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We have condensed the details of the proofs to conserve space. Readers can also consult the uncondensed

proofs in our working paper, Bernheim et al., 2019.

Proof of Proposition 1

Throughout the following, we define the optimal action correspondence z∗(α) as follows: z∗(α) = 1 for α > ᾱ,

z∗(α) = 2 for α < ᾱ, and z∗(α) ∈ {1, 2} for α = ᾱ. Furthermore, let z be any selection from z∗.

We begin with a lemma.

Lemma 1. Consider the following problem. For fixed α, solve

max
α′∈[0,1]

(1− λ)U(α′, z(α′)) + λU(α, z(α′))

For α < α∗, the solution is α′ = 0. For α > α∗, the solution is α′ = 1. For α = α∗, the solution is α′ ∈ {0, 1}.

Proof: First we claim that the optimum is either α′ = 0 or α′ = 1. It is easily checked that if z(α′) = 1 and

α′ < 1 (resp. z(α′) = 2 and α′ > 0), then one can strictly increase the objective function by switching α′ to 1 (resp.

to 0). The switch increases the first term and leaves the second unchanged.

One can then easily show that the expression ((1− λ)U(0, 2) + λU(α, 2)) − ((1− λ)U(1, 1) + λU(α, 1)) is

strictly positive iff α < α∗, strictly negative iff α > α∗, and equal to 0 iff α = α∗. �

Now we prove the proposition.

Step 1: Verify that we can construct an MPE with the indicated properties.

Assuming the proposed strategies (ϕ, z) govern future actions, choosing αt+1 = 0 produces the sequence

of worldview-action pairs σ0 = ((αt, z(αt)), (0, 2), (0, 2), ...), while choosing αt+1 = 1 produces the sequence σ1 =

((αt, z(αt)), (1, 1), (1, 1), ...). Any other choice yields a sequence of the form σ2 = ((αt, z(αt)), (αt+1, z(αt+1)), ...).

It follows from Lemma 1 that the best available outcome is σ0 if αt < α∗, σ1 if αt > α∗, and both σ0 and σ1 if

αt = α∗.

Step 2: In all stationary MPE, ϕ(α) = 0 for α < α∗, ϕ(α) ∈ {0, 1} for α = α∗, and ϕ(α) = 1 for α > α∗. We

prove this step through a series of claims.

Claim (i): ϕ(0) = 0. Imagine that ϕ(0) ̸= 0. Suppose αt = 0 and consider a defection to αt+1 = 0. Using

the fact that U(0, 2) > (1−λ)U(α′, z(α′))+λU(0, z(α′)) for all α′ ̸= 0 (an implication of Lemma 1), one can easily

show such a defection is attractive because it delays the outcome trajectory from choosing ϕ(0) by one period while

maximizing the payoff from the period t+ 1 outcome according to the period t assessment.

Claim (ii): ϕ(α) = 0 for α < α∗, and ϕ(α) ∈ {0, 1} for α = α∗. Suppose αt ≤ α∗. From claim (i), choosing

αt+1 = 0 produces the sequence of worldview-action pairs σ0 = ((αt, z(αt)), (0, 2), (0, 2), ...), while any other choice
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yields a distinct sequence of the form ((αt, z(αt)), (αt+1, z(αt+1)), ...). It follows immediately from Lemma 1 that

αt+1 = 0 yields a strictly better outcome from the period-t perspective than all αt+1 ∈ (0, 1), as well as a strictly

better outcome than αt+1 = 1 as long as αt < α∗.

Claim (iii): If α∗ < 1, then ϕ(1) = 1. Imagine that ϕ(1) ̸= 1. Suppose αt = 1 and consider a defection to

αt+1 = 1. Using the fact that U(1, 1) > (1− λ)U(α′, z(α′)) + λU(1, z(α′)) for all α′ ̸= 1 (an implication of Lemma

1), one can easily show such a defection is attractive because it delays the outcome trajectory from choosing ϕ(1)

by one period while maximizing the payoff from the period t+ 1 outcome according to the period t assessment.

Claim (iv): ϕ(α) = 1 for α > α∗. Suppose αt > α∗. From claim (iii), choosing αt+1 = 1 produces the sequence

of worldview-action pairs σ1 = ((αt, z(αt)), (1, 1), (1, 1), ...), while any other choice yields a distinct sequence of the

form ((αt, z(αt)), (αt+1, z(αt+1)), ...). It follows immediately from Lemma 1 that αt+1 = 1 yields a strictly better

outcome from the period-t perspective than all αt+1 < 1. �

Proof of Proposition 2

Define uM (x) = maxj∈J uj(x). That is, uM (x) is the maximum utility achievable for action x under any worldview.

Let worldview i satisfy ui(z∗(α(i))) > uj(z
∗(α(i))) for all j ̸= i. Since z∗(α(i)) is unique, there exists λi < 1 such

that, for all λ > λi, ui(z∗(α(i))) > (1−λ)uM (x̂)+λui(x̂) for all actions x̂ ̸= z∗(α(i)) (and equality for x̂ = z∗(α(i))).

Imagine there is a stationary MPE in which ϕ(α(i)) ̸= α(i) when λ > λi. Suppose α0 = α(i). The MPE must

then yield a sequence of worldview-action pairs of the form σi =
(
(α(i), z∗(α(i))), (α1, z(α1)), . . .

)
, where α1 ̸= α(i)

and z is some selection from the correspondence z∗. A one-period defection from α1 to α(i) changes period-0 utility

by:

∆ = δui(z
∗(α(i)))− (1− δ)

∞∑
k=1

δk
[
(1− λ)U(αk, z(αk)) + λui(z(αk))

]
≥ δui(z

∗(α(i)))− (1− δ)

∞∑
k=1

δk
[
(1− λ)uM (z(αk)) + λui(z(αk))

]
≥ δui(z

∗(α(i)))− (1− δ)

∞∑
k=1

δkui(z
∗(α(i))) = 0

where the first inequality follows by definition of uM , and the second inequality follows from λ > λi. We claim that

one of these two inequalities must be strict. If z(α1) = z∗(α(i)), then U(α1, z(α1)) < U(α(i), z(α1)) = uM (z(α1)),

which means the first inequality is strict. For z(α1) ̸= z∗(α(i)), λ > λi implies ui(z∗(α(i))) > (1− λ)uM (z(α1)) +

λui(z(α1)), which means the second inequality is strict. Therefore, in any stationary MPE, worldview i must map

back to itself. �
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Proof of Proposition 3

It is useful to define the following sequence:
{
α(τ)

}∞
τ=0

where α(0) = 0, α(1) = ᾱ, α(2) = α(1)+ 1−λ
λ ( u2(2)−U(α(1),1)

(u2(2)−u1(2))−(u2(1)−u1(1))
)

and recursively (for τ > 2), α(τ) = α(τ−1) + Φ
δτ−2

[
α(τ−1) − α(τ−2)

]
where Φ = 1−λ

λ
[u2(1)−u1(1)]

[u2(2)−u1(2)]−[u2(1)−u1(1)]
> 0.

It is straightforward to show that, ∀ (δ, λ) ∈ (0, 1)
2
,
{
α(τ)

}∞
τ=0

is a strictly increasing sequence, and that there exists

τ̄ > 1 such that α(τ̄) < 1 and α(τ̄+1) > 1. We prove Proposition 3 through a series of lemmas.

Lemma 2. ∀ (δ, λ) ∈ (0, 1)
2 , the following Markov policy function is an MPE:

(ϕ (α) , z(α)) =



(α(0), 2) if α ∈
[
α(0), α(1)

)
(α(0), 1) if α ∈

[
α(1), α(2)

)
(α(1), 1) if α ∈

[
α(2), α(3)

)
...

...

(α(τ̄−2), 1) if α ∈
[
α(τ̄−1), α(τ̄)

)
(α(τ̄−1), 1) if α ∈

[
α(τ̄), 1

]
Proof:

Step 1: By construction, z(α) is optimal for each α. (Trivial.)

Step 2: Assuming future behavior is governed by ϕ, then for every worldview α, the individual strictly prefers

α(τ) to any α ∈ (α(τ), α(τ+1)) ≡ I(τ) for all τ ∈ {0, ..., τ̄ − 1}, and α(τ̄) to any α ∈ (α(τ), 1] ≡ Iτ .

Consider any τ . By construction, the continuation sequence of mixed worldviews and actions is identical for

all α ∈ {α(τ)} ∪ I(τ). Because worldview 2 happiness-dominates worldview 1, the current payoff is monotonically

decreasing in α within this interval. The claim follows directly.

Step 3: Assuming future behavior is governed by ϕ, then with mixed worldview α(τ), τ ∈ {2, ..., τ̄}, the

individual is indifferent between choosing α(τ−1) and α(τ−2).

Consider an agent with initial worldview α. Equating the continuation payoffs after choosing α(τ−1) and

α(τ−2) and solving for α yields

α = α(1) + 1−λ
λ

[[
U(0,2)−U(α(1),1)

[u2(2)−u1(2)]−[u2(1)−u1(1)]

]
+
∑τ−2
k=1

(
1

δτ−k−1

)(U(α(τ−k−1),1)−U(α(τ−k),1)
[u2(2)−u1(2)]−[u2(1)−u1(1)]

)]
It is immediate that α(2) satisfies this equation for τ = 2, and it easily verified that if α(τ) satisfies it for

τ ≥ 2, then α(τ+1) satisfies it for τ + 1. The desired conclusion follows directly.

Step 4: Assuming future behavior is governed by ϕ, if the individual weakly prefers α(r) to α(s) for r > s

with worldview α, then the individual strictly prefers α(r) to α(s) with worldview α′ > α. Likewise, if the individual

weakly prefers α(r) to α(s) for r < s with worldview α, then the individual strictly prefers α(r) to α(s) with worldview

α′ < α.
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Assume r > s. We can decompose the difference between the continuation payoff following from the selection

of α(r), and the continuation payoff following from the selection of α(s), into two terms, as follows: K(r, s) +

λ
∑τ−1
t=s δ

t (α ((u1(1)− u1(2)) + (u2(2)− u2(1))) + (u2(1)− u2(2))). The first term depends on r and s but not on

α, and the second is strictly increasing in α. The desired conclusion follows immediately. An analogous argument

applies in the case of r < s.

Step 5: ϕ is a MPE.

From step 2, we know that the individual will always choose α(τ) for some τ . Combining steps 3 and 4, we see

that the individual strictly prefers α(τ+1) to α(τ) for α > α(τ+2), and strictly prefers α(τ) to α(τ+1) for α < α(τ+2).

It follows that the unique optimum is α(τ) for all α ∈
(
α(τ+1), α(τ+2)

)
, and that the optima are

{
α(τ), α(τ+1)

}
for

α = α(τ+2). �
Lemma 3. All stationary MPE policy functions coincide with the one described in Lemma 2 on a set of full

measure.

Proof: We will use (ψ, y) to denote the generic stationary MPE. Our objective is to show that (ψ, y) coincides

with (ϕ, z) on a set of full measure.

Step 1: y(α) = 2 for α < α(1), and y(α) = 1 for α > α(1). (Trivial. Notice the implication: y must coincide

with z everywhere except possibly at α(1).)

Step 2: ψ(α) ≤ α for all α.

The argument will make use of the following notation: Vψ,y(α′, α) denotes the discounted continuation payoff

(ignoring the current period) resulting from choosing α′ under worldview α when future choices are governed by

the MPE (ψ, y) (defining ψ1 (α) = ψ (α) and, recursively, ψt (α) = ψ
(
ψt−1 (α)

)
for t > 1):

Vψ,y(α
′, α) = λU(α, y(α′)) + (1− λ)U(α′, y(α′) +

∞∑
t=1

δt[λU(α, y(ψt(α′))) + (1− λ)U(ψt(α′), y(ψt(α′))]

Assume contrary to the claim that there exists α′ with ψ(α′) > α′. Then choosing ψ(α′) leaves the individual

at least as well off as deviating to α′ (which then induces the same continuation path): (1 − δ)Vψ,y(ψ(α
′), α′) ≥

U(α′, y(α′)). We can then write

Vψ,y(ψ(α
′), α′)−δVψ,y(ψ2(α′), α′) = (1−λ)U(ψ(α′), y(ψ(α′)))+λU(α′, y(ψ(α′))) < U(α′, y(α′)) ≤ (1−δ)Vψ,y(ψ(α′), α′)

where the first inequality follows from the assumption that ψ(α′) > α. Rearranging the preceding expression, we

obtain Vψ,y(ψ(α′), α′) < Vψ,y(ψ
2(α′), α′). But then the individual can increase discounted payoffs by deviating from
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ψ(α′) to ψ2(α′), a contradiction.

Step 3: ψ(α) = 0 for α ∈ [0, α(1)].

Step 2 implies that ψ(0) = 0. Therefore, choosing ψ(α) = 0 generates the continuation path ((0, 2), (0, 2), (0, 2), ...).

It is easy to check that, from the perspective of α ∈ (0, α(1)], this trajectory is strictly superior to any other.

Step 4: ψ(α) = 0 for α ∈ (α(1), α(2)).

It is easily shown that the agent would rather chooose 0 than any α′ < α(1). Furthermore, from step 2 of this

lemma, if ψ(α) ≥ α(1) for some α ∈ (α(1), α(2)), then there exists some T ≥ 1 (possibly +∞) such that ψt(α) = 0

for t > T , and ψt(α) ≥ α(1) for t ≤ T . This trajectory generates a constant payoff per period of no more than

(1 − λ)U
(
α(1), 1

)
+ λU(α, 1) for the first T periods, followed by a constant payoff of (1 − λ)U(0, 2) + λU(α, 2)

in all subsequent periods. From steps 3 and 4 of the proof of Lemma 2, we have (1 − λ)U
(
α(1), 1

)
+ λU(α, 1) <

(1−λ)U(0, 2)+λU(α, 2) for α ∈ (α(1), α(2)). But this inequality shows that the trajectory that follows from choosing

α′ = 0 generates a strictly higher discounted payoff than the trajectory that follows from choosing any α′ ≥ α(1).

Step 5: Assume (ψ, y) coincides with (ϕ, z) on [0, α(τ))/{α(τ−1)} for τ ≥ 2, and ψ
(
α(τ−1)

)
∈ {α(τ−3), α(τ−2)}.

Then (ψ, y) coincides with (ϕ, z) on [0, α(τ+1))/{α(τ)} and ψ
(
α(τ)

)
∈ {α(τ−2), α(τ−1)}.

Suppose for the moment that (ψ, y) also coincides with (ϕ, z) at α(τ−1) (and therefore on [0, α(τ))). Consider

α ∈ [α(τ), α(τ+1)). Choosing any α′ < α(τ) yields the same continuation path as with ϕ. Consequently we know

that the best choice within this set is α(τ−1) for α ∈ (α(τ), α(τ+1)), and is an element of {α(τ−2), α(τ−1)} for

α(τ); furthermore, this restricted best choice yields a continuation payoff of Vϕ,z(α(τ−1), α). Assume toward a

contradition that ψ(α) ≥ α(τ) for some α ∈ (α(τ), α(τ+1)). Furthermore, from step 2 (which guarantees that

ψt(α) remains in [α(τ), α(τ+1)) as long as it does not fall below α(τ)), there exists some T ≥ 1 (possibly +∞)

such that ψT+1(α) = α(τ−1), and ψt(α) ≥ α(τ) for t ≤ T . This trajectory generates a payoff of no more than

(1−λ)U
(
α(τ), 1

)
+λU(α, 1) per period for the first T periods, followed by a continuation payoff of Vϕ,z(α(τ−1), α).

Therefore, Vψ,y(ψ(α), α) ≤ 1−δT+1

1−δ
[
(1− λ)U

(
α(τ), 1

)
+ λU(α, 1)

]
+δT+1Vϕ,z(α

(τ−1), α). Combining this inequality

with the fact that Vϕ,z(α(τ−1), α) > Vϕ,z(α
(τ), α) =

[
(1− λ)U

(
α(τ), 1

)
+ λU(α, 1)

]
+ δVϕ,z(α

(τ−1), α) (see Lemma

2, steps 3 and 4), which implies (1− δ)Vϕ,z(α(τ−1), α) >
[
(1− λ)U

(
α(τ), 1

)
+ λU(α, 1)

]
, we obtain Vψ,y(ψ(α), α) <

Vϕ,z(α
(τ−1), α) = Vψ,y(α

(τ−1), α). It follows that the individual would deviate from ψ(α) to α(τ−1), a contradiction.

Now suppose that (ψ, y) does not coincide with (ϕ, z) at α(τ−1). This supposition implies either that y(α(1)) =

2 (rather than 1) in the case of τ = 2, or ψ(α(τ−1)) = α(τ−3) (rather than α(τ−2)) in the case of τ > 2. Both

alternatives make the choice of α(τ−1) strictly less attractive from the perspective of any α > α(τ−1) (Lemma 2,

steps 3 and 4). As a result, for any α ∈ (α(τ), α(τ+1)), the continuation payoff is increasing as α′ ↓ α(τ−1), but falls

discontinuously at α(τ−1). It follows that an optimal choice does not exist, which contradicts the hypothesis that

(ψ, y) is an equilibrium. �
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Applying induction to step 5, we see that (ψ, y) coincides with (ϕ, z) everywhere except possibly for α(τ).

The additional properties described in the proposition can be verified by inspection. �
Proof of Proposition 4

Because a naif acts as if she can select an execute any desired trajectory σt from period t forward (subject to the

constraint that xk ∈ z∗(αk) for each k ≥ t), and because her utility is time-separable, her choice for period αt+1

satisfies

max
αt+1,xt+1∈z∗(αt+1)

(1− λ)U(αt+1, xt+1) + λU(αt, xt+1) (1)

She incorrectly anticipates sticking with this choice forever after choosing it for period t+ 1.

Step 1: The solution to (1) is a pure worldview. Assume the solution is not a pure worldview and that it

involves action x. By assumption, (αI(x), x) is feasible and uαI(x)(x) > ui(x) for i ̸= αI(x), which means it yields

a strictly higher value of the objective function.

Step 2: The choices of a naive decision maker cannot cycle among pure worldviews. Suppose the consumer

switches from (αI(xt), xt) in some period t to (αI(xt+1), xt+1) in period t + 1, where xt+1 ̸= xt. Then it must be

the case that (1 − λ)U(αI(xt+1), xt+1) + λU(αI(xt), xt+1) ≥ (1 − λ)U(αI(xt), xt) + λU(αI(xt), xt). Rearranging

this inequality, we obtain (1− λ)
[
U(αI(xt+1), xt+1)− U(αI(xt), xt)

]
≥ λ

[
U(αI(xt), xt)− U(αI(xt), xt+1)

]
. Using

the fact that U(αI(xt), xt) > U(αI(xt), xt+1), we see that U(αI(xt+1), xt+1) > U(αI(xt), xt). Ranking the actions

according to the value of U(αI(x), x), we see that it is only possible to move upward in this ranking. Consequently,

there can be no cycles. With a finite number of actions, the consumer must stop changing worldviews after a finite

number of periods. �
Proof of Proposition 5

(i) Let α denote the weight on worldview 1, and let ϕ denote the Markov policy function. It is easy to show

that ϕ(0) = 0 using an argument similar to the one in Step 2, Claim 1 of the proof of Proposition 1. It fol-

lows that, beginning with any mixed worldview α, choosing pure worldview 2 yields a continuation payoff of∑∞
t=1 δ

t [(1− λ)u2(1) + λU(α, 1)]. Any other choice reduces the first term and leaves the second unchanged. There-

fore, the consumer places zero weight on worldview 1 after the first period in all stationary MPE.

(ii) In this setting, mixed worldviews belong to the set S =
{(
α1, α2

)
| 0 ≤ α1 + α2 ≤ 1, α1 ≥ 0, α2 ≥ 0

}
where α3 = 1− α1 − α2, and the Markov policy function ϕ maps S into S.

It is easy to show that ϕ(0, 0) = (0, 0), once again by an argument similar to that of Step 2, Claim 1 of the

proof of Proposition 1. We claim that ϕ(0, α2) = (0, 0) for all α2 ∈ (0, 1]. Given that ϕ(0, 0) = (0, 0), if the consumer
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chooses (0, 0), her flow utility (according to worldview (0, α2)) will be λ
[
α2u2(2) + (1− α2)u3(2)

]
+(1−λ)u3(2) in

all subsequent periods, which is maximal contingent on choosing action 2. Her flow utility contingent on choosing

action 1 is bounded above by u2(1). Note that

λ
[
α2u2(2) + (1− α2)u3(2)

]
+ (1− λ)u3(2) > λu2(2) + (1− λ)u3(2) > u2(1)

Thus, choosing (0, 0) generates a strictly higher continuation payoff than any other choice.

Let P denote the total discounted payoff achieved in an MPE by a consumer who starts out with pure

worldview 1 (α1 = 1), evaluated from that perspective. If this consumer chooses pure worldview 1 for t = 1, her

discounted payoff will be u1(1) + δP . Incentive compatibility requires P ≥ u1(1) + δP , which implies P ≥ u1(1)
1−δ .

Let T denote the first period in which the consumer places zero weight on pure worldview 1. From the preceding

arguments, we know she will choose pure worldview 3 and action 2 in every subsequent period, so her flow utility

from period T +1 forward will be no higher than λu1(2)+ (1−λ)u3(2). From period 1 to period T , her flow utility

is bounded by u3(2) (the highest overall flow utility). Thus,

(
1− δT+1

1− δ

)
u3(2) +

(
δT+1

1− δ

)
[λu1(2) + (1− λ)u3(2)] ≥ P ≥ u1(1)

1− δ
.

It follows that

δT+1 ≤ u3(2)− u1(1)

λ [u3(2)− u1(2)]
.

Both numerator and denominator are strictly positive. Thus, defining KT∗ = u3(2) − u3(2)−u1(1)
λδT∗+1 , we see that if

u1(2) < KT∗ , worldview 1 cannot receive zero weight in the first T ∗ periods. As T ∗ → ∞, we have KT∗ → −∞. �
Proof of Proposition 6

Consider any wordview 2 satisfying the following constraints: u2(k) ∈ (u1(1), u3(2)) for k = 1, 2, and u2(2) > u2(1).

Define S as in the proof of Proposition 5, and let U(α1, α2, x) denote the flow utility obtained from action x under

worldview
(
α1, α2

)
∈ S.

Next define the sequence of values
{
α(τ)

}∞
τ=0

as follows:

α(1) =
u2(2)− u2(1)

[u2 (2)− u2 (1)] + [u1 (1)− u1 (2)]
= ᾱ

α(2) = α(1) +

(
1− λ

λ

)(
U(0, 0, 2)− U(α(1), 1− α(1), 1)

[u2 (2)− u2 (1)] + [u1 (1)− u1 (2)]

)
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and recursively for τ > 2

α(τ) = α(τ−1) +
ϕ

δτ−2

[
α(τ−1) − α(τ−2)

]
where ϕ = 1−λ

λ
[u2(1)−u1(1)]

[u2(2)−u2(1)]+[u1(1)−u1(2)]
> 0. This sequence resembles the one used in the proof of Proposition 3,

and here one can also show that ∀(δ, λ) ∈ (0, 1)2, ∃ τ̄ ≥ 1 s.t. α(τ̄) ≤ 1 and α(τ̄+1) > 1.

Consider the following Markov policy function. We partition the set of possible mixed worldviews into three

sets. Set 1 (S1) consists of those for which α3 = 0 and action 1 is optimal (α1 ≥ α(1)). Set 2 (S2) consists of

those for which α3 > 0 and action 1 is optimal. Set 3 (S3) consists of those for which action 2 is optimal. We can

incorporate the boundary between S2 and S3 in either set. For all worldviews in S1, let

ϕ(α1, 1− α1) =



(0, 0) if α1 ∈ [α(1), α(2))

(α(1), 1− α(1)) if α1 ∈ [α(2), α(3))

(α(2), 1− α(2)) if α1 ∈ [α(3), α(4))

...
...

(α(τ̄−2), 1− α(τ̄−2)) if α1 ∈ [α(τ̄−1), α(τ̄))

(α(τ̄−1), 1− α(τ̄−1)) if α1 ∈ [α(τ̄), 1]

For all worldviews in S2, let ϕ(α1, α2) be the best choice from the set

{
(0, 0), (α(1), 1− α(1)), (α(2), 1− α(2)), . . . , (α(ρ(1−α2)−1), 1− α(ρ(1−α2)−1))

}
,

under the assumption that ϕ will govern subsequent choices (producing stepwise convergence to (0, 0)),1where ρ(α)

is the integer ρ satisfying α ∈ [α(ρ), α(ρ+1)). For all worldviews in S3, let ϕ(α1, α2) = (0, 0).

We now prove that ϕ (along with optimal action choices) is an MPE.

Step 1 : Assuming ϕ governs future choices, the best current choice as of period t (for period t+ 1) belongs

to the set T =
{
(0, 0), (α(1), 1− α(1)), (α(2), 1− α(2)), . . . , (α(τ̄−1), 1− α(τ̄−1))

}
.

Points in S \ T fall into three categories, which we consider in turn.

(i) Consider any
(
α1, 1− α1

)
∈ S1 \ T . By construction, ϕ

(
α1, 1− α1

)
=

(
α(ρ(α1)−1), 1− α(ρ(α1)−1)

)
(or

(0, 0) in the case where ρ(α1) − 1 = 0). We also have ϕ
(
α(ρ(α1)), 1− α(ρ(α1))

)
=

(
α(ρ(α1)−1), 1− α(ρ(α1)−1)

)
(or

(0, 0) in the case where ρ(α1) − 1 = 0). Therefore, continuation paths from period t + 2 forward are the same

whether the agent chooses
(
α1, 1− α1

)
or

(
α(ρ(α1)), 1− α(ρ(α1))

)
. Both lead to action 1 in period t+ 1. However,

1If there is more than one best choice, we make an arbitrary selection.
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because u2(1) > u1(1) and α1 > α(ρ(α1)),
(
α(ρ(α1)), 1− α(ρ(α1))

)
generates strictly higher continuation utility.

(ii) Consider any (α1, α2) ∈ S2 for which ϕ(α1, α2) ̸= (0, 0) . By construction, ϕ(α1, α2) = (α(k), 1 − α(k))

for some k ≤ ρ(1 − α2) − 1. Since 1 − α2 ∈ [α(ρ(1−α2)), α(ρ(1−α2)+1)), we have 1 − α2 ≥ α(ρ(1−α2)) ≥ α(k+1), or

α2 ≤ 1 − α(k+1), and we also have ϕ
(
α(k+1), 1− α(k+1)

)
=

(
α(k), 1− α(k)

)
. Therefore, choosing either (α1, α2)

or
(
α(k+1), 1− α(k+1)

)
for period t + 1 yields the same continuation paths from period t + 2 forward and, with

respect to period t + 1, both lead to action 1. However, because u2(1) > u1(1) > u3(1) and α2 ≤ 1 − α(k+1),(
α(k+1), 1− α(k+1)

)
generates strictly higher continuation utility.

(iii) Consider any (α1, α2) /∈ S1 for which ϕ(α1, α2) = (0, 0). Since ϕ(0, 0) = (0, 0), the continuation path

from period t+ 2 forward involves worldview (0, 0) in every period, along with action 2.

Supposing (α1, α2) ∈ S3, (0, 0) produces the same outcome as (α1, α2) from period t + 2 forward, and both

lead to action 2 in period t+ 1. However, because u3(2) is the highest possible flow utility, (0, 0) generates strictly

higher overall continuation utility.

Supposing (α1, α2) ∈ S2, (α(1), 1 − α(1)) produces the same outcome as (α1, α2) from period t + 2 for-

ward, and both lead to action 1 in period t + 1. It is straightforward to verify that (α(1), 1 − α(1)) solves

max(α1,α2)∈S U
(
α1, α2, 1

)
subject to 1 ∈ z∗(α1, α2), which means that (α(1), 1 − α(1)) yields higher flow utility

from action 1 in period t+ 1, and hence higher overall continuation utility.

Step 2 : Assuming that ϕ governs future choices, ϕ prescribes the optimal choice in period t.

For
(
α1, 1− α1

)
∈ S1: The conclusion follows from arguments similar to those used to prove Proposition 3.

For (α1, α2) ∈ S2: We claim that, assuming ϕ governs future choices, the best choice within T from the

perspective of worldview (α1, α2) ∈ S2 is either (0, 0) or (α(k), 1− α(k)) with k ≤ ρ(1− α2)− 1.

To prove this claim, consider worldview (1−α2, α2). By construction, ϕ(1−α2, α2) =
(
α(ρ(1−α2)−1), 1− α(ρ(1−α2)−1)

)
.

We can write the difference between the continuation payoff when choosing (α(ρ(α1)−1), 1 − α(ρ(α1)−1)), and when

choosing (α(m), 1− α(m)) for any m > ρ(1− α2)− 1, as

∆1 =W (ρ(1− α2)− 1)−W (m) +

m∑
t=ρ(1−α2)

λδt
(
U(1− α2, α2, 2)− U(1− α2, α2, 1)

)
≥ 0,

where W (k) is proportional to the continuation payoff associated with the trajectory starting from (α(k), 1− α(k))

assuming perfect mindset flexibility. From the perspective of worldview (α1, α2), the corresponding difference is

∆2 =W (ρ(1− α2)− 1)−W (m) +

m∑
t=ρ(1−α2)

λδt
(
U(α1, α2, 2)− U(α1, α2, 1)

)
.
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Notice that

∆2 −∆1 =
m∑

t=ρ(1−α2)

λδt
[(
U(1− α2, α2, 1)− U(α1, α2, 1)

)
+

(
U(α1, α2, 2)− U(1− α2, α2, 2)

)]
.

In light of the fact that u1(1) > u3(1), we have U(1 − α2, α2, 1) − U(α1, α2, 1) > 0. Moreover, in light of the fact

that u1(2) < u3(2), we have U(α1, α2, 2)−U(1−α2, α2, 2) > 0. Therefore, ∆2−∆1 > 0, and the conclusion follows.

For (α1, α2) ∈ S3: Placing all weight on worldview 3 and picking action 2 in all subsequent periods yields

the highest feasible payoff from the perspective of (α1, α2), and ϕ achieves this bound. �
Proof of Proposition 7

A stationary Markov-perfect equilibrium involves a function ϕ : [0, 1] × Λ → [0, 1] × Λ mapping from today’s

worldview and flexibility parameter to tomorrow’s: ϕ1(αt, λt) = αt+1 and ϕ2(αt, λt) = λt+1.

Because the sequence
{
α(τ)

}∞
τ=0

defined in Proposition 3 depends on λ, we write it here as
{
α
(τ)
λ

}∞

τ=0
. (The

values α(0) and α(1) are the same regardless of λ, and therefore do not need to be indexed.) We define τ̄λ similarly.

For any α ∈ [0, 1], we define τ∗(α) as the value of τ satisfying α ∈ [α
(τ)

λ̄
, α

(τ+1)

λ̄
).

Lemma 4. Consider the continuation trajectories A = (α1, α2, ...) and A′ = (α
′

1, α
′

2, ...), such that αk ≤ α
′

k for all

k > 0, with strict inequality for some k, along with an optimal action mapping, z. Suppose a consumer with the

current perspective (α, λ), α > α(1), weakly prefers A to A′. Then a consumer with the current perspective (α, λ′)

with λ′ < λ strictly prefers A to A′.

Proof: Let V (α, λ,A) denote the continuation payoff for trajectory A from the perspective of (α, λ). Let

M =
{
t > 0 | z(αt) = 2 and z(α

′

t) = 1
}

. Note there is no t for which z(αt) = 1 and z(α
′

t) = 2. Then

V (α, λ,A)− V (α, λ,A′) = (1− λ)

∞∑
t=1

δt
[
U(αt, z(αt))− U(α

′

t, z(α
′

t))
]
+ λ

∑
t∈M

δt [U(α, 2)− U(α, 1)] (2)

One can easily show that U(a, z(a)) is strictly decreasing in a. It follows that U(αt, z(αt))−U(α
′

t, z(α
′

t)) ≥ 0,

with strict inequality for some t. Moreover, with α > α(1), we have U(α, 2) − U(α, 1) < 0. Thus, V (α, λ,A) −

V (α, λ,A′) is decreasing in λ. The claim follows. �
Lemma 5. Any Markov policy mapping satisfying the following restrictions is an MPE:

(i) z(α) = 1 for α ≥ α(1) and 2 otherwise.2

2Technically, an MPE allows for action functions of the form z(α, λ). However, incentive compatibility ties down z as a function of
α everywhere but ᾱ, at which point the consumer is indifferent irrespective of λ. Thus, we are free to look for MPE within the class of
policy functions for which actions depend only on α.

11



(ii) If τ∗(α) < 2, then ϕ1(α, λ) = α(0).

(iii) If τ∗(α) ≥ 2 and λ = λ̄, then ϕ1(α, λ) = α
(τ∗(α)−1)

λ̄
.

(iv) If τ∗(α) ≥ 2, λ < λ̄, and α = α
(τ∗(α))

λ̄
, then ϕ1(α, λ) is the best choice from the set {α(0), α(1), α

(2)

λ̄
, . . . , α

(τ∗(α)−2)

λ̄
}

from the perspective of worldview (α, λ), assuming that in the future (i)-(iii) will govern the consumer’s choices of

actions and worldviews, and that she will be maximally mindset inflexible (λ = λ̄).

(v) If τ∗(α) ≥ 2, λ < λ̄, and α > α
(τ∗(α))

λ̄
, then ϕ1(α, λ) is the best choice from the set {α(0), α(1), α

(2)

λ̄
, . . . , α

(τ∗(α)−1)

λ̄
}

from the perspective of worldview (α, λ), assuming that in the future (i)-(iii) will govern the consumer’s choices of

actions and worldviews, and that she will be maximally mindset inflexible (λ = λ̄).

(vi) If ϕ1(α, λ) > α(1), then ϕ2(α, λ) = λ̄.

Proof: By construction, z(α) is optimal for each (α, λ).

Let A denote the set of trajectories of the form (α, α
(k)

λ̄
, α

(k−1)

λ̄
, ..., α(1), α(0), α(0), ...) where k ≤ τ∗(α)−1. By

construction, A contains all one-period deviation trajectories that are feasible under ϕ. Let As ⊂ A denote the set

of trajectories of the form (α
(k)

λ̄
, α

(k−1)

λ̄
, ..., , ..., α(1), α(0), α(0), ...) for k < τ̄λ̄. All of these continuation trajectories

are feasible (without deviations) under ϕ.

We claim that every optimal feasible continuation trajectory lies within As. Consider any sequence A =

(α, α
(k)

λ̄
, α

(k−1)

λ̄
, ..., α(1), α(0), α(0), ...) ∈ A \ AS (with k ≤ τ∗(α) − 1), as well as the alternative sequence Ak+1 =

(α
(k+1)

λ̄
, α

(k)

λ̄
, α

(k−1)

λ̄
, ..., α(1), α(0), α(0), ...) ∈ AS . With k ≤ τ∗(α)−1, we must have α(k+1)

λ̄
< α, where the strictness

of the inequality follows from the fact that A does not lie in AS . It follows that Ak+1 yields a higher continuation

payoff than A.

Next we claim that ϕ prescribes an optimal choice for (α, λ), given that it governs subsequent choices:

Suppose the consumer starts at (α, λ̄). The proof of Proposition 3 shows, in effect, that the optimal contin-

uation path in AS is Aτ∗(α)−1, which is generated by repeatedly applying ϕ. The claim follows.

Next suppose the consumer starts at (α, λ) such that λ < λ̄, τ∗(α) ≥ 2, and α > α
(τ∗(α))

λ̄
. We know that

V (α, λ̄, Aτ
∗(α)−1) > V (α, λ̄, Ak) for all k > τ∗(α)− 1. The claim follows by applying Lemma 4.

A similar argument applies in the case where a consumer starts at (α, λ) such that λ < λ̄, τ∗(α) ≥ 2 and

α = α
(τ∗(α))

λ̄
, and in the case a consumer starts at (α, λ) such that λ < λ̄ and τ∗(α) < 2. @

Lemma 6. Every stationary MPE policy mapping coincides with one belonging to the class described in Lemma 5

on a set of full measure.

Proof. Let (ψ, y) denote a generic stationary MPE. We will show that these functions coincide with some

(ϕ, z) satisfying the restrictions described in Lemma 5 on a set of full measure.
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Step 1: (i) y(α) = 2 for α < α(1) and y(α) = 1 for α > α(1), (ii) ψ1(α, λ) ≤ α for all α, and (iii) ψ1(α, λ) = 0

for all α ∈ [0, α(1)]. The arguments are essentially the same as in Steps 1-3 of Lemma 3.

Step 2: ψ1(α, λ) = 0 for α ∈ (α(1), α
(2)

λ̄
).

Since α(2)

λ̂
is decreasing in λ̂, α < α

(2)

λ̄
implies α < α

(2)
λ ; the conclusion follows using the same argument as

in Step 4 of Lemma 3.

Step 3: Suppose that for some integer τ ≥ 2, (ψ, y) satisfies the characterization given in (ii)-(vi) of Lemma

5 for all pairs (α, λ) ∈ [0, α
(τ)

λ̄
)× Λ \

(
α(τ−1), λ̄

)
, and that ψ1

(
α(τ−1), λ̄

)
∈ {α(τ−3)

λ̄
, α

(τ−2)

λ̄
}.3 Then (ψ, y) satisfies

the characterization given in (ii)-(vi) of Lemma 5 for all pairs (α, λ) ∈ [0, α
(τ+1)

λ̄
)×Λ \

(
α(τ), λ̄

)
, and ψ1

(
α(τ), λ̄

)
∈

{α(τ−2)

λ̄
, α

(τ−1)

λ̄
}; furthermore, z(ᾱ, λ) = 1 for at least one value of λ ∈ Λ.

For the moment, suppose that (ψ, y) also satisfies the characterization given in (ii)-(vi) of Lemma 5 at

(α(τ−1), λ̄), and hence on [0, α
(τ)

λ̄
) × Λ. Also suppose that z(ᾱ, λ) = 1 for at least one value of λ ∈ Λ. In that

case, the choice of any (α′, λ′) with α′ < α(τ) yields an element of A as the continuation path. It follows from the

arguments in the proof of Lemma 5 that to show (ψ, y) has the desired properties for α ∈ [α
(τ)

λ̄
, α

(τ+1)

λ̄
), we only

need to show that we cannot have ψ1(α, λ) ≥ α
(τ)

λ̄
. We separately consider two cases: (i) λ = λ̄, and (ii) λ < λ̄.

In either case, there must exist some T ≥ 1 (possibly +∞) such that ψT+1
1 (α, λ̄) < α(τ), and ψt1(α, λ̄) ≥ α(τ) for

t ≤ T .

For case (i), ψ1(α, λ) < α
(τ)

λ̄
follows from arguments similar to those in Step 5 of Lemma 3.

Now consider case (ii), where α ∈ [α
(τ)

λ̄
, α

(τ+1)

λ̄
) and λ < λ̄. Suppose toward a contradiction that ψ1(α, λ) ≥

α
(τ)

λ̄
. We claim that T < τ − 1 and ψT+1

1 (α, λ) < α
(τ−T−1)

λ̄
. Because we have assumed that the characterization

from Lemma 5 applies for α < α(τ), it follows that ψT+1
1 (α, λ) = α

(m)

λ̄
for some m < τ , and consequently that the

continuation trajectory from period T + 1 forward is Am. Were it not the case that T < τ − 1 and ψT+1
1 (α, λ) <

α
(τ−T−1)

λ̄
, a preference for the trajectory A(τ−1) over the trajectory induced by ψ from the perspective of

(
α, λ̄

)
(which we established in case (i)) would (by Lemma 4) imply a strict preference from the perspective of (α, λ), a

contradiction that establishes the claim. In light of the fact that α(m)

λ̄
= ψT+1

1 (α, λ) < α
(τ−T−1)

λ̄
, we must have

m < τ − T − 1. Because m+ T + 1 < τ , we know that choosing (α(m+T+1), λ̄) induces the continuation trajectory

Am+T+1. Note that this trajectory coincides with
(
ψ1(α, λ), ψ

2
1(α, λ), ...

)
from period T + 1 forward, but Am+T+1

yields a strictly higher continuation payoff in the first T periods, a contradiction.

Finally, to prove that z(ᾱ, λ) = 1 for at least one value of λ ∈ Λ, and that ψ
(
α(τ−1), λ̄

)
= α

(τ−2)

λ̄
, one can use

a continuity argument similar to the one in Step 5 of Lemma 3. Unless both of these conditions hold, an optimal

choice does not exist for some worldviews, which contradicts the hypothesis that (ψ, y) is an equilibrium. �
The Proposition’s first two claims follow directly. Lemma 5 establishes existence of a stationary MPE. Lemma

3In the case where τ = 2, α(−1)

λ̄
is undefined, so the condition implies ψ1

(
α(1), λ̄

)
= α

(0)

λ̄
, which we have already established.
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6 and condition (vi) of Lemma 5 guarantee that, in all stationary MPE, a consumer who chooses αt+1 > α(1) = ᾱ

in period t also selects maximal inflexibility (λt+1 = λ̄).

Turning to the Proposition’s final statement, one can easily show using continuity that for any α > ᾱ, there

exists a λα < 1 for which α
(3)
λα

= α. Moreover, it is straightforward to establish that a consumer with worldview

(α, λ), where λ > λα, strictly prefers A2 to both A1 and A0 (first by showing that a consumer with worldview(
α
(3)
λα
, λα

)
strictly prefers A2 to both A1 and A0, and then by applying Lemma 4). Thus, fixing any α > ᾱ, if we

take λ = λα and assume that λ̄ > λ, then for all λ ∈ (λ, λ], an individual with worldview (α, λ) chooses α′ > ᾱ. �
Proof of Proposition 8

To prove this proposition, we transform this model into one we have already analyzed. Let v1(1) = θu1(2) + u1(1),

v2(1) = θu2(2) + u2(1), v1(2) = (1 + θ)u1(2), and v2(2) = (1 + θ)u2(2).

Notice that v1(1)− v1(2) = u1(1)− u1(2) > 0 and v2(2)− v2(1) = u2(2)− u2(1) > 0. It follows that action

k maximizes vk. In addition, v2(2) − v1(1) = θ [u2(2)− u1(2)] + [u2(2)− u1(1)] > 0, because we have assumed

that u2(2) > u1(1). Next notice that v1(1) − v2(1) = θ [u1(2)− u2(2)] + [u1(1)− u2(1)]. Therefore, worldview 2

happiness-dominates worldview 1 in the modified model iff

θ >
u1(1)− u2(1)

u2(2)− u1(2)
≡ θ1 > 0.

It follows that, if θ < θ1, the characterization in Proposition 1 applies to the modified model, while if θ > θ1, the

characterization in Proposition 3 applies.

We are interested in the existence of cases in which θ > θ1 and α(2) < 1, because in those cases the transition to

worldview 2 will be gradual. It is straightforward to check that α(2) < α∗ when worldview 2 happiness-dominates

worldview 1. Furthermore, for the modified model, the condition α∗ < 1 becomes λ(1 + θ)u1(2) + (1− λ) (1 +

θ)u2(2) < θu1(2) + u1(1) or

θ <
u1(1)− λu1(2)− (1− λ)u2(2)

(1− λ) (u2(2)− u1(2))
≡ θ2

Notice that θ < θ2 guarantees α(2) < 1. Notice also that θ2 varies continuously with λ for λ < 1. To satisfy both

θ > θ1 and θ < θ2, we must have θ2 > θ1. From inspection of the last formula (given u1(1) > u1(2)), we have

limλ→1 θ2 = +∞. Therefore, θ2 > θ1 holds for λ sufficiently large. In light of the foregoing, the statements in the

proposition and footnote 26 follow directly from Propositions 1 and 3. �
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Proof of Proposition 9

Part (a): We will prove the proposition for the case of i = 1. (The arguments when i = 2 are completely analogous.)

By Proposition 1, if αt < α∗ for t = K, then αt+k = 0 for all k ≥ 1. A simple backward induction argument then

establishes that the same statement holds for all t < K.

We claim that for any α0, there exists a finite integer C such that if K > C, the consumer chooses α1 = 0.

From Proposition 1, we know that any sequence of choices for the first K periods will yield one of two con-

tinuation paths from period K + 1 forward: either ((0, 2) , (0, 2) , ...) or ((1, 1) , (1, 1) , ...). Among the choice se-

quences that yield ((0, 2) , (0, 2) , ...) from period K + 1 forward, the best one (from the perspective of worldview

α0 in period 0) is plainly ((0, 2) , (0, 2) , ...) from period 1 forward, which is achieved by choosing α1 = 0. Let

V = δ
1−δ [λU(α0, 2) + (1− λ)U(0, 2)] denote the resulting payoff from the perspective of worldview α0 in period

0. According to our opening observation, all sequences of choices that yield ((1, 1) , (1, 1) , ...) from period K + 1

onwards (to the extent they exist) must have the property that αt ≥ α∗ for t ≤ K. The resulting payoff from the

perspective of worldview α0 in period 0 is bounded above by

W =

(
δ − δK+1

1− δ

)
[λU(α0, 2) + (1− λ)U(α∗, 2)] +

(
δK+1

1− δ

)
[λU(α0, 1) + (1− λ)U(1, 1)]

Observe that

V −W =

(
δ − δK+1

1− δ

)
(1− λ) [U(0, 2)− U(α∗, 2)]

+

(
δK+1

1− δ

)
([λU(α0, 2) + (1− λ)U(0, 2)]− [λU(α0, 1) + (1− λ)U(1, 1)])

For K sufficiently large, V −W > 0, which completes the proof.

Part (b): Because the subsidy or tax induces the consumer to choose action j in the first K periods regardless

of her worldviews, the problem is isomorphic to the one in which action i is banned for the first K periods. �

Proof of Proposition 10

A stationary Markov policy function ϕ is now a mapping ϕ(αt,Mt) from the period-t worldview and the period-t

restriction (Mt = 1 indicates the restriction is in force, while Mt = 0 indicates it is not) to the period-t+1 worldview.

Define the sequence
{
α(κ)

}∞
κ=0

as follows: α(0) = 1, α(1) = α∗, α(2) = α(1)− (1−λ)(1−δ)[u1(1)−U(α(1),1)]
λpδ([u2(2)−u1(2)]−[u2(1)−u1(1)])

, and

recursively (for κ > 2), α(κ) = α(κ−1)+ Ψ
δκ−1(1−p)κ−2

(
α(κ−1) − α(κ−2)

)
where Ψ = (1−λ)(1−δ)

λp
[u1(1)−u2(1)]

[u2(2)−u1(2)]−[u2(1)−u1(1)]
>

0. This sequence is analogous to the one described in Proposition 3. Using induction, one can easily show that

∀ (δ, λ, p) ∈ (0, 1)3,
{
α(κ)

}∞
κ=0

is a strictly decreasing sequence (note that α(2) < α(1) because we are in Case 1, so

u1(1) > U(α(1), 1)). One can also show there exists κ̄ ≥ 1 such that α(κ̄) ≥ 0 and α(κ̄+1) < 0.
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To prove the proposition, we show that, for all (δ, λ, p) ∈ (0, 1)3, the following Markov policy functions

constitute an MPE:

ϕ(α, 1) =



α(κ̄−1) if α ∈ [0, α(κ̄)]

α(κ̄−2) if α ∈ (α(κ̄), α(κ̄−1)]

...
...

α(1) if α ∈ (α(3), α(2)]

α(0) if α ∈ (α(2), 1]

and

ϕ (α, 0) =


0 α ≤ α∗

1 α > α∗

Finally, the consumer takes action 1 when the restriction is in force (z(α, 1) = 1). When it is not in force, z(α, 0) = 2

if α < ᾱ; otherwise z(α, 0) = 1.

Once Mt = 0, the characterization given in Proposition 1 applies. Therefore, we can focus on the case of

Mt = 1. Define V (α(κ), α) as the discounted continuation payoff under worldview α resulting from choosing α(κ)

and following the MPE thereafter (assuming κ ≥ 1):

V (α(κ), α) =

κ−1∑
n=0

δn(1− p)n
[
λU(α, 1) + (1− λ)U(α(κ−n), 1)

]
+(1− p)κδκ

(λU(α, 1) + (1− λ)u1(1)

1− δ

)
+

κ−1∑
n=0

p(1− p)nδn+1
(λU(α, 2) + (1− λ)u2(2)

1− δ

)

We now proceed in a series of steps that are analogous to those in Lemma 2:

Step 1 : Assuming future behavior is governed by ϕ, then for every worldview α, the individual strictly prefers

α(κ) to any α ∈ (α(κ+1), α(κ)) ≡ I(κ) for all κ ∈ {0, ..., κ̄− 1}, and α(κ̄) to any α ∈ [0, α(κ̄)) ≡ Iκ.

We use the same argument as in Step 2 of Lemma 2; all continuation sequences are the same for any choice of

α ∈ I(κ)∪α(κ), regardless of future state realizations Mt. Given that the individual must choose action 1 tomorrow,

choosing α(κ) will yield the highest payoff.

Step 2 : An individual with worldview α(κ), where κ ≥ 2, is indifferent between choosing α(κ−1) and α(κ−2)

for next period.

Consider an individual with worldview α. We equate continuation payoffs after choosing α(κ−1) and α(κ−2),
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and solve for α. After some manipulation, we obtain:

α =
u2(2)− u2(1)

[u2(2)− u1(2)]− [u2(1)− u1(1)]
+
(1− λ

λ

)( u2(2)− u1(1)

[u2(2)− u1(2)]− [u2(1)− u1(1)]

)
+
(1− δ)(1− λ)

pλ(1− p)κ−2

κ−2∑
n=0

(1− p)n

δκ−1−n
U(α(κ−1−n), 1)− U(α(κ−2−n), 1)

[u2(2)− u1(2)]− [u2(1)− u1(1)]

It is immediate that α(2) satisfies this equation for κ = 2, and it is easily verified that if α(κ) satisfies it for κ ≥ 2,

then α(κ+1) satisfies it for κ+ 1. The claim follows.

Step 3 : Given that ϕ governs behavior for all future periods, if an individual with worldview α is indifferent

between α(r) and α(r−1), then an individual with worldview α′ < α strictly prefers α(r) to α(r−1), while an individual

with worldview α′ > α strictly prefers α(r−1) to α(r).

It is easy to verify that one can express V (α(r), α)−V (α(r−1), α), the difference in continuation payoffs from

selecting α(r) instead of α(r−1), as K(p, r)+ p(1− p)r−1δr−2λ [U(α, 2)− U(α, 1)], where K(p, r) is a term that does

not depend on α. The desired conclusion follows from the fact that this difference is strictly decreasing in α.

Step 4 : ϕ is an MPE. We know from step 1 that an individual will always chooses α(κ) for some value κ.

From step 2 we know that an individual with worldview α(κ+2) is indifferent between α(κ) and α(κ+1), while an

individual with worldview α(κ+3) is indifferent betwen α(κ+1) and α(κ+2). From step 3 it follows that the unique

optimum is α(κ+1) for all α ∈ (α(κ+3), α(κ+2)), and the optima are {α(κ+1), α(κ)} for α = α(κ+2). It also follows

that the unique optimum is α(0) for α > α(2). �
Proof of Proposition 11

We begin by solving for U(x, θ̄(x)) analytically. It is straightforward to show that the first- and second-order

conditions for an interior solution to maxθ U(x, θ) can only be satisfied if either (a) α < 1, k > 0, and η > 1, or (b)

α > 1, k < 0, and η < 1. Using the first-order condition to solve for θ̄(x), we then derive the following expression

for U(x) ≡ U(x, θ̄(x)):

Ū(x) =

(
1

(1− α)k

) 1
η−1

(
η − 1

(1− α) η

)
x

(1−α)η
η−1

This is a CRRA utility function with relative risk aversion parameter 1 − (1−α)η
η−1 = αη−1

η−1 . In case (a), this

parameter converges to α as η → ∞, and it converges to −∞ as η ↓ 1. In case (b), this parameter converges to α

as η → −∞, and it converges to −∞ as η ↑ 1. In either case, it is always strictly less than α.

Lemma 7. For any y > 0, there exists c̄ > 0 with the following property: for any c < c̄, we can select finite

numbers, σS and σL with 0 < σS ≤ σL such that the consumer does not change her worldview if |x− y| < σS and
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does change her worldview if |x− y| > σL. For α < 1, we can take c̄ = +∞.

Proof: Note that

U(x, θ̄(x))− U(x, θ̄(y)) =

(
1

(1− α)k

) 1
η−1

(
x1−α

1− α

)[(
η − 1

η

)
x

1−α
η−1 − y

1−α
η−1

]
+

k

η

[(
y1−α

(1− α)k

) 1
η−1

]η

(3)

which is continuous and equals zero when x = y. Accordingly, there always exists σS > 0 such that the consumer

does not change her worldview if |x− y| < σS .

Differentiating U(x, θ̄(x))− U(x, θ̄(y)), we obtain:

d

dx

[
U(x, θ̄(x))− U(x, θ1)

]
=

(
1

(1− α)k

) 1
η−1

x−α
[
x

1−α
η−1 − y

1−α
η−1

]

Recalling that 1−α
η−1 > 0, we see that the bracketed term must be strictly greater than zero when x > y, and strictly

less than zero when x < y. Consequently, as x moves away from y in either direction, if there comes a point at which

U(x, θ̄(x))−U(x, θ̄(y)) > c, then this inequality continues to hold as x moves further from y. Select any x > y, and

let c̄ = U(x, θ̄(x)) − U(x, θ̄(y)). By the Intermediate Value Theorem, for any c < c̄, there exists x′ ∈ (y, x) such

that U(x′, θ̄(x′))−U(x′, θ̄(y)) = c. Let x′′ < y satisfy U(x′′, θ̄(x′′))−U(x′′, θ̄(y)) = c when a solution exists, and let

x′′ = 0 otherwise. It then follows that U(x, θ̄(x))−U(x, θ̄(y)) > c (and hence the consumer changes her worldview)

for |x− y| > σL ≡ max{x′ − y, y − x′′}.

When α < 1, k > 0, and η > 1, it is easy to check that U(x, θ̄(x))−U(x, θ̄(y)) increases in x without bound.

It follows that one can take c̄ = +∞ in this case. �
It follows from the preceding lemma that decisions involving only small stakes (|x− y| < σS for every

possible outcome x) are governed by the objective function U(x, θ̄(y)), and that decisions involving only large

stages (|x− y| > σL for every possible outcome x) are governed by the objective function W . Note that

rW (x) = −xλUxx(x, θ1) + (1− λ)Ūxx(x)

λUx(x, θ1) + (1− λ)Ūx(x)

It follows that limλ→1 rW (x) = rU (x) = α and limλ→0 rW (x) = rŪ (x) =
αη−1
η−1 . One can also show that

drW (x)

dλ
= −x

[
Uxx(x, θ1)Ūx(x)− Ūxx(x)Ux(x, θ1)[

λUx(x, θ1) + (1− λ)Ū(x)
]2

]

Using the fact that rŪ (x) < rU , we see that Ūxx(x)Ux(x, θ1) > Uxx(x, θ1)Ūx(x), from which it follows that drW (x)
dλ >

0, as claimed. �
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