -3.042 0.016 0.048 0.019 0.335 0.008 0.070 0.248
F. bloqué 0.130 0.475 0.478 0.209 0.048 0.251 -5.353 0.107 0.045 0.132 0.087 0.113 1.550
Red 0.089 0.813 0.235 0.205 0.034 0.433 0.066 -2.512 0.030 0.262 0.023 0.109 0.631

Bouygues Prepaid 0.099 0.881 0.259 0.201 0.033 0.430 0.066 0.073 -2.345 0.264 0.025 0.104 0.605
Postpaid 0.050 1.197 0.100 0.116 0.015 0.453 0.010 0.040 0.016 -3.513 0.006 0.062 0.192
F. bloqué 0.136 0.608 0.411 0.210 0.046 0.320 0.231 0.095 0.042 0.185 -5.071 0.108 1.172
B&You 0.082 0.827 0.198 0.190 0.029 0.434 0.047 0.076 0.029 0.282 0.018 -2.352 0.558

Free Postpaid 0.112 0.584 0.352 0.218 0.041 0.344 0.148 0.097 0.037 0.194 0.044 0.124 -1.559
MVNO:Orange Prepaid 0.121 0.655 0.404 0.214 0.040 0.368 0.160 0.086 0.041 0.201 0.045 0.110 1.048

Postpaid 0.085 1.025 0.217 0.170 0.025 0.460 0.037 0.061 0.028 0.294 0.016 0.084 0.418
F. bloqué 0.129 0.500 0.450 0.213 0.047 0.265 0.321 0.104 0.044 0.141 0.083 0.115 1.477

MVNO:SFR Prepaid 0.145 0.398 0.576 0.208 0.052 0.234 0.339 0.101 0.048 0.115 0.093 0.105 1.703
Postpaid 0.083 0.967 0.216 0.206 0.027 0.464 0.052 0.070 0.027 0.276 0.020 0.092 0.474
F. bloqué 0.132 0.365 0.571 0.194 0.044 0.219 0.369 0.100 0.042 0.107 0.089 0.113 1.793

MVNO:Bouygues Prepaid 0.147 0.268 0.514 0.208 0.058 0.190 0.308 0.121 0.042 0.103 0.105 0.131 2.107
Postpaid 0.055 1.119 0.117 0.123 0.017 0.462 0.015 0.046 0.018 0.347 0.007 0.068 0.227
F. bloqué 0.099 0.406 0.516 0.125 0.027 0.194 0.229 0.095 0.027 0.096 0.055 0.066 1.094

Percentage of change in sales of products (rows) due to price increase (columns)
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Table A.5: Estimated wholesale prices and markups on MVNO products

Upstream Downstream Wholesale price Wholesale markup

network network Prepaid Postpaid F. bloqué Prepaid Postpaid F. bloqué

Orange MVNO 4.95 12.16 14.69 5.38 9.59 4.58
(0.64) (1.03) (0.62) (0.71) (1.19) (0.72)

SFR MVNO 2.83 12.05 13.82 4.47 9.01 4.51
(0.63) (1.04) (0.64) (0.71) (1.15) (0.73)

Bouygues MVNO 1.64 24.18 15.97 2.66 10.24 3.47
(0.52) (1.21) (0.63) (0.44) (1.23) (0.51)

MNO’s average wholesale prices and margins on MVNO products across quarters and regions.
Standard errors in parenthesis. Implied marginal costs statistically insignificant for prepaid.

Table A.6: Equilibrium profits under all entry and product line strategies

SFR
Fight Not

Orange Orange
Bouygues Payoffs Fight Not Fight Not

Entry of Free mobile
Fight Orange 9,761 9,406 9,895 9,532

SFR 7,490 7,652 7,260 7,414
Bouygues 3,929 4,030 3,995 4,098

Not Orange 10,009 9,644 10,152 9,778
SFR 7,694 7,867 7,458 7,622
Bouygues 3,618 3,707 3,676 3,767

No entry of Free mobile
Fight Orange 11,223 10,834 11,415 11,011

SFR 8,753 8,990 8,490 8,715
Bouygues 4,613 4,765 4,714 4,869

Not Orange 11,651 11,242 11,856 11,427
SFR 9,116 9,370 8,843 9,081
Bouygues 4,244 4,379 4,332 4,467

Equilibrium profits for 2011Q4–2014Q4 in million euros (total across periods)
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Table A.7: Impact of entry on collusion: background condi-
tions

Operator ∆j(0) ΠD,E
j −ΠN,E

j ΠD,N
j −ΠN,N

j
¯̄fj

(O)range 0.28 392 633 285
(0.01) (53) (79) (43)

(S)FR 0.18 377 617 175
(0.01) (48) (78) (30)

(B)ouygues 0.39 168 256 194
(0.02) (24) (38) (35)

First column is a ratio, other columns are in million euros.

Table A.8: Price effects of entry

Operator Product Retail price Change(%) Change

Orange Prepaid 13.85 1.89 0.26
Orange Postpaid 39.53 1.00 0.40
Orange F. bloqué 22.83 1.11 0.25
Sosh Postpaid 16.90 1.33 0.23
SFR Prepaid 13.56 2.15 0.29
SFR Postpaid 28.73 1.26 0.35
SFR F. bloqué 18.95 3.62 0.64
Red Postpaid 15.83 1.94 0.30
Bouygues Prepaid 13.21 -1.93 -0.25
Bouygues Postpaid 34.85 0.20 0.07
Bouygues F. bloqué 19.66 0.10 0.01
B&You Postpaid 15.77 -2.05 -0.31

Percentage change in prices due to the incumbent’s response to
entry. The change is measured by the subtracting the observed
prices under entry from the counterfactual prices under no entry
in equilibrium and divided by the observed price. The unit is in
euros.
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Figure A.1: Prices of the MVNO services

Appendix D Joint incentives for product line extension

In Section IV.A, we examined within a static framework whether the three incumbent firms have unilateral
incentives to introduce their low-quality fighting brands. In this online appendix, as a benchmark for

comparison with Johnson and Myatt’s (2003) theoretical monopoly analysis, we explore the incumbents’ joint
incentives to introduce low-quality brands after the entry of Free Mobile. Based on the payoff matrix of Table

A.6, Table A.9 quantifies the incremental changes in variable profits when all incumbents jointly switch from

withholding the subsidiary brands to releasing them in the absence of entry (first column) and in the presence

of entry (second column), respectively.

According to the first column, in the absence of entry the incumbents would lose considerably from jointly

releasing the subsidiary brands. The low-quality brands would reduce their joint profits by AC386 million

(significant with a standard error of AC35 million), or by even larger amount if we were to take into account

the fixed costs of launching or operating them. Intuitively, the low-quality brands cannibalize the sales of the

high-quality brands, which lowers the incumbents’ joint profits. There is therefore no strategic incentives for

them to jointly release the subsidiary brands in the absence of entry.

In contrast, according to the second column, if Free Mobile enters the market, the incumbents would

gain a positive amount (AC12 million) from jointly releasing the subsidiary brands. Entry thus raises the

incumbents’ incentives for the fighting brands by AC398 million (at the expense of Free Mobile which would lose

AC238 million because of the fighting brands). Nonetheless, the incumbents’ joint incentives for the fighting
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Table A.9: Joint profit incentives for the in-
cumbents’ fighting brand adoption

Entry of Free Mobile

Network No Yes

Orange -204 -18
(21) (7)

SFR -327 -132
(33) (9)

Bouygues 145 162
(20) (26)

Total incumbents -386 12
(35) (22)

Free 0 -238
(0) (33)

The figures represent the profit changes (in million
euro) of the incumbents and Free Mobile, when the
incumbents jointly introduce their low-cost brands.
The calculations are based on the payoffs from Ta-
ble A.6 of the online appendix. Standard errors
from a parametric bootstrap are in parentheses.

brands after entry are small and statistically insignificant: business stealing from Free Mobile essentially just

compensates for the cannibalization of the premium brands. Note that the findings are very similar in the

vertically integrated pricing model (see Table A.11). As a footnote, Table A.9 also suggests that the incumbents

may disagree over their desirable choice of collective actions: Bouygues would prefer all incumbents to launch

a subsidiary low-quality brand regardless of Free Mobile’s entry.

In sum, this cooperative setting provides intuition in line with Johnson and Myatt’s monopoly theory.

The incumbents’ joint incentives for releasing the low-quality brands are substantially negative before entry

because of cannibalization, and they increase considerably to a negligible positive amount after entry because

of business stealing.
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Appendix E Profit incentives and welfare effects under vertically inte-

grated pricing

Table A.10: Equilibrium profits under all entry and product line strategies

SFR
Fight Not

Orange Orange
Bouygues Payoffs Fight Not Fight Not

Entry of Free mobile
Fight Orange 9,918 9,555 10,054 9,683

SFR 7,604 7,779 7,373 7,541
Bouygues 3,966 4,066 4,033 4,134

Not Orange 10,159 9,787 10,303 9,921
SFR 7,809 7,993 7,573 7,749
Bouygues 3,649 3,736 3,707 3,796

No entry of Free mobile
Fight Orange 11,356 10,960 11,540 11,130

SFR 8,864 9,112 8,603 8,841
Bouygues 4,640 4,790 4,738 4,890

Not Orange 11,767 11,354 11,959 11,529
SFR 9,226 9,488 8,957 9,206
Bouygues 4,259 4,392 4,344 4,477

Equilibrium profits for 2011Q4–2014Q4 in million euros (total across periods)
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Table A.11: Joint profit incentives for
fighting brand adoption: vertically inte-
grated pricing

Entry of Free Mobile

Network No Yes

Orange -173 -4
(23) (8)

SFR -343 -145
(40) (15)

Bouygues 163 170
(21) (26)

Total incumbents -354 21
(45) (20)

Free 0 -221
(0) (32)

The figures represent the profit changes (in
million euros) of the incumbents and Free Mo-
bile, when the incumbents jointly introduce
their low-cost brands. The calculations are
based on the payoffs from Table A.10 of the
online appendix.

Table A.12: Unilateral incentives to deviate from candidate equilibrium
profit lines: vertically integrated pricing

Entry of Free Mobile
No Yes

Network Equilibrium: no fighting brands Equilibrium: fighting brands

Orange 429 -362
(62) (55)

SFR 282 -231
(44) (37)

Bouygues 413 -317
(60) (50)

The figures represent the incumbents’ profit changes (in million euros), resulting
from unilateral deviations from the observed candidate Nash equilibrium: “no
fighting brands” without the entry by Free Mobile, “introduce fighting brands”
in the presence of entry. The calculations are based on the payoffs from Table
A.10 of the online appendix.
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Table A.13: Bounds on fixed costs supporting fighting brands in response to entry:
vertically integrated pricing

Operator fN

j
(collusion) f̄N

j (punishment) ¯̄fj (breakdown) f̄N
j − fN

j

¯̄fj − fN

j

(O)range -173 397 297 570 470
(23) (59) (47) (79) (68)

(S)FR -343 260 181 603 523
(40) (41) (31) (81) (71)

(B)ouygues 163 380 185 218 22
(21) (58) (38) (37) (18)

Lower and upper bounds on fixed costs for which collusion in restricting product lines is sustain-
able before entry (fN

j
and f̄N

j ) and upper bound for which collusion becomes more difficult to

sustain after entry (i.e., ¯̄fj) in million euros.

Table A.14: Sources of consumer and welfare
impact from entry: vertically integrated pric-
ing

Source Consumer Producer Total

Free’s entry 3,072 -1,612 1,460
(677) (373) (305)

Variety 2,266 -875 1,391
(445) (164) (284)

Price 805 -737 69
(235) (215) (24)

Fight brands 1,400 -200 1,200
(240) (25) (222)

Total 4,472 -1,812 2,660
(916) (392) (526)

Impact of entry on consumers and welfare broken
down by different sources (in million euros).
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Appendix F Model extensions

Table A.15: Comparison of alternative demand specifications

Estimate RC logit I RC logit II Normal RC M*1.5 No Allowance Full sample

Random coefficients
Price/yit (–α) -3.333 -3.914 -1.524 -2.414 -3.776 -3.313

(0.345) (0.630) (0.235) (1.789) (0.622) (0.583)
Log 4G/yit -2.728 -3.495 -7.129 -3.294 -4.301

(0.577) (1.624) (2.837) (1.477) (0.628)
Forfait bloqué/yit 36.421 37.670 75.336 35.803 30.720

(3.928) (5.549) (21.520) (4.726) (3.124)
Prepaid/yit -6.415 45.163 -6.654 -14.834

(4.996) (31.978) (7.396) (4.156)
Intercept/yit 27.628 -15.405 23.788 -3.976

(14.998) (44.724) (30.833) (11.569)
Log 4G*νit 1.171

(0.178)
Forfait bloqué*νit 1.416

(0.924)
Prepaid*νit 2.740

(0.864)
Intercept*νit 0.047

(2.866)

Log(2G antenna) 0.987 0.781 1.106 1.118 1.045 1.523
(0.295) (0.315) (0.229) (0.281) (0.296) (0.294)

Log(2G roaming) 0.958 0.743 1.097 1.092 0.985 1.570
(0.444) (0.484) (0.310) (0.414) (0.491) (0.426)

Log(3G antenna) 0.508 0.618 0.431 0.490 0.404 0.220
(0.182) (0.188) (0.190) (0.199) (0.171) (0.200)

Log(3G roaming) 0.209 0.341 0.175 0.233 0.213 -0.014
(0.370) (0.408) (0.266) (0.359) (0.408) (0.340)

Log(4G antenna) 0.245 0.345 -0.004 0.442 0.359 0.349
(0.106) (0.178) (0.061) (0.249) (0.191) (0.107)

Log(4G roaming) 0.140 0.301 -0.007 0.540 0.242 0.227
(0.124) (0.221) (0.071) (0.303) (0.253) (0.116)

Postpaid 10.623 10.653 12.453 8.413 11.321 10.370
(2.524) (2.646) (3.357) (2.488) (2.629) (2.324)

Forfait bloqué -1.155 -0.699 3.617 -0.333 -0.625 -0.460
(2.853) (3.002) (2.168) (2.537) (2.912) (2.464)

Call allow.(1,000 min) 0.580 0.615 0.458 0.419
(0.099) (0.104) (0.149) (0.175)

Data allow.(1,000 MB) 0.105 0.012 0.315 0.135
(0.112) (0.131) (0.129) (0.154)

Orange -1.387 -0.881 -0.211 -1.388 -0.792 -1.227
(1.731) (1.630) (1.414) (1.144) (1.641) (1.576)

SFR -1.231 -1.221 -0.420 -1.176 -1.046 -1.008
(2.311) (2.286) (1.568) (1.451) (2.228) (1.956)

Bouygues -2.012 -1.838 -0.591 -2.331 -1.885 -1.575
(2.223) (2.217) (1.858) (1.601) (2.226) (2.037)

Free 29.541 31.092 44.738 38.922 30.806 14.890
(19.567) (18.769) (17.908) (15.611) (22.558) (20.212)

Sosh 30.264 32.401 44.606 39.742 32.316 16.099
(19.655) (18.699) (17.848) (15.418) (22.428) (20.131)

B&You 28.826 30.958 46.121 39.273 31.212 16.356
(19.512) (18.682) (17.844) (15.444) (22.669) (20.117)

Red 25.115 27.135 43.370 35.280 26.889 11.507
(19.602) (18.818) (18.076) (15.601) (22.894) (20.252)

(Table continues in the next page.)
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Table A.15: Comparison of alternative demand specifications

Estimate RC logit I RC logit II Normal RC M*1.5 No Allowance Full sample

MVNO:Orange 0.705 0.839 0.467 0.542 0.543 -0.076
(0.181) (0.272) (0.119) (0.315) (0.405) (0.159)

MVNO:SFR 0.912 0.940 1.098 0.859 0.801 0.457
(0.141) (0.159) (0.091) (0.164) (0.205) (0.110)

Postpaid: age≤20 23.601 6.007 -7.517 -20.311 8.698 14.204
(7.390) (17.141) (6.252) (4.840) (40.728) (8.133)

Postpaid: 21≤age<30 9.507 2.677 0.148 1.149 3.369 7.868
(3.571) (9.314) (2.785) (2.830) (21.528) (3.512)

Postpaid: 30≤age<45 20.609 12.018 5.889 4.565 13.274 18.235
(3.201) (9.278) (2.325) (1.883) (22.213) (3.031)

Postpaid: 45≤age<60 47.772 24.053 6.693 3.106 26.982 40.760
(7.039) (24.991) (4.831) (4.018) (59.799) (6.447)

Prepaid: age≤20 29.854 10.198 -3.768 -18.067 11.553 18.086
(7.955) (17.526) (5.484) (5.041) (42.362) (7.591)

Prepaid: 21≤age<30 18.915 12.740 11.261 8.538 14.026 17.681
(4.006) (9.198) (3.225) (2.908) (21.178) (3.255)

Prepaid: 30≤age<45 27.650 18.985 14.378 8.977 20.361 25.607
(3.616) (9.022) (2.567) (2.149) (22.036) (3.002)

Prepaid: 45≤age<60 56.639 32.582 19.238 5.813 36.336 50.192
(7.722) (24.934) (4.659) (3.770) (60.053) (6.424)

F. bloqué: age≤20 36.716 17.820 0.824 -10.384 19.113 25.035
(8.462) (16.694) (5.431) (5.782) (39.576) (8.567)

F. bloqué: 21≤age<30 19.415 12.299 8.075 7.614 13.727 16.638
(4.755) (9.714) (3.240) (3.291) (21.961) (3.942)

F. bloqué: 30≤age<45 28.346 19.060 14.184 8.814 20.528 25.072
(3.668) (8.747) (2.570) (2.368) (21.194) (3.346)

F. bloqué: 45≤age<60 55.991 30.950 15.074 2.347 34.766 47.663
(8.295) (24.982) (4.807) (5.525) (59.739) (7.004)

Low cost: age≤20 -2.629 -24.165 -45.144 -57.744 -21.669 5.097
(18.767) (27.418) (17.269) (13.403) (57.874) (19.741)

Low cost: 21≤age<30 -10.899 -17.746 -30.572 -24.230 -16.145 -2.865
(12.835) (16.480) (11.919) (9.954) (30.374) (12.688)

Low cost: 30≤age<45 6.620 -2.636 -14.556 -13.111 -0.961 12.489
(10.180) (14.548) (9.196) (7.566) (29.383) (10.360)

Low cost: 45≤age<60 34.540 11.688 -9.596 -10.556 15.133 31.097
(8.718) (25.620) (6.919) (5.301) (60.400) (7.784)

Orange*age 1.122 1.098 0.622 1.045 1.033 0.949
(0.433) (0.426) (0.342) (0.380) (0.417) (0.401)

SFR*age 0.858 0.924 0.582 0.810 0.869 0.749
(0.589) (0.593) (0.392) (0.398) (0.577) (0.502)

Bouygues*age 1.052 1.098 0.546 1.083 1.078 0.862
(0.568) (0.579) (0.469) (0.487) (0.578) (0.525)

Free*age -3.793 -4.154 -5.915 -5.032 -4.074 -1.983
(2.898) (2.787) (2.698) (2.266) (3.337) (2.971)

Sosh*age -4.275 -4.701 -6.213 -5.622 -4.679 -2.537
(2.935) (2.794) (2.671) (2.252) (3.361) (2.968)

B&You*age -4.008 -4.446 -6.666 -5.545 -4.347 -2.511
(2.884) (2.774) (2.690) (2.241) (3.408) (2.957)

Red*age -2.953 -3.373 -5.830 -4.432 -3.295 -1.331
(2.910) (2.808) (2.729) (2.289) (3.456) (2.987)

1/Time since entry -2.522 -2.352 -2.843 -2.615 -2.489 -2.289
(0.220) (0.246) (0.250) (0.315) (0.286) (0.284)

Observations 3,324 3,324 3,324 3,324 3,324 3,324
J statistic 0.00 0.00 0.00 0.00 0.02 0.00
Clustered standard errors in parentheses. yit & ȳt are individual & mean incomes in AC100s.
Random draw νit in Column Normal RC is independently simulated from a normal distribution.

(Table continues in the next page.)
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Table A.15: Comparison of alternative demand specifications

Estimate RC logit I RC logit II Normal RC M*1.5 No Allowance Full sample

Column M*1.5 is estimated under market size increased by 50%.
Tariff types are interacted with the proportion of each age group in the local population.
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Appendix G Alternative instrumental variables approaches

In the main text, we estimated the demand models with optimal instruments based on our continuous

updating GMM estimator to avoid reliance on the parameter estimates from an inefficient first stage. This

appendix provides a further motivation for this approach in our application, by reporting several results

from the use of non-optimal instruments. Online Appendix G.1 discusses the BLP instruments (which we

also use for price in our optimal instruments approach). Next, Online Appendix G.2 discusses tests of weak

instruments under various non-optimal instruments (BLP IVs and differentiation IVs). Finally, Online Appendix

G.3 discusses the estimates under various non-optimal instruments and provides a conclusion.

G.1 BLP instruments

Our price instruments rely on the BLP formulation of instrument basis functions. For a complete characteriza-

tion, we use r to denote a geographic region, j a product, and fr(j) the set of products supplied in region r by

the firm operating product j. The set fr(j) may differ across regions when the firm operates only in certain

regional markets; for example, we can have k /∈ fr(k) if network product k is not offered by its supplier in

region r, and k ∈ fr(k) otherwise. We omit time index t to simplify the notation.

We formulate the price instruments by aggregating the exogenous characteristics xkr over all regions as∑
r

∑
k/∈fr(j)

xkr and
∑
r

∑
k ̸=j,k∈fr(j)

xkr, (3)

where the first and second terms sum over the products of own and rival firms, respectively. The price

instruments thus vary along the product and quarter dimensions but remain fixed across regions. The

characteristics vector xkr contains the number of available products and antennas of different technology

generations, specified as[
1{k ∈ fr(k)}, A2G

kr , A
3G
kr , A

4G
kr

]
, (4)

and Ag
kr denotes the antenna of each generation g.

G.2 Test of weak instruments: BLP and differentiation IVs

Identification of the BLP demand system relies on instruments for the inverse market share function (Berry

and Haile, 2014). Berry and Haile show that the BLP instruments are sufficient for identifying the parametric

demand system in principle. Nevertheless, it is an empirical question whether these instruments provide a

sufficient independent source of identification when the model involves multiple random coefficients.

Gandhi and Houde (2016) formalize the weak identification problem in the residual function from the

inverted demand

ξjt(st, xt, pt, θ) =

K∑
k=1

(θk − θk0 )
∂ξjt(st, xt, pt, θ0)

∂θk
+ ξjt +O(∥θ∥2)

= Jjt(st, xt, pt, θ0)b++ξjt +O(∥θ∥2),

(5)
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where θ0 is the true parameter vector characterizing the random coefficients distribution, Jjt(st, xt, pt, θ0) is a

Jacobian vector of partial derivative ∂ξjt(st, xt, pt, θ0)/∂θ
k as kth element, and b is the coefficient vector with

kth element bk = θk − θk0 . While our approach explicitly formulates Chamberlain’s (1987) optimal instrument

based on the Jacobian, Gandhi and Houde (2019) instead develop a reduced-form approach to approximate

the optimal instrument function.

They propose differentiation IVs as alternative instrument basis functions constructed by the difference

in exogenous characteristics to approximate the optimal instrument functions more efficiently than the BLP

IVs. Full-scale approximation tends to be infeasible due to high dimensionality since the optimal instruments

depend on the characteristics space where its dimension exponentially grows with the number of products

and their attributes. Gandhi and Houde’s important observation is that the BLP demand system would be

symmetric in the difference of characteristics, if the distribution of the unobserved demand shocks (ξ1t, ..., ξJt)

is assumed to be exchangeable. Gandhi and Houde (2019) demonstrate that their reduced-form approximation

provides a sparse representation of the optimal instruments and can therefore substantially improve the

estimation efficiency in Monte Carlo analysis. Hence, the differentiation IVs offer a useful benchmark to assess

the commonly used BLP instruments that have often been found to lack sufficient identifying power (Reynaert

and Verboven, 2014; Gandhi and Houde, 2019).

Since the partial derivatives in Equation (5) constitute multiple endogenous variables, Gandhi and Houde

perform the Cragg-Donald test to measure the overall strength of the instruments based on a standard rank

condition for the correlation matrix between approximate and optimal instruments. In addition, Gandhi and

Houde (2016) apply the Sanderson-Windmeijer conditional F test, which generalizes the first-stage F test for

each reduced form by conditioning out the exogenous variations induced by the other endogenous partial

derivatives (Sanderson and Windmeijer, 2016). Thus, the test can help diagnosing the source of possible

weakness in instruments for identifying each individual parameter.

We consider two formulations of the differentiation IVs: quadratic and local (Gandhi and Houde, 2019).

The quadratic differentiation IV is defined as the quadratic difference of exogenous characteristics between

each product j and the rest, i.e. as∑
k ̸=j

(xjr − xkr)
2,

where the vector xjr includes the three antenna variables, tariff type fixed effects, elapsed time since entry,

and the expected price of product j at region r (as discussed further below). On the other hand, the

local differentiation IV focuses on products within its neighborhood in the product space for measuring the

difference. Specifically, it defines the IV as∑
k ̸=j

(xjr − xkr)1{|xjr − xkr| < sd(xr)},

where the standard deviation sd(xr) of xr regulates the scope of the neighborhood, which is allowed to be

heterogeneous across regions. Therefore, both differentiation IVs can effectively instrument for the Jacobian

Jjt(st, xt, pt, θ0), which varies across geographic markets. For the expected price in the differentiation IVs, we

use the predicted price conditional on the same price instruments as used for the optimal IV in Table 4.

Table A.16 summarizes the tests of the BLP and differentiation (diff) IVs conducted in the two models
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Table A.16: Test of weak instruments

RC logit I RC logit II

BLP Diff IV quad Diff IV local BLP Diff IV quad Diff IV local

Conv. ratio 1.00 1.00 1.00 1.00 1.00 0.45

Cond. 1st-stage F -test for random coefficients:
Price 16.63 8.05 2.45 3.75 7.79 1.52

(0.00) (0.00) (0.02) (0.00) (0.00) (0.19)
4G antenna 8.33 20.59 3.18 2.49 37.74 1.16

(0.00) (0.00) (0.00) (0.01) (0.00) (0.33)
F. bloqué 4.47 10.37 2.27 6.90 10.67 1.76

(0.00) (0.00) (0.03) (0.00) (0.00) (0.13)
Prepaid 2.34 28.75 2.34

(0.01) (0.00) (0.05)
Intercept 2.97 19.53 3.09

(0.00) (0.00) (0.01)
Cragg-Donald statistic 15.68 8.03 1.83 1.55 6.85 0.75
Kleibergen-Paap statistic 3.16 7.46 1.74 1.34 4.62 0.60
Stock-Yogo size CV (10%) 10.25 9.64 9.37 NA NA NA
Nb. endogenous variables 3 3 3 5 5 5
Nb. excluded IVs 14 10 9 14 10 9

Conditional 1st-stage F -test is based on Sanderson and Windmeijer (2016) with robust standard error (p
values in parenthesis). Stock-Yogo CV is the critical values for Cragg-Donald statistic given 10% maximal
relative bias of IV (relative to OLS) under the i.i.d. error. The null hypothesis of weak instruments is rejected
if the Cragg-Donald statistic is above Stock-Yogo CV.

of Table 4 — RC logit I and RC logit II. Each column represents the corresponding model and IV, where the

conditional first-stage F statistic and its p-value are displayed for each element of the Jacobian Jjt(st, xt, pt, θ̂)

at the parameter estimate θ̂. In both RC logit I and II, the Sanderson-Windmeijer tests are highly significant

for BLP and quadratic diff IVs in all three (common) parameters. The same test also shows that the local diff

IV has overall sufficient identification power, although its significance declines in RC logit II to some extent.

We also run the rank-based tests for further evidence of strong IVs. In addition to the Cragg-Donald

statistic, Table A.17 also includes the Kleibergen-Paap statistic, which is a heteroscedasticity-robust version of

the Cragg-Donald statistic that relies on the i.i.d. error assumption. If the errors are assumed to be i.i.d., a

Cragg-Donald statistic above the Stock-Yogo critical value would indicate significant evidence for rejecting the

null hypothesis of weak instruments when the relative expected bias of the IV estimator is about 10% of the

OLS estimation bias.

In the RC logit I model, the BLP IV appears sufficiently strong under the Cragg-Donald test. However, the

Kleibergen-Paap statistic is well below the Stock-Yogo critical value, failing to reject the null hypothesis of

weak instruments. The large gap between the two statistics implies that the weak IV test may be sensitive to

the underlying assumption on the error structure. We consider the Cragg-Donald statistic as an upper bound

for significance since it tends to overestimate the strength of IVs under non i.i.d. error structure (Bun and

Haan, 2010). The differentiation IVs narrow the gap between the two ranks tests considerably. Nonetheless,

their robust tests still fail to reject the weakness of the IVs.

The rank tests in the RC logit II model generally show further challenges for the IVs. While the Stock-Yogo

critical values are no longer available for the degrees of freedom in our tests, all the rank statistics are
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substantially below 10, an informal threshold suggested as a rule of thumb for significance of the first-stage F

test by Staiger and Stock (1997). Moreover, the Kleibergen-Paap statistics are consistently low, even for the

quadratic differentiation IV that has the most promising test results overall.

In summary, the overall tests do not provide robust evidence for the strength of the BLP and differentiation

IVs. The lack of agreement among different tests appears to stem at least partly from their reliance on the

assumption of the underlying error structure. Both the Cragg-Donald and Kleibergen-Paap tests require

independently distributed unobserved demand shocks, a rather strong assumption that our model tries to

avoid. In our model where the errors are allowed to be serially correlated, even the robust rank statistics do

not provide an unbiased measure of the instrument’s strength (Bun and Haan, 2010).

Although Sanderson and Windmeijer (2016) aim to overcome such limitation, their test would be valid

only when the parameter estimates are unbiased. With weak instruments, however, there still remains a

nontrivial concern for the reliability of the test performed on the potentially biased estimate of Equation (5)

(Gandhi and Houde, 2019). Hence, we need to carefully examine the estimation results together with the

tests, which is addressed in the next section.

As a final caveat, we acknowledge that there is a scope for improvement over our implementation of

the differentiation IV approach. However, exploring more robust differentiation IV is an ongoing research

question in the literature and is beyond the scope of our focus in this paper.

G.3 GMM estimation with BLP and differentiation IVs

Table A.17 presents the GMM estimation results for the BLP and differentiation IVs in the same order as Table

A.16. Each column is estimated with the two-step procedure for the efficient GMM estimator.

For the two demand models, the random coefficient for price (α) is relatively comparable across the three

IV sets, both in terms of the point estimates and their significance. Yet the absolute size of the estimates is

well below what is obtained with the optimal instruments. It is not uncommon that the distribution of the

price random coefficient tends to be biased toward zero when the reduced-form instruments are relatively

weak (Reynaert and Verboven, 2014; Gandhi and Houde, 2019). While this may at first seem like a case

of weak price instruments, it is worth emphasizing that the optimal IV uses the same BLP instruments for

price without incurring such decrease. Hence, the weak instrument issue appears to relate more to the

reduced-form approximation approach based on the non-optimal instruments.

For the RC logit I, the random coefficient estimate of Forfait bloqué lacks consistency among the three IVs

with relatively large standard errors. The BLP and quadratic diff IVs produce a lower estimate than the local

diff IV, which obtains an estimate relatively close to the optimal IV (Table A.1). The estimate for the Log 4G

random coefficient also shows sizable variation across the IVs, albeit to a lesser extent. The estimation of the

RC logit II model shows a similar pattern only to an amplified degree. The random coefficients (now also

including one for Prepaid and the intercept) exhibit similarly large variation across instruments with inflated

standard errors.

We can summarize these findings as follows. First, the weak IV tests in Section G.2 provide only partial

support for the non-optimal instruments in our application. The mixed test results appear to be reflected in

the relatively imprecise yet sensitive estimation results, especially in the richer RC logit II model. This raises

an overall concern for weak identification with the non-optimal instruments. This motivates our optimal
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instrument approach that does not rely on the first-stage non-optimal IVs: this is not only efficient but also

can be more robust to the reduced-form approximation errors and non-symmetric demand structures.

Model RC logit I RC logit II

BLP IV Diff IV quad Diff IV local BLP IV Diff IV quad Diff IV local

Random coefficients
Price/yit (–α) -1.311 -2.190 -1.614 -1.225 -2.122 -1.552

(0.272) (0.526) (0.534) (0.296) (1.270) (0.436)
Log 4G/yit -3.945 -5.722 -2.770 -4.059 -4.665 7.892

(0.645) (1.310) (2.878) (0.971) (1.705) (6.350)
Forfait bloqué/yit 10.220 2.020 42.430 -1.051 -1.266 56.391

(5.950) (33.711) (19.056) (55.943) (85.024) (23.231)
Prepaid/yit 12.416 2.225 49.265

(8.143) (4.475) (17.352)
Intercept/yit 4.803 7.940 -24.257

(5.824) (10.101) (15.226)

Log 2G 1.220 0.920 1.148 1.340 0.909 1.649
(0.198) (0.272) (0.301) (0.227) (0.291) (0.352)

Log 2G roam 1.208 0.792 1.145 1.336 0.814 1.531
(0.272) (0.376) (0.369) (0.329) (0.386) (0.450)

Log 3G 0.387 0.493 0.454 0.497 0.519 0.050
(0.137) (0.193) (0.203) (0.175) (0.214) (0.272)

Log 3G roam 0.156 0.432 0.187 0.218 0.376 -0.233
(0.222) (0.318) (0.307) (0.244) (0.326) (0.374)

Log 4G 0.354 0.601 0.161 0.416 0.544 -1.045
(0.106) (0.188) (0.308) (0.093) (0.254) (0.556)

Log 4G roam 0.402 0.622 0.082 0.417 0.557 -1.230
(0.117) (0.198) (0.322) (0.116) (0.250) (0.640)

F. bloqué -8.201 -8.393 -14.956 -7.819 -8.122 -12.250
(1.832) (2.545) (5.110) (2.689) (3.931) (4.536)

Prepaid -7.581 -9.039 -5.818 -9.197 -8.547 -14.083
(1.660) (2.482) (1.755) (2.105) (3.161) (4.502)

Call allow.(1,000min) 0.343 0.270 0.437 0.364 0.280 0.730
(0.072) (0.093) (0.148) (0.085) (0.160) (0.181)

Data allow.(1,000MB) 0.058 0.031 0.164 0.261 0.092 0.666
(0.083) (0.115) (0.098) (0.147) (0.122) (0.224)

Orange 0.097 1.172 -1.849 0.047 0.557 -0.155
(1.081) (1.641) (1.543) (1.176) (1.586) (1.995)

SFR -1.110 -0.421 -1.638 -0.790 -0.699 -0.631
(1.317) (1.694) (2.150) (1.255) (1.588) (2.300)

Bouygues -1.122 -0.395 -2.755 -1.058 -0.600 -1.797
(1.688) (2.064) (2.146) (1.741) (2.022) (2.567)

Free 48.695 35.261 41.230 54.769 35.895 62.462
(14.088) (17.626) (15.838) (17.686) (17.527) (19.866)

Sosh 48.854 34.488 42.355 55.421 35.008 62.949
(14.175) (17.647) (16.012) (18.038) (17.495) (19.879)

B&You 47.956 34.895 40.466 54.407 34.973 60.088
(14.087) (17.671) (15.638) (17.771) (17.794) (19.593)

Red 47.139 32.667 36.117 52.911 32.585 55.808
(14.208) (17.821) (15.760) (18.070) (17.759) (19.722)

MVNO: Orange 0.261 0.623 -0.002 0.560 0.750 0.856
(0.109) (0.186) (0.155) (0.152) (0.375) (0.356)

MVNO: SFR 0.994 1.062 0.560 1.171 1.163 1.249
(0.085) (0.115) (0.221) (0.106) (0.131) (0.287)

Postpaid: age≤20 2.069 6.649 -13.722 -8.274 0.858 -11.948
(6.449) (11.109) (9.371) (9.172) (13.185) (7.202)

Postpaid: 21≤age<30 1.976 4.473 -3.152 -4.808 0.574 -4.532

(Table continues in the next page.)

Table A.17: Comparison of alternative IVs
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Model RC logit I RC logit II

BLP IV Diff IV quad Diff IV local BLP IV Diff IV quad Diff IV local

(2.907) (4.758) (3.246) (3.463) (6.840) (3.296)
Postpaid: 30≤age<45 9.504 12.090 4.072 5.156 9.154 6.122

(2.849) (5.057) (3.348) (3.129) (7.665) (5.872)
Postpaid: 45≤age<60 14.695 22.626 0.954 1.885 14.131 -2.789

(6.801) (12.767) (8.949) (7.884) (20.426) (11.660)
Prepaid: age≤20 3.426 9.660 -11.430 -3.229 3.788 3.394

(6.576) (12.404) (9.139) (8.323) (15.819) (7.640)
Prepaid: 21≤age<30 9.475 12.004 2.379 3.183 7.798 7.881

(2.864) (5.282) (3.159) (2.948) (8.522) (4.525)
Prepaid: 30≤age<45 15.138 18.579 7.953 11.188 14.769 13.627

(3.089) (6.077) (3.697) (3.756) (9.852) (5.942)
Prepaid: 45≤age<60 22.322 30.191 5.527 9.440 20.395 8.988

(7.034) (13.505) (9.374) (8.717) (22.827) (12.831)
F. bloqué: age≤20 9.115 10.367 9.951 -2.630 5.002 7.291

(7.005) (11.926) (7.044) (10.716) (14.816) (9.595)
F. bloqué: 21≤age<30 9.672 13.008 6.917 3.919 9.223 6.413

(3.331) (5.510) (4.126) (3.866) (8.673) (4.389)
F. bloqué: 30≤age<45 16.320 20.091 15.137 12.100 16.861 12.905

(2.926) (4.772) (3.336) (3.031) (6.939) (4.592)
F. bloqué: 45≤age<60 22.348 31.029 11.525 10.906 22.322 5.723

(6.948) (11.697) (8.081) (6.682) (17.971) (10.651)
Low cost: age≤20 -41.772 -24.246 -50.051 -58.343 -31.609 -65.326

(13.299) (19.534) (17.348) (19.788) (22.748) (18.902)
Low cost: 21≤age<30 -29.057 -17.983 -31.272 -39.267 -21.812 -43.801

(9.376) (12.466) (11.099) (13.439) (15.041) (13.500)
Low cost: 30≤age<45 -13.694 -4.776 -14.069 -20.504 -7.567 -21.734

(7.379) (10.293) (8.816) (9.923) (12.602) (11.340)
Low cost: 45≤age<60 -0.435 8.559 -13.910 -13.814 0.805 -19.622

(7.681) (13.929) (10.495) (10.238) (22.288) (13.286)
Orange*age 0.505 0.418 0.958 0.573 0.581 0.641

(0.270) (0.384) (0.398) (0.297) (0.377) (0.477)
SFR*age 0.732 0.723 0.734 0.733 0.803 0.625

(0.336) (0.416) (0.558) (0.321) (0.401) (0.563)
Bouygues*age 0.658 0.642 0.978 0.712 0.701 0.853

(0.430) (0.517) (0.551) (0.444) (0.511) (0.639)
Free*age -6.457 -4.537 -5.482 -7.385 -4.692 -8.762

(2.094) (2.616) (2.381) (2.611) (2.554) (3.000)
Sosh*age -6.899 -4.622 -6.137 -7.958 -4.775 -9.383

(2.119) (2.621) (2.431) (2.688) (2.571) (3.028)
B&You*age -6.670 -4.723 -5.714 -7.706 -4.775 -8.857

(2.102) (2.622) (2.331) (2.633) (2.621) (2.952)
Red*age -6.399 -4.108 -4.513 -7.216 -4.108 -7.557

(2.130) (2.679) (2.356) (2.686) (2.646) (2.957)
1/Time since entry -3.050 -2.648 -3.121 -2.888 -2.481 -2.816

(0.140) (0.229) (0.216) (0.159) (0.304) (0.303)

Observations 3,324 3,324 3,324 3,324 3,324 3,324
J statistic 88.64 22.55 15.99 72.57 15.74 6.02
p value 0.00 0.00 0.01 0.00 0.01 0.20
Clustered standard errors in parentheses.
yit & ȳt denote individual & mean incomes scaled by AC100.
Tariff types are interacted with the proportion of each age group in the local population.

Table A.17: Comparison of alternative IVs
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Appendix H Nonstationary payoffs within repeated game framework

Our analysis in Section IV.B used a simple collusion model with stationary payoffs aggregated over 2012–

2014. In this appendix, we perform two sensitivity analyses to assess the consequences of the nonstationary

transition period during which Free mobile and the fighting brands were still growing. First, we apply our

collusion model by using the payoffs of the second half of 2014, around which the market had become

mostly stabilized. Second, we extend our model to a simple nonstationary structure with two phases: a

transitory phase that lasts until the first half of 2014, followed by a steady-state phase during the second

half of 2014. This second approach thus explicitly accounts for the nonstationary transition process to test

whether strategic incentives may conflict between different stages. For example, if the equilibrium conditions

are systematically different between both stages, it may no longer be optimal to punish deviating firms after

the interim transition stage has passed.

Our first sensitivity analysis estimates the fixed cost bounds using the expressions of our stationary

collusion model derived in the text, but now based on the stationary payoffs in the second half of 2014. Table

A.18 shows that the overall results remain largely unchanged from our previous estimates of Table 8, with

nonempty and highly significant sets of fixed costs for all three operators.

Table A.18: Fixed cost bounds when stage game is played only in the stationary period

Operator fN

j
(collusion) f̄N

j (punishment) ¯̄fj (breakdown) f̄N
j − fN

j

¯̄fj − fN

j

(O)range -255 712 520 966 775
(18) (101) (77) (118) (94)

(S)FR -596 441 247 1038 843
(51) (67) (52) (117) (103)

(B)ouygues 193 606 283 413 90
(24) (87) (53) (63) (29)

The stationary period is assumed to be 2014Q3–2014Q4 (last 2 quarters). The estimates are
scaled to the same 3-year period as in our draft. Standard errors from a parametric bootstrap are
in parentheses.

Our second sensitivity analysis considers a nonstationary structure where the transitory stage game is

played once at the start, and then a stationary game continues repeatedly afterwards. We first denote the

per-period profits in the transitory stage 0 by Π0, and the per-period profits in the stationary stage 1 by Π1.

Given this notation, we can generalize the earlier sustainability condition for collusion (14) to

ΠC,e
0 +

δ

1− δ
ΠC,e

1 ≥ ΠD,e
0 − f +

δ

1− δ
(ΠN,e

1 − f),

where the firm index j is omitted for simplicity and e still denotes the entry status (i.e., e = E if entry occurs,

and e = N otherwise). The left hand side is the present value of collusion, which consists of a transitory

payoff ΠC,e
0 and a stationary profit stream ΠC,e

1 afterwards. The right hand side consists of the deviation

payoff in the transitory stage (ΠD,e
0 ), followed by the steady-state Nash equilibrium profit stream (ΠN,e

1 ), both

net of fixed costs, throughout the subsequent sequence.
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This new sustainability condition redefines the threshold discount factor (15) as

δe(f) ≡ ΠD,e
0 −ΠC,e

0 − f

ΠD,e
0 −ΠN,e

1 +ΠC,e
1 −ΠC,e

0

,

for e ∈ {E,N}. From this new threshold discount factor, it is straightforward to derive the lower bound of the

fixed costs for collusion to be sustainable without entry. This lower bound fN is obtained from the restriction

δN < 1, which implies that

fN = ΠN,N
1 −ΠC,N

1 . (6)

Furthermore, the upper bound f̄N follows from the necessary equilibrium condition for firms to have an

incentive to punish deviating firms by releasing fighting brands without entry. This requires that no firm can

gain from refusing to participate in the punishment after the stage-0 deviation:

ΠN,N
1 − f +

δ

1− δ
(ΠN,N

1 − f) > Π̂N
1 +

δ

1− δ
(ΠN,N

1 − f),

where Π̂N
1 is the profit under no entry from deviating from the punishment, i.e. not operating a fighting brand

while the others do. By reorganizing the terms, we obtain a similar upper bound f̄N as before:

f̄N = ΠN,N
1 − Π̂N

1 . (7)

Lastly, we consider the fixed cost bound for collusion to become more difficult to sustain after entry, i.e.

for δE > δN . We can write

δE − δN =
ΠD,E

0 −ΠC,E
0 − f

ΠD,E
0 −ΠN,E

1 +ΠC,E
1 −ΠC,E

0

− ΠD,N
0 −ΠC,N

0 − f

ΠD,N
0 −ΠN,N

1 +ΠC,N
1 −ΠC,N

0

=

[
1

A
− 1

B

]
f +∆(0) > 0,

where A ≡ ΠD,N
0 −ΠN,N

1 +ΠC,N
1 −ΠC,N

0 , B ≡ ΠD,E
0 −ΠN,E

1 +ΠC,E
1 −ΠC,E

0 , and

∆(0) ≡ ΠD,E
0 −ΠC,E

0

B
− ΠD,N

0 −ΠC,N
0

A
.

From the above inequality, we obtain the following condition for the second upper bound ¯̄f :

∆(0) > 0, 1/A− 1/B < 0, and f < ¯̄f = −
[
1

A
− 1

B

]−1

∆(0). (8)

Note that the lower bound fN (collusion) and the upper bound f̄N (punishment) depend only on the payoffs

in the stationary stage, whereas the upper bound ¯̄f (breakdown) depends on the payoffs in both the transitory

and stationary stage.

Table A.19 reports the estimated fixed cost bounds where the stationary period spans the last two quarters
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(2014Q3–2014Q4) of the sample.1 The fixed cost bounds tend to be larger than those in the stationary

framework (reported in Table 8 in the text). At the same time, the ranges between the upper and lower bounds

also become wider for all three operators with strong statistical significance. Therefore, the equilibrium

conditions of collusion and its breakdown continue to hold under the nonstationary game structure.

Table A.19: Fixed cost bounds when the last 2 quarters are assumed to be stationary

Operator fN

j
(collusion) f̄N

j (punishment) ¯̄fj (breakdown) f̄N
j − fN

j

¯̄fj − fN

j

(O)range -255 712 287 966 542
(18) (101) (43) (118) (60)

(S)FR -596 441 183 1,038 779
(51) (67) (30) (117) (81)

(B)ouygues 193 606 254 413 62
(24) (87) (42) (63) (19)

The nonstationary period is 2012Q1–2014Q2, and the stationary period is 2014Q3-2014Q4 (last
2 quarters). The estimates are scaled to the same 3-year period as in our draft. Standard errors
from a parametric bootstrap are in parentheses.

For further evidence of robustness, we extend the stationary period to cover the last four quarters (2014Q1–

2014Q4) and reduce the transitory period accordingly. The corresponding results are presented in Table A.20.

Once again, the overall findings still remain valid under this alternative definition of the stage length.

Table A.20: Fixed cost bounds when the last 4 quarters are assumed to be stationary

Operator fN

j
(collusion) f̄N

j (punishment) ¯̄fj (breakdown) f̄N
j − fN

j

¯̄fj − fN

j

(O)range -309 648 235 957 544
(25) (93) (35) (117) (59)

(S)FR -553 426 156 979 709
(49) (66) (25) (114) (74)

(B)ouygues 189 568 235 379 45
(24) (83) (37) (59) (14)

The nonstationary period is 2012Q1–2013Q4, and the stationary period is 2014Q1-2014Q4 (last
4 quarters). The estimates are scaled to the same 3-year period as in our draft. Standard errors
from a parametric bootstrap are in parentheses.

While it would be conceptually straightforward to further extend the model to multiple nonstationary

stages before entering the stationary stage game, such extension would involve higher-order polynomials

in the discount factor, rendering the bounds conditions too complex to derive analytically. Nonetheless, our

first-order extension approach appears to confirm the robustness of the main findings in the nonstationary

framework.

1We scale the payoffs up to the 3-year time period, similar to the previous bound estimates of Table 8.
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Appendix I First stage price regression

Table A.21: First stage regression of price: pjt/ȳt

Variable Estimate Std. error

Log(2G antenna) -2.569 (0.685)
Log(2G roaming) -2.727 (0.972)
Log(3G antenna) 0.988 (0.550)
Log(3G roaming) 0.976 (0.834)
log(4G antenna) -0.081 (0.223)
Log(4G roaming) 0.762 (0.216)
Forfait bloqué -10.477 (6.304)
Prepaid -25.845 (6.342)
Call allow. (1,000 min) 2.508 (0.265)
Data allow. (1,000 MB) -2.695 (0.304)
Orange -27.614 (6.520)
SFR -25.368 (5.880)
Bouygues -18.133 (5.945)
Free -26.298 (65.686)
Sosh -40.156 (65.775)
B&You -38.045 (65.749)
Red -39.402 (65.682)
MVNO:Orange -1.262 (0.430)
MVNO:SFR -2.969 (0.428)
Postpaid: age≤20 12.067 (16.171)
Postpaid: 21≤age<30 -5.716 (8.795)
Postpaid: 30≤age<45 -6.559 (6.353)
Postpaid: 45≤age<60 -5.227 (12.961)
Prepaid: age≤20 11.748 (16.222)
Prepaid: 21≤age<30 2.908 (8.810)
Prepaid: 30≤age<45 3.421 (6.860)
Prepaid: 45≤age<60 3.118 (13.057)
F. bloqué: age≤20 11.634 (16.256)
F. bloqué: 21≤age<30 -2.667 (8.825)
F. bloqué: 30≤age<45 -5.241 (6.678)
F. bloqué: 45≤age<60 -5.218 (13.052)
Low cost: age≤20 18.848 (56.062)
Low cost: 21≤age<30 6.320 (42.460)
Low cost: 30≤age<45 -1.807 (32.277)
Low cost: 45≤age<60 -0.529 (21.169)
Orange*age -1.252 (1.317)
SFR*age -0.065 (1.328)
Bouygues*age -1.234 (1.342)
Free*age 1.409 (9.730)
Sosh*age 1.437 (9.741)
B&You*age 1.509 (9.750)
Red*age 1.259 (9.735)
1/Time since entry 4.403 (0.686)∑

r

∑
k/∈fr(j) 2G antenna -0.018 (0.016)∑

r

∑
k/∈fr(j) 3G antenna -0.123 (0.017)∑

r

∑
k/∈fr(j) 4G antenna 0.013 (0.009)∑

r

∑
k/∈fr(j) 1{k ∈ fr(k)} 1.080 (0.074)∑

r

∑
k ̸=j,k∈fr(j) 2G antenna 0.058 (0.024)∑

r

∑
k ̸=j,k∈fr(j) 3G antenna -0.190 (0.025)∑

r

∑
k ̸=j,k∈fr(j) 4G antenna 0.037 (0.012)∑

r

∑
k ̸=j,k∈fr(j) 1{k ∈ fr(k)} 1.361 (0.078)

Constant -9.215 (20.185)

(Table continues in the next page.)
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Table A.21: First stage regression of price: pjt/ȳt

Variable Estimate Std. error

Observations 3,324
R2 0.886
F 354.628
F (excluded instruments) 47.490

Standard errors in parentheses.
Fixed effects are included for regions and quarters.
yit & ȳt denote individual & mean incomes scaled by AC100.
Tariff types are interacted with the proportion of each age group.
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