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Online Appendix

The Cost of Information: The Case of Constant Marginal Costs

Luciano Pomatto, Philipp Strack and Omer Tamuz

A. Discussion of the Continuity Axiom

Our continuity axiom may seem technical, and in a sense it is. However, there
are some interesting technical subtleties involved with its choice. Indeed, it seems
that a more natural choice of topology would be the topology of weak convergence
of likelihood ratios. Under that topology, two experiments would be close if
they had close expected utilities for decision problems with continuous bounded
utilities. The disadvantage of this topology is that no cost that satisfies the rest
of the axioms is continuous in this topology. To see this, consider the sequence of
experiments in which a coin (whose bias depends on the state) is tossed n times
with probability 1/n, and otherwise is not tossed at all. Under our axioms these
experiments all have the same cost—the cost of tossing the coin once. However,
in the weak topology these experiments converge to the trivial experiment that
yields no information and therefore has zero cost.

In fact, even the stronger total variation topology suffers from the same prob-
lem, which is demonstrated using the same sequence of experiments. Therefore,
one must consider a finer topology (which makes for a weaker continuity assump-
tion), which we do by also requiring the first N moments to converge. Note
that increasing N makes for a finer topology and therefore a weaker continuity
assumption, and that our results hold for all N > 0. An even stronger topol-
ogy (which requires the convergence of all moments) is used by Mattner (1999,
2004) to characterize all continuous additive linear functionals on the space of all
random variables on R.

Nevertheless, the continuity axiom is technical. As we show in Theorem 5 it
is not required when there are only two states, and we conjecture that it is not
required in general.

B. Preliminaries

To simplify the notation, throughout the appendix we set Θ = {0, 1, . . . , n}.

B.1. Properties of the Kullback-Leibler Divergence

In this section we summarize some well known properties of the Kullback-
Leibler divergence, and derive from them straightforward properties of the LLR
cost.

Given a measurable space (X,Σ) we denote by P(X,Σ) the space of probability
measures on (X,Σ). If X = Rd for some d ∈ N then Σ is implicitly assumed to
be the corresponding Borel σ-algebra and we simply write P(Rd).
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For the next result, given two measurable spaces (Ω,Σ) and (Ω′,Σ′), a mea-
surable map F : Ω→ Ω′, and a measure η ∈ P(Ω,Σ), we define the push-forward
measure F∗η ∈ P(Ω′,Σ′) by [F∗η](A) = η(F−1(A)) for all A ∈ Σ′.

PROPOSITION 9: Let ν1, ν2, η1, η2 be measures in P(Ω,Σ), and let µ1, µ2 be
probability measures in P(Ω′,Σ′). Assume that DKL(ν1‖ν2), DKL(η1‖η2) and
DKL(µ1‖µ2) are all finite. Let F : Ω→ Ω′ be measurable. Then:

1) DKL(ν1‖ν2) ≥ 0 with equality if and only if ν1 = ν2.

2) DKL(ν1 × µ1‖ν2 × µ2) = DKL(ν1‖ν2) +DKL(µ1‖µ2).

3) For all α ∈ (0, 1),

DKL(αν1 +(1−α)η1‖αν2 +(1−α)η2) ≤ αDKL(ν1‖ν2)+(1−α)DKL(η1‖η2).

4) DKL(F∗ν1‖F∗µ1) ≤ DKL(ν1‖µ1).

It is well known that KL-divergence satisfies the first three properties in the
statement of the proposition. We refer the reader to (Austin, 2006, Proposition
2.4) for a proof of the last property.

LEMMA 1: Two experiments µ = (S, (µi)) and ν = (T, (νi)) that satisfy µ̄i = ν̄i
for every i ∈ Θ are equivalent in the Blackwell order.

PROOF:
The result is standard, but we include a proof for completeness. Suppose µ̄i = ν̄i

for every i ∈ Θ. Given the experiment µ and a uniform prior on Θ, the posterior
probability of state i conditional on s is given almost surely by

(20) pi(s) =
dµi

d
∑

j∈Θ µj
(s) =

1∑
j∈Θ

dµj
dµi

(s)
=

1∑
j∈Θ e`ji(s)

and the corresponding expression applies to experiment ν. By assumption, con-
ditional on each state the two experiments induce the same distribution of log-
likelihood ratios (`ij). Hence, by (20) they must induce the same distribution
over posteriors, hence be equivalent in the Blackwell order.

A consequence of Proposition 9 is that the LLR cost is monotone with respect
to the Blackwell order:
PROOF OF PROPOSITION 1:

Let C be an LLR cost. It is immediate that if µ̄i = ν̄i for every i then C(µ) =
C(ν). We can assume without loss of generality that S = T = P(Θ), endowed
with the Borel σ-algebra. This follows from the fact that we can define a new
experiment ρ = (P(Θ), (ρi)) such that µ̄i = ρ̄i for every i (see, e.g. Le Cam
(1996)), and apply the same result to ν . By Blackwell’s Theorem there exists
a probability space (R, λ) and a “garbling” map G : S × R → T such that for
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each i ∈ Θ it holds that νi = G∗(µi × λ). Hence, by the first, second and fourth
statements in Proposition 9,

DKL(νi‖νj) = DKL(G∗(µi × λ)‖G∗(µj × λ))

≤ DKL(µi × λ‖µj × λ)

= DKL(µi‖µj) +DKL(λ‖λ)

= DKL(µi‖µj).

Therefore, by Theorem 1, we have

C(ν) =
∑
i,j

βijDKL(νi‖νj) ≤
∑
i,j

βijDKL(µi‖µj) = C (µ) .

We note that a similar argument shows that if all the coefficients βij are positive
then C(µ) > C(ν) whenever µ Blackwell dominates ν but ν does not dominate µ.

An additional direct consequence of Proposition 9 is that the LLR cost is convex:

PROPOSITION 10: Let µ = (S, (µi)) and ν = (S, (νi)) be experiments in E.
Given α ∈ (0, 1), define the experiment η = (S, (νi)) as ηi = ανi + (1 − α)µi for
each i. Then any LLR cost C satisfies

C(η) ≤ αC(ν) + (1− α)C(µ).

The result follows immediately from the third statement in Proposition 9. We
now study the set

D = {(DKL(µi‖µj))i 6=j : µ ∈ E} ⊆ R(n+1)n
+

of all possible pairs of expected log-likelihood ratios induced by some experiment
µ. The next result shows that D contains the strictly positive orthant.

LEMMA 2: R(n+1)n
++ ⊆ D

PROOF:
The set D is convex. To see this, let µ = (S, (µi)) and ν = (T, (νi)) be two

experiments. Without loss of generality, we can suppose that S = T , and S =
S1 ∪ S2, where S1, S2 are disjoint, and µi(S1) = νi(S2) = 1 for every i.

Fix α ∈ (0, 1) and define the new experiment τ = (S, (τi)) where τi = αµi +
(1−α)νi for every i. It can be verified that τi-almost surely, dτi

dτj
satisfies dτi

dτj
(s) =

dµi
dµj

(s) if s ∈ S1 and dτi
dτj

(s) = dνi
dνj

(s) if s ∈ S2. It then follows that

DKL(τi‖τj) = αDKL(µi‖µj) + (1− α)DKL(νi‖νj).

Hence D is convex. We now show D is a convex cone. First notice that the zero
vector belongs to D, since it corresponds to the totally uninformative experiment.
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In addition (see §B.B.1),

DKL((µ⊗ µ)i‖(µ⊗ µ)j) = DKL(µi × µi‖µj × µj) = 2DKL(µi‖µj)

Hence D is closed under addition. Because D is also convex and contains the zero
vector, it is a convex cone.

Suppose, by way of contradiction, that the inclusion R(n+1)n
++ ⊆ D does not hold.

This implies we can find a vector z ∈ R(n+1)n
+ that does not belong to the closure

of D. Therefore, there exists a nonzero vector w ∈ R(n+1)n and t ∈ R such that
w · z > t ≥ w · y for all y ∈ D. Because D is a cone, then t ≥ 0 and 0 ≥ w · y for
all y ∈ D. Hence, there must exist a coordinate iojo such that wiojo > 0. We now
show this leads to a contradiction.

Consider the following three cumulative distribution functions on [2,∞):

F1(x) = 1− 2

x

F2(x) = 1− log2 2

log2 x

F3(x) = 1− log 2

log x
,

and denote by π1, π2, π3 the corresponding measures. A simple calculation shows
that DKL(π3‖π1) = ∞, whereas DKL(πa‖πb) < ∞ for any other choice of a, b ∈
{1, 2, 3}.

Let πεa = (1− ε) δ2 + επa for every a ∈ {1, 2, 3}, where δ2 is the point mass at
2. Then still DKL(πε3‖πε1) = ∞, but, for any other choice of a and b in {1, 2, 3},
the divergence D(πεa‖πεb) vanishes as ε goes to zero. Let πε,Ma be the measure πεa
conditioned on the interval [2,M ]. Then DKL(πε,Ma ‖πε,Mb ) tends to DKL(πεa‖πεb)
as M tends to infinity, for any a, b. It follows that for every N ∈ N there exist ε
small enough and M large enough such that DKL(πε,M3 ‖πε,M1 ) > N and, for any

other choice of a, b, DKL(πε,Ma ‖πε,Mb ) < 1/N .

Consider the experiment µ = (R, (µi)) where µi0 = πε,M3 , µj0 = πε,M1 and

µk = πε,M2 for all k 6∈ {i0, j0} and with ε and M so that the inequalities above
hold for N large enough. Then µ ∈ E since all measures have bounded support.
It satisfies DKL(µio‖µjo) > N and DKL(µi‖µj) < 1/N for every other pair ij.

Now let y ∈ D be the vector defined by µ. Then w · y > 0 for N large enough.
A contradiction.

B.2. Experiments and Log-likelihood Ratios

It will be convenient to consider, for each experiment, the distribution over
log-likelihood ratios with respect to the state i = 0 conditional on a state j.
Given an experiment, we define `i = `i0 for every i ∈ Θ. We say that a vector
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σ = (σ0, σ1, . . . , σn) ∈ P(Rn)n+1 of measures is derived from the experiment
(S, (µi)) if for every i = 0, 1, . . . , n,

σi(E) = µi ({s : (`1(s), . . . , `n(s)) ∈ E}) for all measurable E ⊆ Rn.

That is, σi is the distribution of the vector (`1, . . . , `n) of log-likelihood ratios
(with respect to state 0) conditional on state i. There is a one-to-one relation
between the vector σ and the collection (µ̄i) of distributions defined in the main
text: notice that `ij = `i0 − `j0 almost surely, hence knowing the distribution of
(`0i)i∈Θ is enough to recover the distribution of (`ij)i,j∈Θ. Nevertheless, working
directly with σ (rather than (µ̄i)) will simplify the notation considerably.

We call a vector σ ∈ P(Rn)n+1 admissible if it is derived from some experiment.
The next result provides a straightforward characterization of admissible vectors
of measures.

LEMMA 3: A vector of measures σ = (σ0, σ1, . . . , σn) ∈ P(Rn)n+1 is admissible
if and only if the measures are mutually absolutely continuous and, for every i,
satisfy dσi

dσ0
(ξ) = eξi for σi-almost every ξ ∈ Rn.

PROOF:
If (σ0, σ1, . . . , σn) is admissible then there exists an experiment µ = (S, (µi))

such that for any measurable E ⊆ Rn∫
E
eξi dσ0(ξ) =

∫
1E ((`1(s), . . . `n(s))) e`i(s) dµ0(s)

=

∫
1E ((`1(s), . . . `n(s))) dµi(s)

where 1E is the indicator function of E. So,
∫
E e

ξi dσ0(ξ) = σi(E) for every

E ⊆ Rn. Hence eξi is a version of dσi
dσ0

.

Conversely, assume dσi
dσ0

(ξ) = eξi for almost every ξ ∈ Rn. Define an experiment

(Rn+1, (µi)) where µi = σi for every i. The experiment (Rn+1, (µi)) is such that
`i (ξ) = ξi for every i > 0. Hence, for i > 0, µi ({ξ : (`1(ξ), . . . , `n(ξ)) ∈ E}) is
equal to∫

1E ((`1(ξ), . . . `n(ξ))) eξi dσ0(ξ) =

∫
1E(ξ)eξi dσ0(ξ) = σi(E)

and similarly µ0 ({ξ : (`1 (ξ) , . . . , `n (ξ)) ∈ E}) = σ0 (E). So (σ0, σ1, . . . , σn) is
admissible.

B.3. Properties of Cumulants

The purpose of this section is to formally describe cumulants and their relation
to moments. We follow Leonov and Shiryaev (1959) and Shiryaev (1996, p. 289).
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Given a vector ξ ∈ Rn and an integral vector α ∈ Nn we write ξα = ξα1
1 ξα2

2 · · · ξαnn
and use the notational conventions α! = α1!α2! · · ·αn! and |α| = α1 + · · ·+ αn.

Let A = {0, . . . , N}n\{0, . . . , 0}, for some constant N ∈ N greater or equal
than 1. For every probability measure σ1 ∈ P(Rn) and ξ ∈ Rn, let ϕσ1(ξ) =∫
Rn e

i〈z,ξ〉 dσ1(z) denote the characteristic function of σ1 evaluated at ξ. We de-
note by PA ⊆ P(Rn) the subset of measures σ1 such that

∫
Rn |ξ

α| dσ1(ξ) < ∞
for every α ∈ A. Every σ1 ∈ PA is such that in a neighborhood of 0 ∈ Rn the
cumulant generating function logϕσ1 is well defined and the partial derivatives

∂|α|

∂ξα1
1 ∂ξα2

2 · · · ∂ξ
αn
n

logϕσ1(ξ)

exist and are continuous for every α ∈ A.
For every σ1 ∈ PA and α ∈ A let κσ1(α) be defined as

κσ1(α) = i−|α|
∂|α|

∂ξα1
1 ∂ξα2

2 · · · ∂ξ
αn
n

logϕσ1(0)

With slight abuse of terminology, we refer to κσ1 ∈ RA as the vector of cumulants
of σ1. In addition, for every σ1 ∈ PA and α ∈ A we denote by mσ1(α) =∫
Rn ξ

α dσ1(ξ) the mixed moment of σ1 of order α and refer to mσ1 ∈ RA as the
vector of moments of σ1.

Given two measures σ1, σ2 ∈ P(Rn) we denote by σ1 ∗ σ2 ∈ P(Rn) the corre-
sponding convolution.

LEMMA 4: For every σ1, σ2 ∈ PA, and α ∈ A, κσ1∗σ2(α) = κσ1(α) + κσ2(α).

PROOF:
The result follows from the well known fact that ϕσ1∗σ2(ξ) = ϕσ1(ξ)ϕσ2(ξ) for

every ξ ∈ Rn.
The next result, due to Leonov and Shiryaev (1959) (see also Shiryaev, 1996,

p. 290) establishes a one-to-one relation between the vector of moments mσ1 and
vector of cumulants κσ1 of a probability measure σ1 ∈ PA. Given α ∈ A, let Λ(α)
be the set of all ordered collections

(
λ1, . . . , λq

)
of non-zero vectors in Nn such

that
∑q

p=1 λ
p = α.

THEOREM 2: For every σ1 ∈ PA and α ∈ A,

1) mσ1(α) =
∑

(λ1,...,λq)∈Λ(α)
1
q!

α!
λ1!···λq !

∏q
p=1 κσ1(λp)

2) κσ1(α) =
∑

(λ1,...,λq)∈Λ(α)
(−1)q−1

q
α!

λ1!···λq !
∏q
p=1mσ1(λp)

The result yields the following implication. Let MA = {mσ1 : σ1 ∈ PA} ⊆ RA
and KA = {κσ1 : σ1 ∈ PA} ⊆ RA. Statement 2 in Theorem 2 shows the existence
of a continuous function h : MA → KA such that κσ1 = h(mσ1) for every σ1 ∈ PA.
Moreover, statement 1 implies h is one-to-one.
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B.4. Cumulants and Admissible Measures

We denote by A the set of vectors of measures σ = (σ0, σ1, . . . , σn) that are
admissible and such that σi ∈ PA for every i. To each σ ∈ A we associate the
vector

mσ = (mσ0 ,mσ1 , . . . ,mσn) ∈ Rd

of dimension d = (n+ 1) |A|. Similarly, we define

κσ = (κσ0 , κσ1 , . . . , κσn) ∈ Rd.

In this section we study properties of the sets M = {mσ : σ ∈ A} and K =
{κσ : σ ∈ A}.

LEMMA 5: Let I and J be disjoint finite sets and let (φk)k∈I∪J be a collection
of real valued functions defined on Rn. Assume {φk : k ∈ I ∪ J} ∪ {1Rn} are
linearly independent and the unit vector (1, . . . , 1) ∈ RJ belongs to the interior of{

(φk (ξ))k∈J : ξ ∈ Rn
}

. Then

C =

{(∫
Rn
φk dσ1

)
k∈I

: σ1 ∈ P(Rn) has finite support and

∫
Rn
φk dσ1 = 1 for all k ∈ J

}
is a convex subset of RI with nonempty interior.

PROOF:
To ease the notation, let Y = Rn and denote by Po be the set of probability

measures on Y with finite support. Consider F = {φk : k ∈ I ∪ J} ∪ {1Rd} as a
subset of the vector space RY , where the latter is endowed with the topology of
pointwise convergence. The topological dual of RY is the vector space of signed
measures on Y with finite support. Let

D =

{(∫
Rn
φk dσ1

)
k∈I∪J

: σ1 ∈ Po
}
⊆ RI∪J .

Fix k ∈ I ∪ J . Since φk does not belong to the linear space V generated
by F\{φk}, then a standard application of the hyperplane separation theorem
implies the existence of a signed measure

ρ = ασ1 − βσ2

where α, β ≥ 0, α + β > 0 and σ1, σ2 ∈ Po, such that ρ satisfies
∫
φk dρ > 0 ≥∫

φ dρ for every φ ∈ V . This implies
∫
φ dρ = 0 for every φ ∈ V . By taking

φ = 1Rn , we obtain ρ(Rn) = 0. Hence, α = β. Therefore,
∫
φk dσ1 >

∫
φk dσ2

and
∫
φl dσ1 =

∫
φl dσ2 for every l 6= k. To summarize, we have shown that for

every k ∈ I ∪J there exist vectors wk, zk ∈ D such that wkk > zkk and wkl = zkl for
l 6= k.
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Now let aff(D) be the affine hull of D. As is well known, for every d ∈ D we
have the identity aff(D) = d+span(D−d), where span(D−d) is the vector space
generated by D−d. Moreover, span(D−d) is independent of the choice of d ∈ D
(see, for example, Jonathan M Borwein and Jon D Vanderwerff, 2010, Lemma
2.4.5).

Let k ∈ I ∪ J and let 1k ∈ RI∪J be the corresponding unit vector. By taking
d = zk we obtain that wk − zk ∈ span(D− zk). Thus, 1k ∈ span(D− d) for every
k. Hence span(D − d) = RI∪J . Therefore aff(D) = RI∪J . Since D is convex,
it has nonempty relative interior as a subset of aff(D). We conclude that D has
nonempty interior.

Now consider the hyperplane

H = {z ∈ RI∪J : zk = 1 for all k ∈ J}

Let Do be the interior of D. It remains to show that the hyperplane H satisfies
H ∩Do 6= ∅. This will imply that the projection of H ∩D on RI , which equals
C, has nonempty interior.

Let w ∈ Do. By assumption, (1, . . . , 1) ∈ RJ is in the interior of {(φk(ξ))k∈J : ξ ∈ Y }.
Hence, there exists α ∈ (0, 1) small enough and ξ ∈ Y such that φk(ξ) =

1
1−α −

α
1−αwk for every k ∈ J . Define z = αw + (1 − α)(φk(ξ))k∈I∪J ∈ D.

Then zk = 1 for every k ∈ J . In addition, because w ∈ Do then z ∈ Do as well.
Hence z ∈ H ∩Do.

LEMMA 6: The set M = {mσ : σ ∈ A} has nonempty interior.

PROOF:

For every α ∈ A define the functions (φi,α)i∈Θ on Rn as

φ0,α (ξ) = ξα and φi,α (ξ) = ξαeξi for all i > 0.

Define ψ0 = 1Rn and ψi(ξ) = eξi for all i > 0. It is immediate to verify that

{φi,α : i ∈ Θ, α ∈ A} ∪ {ψi : i ∈ Θ}

is a linearly independent set of functions. In addition, (1, . . . , 1) ∈ Rn is in the
interior of {(eξ1 , . . . , eξn) : ξ ∈ Rn}. Lemma 5 implies that the set

C =

{(∫
Rn
φi,α dσ0

)
i∈Θ
α∈A

: σ0 ∈ P(Rn) has finite support and

∫
Rn
eξi dσ0(ξ) = 1 for all i

}

has nonempty interior. Given σ0 as in the definition of C, construct a vector
σ = (σ0, σ1, . . . , σn) where for each i > 0 the measure σi is defined so that
(dσi/dσ0)(ξ) = eξi , σ0-almost surely. Then, Lemma 3 implies σ is admissible.
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Because each σi has finite support then σ ∈ A. In addition,

mσ =

(∫
Rn
φi,α dσ0

)
i∈Θ
α∈A

hence C ⊆M. Thus, M has nonempty interior.

THEOREM 3: The set K = {κσ : σ ∈ A} has nonempty interior.

PROOF:
Let h : MA → KA be the function defined in the discussion following Theorem

2, mapping vectors of moments to vectors of cumulants. Define H :M→K as

H(mσ) = (h(mσ0), h(mσ1), . . . , h(mσn)) = κσ

for every σ = (σ0, σ1, . . . , σn) ∈ A. Since h is continuous and one-to-one then so
is H. Lemma 6 shows there exists an open set U ⊆ Rd included in M. Let HU

be the restriction of H on U . Then HU satisfies all the assumptions of Brouwer’s
Invariance of Domain Theorem,35 which implies that HU (U) is an open subset of
Rd. Since H(M) ⊆ K, it follows that K has nonempty interior.

C. Automatic Continuity in the Cauchy Problem for Subsemigroups of Rd.

A subsemigroup of Rd is a subset S ⊆ Rd that is closed under addition, so
that x + y ∈ S for all x, y ∈ S. We say that a map F : S → R+ is additive if
F (x + y) = F (x) + F (y) for all x, y, x + y ∈ S. We say that F is linear if there
exists (a1, . . . , ad) ∈ Rd such that F (x) = F (x1, . . . , xd) = a1x1 + · · · + adxd for
all x ∈ S.

We can now state the main result of this section:

THEOREM 4: Let S be a subsemigroup of Rd with a nonempty interior. Then
every additive function F : S → R+ is linear.

Before proving the theorem we will establish a number of claims.

CLAIM 1: Let S be a subsemigroup of Rd with a nonempty interior. Then there
exists an open ball B ⊂ Rd such that aB ⊂ S for all real a ≥ 1.

PROOF:
Let B0 be an open ball contained in S, with center x0 and radius r. Given a

positive integer k, note that kB0 is the ball of radius kr centered at kr0, and that
it is contained in S, since S is a semigroup. Choose a positive integer M ≥ 4 such
that 2

3Mr > ‖x0‖, and let B be the open ball with center at Mx0 and radius r

(see Figure 5). Fix any a ≥ 1, and write a = 1
M (n + γ) for some integer n ≥ M

and γ ∈ [0, 1). Then n
MB is the ball of radius n

M r centered at nx0, which is

35Brouwer (1911). See also Theorem 2 in Tao (2011).
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contained in nB0, since nB0 also has center nx0, but has a larger radius nr. So
n
MB ⊂ nB0. We claim that furthermore n+1

M B is also contained in nB0. To see

this, observe that the center of n+1
M B is (n + 1)x0 and its radius is n+1

M r. Hence

the center of n+1
M B is at distance ‖x0‖ from the center of nB0, and so the furthest

point in n+1
M B is at distance ‖x0‖+ n+1

M r from the center of nB0. But the radius
of nB0 is

nr =
2

3
nr +

1

3
nr ≥ 2

3
Mr +

1

3
nr > ‖x0‖+

n+ 1

M
r,

where the first inequality follows since n ≥M , and the second since 2
3Mr > ‖x0‖

and M ≥ 4. So nB0 indeed contains both n
MB and n+1

M B. Thus it also contains
aB, and so S contains aB.

B0

2B0

MB0

B

Figure 5. : Illustration of the proof of Claim 1. The dark ball B is contained in
the light ones, and it is apparent from this image that so is any multiple of B by
a ≥ 1.

CLAIM 2: Let S be a subsemigroup of Rd with a nonempty interior. Let F : S →
R+ be additive and satisfy F (ay) = aF (y) for every y ∈ S and a ∈ R+ such that
ay ∈ S. Then F is linear.

PROOF:

If S does not include zero, then without loss of generality we add zero to it and
set F (0) = 0. Let B be an open ball such that aB ⊂ S for all a ≥ 1; the existence
of such a ball is guaranteed by Claim 1. Choose a basis {b1, . . . , bd} of Rd that
is a subset of B, and let x = β1b

1 + · · ·+ βdb
d be an arbitrary element of S. Let
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b = max {1/|βi| : βi 6= 0}, and let a = max {1, b}. Then

F (ax) = F (aβ1b
1 + · · ·+ aβdb

d).

Assume without loss of generality that for some 0 ≤ k ≤ d it holds that the first
k coefficients βi are non-negative, and the rest are negative. Then for i ≤ k it
holds that aβib

i ∈ S and for i > k it holds that −aβibi ∈ S; this follows from the
defining property of the ball B, since each bi is in B, and since |aβi| ≥ 1. Hence
we can add F (−aβk+1b

k+1 − · · · − aβdbd) to both sides of the above displayed
equation, and then by additivity,

F (ax) + F (−aβk+1b
k+1 − · · · − aβdbd)

= F (aβ1b
1 + · · ·+ aβdb

d) + F (−aβk+1b
k+1 − · · · − aβdbd)

= F (aβ1b
1 + · · ·+ aβkb

k).

Using additivity again yields

F (ax) + F (−aβk+1b
k+1) + · · ·+ F (−aβdbd) = F (aβ1b

1) + · · ·+ F (aβkb
k).

Applying now the claim hypothesis that F (ay) = aF (y) whenever y, ay ∈ S yields

aF (x) + (−aβk+1)F (bk+1) + · · ·+ (−aβd)F (bd) = aβ1F (b1) + · · ·+ aβkF (bk).

Rearranging and dividing by a, we arrive at

F (x) = β1F (b1) + · · ·+ βdF (bd).

We can therefore extend F to a function that satisfies this on all of Rd, which is
then clearly linear.

CLAIM 3: Let B be an open ball in Rd, and let B be the semigroup given by
∪a≥1aB. Then every additive F : B → R+ is linear.

PROOF:

Fix any x ∈ B, and assume ax ∈ B for some a ∈ R+. Since B is open, by Claim
2 it suffices to show that F (ax) = aF (x). The defining property of B implies
that the intersection of B and the ray {bx : b ≥ 0} is of the form {bx : b > a0}
for some a0 ≥ 0. By the additive property of F , we have that F (qx) = qF (x) for
every rational q > a0. Furthermore, if b > b′ > a0 then n(b− b′)x ∈ S for n large



12 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

enough. Hence

F (bx) =
1

n
F (nbx)

=
1

n
F
(
nb′x+ (n(b− b′)x)

)
=

1

n
F
(
nb′x

)
+

1

n
F
(
n(b− b′)x

)
= F (b′x) +

1

n
F
(
n(b− b′)x

)
≥ F (b′x).

Thus the map f : (a0,∞) → R+ given by f(b) = F (bx) is monotone increasing,
and its restriction to the rationals is linear. So f must be linear, and hence
F (ax) = aF (x).

Given these claims, we are ready to prove our theorem. PROOF OF THEO-
REM 4.:

Fix any x ∈ S, and assume ax ∈ S for some a ∈ R+. By Claim 2 it suffices to
show that F (ax) = aF (x). Let B be a ball with the property described in Claim
1, and denote its center by x0 and its radius by r. As in Claim 3, let B be the
semigroup given by ∪a≥1aB; note that B ⊆ S. Then there is some y such that
x+ y, a(x+ y), y, ay ∈ B; in fact, we can take y = bx0 for b = max {a, 1/a, |x|/r}
(see Figure 6). Then, on the one hand, by additivity,

F (ax+ ay) = F (ax) + F (ay).

On the other hand, since x + y, a(x + y), y, ay ∈ B,and since, by Claim 3, the
restriction of F to B is linear, we have that

F (ax+ ay) = F (a(x+ y)) = aF (x+ y) = aF (x) + aF (y) = aF (x) + F (ay),

thus
F (ax) + F (ay) = aF (x) + F (ay)

and so F (ax) = aF (x).

D. Proof of Theorem 1

Throughout this section, we maintain the notation and terminology introduced
in §B. It follows from the results in §B.B.1 that an LLR cost satisfies Axioms
1-4. For the rest of this section, we denote by C a cost function that satisfies
the axioms. Let N be such that C is uniformly continuous with respect to the
distance dN . We use the same N to define the set A = {0, . . . , N}n\{0, . . . , 0}
introduced in §B.B.3.
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B
x

ax

y

ay

x+ y

a(x+ y)

Figure 6. : An illustration of the proof of Theorem 4.

LEMMA 7: Let µ and ν be two experiments that induce the same vector σ ∈ A.
Then C(µ) = C(ν).

PROOF:

Conditional on each k ∈ Θ, the two experiments induce the same distribution
for (`i0)i∈Θ. Because `ij = `i0 − `j0 almost surely, it follows that, conditional
on each state, the two experiments induce the same distribution over the vector
of all log-likelihood ratios (`ij)i,j∈Θ. Hence, µ̄i = ν̄i for every i. Therefore, by
Lemma 1 the two experiments are equivalent in the Blackwell order. The result
now follows directly from Axiom 1.

Lemma 7 implies that we can define a function c : A → R+ as c(σ) = C(µ)
where µ is an experiment inducing σ.

LEMMA 8: Consider two experiments µ = (S, (µi)) and ν = (T, (νi)) that induce
σ and τ in A, respectively. Then

1) The experiment µ⊗ ν induces the vector (σ0 ∗ τ0, . . . , σn ∗ τn) ∈ A;

2) The experiment α · µ induces the measure ασ + (1− α)δ0.

PROOF:
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(1) For every E ⊆ Rn and every state i,

(µi × νi) ({(s, t) : (`1(s, t), . . . `n(s, t)) ∈ E})

= (µi × νi)
({

(s, t) :

(
log

dµ1

dµ0
(s) + log

dν1

dν0
(t), . . . , log

dµn
dµ0

(s) + log
dν1

dνn
(t)

)
∈ E

})
= (σi ∗ τi)(E)

where the last equality follows from the definition of σi and τi. This concludes
the proof of the claim.

(2) Immediate from the definition of α · µ.

LEMMA 9: The function c : A → R satisfies, for all σ, τ ∈ A and α ∈ [0, 1]:

1) c(σ0 ∗ τ0, . . . , σn ∗ τn) = c(σ) + c(τ);

2) c(ασ + (1− α)δ0) = αc(σ).

PROOF:
(1) Let µ ∈ E induce σ and let ν ∈ E induce τ . Then C(µ) = c(σ), C(ν) = c(τ)

and, by Axiom 2 and Lemma 8, c(σ0 ∗ τ0, . . . , σn ∗ τn) = C(µ⊗ ν) = c(σ) + c(τ).
Claim (2) follows directly from Axiom 3 and Lemma 8.

LEMMA 10: If σ, τ ∈ A satisfy mσ = mτ then c(σ) = c(τ).

PROOF:
Let µ be and ν be two experiments inducing σ and τ , respectively. Let µ⊗r =

µ ⊗ . . . ⊗ µ be the experiment obtained as the r-th fold independent product of
µ. Axioms 2 and 3 imply

C((1/r) · µ⊗r) = C(µ) and C((1/r) · ν⊗r) = C(ν)

In order to show that C(µ) = C(ν) we now prove that C((1/r) · µ⊗r)−C((1/r) ·
ν⊗r)→ 0 as r →∞. To simplify the notation let, for every r ∈ N,

µ[r] = (1/r) · µ⊗r and ν[r] = (1/r) · ν⊗r

Let σ[r] = (σ[r]0, . . . , σ[r]n) and τ [r] = (τ [r]0, . . . , τ [r]n) in A be the vectors of
measures induced by µ[r] and ν[r].

We claim that dN (µ[r], ν[r]) → 0 as r → ∞. First, notice that µ[r]i and ν[r]i
assign probability (r − 1)/r to the zero vector 0 ∈ R(n+1)2

. Hence

dtv(µ[r]i, ν[r]i) = sup
E

1

r

∣∣∣µ⊗ri(E)− ν⊗ri(E)
∣∣∣ ≤ 1

r
.

For every α ∈ A we have

(21) M
µ[r]
i (α) =

∫
`α1
10 . . . `

αn
n0 dµ[r]i =

∫
Rn
ξα1

1 · · · ξ
αn
n dσ[r]i(ξ) = mσ[r]i

(α)
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We claim that mσ[r] = mτ [r]. Theorem 2 shows the existence of a bijection

H :M→K such that H(mυ) = κυ for every υ ∈ A. The experiment µ⊗r induces
the vector (σ∗r0 , . . . , σ

∗r
n ) ∈ A, where σ∗ri denotes the r-th fold convolution of σi

with itself. Denote such a vector as σ∗r. Let τ∗r ∈ A be the corresponding vector
induced by ν⊗r. Thus we have κσ = H(mσ) = H(mτ ) = κτ , and

H(mµ∗r) = κσ∗r = (κσ∗r0
, . . . , κσ∗rn ) = (rκσ0 , . . . , rκσn) = rκσ = rκτ = κτ∗r = H(mτ∗r)

Hence mσ∗r = mτ∗r . It now follows from

mσ[r]i(α) =
1

r
mσ∗ri

(α) +
r − 1

r
0

that mσ[r] = mτ [r], concluding the proof of the claim.

Equation (21) therefore implies that M
µ[r]
i (α) = M

ν[r]
i (α). Thus

dN (µ[r], ν[r]) = max
i
dtv(µ[r]i, ν[r]i) ≤

1

r
.

Hence dN (µ[r], ν[r]) converges to 0. Since C is uniformly continuous, then C(µ[r])−
C(ν[r]) = 0 must converge to 0 as well. This implies C(µ) = C(ν).

LEMMA 11: There exists an additive function F : K → R such that c(σ) =
F (κσ).

PROOF:
It follows from Lemma 10 that we can define a map G : M → R such that

c(σ) = G(mσ) for every σ ∈ A. We can use Theorem 2 to define a bijection
H :M→ K such that H(mσ) = κσ. Hence F = G ◦H−1 satisfies c(σ) = F (κσ)
for every σ. For every σ, τ ∈ A, Lemmas 8 and 9 imply

F (κσ)+F (κτ ) = c(σ)+c(τ) = c(σ0∗τ0, . . . , σn∗τn) = F (κσ0∗τ0 , . . . , κσn∗τn) = F (κσ+κτ )

where the last equality follows from the additivity of cumulants with respect to
convolution.

LEMMA 12: There exist (λi,α)i∈Θ,α∈A in R such that

c(σ) =
∑
i∈Θ

∑
α∈A

λi,ακσi(α) for every σ ∈ A.

PROOF:
As implied by Theorem 3, the set K ⊆ Rd has nonempty interior. It is closed

under addition, i.e. a subsemigroup. We can therefore apply Theorem 4 and
conclude that the function F in Lemma 11 is linear.



16 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

LEMMA 13: Let (λi,α)i∈Θ,α∈A be as in Lemma 12. Then

c(σ) =
∑
i∈Θ

∑
α∈A

λi,αmσi (α) for every σ ∈ A

PROOF:

Fix σ ∈ A. Given t ∈ (0, 1), Lemma 12 and Theorem 2 imply

c (tσ + (1− t)δ0) =
∑
i∈Θ

∑
α∈A

λi,α

 ∑
λ=(λ1,...,λq)∈Λ(α)

(−1)q−1

q

α!

λ1! · · ·λq!

q∏
p=1

mtσi+(1−t)δ0 (λp)


=

∑
i∈Θ

∑
α∈A

λi,α

 ∑
λ=(λ1,...,λq)∈Λ(α)

(−1)q−1

q

α!

λ1! · · ·λq!
tq

q∏
p=1

mσi (λp)


=

∑
i∈Θ

∑
α∈A

λi,α

 ∑
λ=(λ1,...,λq)∈Λ(α)

ρ (λ) tq
q∏
p=1

mσi (λp)


where for every tuple λ =

(
λ1, . . . , λq

)
∈ Λ(α) we let

ρ (λ) =
(−1)q−1

q

α!

λ1! · · ·λq!

Lemma 9 implies c(σ) = 1
t c(tσ + (1− t) δ0) for every t. Hence

c(σ) =
∑
i∈Θ

∑
α∈A

λi,α

 ∑
λ=(λ1,...,λq)∈Λ(α)

ρ(λ)tq−1
q∏
p=1

mσi(λ
p)

 for all t ∈ (0, 1).

By considering the limit t ↓ 0, we have tq−1 → 0 whenever q 6= 1. Therefore

c(σ) =
∑
i∈Θ

∑
α∈A

λi,αmσi(α) for all σ ∈ A.

LEMMA 14: Let (λi,α)i∈Θ,α∈A be as in Lemmas 12 and 13. Then, for every i,

if |α| > 1 then λi,α = 0.

PROOF:

Let γ = max {|α| : λi,α 6= 0 for some i} . Assume, as a way of contradiction,
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that γ > 1. Fix σ ∈ A. Theorem 2 implies

c(σ) =
∑
i∈Θ

∑
α∈A

λi,αmσi(α)

=
∑
i∈Θ

∑
α∈A

λi,α

 ∑
(λ1,...,λq)∈Λ(α)

1

q!

α!

λ1! · · ·λq!

q∏
p=1

κσi(λ
p)


For all r ∈ N, let σ∗r = (σ∗r0 , . . . , σ

∗r
0 ), where each σ∗ri is the r-th fold convolution

of σi with itself. Hence, using the fact that κσ∗ri = rκσi , we obtain

(22) c(σ∗r) =
∑
i∈Θ

∑
α∈A

λi,α

 ∑
(λ1,...,λq)∈Λ(α)

1

q!

α!

λ1! · · ·λq!
rq

q∏
p=1

κσi(λ
p)


By the additivity of c, c(σ∗r) = rc(σ). Hence, because γ > 1, c(σ∗r)/rγ → 0 as
r →∞. Therefore, diving (22) by rγ implies

(23)
∑
i∈Θ

∑
α∈A

λi,α

 ∑
(λ1,...,λq)∈Λ(α)

1

q!

α!

λ1! · · ·λq!
rq−γ

q∏
p=1

κσi(λ
p)

→ 0 as r →∞.

We now show that (23) leads to a contradiction. By construction, if
(
λ1, . . . , λq

)
∈

Λ(α) then q ≤ |α|. Hence q ≤ γ whenever λi,α 6= 0. So, in equation (23) we have
rq−γ → 0 as r → ∞ whenever q < γ. Hence in order for (23) to hold it must be
that

∑
i∈Θ

∑
α∈A:|α|=γ

λi,α

 ∑
(λ1,...,λq)∈Λ(α),q=γ

1

q!

α!

λ1! · · ·λq!

q∏
p=1

κσi (λp)

 = 0.

If q = γ and λi,α 6= 0 then γ = |α|. In this case, in order for λ =
(
λ1, . . . , λq

)
to satisfy

∑q
p=1 λ

p = α, it must be that each λp is a unit vector. Every such λ

satisfies36

q∏
p=1

κσi(λ
p) =

(∫
Rn
ξ1 dσi (ξ)

)α1

· · ·
(∫

Rn
ξn dσi (ξ)

)αn
and ∑

(λ1,...,λq)∈Λ(α),q=|α|

1

q!

α!

λ1! · · ·λq!
=

∑
(λ1,...,λq)∈Λ(α),q=|α|

α!

|α|!
= L(α)

36It follows from the definition of cumulant that for every unit vector 1j ∈ Rn, κσi (1j) =
∫
Rn ξj dσi(ξ).
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where L(α) is the cardinality of the set of
(
λ1, . . . , λq

)
∈ Λ(α) such that q = |α|.

We obtain that

(24)
∑
i∈Θ

∑
α∈A:|α|=γ

L(α)λi,α

(∫
Rn
ξ1 dσi (ξ)

)α1

· · ·
(∫

Rn
ξn dσi (ξ)

)αn
= 0.

By replicating the argument in the proof of Lemma 6 we obtain that the set{(∫
Rn
ξj dσi(ξ)

)
i,j∈Θ,j>0

: σ ∈ A

}
⊆ R(n+1)n

contains an open set U . Consider now the function f : R(n+1)n → R defined as

f(z) =
∑
i∈Θ

∑
α∈A:|α|=γ

L(α)λi,αz
α1
i,1 · · · z

αn
i,n , z ∈ R(n+1)n

Then (24) implies that f equals 0 on U . Hence, for every z ∈ U ,i ∈ Θ and α ∈ A
such that |α| = γ,

L(α)λi,α =
∂γ

∂α1zi,1 · · · ∂αnzi,n
f(z) = 0

hence λi,α = 0. This contradicts the assumption that γ > 1 and concludes the
proof.

For every j ∈ {1, . . . , n} let 1j ∈ A be the corresponding unit vector. We write
λij for λi,j . Lemma 14 implies that for every distribution σ ∈ A induced by an
experiment (S, (µi)), the function c satisfies

c(σ) =
∑
i∈Θ

∑
j∈{1,...,n}

λij

∫
Rn
ξj dσi(ξ)

=
∑
i∈Θ

∑
j∈{1,...,n}

λij

∫
S

log
dµj
dµ0

(s) dµi(s)

=
∑
i∈Θ

∑
j∈{1,...,n}

λij

∫
S

log
dµj
dµ0

(s) + log
dµ0

dµi
(s)− log

dµ0

dµi
(s) dµi(s)
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Hence, using the fact that
dµj
dµ0

dµ0

dµi
=

dµj
dµi

, we obtain

c(σ) =
∑
i∈Θ

∑
j∈{1,...,n}

λij

∫
S

log
dµj
dµi

dµi(s) +
∑
i∈Θ

− ∑
j∈{1,...,n}

λij

∫
S

log
dµ0

dµi
(s) dµi(s)

=
∑
i,j∈Θ

βij

∫
S

log
dµi
dµj

(s) dµi(s)

where in the last step, for every i, we set βij = −λij if j 6= 0 and βi0 =
∑

j 6=0 λij .

It remains to show that the coefficients (βij) are positive and unique. Because
C takes positive values, Lemma 2 immediately implies βij ≥ 0 for all i, j. The
same Lemma easily implies that the coefficients are unique given C.

E. Proofs of the Results of Section V

PROOF OF PROPOSITION 3:

Let µ? ∈ P(A)n be an optimal experiment. Let A? = supp(µ?) be the set of
actions played in µ?. It solves

max
µ∈R|Θ|×|A

?|
+

∑
i∈Θ

qi

(∑
a∈A

µi(a)u(a, i)

)
−
∑
i,j∈Θ

βij
∑
a∈A?

µi(a) log
µi(a)

µj(a)

(25)

subject to
∑
a∈A?

µi(a) = 1 for all i ∈ Θ.

(26)

Reasoning as in Cover and Thomas (2012, Theorem 2.7.2) the Log-sum inequality
implies that the function DKL is convex when its domain is extended from pairs

of probability distributions to pairs of vectors in R|A
?|

+ . Moreover, expected utility
is linear in the choice probabilities. It then follows that the objective function in

(25) is concave over R|Θ|×|A
?|

+ .

As (25) equals −∞ whenever µi(a) = 0 for some i and µj(a) > 0 for some j 6= i

we have that µ?i (a) > 0 for all i ∈ Θ, a ∈ A?. For every λ ∈ R|Θ| we define the
Lagrangian Lλ(µ) as

Lλ(µ) =

∑
i∈Θ

qi

(∑
a∈A

µi(a)u(a, i)

)
−
∑
i,j∈Θ

βij
∑
a∈A

µi(a) log
µi(a)

µj(a)

−∑
i∈Θ

λi
∑
a∈A

µi(a) .

As µ? is an interior solution to (25), it follows from the Karush-Kuhn-Tucker
theorem that there exists Lagrange multipliers λ ∈ R|Θ| such that µ? maximizes
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Lλ(·) over R|Θ|×|A
?|

+ . As µ? is interior it satisfies the first order condition

∇Lλ(µ?) = 0 .

We thus have that for every state i ∈ Θ and every action a ∈ A?

(27) 0 = qiui(a)− λi −
∑
j 6=i

{
βij

[
log

(
µ?i (a)

µ?j (a)

)
− 1

]
− βji

µ?j (a)

µ?i (a)

}
.

Subtracting (27) evaluated at a′ from (27) evaluated at a yields the desired
necessary conditions for the optimality of µ?.

PROOF OF PROPOSITION 4:

We prove a slightly more general result. Assume the coefficients satisfy βij ≥
1/f(d(i, j))2, where f is a strictly positive and increasing function f .

The cost of the optimal experiment µ? must satisfy ‖u‖ ≥ C(µ?), otherwise the
decision maker would be better off acquiring no information. Pinsker’s inequality
(see Borwein and Vanderwerff, 2010, p. 13) implies

C(µ?) ≥ min{βij , βji}(DKL(µ?i ‖µ?j ) +DKL(µ?j‖µ?i )) ≥ min{βij , βji}‖µ?i − µ?j‖21.

where ‖µ?i−µ?j‖1 =
∑

a∈A |µ?i (a)−µ?j (a)| denotes the total-variation norm between
the two distributions. We then obtain

‖µ?i − µ?j‖1 ≤

√
‖u‖ 1

min{βij , βji}
≤
√
‖u‖f(d(i, j)) .

In particular, if f is the identity function then ‖µ?i − µ?j ≤
√
‖u‖d(i, j).

PROOF OF PROPOSITION 6:

Given a vector µ ∈ P({B,R})Θ, we use the shorthand µi to denote the proba-
bility µi(B) of guessing B in state i. For every µ, let

(28) U(µ) =
1

|Θ|

∑
i<n/2

(1− µi) +
∑
i>n/2

µi

− C(µ)

be the net expected payoff provided by µ, where C is an LLR cost function such
that βij = f(|i− j|) for some positive and strictly decreasing function f .

Let P+ be the set of probabilities µ such that each µi has support {B,R}. Let
µ? be a solution to the problem maxµ∈P+ U(µ). Such a solution exists and is
unique. In fact, the problem maxµ∈P({B,R})Θ U(µ) has a solution. Now, if µ?

is optimal and µ? /∈ P+, then either µ?i = 0 for every i or µ?i = 1 for every i.
In either case U(µ?) = U(µ), where µ ∈ P+ is defined as µi = 1/2 for every i.
It follows that the problem maxµ∈P+ U(µ) admits a solution µ?. Over P+ the
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function C is strictly convex,37 and thus U is strictly concave. Thus, the solution
is unique.

We claim that µ? satisfies µ?n/2+r = 1− µ?n/2−r for every r. To see this, define

µ ∈ P+ as µn/2+r = 1 − µ?n/2−r for every r. Because U(µ?) = U(µ) and U is

strictly concave on P+, we conclude that µ = µ?.

Let I ⊆ P({B,R})Θ be the set of vectors µ that are increasing, that is, satisfy
µi ≤ µi+1 for every i < n, and consider the optimization problem

max
µ∈I∩P+

U(µ).

The set I is closed and U is upper semi-continuous. Thus, the problem maxµ∈I U(µ)
has a solution. The same argument applied in the previous paragraph implies
maxµ∈I∩P+ U(µ) admits a solution as well, and that such a solution is unique.
We denote it by µ̂.

As we show in the next paragraph, the vector µ̂ is strictly increasing: it satisfies
µ̂i < µ̂i+1 for every i. This implies µ? = µ̂. Indeed, we have U(µ?) ≥ U(µ̂), since
µ? is obtained by maximizing U over a larger domain. If U(µ?) > U(µ̂) the
concavity of U implies U(αµ? + (1 − α)µ̂) > U(µ̂) for all α ∈ [0, 1]. Because µ̂
is strictly increasing, then for α small enough the vector αµ? + (1− α)µ̂ belongs
to I, contradicting the optimality of µ̂. It follows that U(µ?) = U(µ̂), and hence
µ? = µ̂, since the problem maxµ∈P+ U(µ) has a unique solution.

We now show µ̂ is strictly increasing. Given ν, ρ ∈ (0, 1) we denote by D1(ν‖ρ)
and D2(ν‖ρ) the partial derivatives of the Kullback-Leibler divergence DKL with
respect to its the first and second arguments:

D1(ρ‖ν) = log
ρ

ν
− log

1− ρ
1− ν

D2(ρ‖ν) = −ρ
ν

+
1− ρ
1− ν

.

Both derivatives are equal to zero if and only if ν = ρ.

As a way of contradiction, suppose µ̂ is not strictly increasing. Let [i, k] be
a maximal interval of states over which µ̂ is constant. Let µε be the vector
obtained from µ̂ by increasing µ̂k by ε > 0 and decreasing µ̂i by ε (since µ̂ ∈ P+,
both operations are feasible for ε small enough). The function ε 7→ U(µε) is
differentiable. Its derivative at ε = 0 is equal to
(29)
sgn(k − n/2)

|Θ|
−
∑
j 6=k

βjk(D2(µ̂j‖µ̂k)+D1(µ̂k‖µ̂j))−
sgn(i− n/2)

|Θ|
+
∑
j 6=i

βij(D2(µ̂j‖µ̂i)+D1(µ̂k‖µ̂i)) .

Since µ̂ is constant in the interval [i, k], then D1(µ̂j‖µ̂m) = D2(µ̂j‖µ̂m) whenever

37See Corollary 1.55 in Liese and Vajda (1987)
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i ≤ j ≤ m ≤ k. We can therefore rewrite (29) as

sgn(k − n/2)

|Θ|
−
∑
j>k

βjk(D2(µ̂j‖µ̂k) +D1(µ̂k‖µ̂j))−
∑
j<i

βjk(D2(µ̂j‖µ̂k) +D1(µ̂k‖µ̂j))

−sgn(i− n/2)

|Θ|
+
∑
j>k

βij(D2(µ̂j‖µ̂i) +D1(µ̂k‖µ̂i)) +
∑
j<i

βij(D2(µ̂j‖µ̂i) +D1(µ̂i‖µ̂j)) .

(30)

The derivative (30) is strictly positive. Indeed, because k ≥ i then sgn(k−n/2)−
sgn(i − n/2) ≥ 0. Whenever j > k, since µ̂j > µ̂k = µ̂i and D is strictly convex
over P+, we have

D2(µ̂j‖µ̂k) = D2(µ̂j‖µ̂i) < 0 and D1(µ̂k‖µ̂j) = D1(µ̂i‖µ̂j) < 0

Moreover βjk > βji since |j − k| < |i− k|. It follows that

−
∑
j>k

βjk(D2(µ̂j‖µ̂k) +D1(µ̂k‖µ̂j)) +
∑
j>k

βij(D2(µ̂j‖µ̂i) +D1(µ̂i‖µ̂j))

is strictly positive if k < n, and equal to 0 if k = n. An analogous argument
shows that

−
∑
j<i

βjk(D2(µ̂j‖µ̂k) +D1(µ̂k‖µ̂j)) +
∑
j<i

βij(D2(µ̂j‖µ̂i) +D1(µ̂i‖µ̂j))

is strictly positive if i > 0, and equal to 0 if i = 0. Because µ̂ ∈ P+, then either
k < n/2 + r, i > n/2 − r, or both. This implies that (30) is strictly positive.
Hence, for small enough ε, the vector µε satisfies U(µε) > U(µ̂), contradicting the
hypothesis that µ̂ is optimal. We therefore conclude that µ̂ is strictly increasing,
and thus µ? is strictly increasing as well.

Because µ? satisfies µ?n/2+r = µ?n/2−r for every r, and µ? is strictly increasing,

it follows that mi > mj for every pair of states such that |i− n/2| > |j − n/2|.
PROOF OF PROPOSITION 7:

Denote by P+ be the set of probabilities µ ∈ P({a1, a2})2 such that supp(µ) =
{a1, a2}. Let µ ∈ P+ be an optimal experiment. We first show that µ satisfies
µ1(a1) = µ2(a2). To see this, define µ′ as µ′1(a1) = µ2(a2) and µ′2(a2) = µ1(a1).
Let µ′′ = 1

2µ + 1
2µ
′. By the symmetry of the payoffs functions and of the prior,

we have

∑
i∈Θ

qi

(∑
a∈A

µi(a)u(a, i)

)
=
∑
i∈Θ

qi

(∑
a∈A

µ′i(a)u(a, i)

)
=
∑
i∈Θ

qi

(∑
a∈A

µ′′i (a)u(a, i)

)
.

Moreover, C(µ′′) ≤ 1
2C(µ)+ 1

2C(µ′) if µ 6= µ′, as C is strictly convex on P+. Since
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µ is optimal, it must be that µ = µ′.

The optimality equation MB1(a1, a2) = MC1(a1, a2) can now be rewritten as

1

2
v = β

[
ξ

(
log

(
µ1(a1)

µ2(a1)

))
− ξ

(
log

(
µ1(a2)

µ2(a2)

))]
.

with ξ(x) = x+ ex. Simple calculations show the expression is in turn equal to

v

2β
= ξ

(
log

(
µ[v]

1− µ[v]

))
− ξ

(
log

(
− µ[v]

1− µ[v]

))
= ζ

(
log

(
µ[v]

1− µ[v]

))
where ζ(x) = 2x+ ex − e−x. The result now follows by defining η = ζ−1.

PROOF OF PROPOSITION 5:

Consider a decision problem described by a payoff function u and a prior q. let
µ and µ′ be the optimal choice probabilities obtained under the coefficients (βij)
and (β′ij). The optimality of µ and µ′ implies∑

i,a

qiu(i, a)µi(a)−
∑
i,j

βijD(µi‖µj) ≥
∑
i,a

qiu(i, a)µ′i(a)−
∑
i,j

βijD(µ′i‖µ′j)∑
i,a

qiu(i, a)µ′i(a)−
∑
i,j

β′ijD(µ′i‖µ′j) ≥
∑
i,a

qiu(i, a)µi(a)−
∑
i,j

β′ijD(µi‖µj)

Rearranging the two inequalities leads to∑
i,j

βij(D(µ′i‖µ′j)−D(µi‖µj)) ≥
∑
i,a

qiu(i, a)(µ′i(a)−µi(a)) ≥
∑
i,j

β′ij(D(µ′i‖µ′j)−D(µi‖µj)).

The result now follows.

F. Proof of Proposition 2 and Extensions

PROOF OF PROPOSITION 2:

Denote by w > 0 the length of W . Let |Θ| = n. By Axiom a there exists
a function f : (0, w) → R+ such that βΘ

ij = f(|i − j|) for i 6= j. Hence, if we

translate W then βΘ
ij remains unchanged. We can therefore assume without loss

of generality that W = (−δ, w − δ), for any δ ∈ (0, w).

Let g : (0, w) → R+ be given by g(t) = 1
2f(t)t2. The Kullback-Leibler diver-

gence between two normal distributions with unit variance and expectations i and
j is (i− j)2/2. Hence, by Axiom b there exists a constant κ ≥ 0, independent of
n, so that

1

2
κ = CΘ(ζΘ) =

∑
i 6=j∈Θ

βΘ
ij

(i− j)2

2
=
∑
i 6=j∈Θ

g(|i− j|) for any Θ ∈ T(31)
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We show that (31) implies that

g(t) =
κ

2n(n− 1)
,

so that

βΘ
ij = 2g(|i− j|) 1

(i− j)2
=

κ

n(n− 1)

1

(i− j)2
,

which will complete the proof. The case n = 2 is immediate, since then Θ = {i, j}
and so (31) reduces to

1

2
κ = 2g(|i− j|).

We now consider the case n > 2. Let Θ = {i1, i2, . . . , in−1, x} with i1 < i2 <
· · · < in−1 < x and x ∈ (0, w − δ). Then (31) implies

κ = 2
n−1∑
`=1

g(x− i`) + 2
n−1∑
k=1

k−1∑
`=1

g(ik − i`).

Taking the difference between this equation and the analogous one corresponding
to Θ′ = {i1, i2, . . . , in−1, y} with y ∈ (x,w − δ) yields

0 =

n−1∑
`=1

g(x− i`)− g(y − i`).

Denoting i1 = −ε, for some ε ∈ (δ, 0), we can write this as

0 = g(x+ ε)− g(y + ε) +

n−1∑
`=2

g(x− i`)− g(y − i`).

Again taking a difference, this time of this equation with the analogous one ob-
tained by setting i1 = 0, we get

g(x)− g(y) = g(x+ ε)− g(y + ε).

Rearranging yields

g(y + ε)− g(y) = g(x+ ε)− g(x) for all x, y ∈ (0, w − δ) and ε ∈ (0, δ).
(32)

Accordingly, for ε ∈ (0, δ) denote

h(ε) = g(x+ ε)− g(x),(33)
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where by (32) the right hand side does not depend on the choice of x ∈ (0, w −
δ − ε). It follows that

h(ε1 + ε2) = [g(x+ ε1 + ε2)− g(x+ ε1)] + [g(x+ ε1)− g(x)] = h(ε1) + h(ε2)
(34)

for all ε1, ε2 ∈ (0, δ/2). That is, h satisfies the Cauchy functional equation on
(0, δ/2).

Since g is non-negative, it follows from (31) that g is bounded by κ. Hence the
absolute value of h is bounded by κ, by (33). It follows that limε→0 h(ε) = 0.
Otherwise, there is some n such that |h(ε)| > κ/n for arbitrarily small ε, and
then, by repeated application of (34),

h(nε) = nh(ε) > κ,

where we choose ε small enough so that nε < δ/2.

From limε→0 h(ε) = 0 and (34) it follows that h is continuous on (0, δ/2). As the
Cauchy equation easily implies that h is linear when restricted to the rationals,
continuity implies that h is linear on (0, δ/2). Thus, by (32) g is affine on (0, w−δ),
and of the form g(t) = at + b for some a, b ∈ R. We claim that it must be that
a = 0. Otherwise, for a given Θ = {i1, . . . , in−1, x},

∑
i 6=j∈Θ g(|i − j|) changes

with x, in violation of (31). It follows that g is constant on (0, w− δ). And since
we can take δ arbitrarily small, g is constant on its domain (0, w). Finally, for
(31) to be satisfied, this constant must be κ

2n(n−1) .

Axiom b calibrates the parameters (βΘ
ij ) using an experiment consisting of a

measurement with Normally distributed noise. Different distributions for the
noise would lead to different representations for the coefficients. For example, a
natural alternative would be an experiment (R, (ξi)i∈Θ) where each ξi is Laplace
distribution with variance 1 and mean equal to the state i (the corresponding
probability density function is f(x) = 1

2e|x−i|). The divergence D(ξi‖ξj) between
any two such distribution is

e−|i−j| + |i− j| − 1.

As in the Normal case, this is a decreasing function of the distance between states.
Even if the distribution used in axiom b is different, the proof of Proposition 2
can be applied with almost no modifications, and leads to a representation with
parameters

βΘ
ij =

κ

n(n− 1)

1

e−|i−j| + |i− j| − 1
.
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G. Identification

Consider the setup of §V.D, and given a pair of choice probabilities (µ1, µ2)
define the quantities

β̂12 =
l2 − l1 + log l1

l2
(l1−l2)2

l1l2
− (log l1

l2
)2

and β̂21 =
v

2

l2−l1
l1l2

+ log l1
l2

(l1−l2)2

l1l2
− (log l1

l2
)2

PROPOSITION 11: The choice probabilities (µ1, µ2) are the optimal solution

with respect to an LLR cost function if and only if β̂12 and β̂21 are non-negative
and at least one is positive.

PROOF:

As shown by Proposition 10, C is a convex function. We note that the condition
(14) is equivalent to (13) which equals the first order condition for the optimization
problem, which is sufficient because of the concavity of the optimization problem.
If at least one of β̂1,2, β̂2,1 is positive, then the solution of the optimization problem
is internal and the first order condition applies. Conversely, if both are zero then
the optimization problem has no solution within its domain.

H. The cost of bounded experiments with binary state

In this section we restrict ourselves to the case of a binary state space Θ = {0, 1},
and the class of bounded experiments B: an experiment is said to be bounded if the
beliefs that it induces are bounded away from 0 and 1. In terms of log-likelihood
ratios, it is bounded if there is some M such that `01(s) is µ0- and µ1-almost
surely in [−M,M ]. The class of bounded experiments is contained in the class
E of experiments considered in the rest of the paper. The bounded experiments
contain all the experiments that have a finite set of possible realizations, and in
which not state is ever conclusively excluded.

As we discuss above, a strengthening of Axiom 1 is Blackwell monotonicity:
C is said to be Blackwell monotone if C(µ) ≥ C(ν) whenever If µ Blackwell
dominates ν.

For the class of bounded experiments, we show that 2 and 3 are sufficient for
proving that a Blackwell monotone cost is an LLR cost: the continuity axiom 4
is not needed. This proof heavily relies on a recent result of Mu et al. (2020),
which characterizes the monotone and additive functions on the class of bounded
Blackwell experiments with binary state. An extension of this result to large state
spaces is currently out of reach, and so we do not have a more general proof.
Nevertheless, we conjecture that the continuity axiom is generally redundant.

THEOREM 5: Let Θ = {0, 1}. A Blackwell monotone information cost function
C : B → R+ satisfies Axioms 2 and 3 if and only if there exist β01, β10 ≥ 0 such
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that for every experiment µ ∈ B,

C(µ) = β01DKL(µ0‖µ1) + β10DKL(µ1‖µ0).

Before proving Theorem 5, we will introduce some definitions and results from
Mu et al. (2020).

For t ∈ (0,∞], we denote by Rt(µ0‖µ1) the Rényi t-divergence between two
probability µ0, µ1 defined on the same measurable space S. For t 6= 1, t 6=∞,

Rt(µ0‖ν1) =
1

t− 1
log

∫
S

(
dµ0

dµ1
(s)

)t−1

dµ0(s).

For t = 1

R1(µ0‖µ1) =

∫
S

log
dµ0

dµ1
(s) dµ0(s) = DKL(µ0‖µ1).

For t =∞, R∞(µ0‖µ1) is the essential maximum of the log-likelihood ratio log dµ0

dµ1
.

Note that Rt(µ0‖µ1) is always non-negative, and positive whenever µ0 6= µ1. Note

also that if log dµ0

dµ1
is almost surely in [−M,M ] (as is always the case for bounded

experiments, for some M) then Rt ≤M .

The following result is a reformulation of Theorem 2 in Mu et al. (2020) (see
also Lemmas 5 and 6).38

THEOREM 6 (Mu et al. 2020): An information cost function C : B → R+ sat-
isfies Axioms 1 and 2 if and only if there exist two finite Borel measures m0,m1

on [1/2,∞] such that for every bounded experiment µ = (S, µ0, µ1) it holds that

C(µ) =

∫
[1/2,∞]

Rt(µ0‖µ1) dm0(t) +

∫
[1/2,∞]

Rt(µ1‖µ0) dm1(t).

Using this result, we can now prove Theorem 5.

PROOF OF THEOREM 5:

The argument that this representation satisfies the axioms is identical to the
same argument in the proof of Theorem 1. It thus remains to be shown that the
representation is implied by the axioms.

38The data processing inequality in that paper is monotonicity with respect to deterministic garblings,
which is implied by Blackwell monotonicity. The additivity there translates immediately to additivity in
the sense of Axiom 2.
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By Theorem 6,

C(µ) = β01DKL(µ0‖µ1) + β10DKL(µ1‖µ0)

+

∫
[1/2,1)

Rt(µ0‖µ1) dm0(t) +

∫
[1/2,1)

Rt(µ1‖µ0) dm1(t)

+

∫
(1,∞]

Rt(µ0‖µ1) dm0(t) +

∫
(1,∞]

Rt(µ1‖µ0) dm1(t).(35)

for some β01, β10 ≥ 0 and m0, m1 finite Borel measures on [1/2,∞] that assign
measure 0 to the singleton {1}. To prove the claim, we show that m0 and m1 are
the zero measures.

Let µ = (S, µ0, µ1) be a non-trivial bounded experiment, and let ν = (1/r) ·µ⊗r
for some r. It follows from the definition of Rényi t-divergences that for t 6= 1,
t 6=∞

Rt(ν0‖ν1) =
1

t− 1
log

(
r − 1

r
+

1

r

(∫
S

(
dµ0

dµ1
(s)

)t−1

dµ0(s)

)r)
.

Now, for x > 1,

lim
r→∞

log

(
r − 1

r
+

1

r
xr
)

=∞,

and for x < 1 this same limit is 0. It thus follows that for t > 1 (including,
trivially, t =∞)

lim
r→∞

Rt(ν0‖ν1) =∞,(36)

since Rt is positive for non-trivial experiments, and so the integral in the expres-
sion for Rt is strictly greater than 1. For t < 0

lim
r→∞

Rt(ν0‖ν1) = 0,(37)

since, again by the positivity of Rt, the integral in the expression for Rt is strictly
less than 1.

It follows from (36) that both m0 and m1 must assign no mass to (1,∞], i.e.
m0((1,∞]) = m1((1,∞]) = 0, since otherwise the integral

∫
(1,∞]Rt(µ0‖µ1) dm0(t)

or
∫

(1,∞]Rt(µ0‖µ1) dm1(t) would diverge and by (35) the cost of the experiment

(1/r) · µ⊗r would diverge

lim
r→∞

C((1/r) · µ⊗r) =∞ .

This would contradict the axioms which imply that C((1/r) · µ⊗r) = C(µ). It
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then follows from (37) that m0((1/2, 1)) = m1((1/2, 1)) = 0, since otherwise

lim
r→∞

C((1/r) · µ⊗r) < C(µ).

I. Uniform Separable Bayesian LLR Cost

PROOF OF PROPOSITION 8:
It is straightforward to verify that if the parameters satisfy βij(q) = γijqi, then

C is uniformly posterior separable. We now prove the opposite implication.
Fix a prior q with full support, and consider an experiment µ where the set of

signal realizations is a product S1 × S2, with S1 a finite set, and each µi satisfies
µi({s}×S2) > 0 for every s ∈ S1. We denote by µ1

i the marginal of µi on S1, and
by µi(·|s) the measure on S2 obtained by conditioning µi on s ∈ S1.

The chain rule for the KL-divergence implies that the cost of such an experiment
can be written as

(38) C(µ, q) =
∑
ij

βij(q)

DKL(µ1
i ‖µ1

j ) +
∑
s1∈S1

µ1
i (s1)DKL(µi(·|s1)‖µj(·|s1))

 .
Now assume C is uniformly posterior separable with respect to a function G.

The cost of the experiment µ can then be written as follows. It will be convenient
to denote posterior beliefs as random variables defined over the probability space
(Θ × S1 × S2,P) where P is obtained from q and µ in the obvious way. Let p2

be the posterior belief over Θ obtained by conditioning q on a realization (s1, s2),
and let p1 be the posterior belief obtained by conditioning q on a realization s1.
Then

C(µ, q) = E
[
G(p2)−G(p1) +G(p1)−G(q)

]
= E

[
G(p1)−G(q)

]
+
∑
s1∈S1

P(s1)E
[
G(p2)−G(p1)|p1 = q(·|s1)

]
.

Now consider the experiment ((µ1
i ), S) which consists of observing the first real-

ization s1 but not the second. By uniform posterior separability, its cost, at the
prior q, is given by

E
[
G(p1)−G(q)

]
=
∑
ij

βij(q)DKL(µ1
i ‖µ1

j ).

Given a realization s1 ∈ S, consider the experiment ((µi(·|s1)), S2). By consider-
ing now p1 = q(·|s1) as a prior, uniform separability implies that the cost of the
experiment ((µi(·|s1)), S2) is equal to

E
[
G(p2)−G(p1)|p1 = q(·|s1)

]
=
∑
ij

βij(q(·|s1))DKL(µi(·|s1)‖µj(·|s1)).
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The last two equations imply that the cost C(µ, q) can be rewritten as
(39)∑

ij

βij(q)DKL(µ1
i ‖µ1

j ) +
∑
s1∈S1

P(s1)

∑
ij

βij(q(·|s1))DKL(µi(·|s1)‖µj(·|s1))

 .

This equation can be interpreted as saying that the cost of running the experiment
µ is equal to the cost of running the first experiment ((µ1

i ), S1) plus the expected
cost of running the second experiment ((µi(·|s1)), S2), conditional on the signal
realization s1 from the first experiment. By equating (38) and (39) we obtain
that

(40)
∑
s1∈S1

∑
ij

[
βij(q)µ

1
i (s1)− P(s1)βij(q(·|s1))

]
DKL(µi(·|s1)‖µj(·|s1)) = 0.

Given a particular realization s1 ∈ S1, we are free to choose µ such that all the
conditional experiments ((µi(·|s′1)), S2), s′1 6= s1, are completely uninformative,
and hence have cost 0. Thus, it must hold that for every s1 ∈ S1,∑

ij

[
βij(q)µ

1
i (s1)− P(s1)βij(q(·|s1))

]
DKL(µi(·|s1)‖µj(·|s1)) = 0.

By Lemma 2, the latter can hold only if

βij(q)µ
1
i (s1) = P(s1)βij(q(·|s1)).

By dividing and multiplying the left-hand side by qi and then applying Bayes’
rule we obtain that

βij(q)

qi
=
βij(q(·|s1))

q(·|s1)
.

Given any q′ ∈ P(Θ) with full support, we can choose µ such that q(·|s1) = q′ for
some s1. The conclusion now follows by defining γij = βij(q)/qi.

Prior Dependence of Bayesian LLR Cost.

As we prove in Proposition 8, the only uniformly posterior separable LLR cost
potentially assigns different cost to the same experiment at different prior beliefs.
We next explore which experiments have prior dependent cost, through a simple
example of binary experiments. Consider the standard setting of a binary state
space Θ = {1, 2}, and an experiment µ with a binary signal which equals the
state with some probability 1/2 < r < 1. For concreteness, imagine a coin
whose probability of heads depends on the state and is either r or 1− r, and the
experiment µ consists of tossing the coin. Consider a Bayesian LLR cost, with
b12 = b21 = b. In this case, even though the effective (βij)’s depend on the prior,
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a simple calculation shows that the cost of the experiment does not, and equals

C(µ, q) = b(2r − 1) log
r

1− r

for every prior q.39

Consider now the experiment ν in which the coin is tossed until a “heads”
outcome. Under Bayesian LLR costs, the cost can be calculated to be

C(ν, q) =

(
q1

r
+

q2

1− r

)
C(µ, q).

This cost does depend on the prior: as the above display shows, it is equal to
the cost of one toss of the coin, times the expected number of times that it is to
be tossed. The latter quantity depends on the prior, in the obvious way. This
cost is thus consistent with our additivity axiom, in the sense that this one-shot
experiment ν—which is equivalent to a dynamic experiment in which µ is carried
out a random number of times—has a cost that equals the expected number of
repetition of µ, times the cost of each independent realization of µ.

We generalize the example of a biased coin toss to any experiment µ for which
DKL(µ1‖µ2) = DKL(µ2‖µ1). As the next proposition shows, this condition exactly
captures prior independence of Bayesian LLR costs, in the symmetric case in
which b12 = b21.

PROPOSITION 12: Let Θ = {1, 2}. Let C be a uniformly posterior separable
Bayesian LLR cost specified by b12 = b21 = b > 0. Let µ be a Blackwell experi-
ment. Then the following are equivalent.

1) DKL(µ1‖µ2) = DKL(µ2‖µ1).

2) C(µ, q) is independent of the prior q.

PROOF:
Under the assumption that b12 = b21 = b > 0, the cost of an experiment µ at

prior q is
C(µ, q) = b [q1DKL(µ1‖µ2) + q2DKL(µ2‖µ1)] .

Clearly, this quantity depends on q if and only if DKL(µ1‖µ2) 6= DKL(µ2‖µ1).

39This contrasts with mutual information, where the prior affects the cost of this experiment: the cost
is highest for the uniform prior, and vanishes as the prior tends towards certainty.


