Appendix for Online Publication:
 Politically feasible reforms of non-linear tax systems

By Felix J. Bierbrauer and Pierre C. Boyer and Andreas Peichl*

[^0]
A. Proofs

A.1. Proof of Theorem 1

Step 1. By the envelope theorem

$$
\begin{equation*}
V_{\tau}(\tau, h, \omega)=R_{\tau}(\tau, h)-h\left(y^{*}(\tau, h, \omega)\right), \tag{A.1}
\end{equation*}
$$

where $R_{\tau}(\tau, h, \omega)$ is the derivative of tax revenue with respect to $\tau>0$. The validity of the envelope theorem follows from Corollary 4 in Milgrom and Segal (2002).

Step 2. Suppose that h is a non-decreasing function. An analogous argument applies if h is non-increasing. We show that $V_{\tau}\left(\tau, h, \omega^{M}\right)>0$ implies $V_{\tau}(\tau, h, \omega)>$ 0 for a majority of individuals. By Step 1, $V_{\tau}\left(\tau, h, \omega^{M}\right)>0$ holds iff $R_{\tau}(0, h)-$ $h\left(y^{*}\left(\tau, h, \omega^{M}\right)\right)>0$. As h and $y^{*}(\tau, h, \cdot)$ are non-decreasing functions, this implies $R_{\tau}(\tau, h)-h\left(y^{*}(\tau, h, \omega)\right)>0$, for all $\omega \leq \omega^{M}$, and hence $V_{\tau}(\tau, h, \omega)>0$ for all $\omega \leq \omega^{M}$.

Step 3. Suppose that h is a non-decreasing function. An analogous argument applies if h is non-increasing. We show that $V_{\tau}\left(\tau, h, \omega^{M}\right) \leq 0$ implies $V_{\tau}(\tau, h, \omega) \leq$ 0 for a majority of individuals. By Step 1, $V_{\tau}\left(\tau, h, \omega^{M}\right) \leq 0$ holds iff $R_{\tau}(\tau, h)-$ $h\left(y^{*}\left(\tau, h, \omega^{M}\right)\right) \leq 0$. As h and $y^{*}(\tau, h, \cdot)$ are non-decreasing functions, this implies $R_{\tau}(\tau, h)-h\left(y^{*}(\tau, h, \omega)\right) \leq 0$, for all $\omega \geq \omega^{M}$, and hence $V_{\tau}(\tau, h, \omega) \leq 0$ for all $\omega \geq \omega^{M}$.

A.2. Proof of Proposition 11

To prove the first statement in the Proposition, let

$$
V_{\tau}\left(\tau, h, \omega^{M}\right)=R_{\tau}(\tau, h)-h\left(y^{*}\left(\tau, h, \omega^{M}\right)\right)<0,
$$

so that the median voter benefits from a small decrease of tax rate $\tau<0$. With h non-decreasing for $y \geq y^{*}\left(\tau, h, \omega^{M}\right)$, this implies that

$$
V_{\tau}(\tau, h, \omega)=R_{\tau}(\tau, h)-h\left(y^{*}(\tau, h, \omega)<0,\right.
$$

for all $\omega \geq \omega^{M}$. Hence a majority of the population benefits from the tax cut.
The second statement in the Proposition follows from the same argument: If the poorest individual benefits from a tax cut and individuals with incomes closer to the median also benefit as h is non-decreasing for below median incomes, then there is majority support for the reform.

A.3. Proof of Theorem ${ }^{2}$

For a simple reform $\left(\tau, \ell, y_{a}\right)$ the envelope theorem implies that

$$
\begin{equation*}
V_{\tau}\left(0, \ell, y_{a}, \omega\right)=R_{\tau}\left(0, \ell, y_{a}\right)-h\left(y^{*}\left(0, \ell, y_{a}, \omega\right)\right) . \tag{A.2}
\end{equation*}
$$

To prove the first statement in Theorem 2, suppose that $y_{a}<y_{0}^{M}=y^{*}\left(0, \ell, y_{a}, \omega^{M}\right)$. Choose ℓ so that $y_{a}+\ell<y_{0}^{M}$. Then $h\left(y^{*}\left(0, \ell, y_{a}, \omega\right)\right)=\ell$, for all $\omega \geq \omega^{M}$. Since $R_{\tau}\left(0, \ell, y_{a}\right)<\ell$, it follows that $V_{\tau}\left(0, \ell, y_{a}, \omega\right)<0$, for all $\omega \geq \omega^{M}$, which implies that a small tax cut, $\tau<0$, makes a majority of individuals better off. To prove the second statement, suppose that $y_{a}>y_{0}^{M}$. Then $h\left(y^{*}\left(0, \ell, y_{a}, \omega\right)\right)=0$, for all $\omega \leq \omega^{M}$. Hence, if $R_{\tau}\left(0, \ell, y_{a}\right)>0$, then $V_{\tau}\left(0, \ell, y_{a}, \omega\right)>0$, for all $\omega \leq \omega^{M}$, which implies that a small raise of marginal tax rate, $\tau>0$, makes a majority of individuals better off.

A.4. Proof of Proposition 圆

Preliminaries. Let $T_{1}=T_{0}+\tau h$. We consider a perturbation that affects marginal tax rates in a bracket that starts at income level y_{a} and has length ℓ. The function $h:(y, \ell) \mapsto h(y, \ell)$ is assumed to have the following properties, for any given ℓ :
(i) It is a continuously differentiable and non-decreasing function of y.
(ii) $h(y, \ell)=0$, all $y \leq y_{a}$.
(iii) $h(y, \ell)=\ell$, for all $y \geq y_{a}+\ell$.
(iv) $h_{y}(y, \ell)=1$ for $y \in\left[y_{a}+\epsilon \ell, y_{a}+(1-\epsilon) \ell\right]$, where $\epsilon>0$ is a fixed parameter.
(v) $h_{y}(y, \ell)>0$ for $y \in\left(y_{a}, y_{a}+\ell\right)$.

Note that $T_{1}^{\prime}(y)=T_{0}^{\prime}(y)+\tau h_{y}(y, l)$. Thus, marginal tax rates change by $\tau h_{y}(y, l)$, and this change is different from zero only for incomes in the bracket. There, they change by τ, except for incomes in the neighborhood of the bracket's endpoints. In these neighborhoods the changes of marginal tax rates are, respectively, phased in and phased out in a smooth way. We continue to summarize such a reform by the triple $\left(\tau, \ell, y_{a}\right)$

We first analyze how tax revenue is affected by a simple reform and then turn to the proof of statements (1.) and (2.) in Proposition 2.

Tax revenue. The additional tax revenue that is generated by a reform $\left(\tau, \ell, y_{a}\right)$ is given by

$$
R\left(\tau, \ell, y_{a}\right):=\int_{\underline{\omega}}^{\bar{\omega}}\left(T_{1}\left(y^{*}\left(\tau, \ell, y_{a}, \omega\right)\right)-T_{0}\left(y_{0}(\omega)\right)\right) f(\omega) d \omega
$$

where $y_{0}(\omega):=y^{*}\left(0, \ell, y_{a}, \omega\right)$ is a shorthand for the income of type ω in the status quo. We are interested in clarifying the conditions under which a small tax cut raises revenue, i.e. the conditions under which $R_{\tau}\left(0, \ell, y_{a}\right)<0$ holds, for some level of income y_{a} and some $\ell>0$.

Let $\omega_{a}\left(\tau, \ell, y_{a}\right)$ be the smallest type with an income larger or equal to y_{a} given a reform $\left(\tau, \ell, y_{a}\right)$. Likewise let $\omega_{b}\left(\tau, \ell, y_{a}\right)$ be the largest type with an income below $y_{b}=y_{a}+\ell$. In the absence of income effects, the reform does not affect the
behavior of individuals with earnings below y_{a} or above y_{b}. For these individuals, marginal tax rates do not change. Since $h(y)=0$, for $y \leq y_{a}$, there is also no effect on the tax liability of individuals with earnings below y_{a}. By contrast, the tax liability of individuals with earnings above y_{b} increase by $\tau \ell$. Thus, we can write

$$
\begin{align*}
R\left(\tau, \ell, y_{a}\right)= & \stackrel{\omega_{b}\left(\tau, \ell, y_{a}\right)}{\omega_{a}\left(\tau, \ell, y_{a}\right)}\left(T_{0}\left(y^{*}\left(\tau, \ell, y_{a}, \omega\right)\right)+\tau h\left(y^{*}\left(\tau, \ell, y_{a}, \omega\right)\right)-T_{0}\left(y_{0}(\omega)\right)\right) f(\omega) d \omega \tag{A.3}\\
& +\tau \ell\left(1-F\left(\omega_{b}\left(\tau, \ell, y_{a}\right)\right)\right) .
\end{align*}
$$

Computing the derivative with respect to τ, using Leibnitz' rule, and evaluating at $\tau=0$ yields

$$
\begin{align*}
R_{\tau}\left(0, \ell, y_{a}\right)= & \int_{\omega_{0}\left(y_{a}+\ell\right)}^{\omega_{0}\left(y_{a}\right)}\left(T_{0}^{\prime}\left(y_{0}(\omega)\right) y_{0}(\omega)+h\left(y_{0}(\omega)\right)\right) f(\omega) d \omega \tag{A.4}\\
& +\ell\left(1-F\left(\omega_{0}\left(y_{a}+\ell\right)\right),\right.
\end{align*}
$$

where $y_{0 \tau}(\omega):=\left.y_{\tau}^{*}\left(\tau, \ell, y_{a}, \omega\right)\right|_{\tau=0}$ is the derivative of y^{*} with respect to τ, evaluated at the status quo, i.e. for $\tau=0$.
The assumption that income in the status quo is a continuous function of ω plays a role in the derivation of equation $(\widehat{A .4})$: A change of τ implies a change of $\omega_{b}\left(\tau, \ell, y_{a}\right)$ which enters both as the upper limit of the integral in the first line of A.3) and via the term in second line of A.3). These marginal effects exactly cancel at $\tau=0$ if the function y_{0} is continuous.
Computing the derivative of $R_{\tau}\left(0, \ell, y_{a}\right)$ with respect to ℓ and evaluating at $\ell=0$ yields

$$
R_{\tau \ell}\left(0,0, y_{a}\right)=T_{0}^{\prime}\left(y_{a}\right) y_{0 \tau}\left(\omega_{0}\left(y_{a}\right)\right) f\left(\omega_{0}\left(y_{a}\right)\right) \omega_{0 \ell}\left(y_{a}\right)+1-F\left(\omega_{0}\left(y_{a}\right)\right),
$$

where $\omega_{0 \ell}\left(y_{a}\right):=\left.\frac{d}{d \ell} \omega_{0}\left(y_{a}+\ell\right) \quad\right|_{\ell=0}$. Note that $\omega_{0}\left(y_{a}+l\right)$ solves $y_{a}+l=$ $y_{0}\left(\omega_{0}\left(y_{a}+l\right)\right)$. Hence, $\omega_{0 \ell}\left(y_{a}\right)=y_{0 \omega}\left(\omega_{0}\left(y_{a}\right)\right)^{-1}$, where, for any $\omega^{\prime}, y_{0 \omega}\left(\omega^{\prime}\right):=$ $\left.y_{\omega}^{*}\left(\tau, \ell, y_{a}, \omega\right)\right|_{\tau=0, \omega=\omega^{\prime}}$. The assumption that y_{0} is a strictly monotonic function plays a role here. It ensures that $y_{0 \omega}\left(\omega_{0}\left(y_{a}\right)\right) \neq 0$ and hence that $\omega_{0 \ell}\left(y_{a}\right)$ is well-defined. We can therefore write,

$$
\begin{equation*}
R_{\tau \ell}\left(0,0, y_{a}\right)=T_{0}^{\prime}\left(y_{a}\right) f\left(\omega_{0}\left(y_{a}\right)\right) \frac{y_{0}\left(\omega_{0}\left(y_{a}\right)\right)}{y_{0} \omega\left(\omega_{0}\left(y_{a}\right)\right)}+1-F\left(\omega_{0}\left(y_{a}\right)\right), \tag{A.5}
\end{equation*}
$$

Given a simple reform $\left(\tau, \ell, y_{a}\right)$, the first order condition characterizing $y^{*}\left(\tau, \ell, y_{a}, \omega\right)$ is given by

$$
1-T_{0}^{\prime}\left(y^{*}(\cdot)\right)-\tau h^{\prime}\left(y^{*}(\cdot)\right)-\omega^{-\left(1+\frac{1}{\varepsilon}\right)} y^{*}(\cdot)^{1+\frac{1}{\varepsilon}}=0 .
$$

For any given ℓ, we focus on ω so that $y^{*}(\cdot, \omega) \in\left[y_{a}+\epsilon \ell, y_{a}+(1-\epsilon) \ell\right]$ and $h^{\prime}\left(y^{*}(\cdot)=1\right.$. Hence,

$$
\begin{equation*}
1-T_{0}^{\prime}\left(y^{*}(\cdot)\right)-\tau-\omega^{-\left(1+\frac{1}{\varepsilon}\right)} y^{*}(\cdot)^{1+\frac{1}{\varepsilon}}=0 . \tag{A.6}
\end{equation*}
$$

Starting from this equation, one can use the implicit function theorem to solve for $y_{\tau}^{*}(\cdot)$ and $y_{\omega}^{*}(\cdot)$. This allows to compute the ratio $\frac{y_{\tau}^{*}(\cdot)}{y_{\omega}^{*}(\cdot)}$. At $\tau=0$, and for $\omega=\omega_{0}\left(y_{a}\right)$, this ratio equals

$$
\begin{equation*}
\frac{y_{0 \tau}\left(\omega_{0}\left(y_{a}\right)\right)}{y_{0 \omega}\left(\omega_{0}\left(y_{a}\right)\right)}=-\frac{1}{1+\frac{1}{\varepsilon}} \omega_{0}\left(y_{a}\right) \frac{1}{1-T_{0}^{\prime}\left(y_{a}\right)} . \tag{A.7}
\end{equation*}
$$

We can now use A. 7 to substitute for $\frac{y_{0}\left(\omega_{0}\left(y_{a}\right)\right)}{y_{0} \omega\left(\omega_{0}\left(y_{a}\right)\right)}$ in A.5. This yields

$$
\begin{equation*}
R_{\tau \ell}\left(0,0, y_{a}\right)=-\frac{T_{0}^{\prime}\left(y_{a}\right)}{1-T_{0}^{\prime}\left(y_{a}\right)} f\left(\omega_{0}\left(y_{a}\right)\right) \omega_{0}\left(y_{a}\right) \frac{1}{1+\frac{1}{\varepsilon}}+1-F\left(\omega_{0}\left(y_{a}\right)\right) . \tag{A.8}
\end{equation*}
$$

Proof of (1.). It follows from (A.4) that $R_{\tau}\left(0,0, y_{a}\right)=0$: a small change of marginal tax rates has no effect on overall tax revenue if the change applies to a bracket with length 0 . If $R_{\tau \ell}\left(0,0, y_{a}\right)>0$, then a slight increase of the bracket length implies that $R_{\tau}\left(0, \ell, y_{a}\right)$ turns positive - indicating a possible to increase revenue by means of higher marginal tax rates. Analogously, $R_{\tau \ell}\left(0,0, y_{a}\right)<0$ implies that revenue can be increased by means of lower marginal tax rates. Thus, if $R_{\tau \ell}\left(0,0, y_{a}\right)<0$ there is a possibility of a Pareto-improving tax cut. From A.8) it is now straightforward to verify that $R_{\tau \ell}\left(0,0, y_{a}\right)<0$ holds if and only if (8) holds.

Proof of (2.). A Pareto-improving tax raise requires that $R_{\tau}\left(0, \ell, y_{a}\right)-\ell \geq 0$. Again, it follows from A.4) that $R_{\tau}\left(0, \ell, y_{a}\right)-l=0$ for $l=0$. If however, $R_{\tau \ell}\left(0,0, y_{a}\right)-1>0$ then a slight increase of the bracket length implies that $R_{\tau}\left(0, \ell, y_{a}\right)-\ell$ turns positive. From A.8) it is now straightforward to verify that $R_{\tau \ell}\left(0,0, y_{a}\right)-1>0$ holds if and only if (9) holds.

A.5. A characterization of welfare-improving tax reforms

The welfare implications of a generic reform (τ, h) are given by

$$
W(\tau, h):=\int_{\underline{\omega}}^{\bar{\omega}} g(\omega) V(\tau, h, \omega) f(\omega) d \omega .
$$

We assume without loss of generality that $\mathbb{E}[g(\omega)]=1$. Using the envelope theorem, the marginal effect of a small reform is given by

$$
W_{\tau}(0, h)=R_{\tau}(0, h)-\int_{\underline{\omega}}^{\bar{\omega}} g(\omega) h\left(y_{0}(\omega)\right) f(\omega) d \omega .
$$

For the special case of a simple reform $\left(\tau, \ell, y_{a}\right)$ this becomes

$$
\begin{aligned}
W_{\tau}\left(0, \ell, y_{a}\right)= & R_{\tau}\left(0, \ell, y_{a}\right) \\
& -\int_{\omega_{0}\left(y_{a}+\ell\right)} g(\omega)\left(y_{0}(\omega)-y_{a}\right) f(\omega) d \omega . \\
& -\ell\left(1-F\left(\omega_{0}\left(y_{a}+\ell\right)\right)\right) \mathcal{G}\left(\omega_{0}\left(y_{a}+\ell\right)\right)
\end{aligned} .
$$

Taking the derivative with respect to ℓ and evaluating at $\ell=0$ yields

$$
W_{\tau \ell}\left(0,0, y_{a}\right)=R_{\tau \ell}\left(0,0, y_{a}\right)-\left(1-F\left(\omega_{0}\left(y_{a}\right)\right)\right) \mathcal{G}\left(\omega_{0}\left(y_{a}\right)\right)
$$

Using equation A.8) this can also be written as

$$
\begin{aligned}
W_{\tau \ell}\left(0,0, y_{a}\right)= & -\frac{T_{0}^{\prime}\left(y_{a}\right)}{1-T_{0}^{\prime}\left(y_{a}\right)} f\left(\omega_{0}\left(y_{a}\right)\right) \omega_{0}\left(y_{a}\right)\left(1+\frac{1}{\varepsilon}\right)^{-1} \\
& +\left(1-F\left(\omega_{0}\left(y_{a}\right)\right)\right)\left(1-\mathcal{G}\left(\omega_{0}\left(y_{a}\right)\right)\right)
\end{aligned} .
$$

Since $W_{\tau}\left(0,0, y_{a}\right)=0, W_{\tau \ell}\left(0,0, y_{a}\right)>0$ indicates that $W_{\tau}\left(0, \ell, y_{a}\right)>0$ for ℓ close to zero. Hence, when

$$
\begin{equation*}
\frac{T_{0}^{\prime}\left(y_{a}\right)}{1-T_{0}^{\prime}\left(y_{a}\right)}<\frac{1-F\left(\omega_{0}\left(y_{a}\right)\right)}{f\left(\omega_{0}\left(y_{a}\right)\right) \omega_{0}\left(y_{a}\right)}\left(1+\frac{1}{\varepsilon}\right)\left(1-\mathcal{G}\left(\omega_{0}\left(y_{a}\right)\right)\right) \tag{A.9}
\end{equation*}
$$

a small tax increase for incomes close to y_{a} yields a welfare gain. Analogously, when

$$
\begin{equation*}
\frac{T_{0}^{\prime}\left(y_{a}\right)}{1-T_{0}^{\prime}\left(y_{a}\right)}>\frac{1-F\left(\omega_{0}\left(y_{a}\right)\right)}{f\left(\omega_{0}\left(y_{a}\right)\right) \omega_{0}\left(y_{a}\right)}\left(1+\frac{1}{\varepsilon}\right)\left(1-\mathcal{G}\left(\omega_{0}\left(y_{a}\right)\right)\right) \tag{A.10}
\end{equation*}
$$

a small tax cut for incomes close to y_{a} yields a welfare gain.

B. Welfare-maximizing tax schedules

B.1. Preliminaries

We use a mechanism design approach to characterize welfare-maximizing income taxes. With an appeal to the revelation principle we limit attention to direct mechanisms. Let $c: \omega \mapsto c(\omega)$ and $y: \omega \mapsto y(\omega)$ be the functions that specify the pre- and after-tax incomes of individuals as functions of their types. Let

$$
u(\omega)=c(\omega)-k(y(\omega), \omega) \quad \text { with } \quad k(y(\omega), \omega)=\frac{1}{1+\frac{1}{\varepsilon}}\left(\frac{y(\omega)}{\omega}\right)^{1+\frac{1}{\varepsilon}}
$$

be the utility realized by a type ω-individual under the direct mechanism.
As is well-known, such a direct mechanism is incentive compatible if and only if the following two conditions are satisfied: First,

$$
\begin{equation*}
u(\omega)=\underline{u}-\int_{\underline{\omega}}^{\omega} k_{2}(y(s), s) d s \tag{B.1}
\end{equation*}
$$

where $\underline{u}=u(\underline{\omega})$ is a shorthand for the utility realized by the lowest type, and k_{2} is the derivative of the cost function k with respect to its second argument. With an isoelastic cost function

$$
k_{2}(y(\omega), \omega)=-\frac{1}{\omega}\left(\frac{y(\omega)}{\omega}\right)^{1+\frac{1}{\varepsilon}} .
$$

Second, the function y is non-decreasing.
The resource constraint requires that aggregate consumption must not exceed aggregate production

$$
\mathbb{E}[c(\omega)] \leq \mathbb{E}[y(\omega)],
$$

where the expectations operator \mathbb{E} indicates the computation of a population average; e.g. $\mathbb{E}[c(\omega)]=\int_{\underline{\omega}}^{\bar{\omega}} c(\omega) f(\omega) d \omega$. Using that

$$
\begin{aligned}
c(\omega) & =u(\omega)+k(y(\omega), \omega) \\
& =\underline{u}-\int_{\underline{\omega}}^{\omega} k_{2}(y(s), s) d s+k(y(\omega), \omega)
\end{aligned}
$$

and with an integration by parts we can write aggregate consumption also as

$$
\mathbb{E}[c(\omega)]=\underline{u}+\mathbb{E}[k(y(\omega), \omega)]-\mathbb{E}\left[\frac{1-F(\omega)}{f(\omega)} k_{2}(y(\omega), \omega)\right] .
$$

Upon substituting this expression into the resource constraint, we find that re-
source feasibility holds provided that

$$
\begin{equation*}
\underline{u} \leq \mathbb{E}\left[y(\omega)-k(y(\omega), \omega)+\frac{1-F(\omega)}{f(\omega)} k_{2}(y(\omega), \omega)\right] . \tag{B.2}
\end{equation*}
$$

The term on the right hand side of ($\bar{B} .2$) is also known as the virtual surplus. It is the regular surplus of aggregate output over effort costs, $\mathbb{E}[y(\omega)-k(y(\omega), \omega)]$ minus the information rents that higher types realize in the presence of incentive constraints and which are given by $-\mathbb{E}\left[\frac{1-F(\omega)}{f(\omega)} k_{2}(y(\omega), \omega)\right]>0$. Thus, resource feasibility requires that the lowest type's utility does not exceed the virtual surplus.

We consider a class of additive social welfare functions

$$
S=\mathbb{E}[g(\omega) u(\omega)]
$$

and assume without loss of generality that $\mathbb{E}[g(\omega)]=1$. Using (B.1), and after another integration by parts, welfare can be written as

$$
\begin{equation*}
S=\underline{u}-\mathbb{E}\left[\frac{1-F(\omega)}{f(\omega)} \mathcal{G}(\omega) k_{2}(y(\omega), \omega)\right] \tag{B.3}
\end{equation*}
$$

where $\mathcal{G}(\omega):=\mathbb{E}[g(s) \mid s \geq \omega]$ is the average welfare weight among those with a type above ω. At an optimal allocation, the resource constraint (B.2) holds as an equality. Thus, welfare can also be written as

$$
\begin{equation*}
S=\mathbb{E}\left[y(\omega)-k(y(\omega), \omega)+\frac{1-F(\omega)}{f(\omega)}(1-\mathcal{G}(\omega)) k_{2}(y(\omega), \omega)\right] . \tag{B.4}
\end{equation*}
$$

B.2. Optimal mechanism design and optimal taxation

We can state the mechanism design problem now as one that only involves the function $y: \omega \mapsto y(\omega)$. This function has to be chosen so as to maximize the objective (B.4) subject to the constraint that its derivative y^{\prime} is everywhere non-negative. This problem is also known as the full problem. When the monotonicity constraint is dropped, the problem is referred to as the relaxed problem. Obviously, if the solution to the relaxed problem satisfies the monotonicity constraint then it is also a solution to the full problem. If not, the the solution of the full problem involves bunching, i.e. subsets of types who choose the same level of income. For ease of exposition, we focus on the relaxed problem in what follows. It is well known how the resulting optimal tax formulas need to be modified if bunching is an issue, see e.g. Hellwig (2007).
Note that, once y is determined by the optimality conditions, we can use (B.2) and the fact that the resource constraint binds to solve for \underline{u}. We can use (B.1) to solve for the function u. And finally, we can use the fact that $c(\omega)=u(\omega)+k(y(\omega), \omega)$ to characterize the function c. Thus, we obtain a com-
plete characterization of an optimal allocation.
A solution to the relaxed problem is obtained by a pointwise maximization of (B.4). The first order condition characterizing $y(\omega)$ is given by

$$
\begin{equation*}
1-k_{1}(y(\omega), \omega)+\frac{1-F(\omega)}{f(\omega)}(1-\mathcal{G}(\omega)) k_{21}(y(\omega), \omega)=0 \tag{B.5}
\end{equation*}
$$

where k_{1} is the derivative of the cost function k with respect to its first argument and k_{21} is the cross-derivative with respect to the first and the second argument. With an isoelastic cost function

$$
k_{21}(y(\omega), \omega)=-\left(1+\frac{1}{\varepsilon}\right) \frac{1}{\omega} k_{1}(y(\omega), \omega)
$$

so that the first order condition can also be written as

$$
\begin{equation*}
\frac{1-k_{1}(y(\omega), \omega)}{k_{1}(y(\omega), \omega)}=\frac{1-F(\omega)}{f(\omega) \omega}\left(1+\frac{1}{\varepsilon}\right)(1-\mathcal{G}(\omega)) \tag{B.6}
\end{equation*}
$$

Suppose that the welfare-maximizing allocation is decentralized by means of a non-linear income tax schedule T. Then, type ω solves the following problem:

$$
\max _{y} \quad y-T(y)-k(y, \omega) .
$$

Denote the solution to this problem by $y^{*}(\omega)$. It is characterized by the first order condition

$$
1-T^{\prime}\left(y^{*}(\omega)\right)=k_{1}\left(y^{*}(\omega), \omega\right)
$$

As $y^{*}(\omega)$ is also the solution to the mechanism design problem, the first order condition in (B.6) can now be written as

$$
\begin{equation*}
\frac{T^{\prime}\left(y^{*}(\omega)\right)}{1-T^{\prime}\left(y^{*}(\omega)\right)}=\frac{1-F(\omega)}{f(\omega) \omega}\left(1+\frac{1}{\varepsilon}\right)(1-\mathcal{G}(\omega)) . \tag{B.7}
\end{equation*}
$$

Equation (B.7) is also known as Diamond's formula, see Diamond (1998). It shows that marginal taxes on the income earned by type ω are increasing in the inverse hazard rate, decreasing in the elasticity ε and decreasing in the welfare weight of individuals richer than type ω.
The Rawlsian schedule. The Rawlsian schedule is the special case with $\mathcal{G}(\omega)=$ 0 , for all $\omega>\underline{\omega}$. In this case the, the first order condition in (B.7) becomes

$$
\begin{equation*}
\frac{T^{\prime}\left(y^{*}(\omega)\right)}{1-T^{\prime}\left(y^{*}(\omega)\right)}=\frac{1-F(\omega)}{f(\omega) \omega}\left(1+\frac{1}{\varepsilon}\right) . \tag{B.8}
\end{equation*}
$$

The Rawlsian tax schedule is also often referred to as the maxi-min schedule. It is the schedule that maximizes \underline{u}, the well-being of the worst off individual, i.e. of
type $\underline{\omega}$.

B.3. The maxi-max schedule

The maxim-max schedule is the one that maximizes the well-being of the best off individual, i.e. of type $\bar{\omega}$. Since the welfare weights are now concentrated at the top, this can now longer be viewed as a special case of social welfare-maximization with weights that are higher for poorer people. This case is still of interest as it helps to interpret the lower Pareto bound for marginal tax rates in the main text, and therefore the scope for politically feasible reforms. We present a derivation of the maxi-max schedule along lines that are similar to our characterization of welfare-maximizing tax schedules above. An alternative derivation can be found in Brett and Weymark (2017).

The envelope theorem implies, that under an incentive compatible allocation,

$$
u^{\prime}(\omega)=-k_{2}(y(\omega), \omega) .
$$

Therefore

$$
u(\omega)=\bar{u}+\int_{\omega}^{\bar{\omega}} k_{2}(y(s), s) d s
$$

where $\bar{u}:=u(\bar{\omega})$ is a shorthand for the utility realized by the highest type.
Using $c(\omega)=u(\omega)+k(y(\omega), \omega)$ and after an integartion by parts we can write aggregate consumption as

$$
\mathbb{E}[c(\omega)]=\bar{u}+\mathbb{E}[k(y(\omega, \omega))]+\mathbb{E}\left[\frac{F(\omega)}{f(\omega)} k_{2}(y(\omega), \omega)\right]
$$

Substituting this expression into the resource constraint and rearranging yields

$$
\begin{equation*}
\bar{u}=\mathbb{E}\left[y(\omega)-k(y(\omega, \omega))-\frac{F(\omega)}{f(\omega)} k_{2}(y(\omega), \omega)\right] \tag{B.9}
\end{equation*}
$$

The (relaxed) maxi-max problem is to choose the function y so as to maximize this expression. Pointwise maximization yields the following first order condition

$$
1-k_{1}(y(\omega), \omega)-\frac{F(\omega)}{f(\omega)} k_{21}(y(\omega), \omega)=0 .
$$

Using one more time that, with an isoelastic cost function,

$$
k_{21}(y(\omega), \omega)=-\left(1+\frac{1}{\varepsilon}\right) \frac{1}{\omega} k_{1}(y(\omega), \omega)
$$

allows to rewrite the first order condition as

$$
\begin{equation*}
\frac{1-k_{1}(y(\omega), \omega)}{k_{1}(y(\omega), \omega)}=-\frac{F(\omega)}{f(\omega) \omega}\left(1+\frac{1}{\varepsilon}\right) . \tag{B.10}
\end{equation*}
$$

Again, if this solution is decentralized by means of an income tax schedule, then

$$
\begin{equation*}
\frac{T^{\prime}\left(y^{*}(\omega)\right)}{1-T^{\prime}\left(y^{*}(\omega)\right)}=-\frac{F(\omega)}{f(\omega) \omega}\left(1+\frac{1}{\varepsilon}\right) . \tag{B.11}
\end{equation*}
$$

where $y^{*}(\omega)$ is now the income earned by type ω under the maxi-max schedule.

C. From theory to data

In our empirical analysis in Section V.A, we check to what extent actual tax reforms are monotonic. We also provide an answer to the question whether the median voter actually was a beneficiary of these reforms. Here, we describe in more detail how we operationalize these questions.
Suppose that there is a set of individuals and that, for each individual i, we observe taxable income y_{0}^{i} prior to the reform. We also observe the average tax rate t_{0}^{i} and the marginal tax rate τ_{0}^{i} that are relevant for this individual prior to the reform. Finally, we observe the post-reform counterparts t_{1}^{i} and τ_{1}^{i}.

Monotonicity. Checking to what extent reforms are monotonic then amounts to checking whether, for any pair of individuals i and $j, y_{0}^{i}<y_{0}^{j}$ implies $\left(t_{1}^{i}-t_{0}^{i}\right) y_{0}^{i}<$ $\left(t_{1}^{j}-t_{0}^{j}\right) y_{0}^{j}$. If this relation holds, then the reform is monotonic in the sense that the tax burden of richer individuals increases more than the tax burden of poorer individuals. Alternatively, if $y_{0}^{i}<y_{0}^{j}$ implies $\left(t_{1}^{i}-t_{0}^{i}\right) y_{0}^{i}>\left(t_{1}^{j}-t_{0}^{j}\right) y_{0}^{j}$, then the reform is monotonic as the additional taxes of poorer individuals exceed those of richer individuals. In Section V.B we report on the extent to which we find such relations in our data.
Did the median voter gain? Checking whether the median voter gained requires an assessment of whether or not the inequality

$$
R(\tau, h)-\int_{0}^{\tau} h\left(y^{*}\left(s, h, \omega^{M}\right)\right) d s \geq 0
$$

holds true. Remember that $R(\tau, h)$ is the revenue (per capita) generated by the reform and $\int_{0}^{\tau} h\left(y^{*}\left(s, h, \omega^{M}\right)\right) d s$ is the reform's effect on the median voter's indirect utility. As shown in Section [III, a sufficient condition which ensures that this inequality holds is that

$$
\begin{equation*}
R(\tau, h)-\max \left\{\left(t_{1}^{M}-t_{0}^{M}\right) y_{1}^{M},\left(t_{1}^{M}-t_{0}^{M}\right) y_{0}^{M}\right\} \geq 0, \tag{C.1}
\end{equation*}
$$

where t_{1}^{M} and t_{0}^{M} are, respectively, the average tax rates for the median voter after the reform and in the status quo.
Revenue effect. For the revenue effect, we compute the revenue change for each individual separately and then take an average. The revenue change due to individual i is

$$
\begin{equation*}
R^{i}=t_{1}^{i} y_{1}^{i}-t_{0}^{i} y_{0}^{i}, \tag{C.2}
\end{equation*}
$$

where y_{1}^{i} is the individual's income after the reform. In the presence of behavioral responses y_{1}^{i} will usually be different from y_{0}^{i}. We do not observe y_{1}^{i} and hence have to come up with an estimate for this quantity.

Our assumptions on preferences imply that behavioral responses are driven entirely by changes of the marginal tax rates that individuals face. Thus, using a
first order Taylor approximation,

$$
y_{1}^{i}=y_{0}^{i}+\left(\tau_{1}^{i}-\tau_{0}^{i}\right) y_{\tau}^{i},
$$

where y_{τ}^{i} is the marginal effect that an infinitesimal change of the marginal tax rate has on i 's taxable income (in the status quo). Using that $y_{\tau}^{i}=-y_{1-\tau}^{i}$, we can express this also via the marginal effect associated with a change of the net of tax rate $1-\tau$. Hence,

$$
y_{1}^{i}=y_{0}^{i}-\left(\tau_{1}^{i}-\tau_{0}^{i}\right) y_{1-\tau}^{i}
$$

Using the definition of the ETI, $\varepsilon^{i}:=y_{1-\tau}^{i} \frac{1-\tau_{0}^{i}}{y_{0}^{i}}$, we can rewrite this as well as

$$
y_{1}^{i}=\left(1-\frac{\tau_{1}^{i}-\tau_{0}^{i}}{1-\tau_{0}^{i}} \varepsilon^{i}\right) y_{0}^{i}
$$

Upon substituting this expression into (C.2 we obtain

$$
\begin{equation*}
R^{i}=\left(t_{1}^{i}-t_{0}^{i}-t_{1}^{i} \frac{\tau_{1}^{i}-\tau_{0}^{i}}{1-\tau_{0}^{i}} \varepsilon^{i}\right) y_{0}^{i} \tag{C.3}
\end{equation*}
$$

The revenue effect per capita is then given by

$$
\begin{equation*}
R(\tau, h)=\frac{1}{n} \sum_{i} R^{i} \tag{C.4}
\end{equation*}
$$

where n is the number of individuals.
Did the median voter gain? To answer this question, we check whether or not

$$
\begin{equation*}
R(\tau, h)-\max \left\{\left(t_{1}^{M}-t_{0}^{M}\right)\left(1-\frac{\tau_{1}^{M}-\tau_{0}^{M}}{1-\tau_{0}^{M}} \varepsilon^{M}\right) y_{0}^{M},\left(t_{1}^{M}-t_{0}^{M}\right) y_{0}^{M}\right\} \geq 0 \tag{C.5}
\end{equation*}
$$

This inequality follows from C.1 upon replacing y_{1}^{M} by

$$
\left(1-\frac{\tau_{1}^{M}-\tau_{0}^{M}}{1-\tau_{0}^{M}} \varepsilon^{M}\right) y_{0}^{M}
$$

where τ_{1}^{M} and τ_{0}^{M} are, respectively, the marginal tax rates for the median voter after the reform and in the status quo, and ε^{M} is the median voter's elasticity of taxable income.

D. Tax reforms in OECD countries

We provide more details on the descriptive statistics in the main text that document the frequency of monotonic reforms in OECD countries, see Table 2 .
The OECD provides annual data on key parameters of the statutory personal income tax systems of its member countries (central governments) $𠃌_{1}$ In particular, it documents personal income tax rates for wage income and the taxable income thresholds at which these statutory rates apply. The information is applicable for a single person without dependents. We use this information to construct the corresponding tax function. A reform takes place if this tax function changes from one year to the next. The OECD also reports personal allowances and tax credits, and we include these parameters in our tax functions. In many countries these allowances are equivalent to having a first bracket with a marginal tax rate of zero, see, for instance, Belgium, Estonia, Japan, Spain, the United Kingdom, or the United States. In other countries tax credits are equivalent to a first bracket with a marginal tax rate of zero, see, for instance, the Czech Republic, Italy, or the Netherlands ${ }^{2}$ In the supplementary material for this paper we present separate statistics for different OECD countries. More specifically, the following countries are covered: Australia, Austria, Belgium, Canada, Chile, Czech Republic, Denmark, Estonia, Finland, France, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Latvia, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Spain, Sweden, Switzerland, Turkey, United Kingdom, United States. We excluded Slovenia because of an inconsistency in the OECD database for this country and Germany because of an incorrect representation of the German tax system in the OECD database 3

[^1]
E. Empirical analysis: Additional results

	Average	Relative	At Median
RA64	-73.1	-2.2	-40.6
TRA69	-1.2	-0.0	1.7
RA78	-79.1	-0.9	-54.0
ERTA81	-167.3	-1.5	-43.2
TRA86	-149.6	-1.0	-134.3
OBRA90	11.8	0.1	-7.0
OBRA93	106.5	0.5	-2.7
EGTRRA01	-357.6	-1.3	-345.2
JGTRRA03	-485.6	-1.7	-147.4
ATRA12	477.1	1.3	13.5
TCJA17	-554.7	-1.3	-526.2

Table E.1: Revenue implications of US tax reforms.
Notes: Table E.1 reports the revenue implications for major reforms of the US federal personal income tax (see Table H.1 for details). To be precise, the first column shows the average counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$, column 2 shows this change as a percentage of average income, while column 3 reports this change at median income. Note that the average value in column 1 corresponds to the revenue effect $R(\tau, h)$ in the absence of behavioral responses and hence shows the amount that is redistributed to achieve balanced budget reforms in Figure 5 (for ETI=0). Median income is based on pre-tax income without capital gains while tax base includes capital gains. All computations are on the individual level. For this, the income of couples filing jointly is allocated equally to each spouse. In order to simulate counterfactual tax payments $T_{1}\left(\hat{y}_{0}^{i}\right)$, income from year 0 are inflated to year 1 using the CPI-U-RS deflator as uprating factor.
Source: Authors' calculations based on NBER TAXSIM and IRS-SOI PUF.

Figure E.1: Winners and losers of major US tax reforms: Heterogeneity within deciles

Notes: Figure E. 1 shows the cross-sectional distribution by decile of the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)-R(\tau, h)$ for reforms of the US federal personal income tax (see Table H. 1 for details) for four different values of the elasticity of taxable income (ETI): 0 (blue), 0.25 (red), 1 (green) and 1.5 (yellow), by means of box-plots. Deciles are computed based on pre-tax income without capital gains while tax base includes capital gains. All computations are on the individual level. For this, the income of couples filing jointly is allocated equally to each spouse. In order to simulate counterfactual tax payments $T_{1}\left(\hat{y}_{0}^{i}\right)$, income from year 0 are inflated to year 1 using the CPI-U-RS deflator as uprating factor. The vertical lines show different locations for the median voter: the dashed line to the left imputes non-filers to the tax return data while the dashed line to the right accounts for differential turnout by income. The solid line in the middle represents both the original median in the data as well as the one accounting for both modifications simultaneously.
Source: Authors' calculations based on NBER TAXSIM and IRS-SOI PUF.

Figure E.2: Shares of winners and losers by decile
Notes: Figure E. 2 shows the shares of reform winners (green) versus reform losers (losers) for major reforms of the US federal personal income tax (see Table H. 1 for details), by income decile and for four different values of the elasticity of taxable income (ETI): $0,0.25,1$ and 1.5 (from left to right). The first four bars ("Total") show the shares for the full population. The first bar shows the shares for the full population. Deciles are computed based on pre-tax income without capital gains while tax base includes capital gains. All computations are on the individual level. For this, the income of couples filing jointly is allocated equally to each spouse. In order to simulate counterfactual tax payments $T_{1}\left(\hat{y}_{0}^{i}\right)$, income from year 0 are inflated to year 1 using the CPI-U-RS deflator as uprating factor.
Source: Authors' calculations based on NBER TAXSIM and IRS-SOI PUF.

Figure E.3: Shares of winners by decile
Notes: Figure E. 3 shows the shares of reform winners for major reforms of the US federal personal income tax (see Table H. 1 for details), by income decile and for four different values of the elasticity of taxable income (ETI): 0 (blue), 0.25 (red), 1 (green) and 1.5 (yellow). The first four dots ("Total") show the shares for the full population. Deciles are computed based on pre-tax income without capital gains while tax base includes capital gains. All computations are on the individual level. For this, the income of couples filing jointly is allocated equally to each spouse. In order to simulate counterfactual tax payments $T_{1}\left(\hat{y}_{0}^{i}\right)$, income from year 0 are inflated to year 1 using the CPI-U-RS deflator as uprating factor.
Source: Authors' calculations based on NBER TAXSIM and IRS-SOI PUF.

Figure E.4: Effective marginal tax rates by decile before and after each reform
Notes: Figure E. 4 shows, separately for each decile effective marginal tax rates (EMTRs) T^{\prime} before (blue) and after (red) major reforms of the US federal personal income tax (see Table H. 1 for details). Deciles are computed based on pre-tax income without capital gains while tax base includes capital gains. All computations are on the individual level. For this, the income of couples filing jointly is allocated equally to each spouse. In order to simulate counterfactual tax payments $T_{1}\left(\hat{y}_{0}^{i}\right)$, income from year 0 are inflated to year 1 using the CPI-U-RS deflator as uprating factor.
Source: Authors' calculations based on NBER TAXSIM and IRS-SOI PUF.

F. Empirical analysis: Sensitivity checks

In this section, we conduct sensitivity checks of our empirical results with respect to several choices made. More precisely, we reproduce Figure 2 with the following variations:
(i) Tax units (instead of equal split couples) - see Figure F.1;
(ii) Statutory tax rates (instead of effective tax rates) - see Figure F.2,
(iii) Different bin sizes (50 instead of 10) - see Figure F. 3 ,
(iv) Different income definitions: gross income including capital gains (see Figure F.4) and adjusted gross income (see Figure F.5), respectively;
(v) Including state-level and payroll taxes - see Figure F.6.

To preview the findings below: Figures F. 1 - F. 6 reveal the same message as Figure 2, namely that reforms are by and large monotonic. The main differences are reported below. Given that the value of $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ depicted in these Figures is the key ingredient for all other computations, it is not surprising that these sensitivity checks also do not affect the other figures reported in the paper. For brevity reasons, we refrain from showing these variations here but they are available upon request.

An interesting observation for TRA69 and RA78 is that the effects reported in Figure F. 2 based on statutory tax rates differ from using effective tax rates instead as in Figure 23 this shows the importance of accounting for tax base changes. The same is true for other reforms albeit to a smaller extend. This shows the importance of using a micro data based microsimulation approach for the evaluation of tax reforms.
As reported in Figure F.6, the monotonicity pattern is different when we include state-level and payroll taxes for the three oldest reforms only (RA64, TRA69, RA78).

Figure F.1: Changes in tax liability: Average values per tax unit decile
Notes: Figure F. 1 replicates Figure 2 with tax units instead of individual taxpayers. It shows the average value of the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ for reforms of the US federal personal income tax (see Table H.1 for details) by income decile. The red line represents a quadratic fit based on the underlying micro data. Deciles are computed based on pre-tax income without capital gains while tax base includes capital gains. All computations are on the tax unit level. In order to simulate counterfactual tax payments $T_{1}\left(\hat{y}_{0}^{i}\right)$, income from year 0 are inflated to year 1 using the CPI-U-RS deflator as uprating factor. The vertical lines show different locations for the median voter: the dashed line to the left imputes non-filers to the tax return data while the dashed line to the right accounts for differential turnout by income. The solid line in the middle represents both the original median in the data as well as the one accounting for both modifications simultaneously.
Source: Authors' calculations based on NBER TAXSIM and IRS-SOI PUF.

Figure F.2: Changes in statutory tax liability: Average values per decile
Notes: Figure F.2 replicates Figure 2 using statutory tax rates instead of effective tax rates. It shows the average value of the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ for reforms of the US federal personal income tax (see Table H. 1 for details) by income decile. The red line represents a quadratic fit based on the underlying micro data. Deciles are computed based on pre-tax income without capital gains while tax base includes capital gains. All computations are on the individual level. For this, the income of couples filing jointly is allocated equally to each spouse. In order to simulate counterfactual tax payments $T_{1}\left(\hat{y}_{0}^{i}\right)$, income from year 0 are inflated to year 1 using the CPI-U-RS deflator as uprating factor. The vertical lines show different locations for the median voter: the dashed line to the left imputes non-filers to the tax return data while the dashed line to the right accounts for differential turnout by income. The solid line in the middle represents both the original median in the data as well as the one accounting for both modifications simultaneously.
Source: Authors' calculations based on NBER TAXSIM and IRS-SOI PUF.

Figure F.3: Changes in tax liability: Average values per 50 income bins
Notes: Figure F. 3 replicates Figure 2 using 50 income bins instead of deciles. It shows the average value of the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ for reforms of the US federal personal income tax (see Table H. 1 for details) by income bin. The red line represents a quadratic fit based on the underlying micro data. Deciles are computed based on pre-tax income without capital gains while tax base includes capital gains. All computations are on the individual level. For this, the income of couples filing jointly is allocated equally to each spouse. In order to simulate counterfactual tax payments $T_{1}\left(\hat{y}_{0}^{i}\right)$, income from year 0 are inflated to year 1 using the CPI-U-RS deflator as uprating factor. The vertical lines show different locations for the median voter: the dashed line to the left imputes non-filers to the tax return data while the dashed line to the right accounts for differential turnout by income. The solid line in the middle represents both the original median in the data as well as the one accounting for both modifications simultaneously.
Source: Authors' calculations based on NBER TAXSIM and IRS-SOI PUF.

Figure F.4: Changes in tax liability: Average values per decile including capital gains

Notes: Figure F. 4 replicates Figure 2 using deciles including capital gains. It shows the average value of the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ for reforms of the US federal personal income tax (see Table H.1 for details) by income bin. The red line represents a quadratic fit based on the underlying micro data. All computations are on the individual level. For this, the income of couples filing jointly is allocated equally to each spouse. In order to simulate counterfactual tax payments $T_{1}\left(\hat{y}_{0}^{i}\right)$, income from year 0 are inflated to year 1 using the CPI-U-RS deflator as uprating factor. The vertical lines show different locations for the median voter: the dashed line to the left imputes non-filers to the tax return data while the dashed line to the right accounts for differential turnout by income. The solid line in the middle represents both the original median in the data as well as the one accounting for both modifications simultaneously.
Source: Authors' calculations based on NBER TAXSIM and IRS-SOI PUF.

Figure F.5: Changes in tax liability: Average values per adjusted gross income (AGI) decile

Notes: Figure F. 5 replicates Figure 2 using deciles based on adjusted gross income (AGI). It shows the average value of the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ for reforms of the US federal personal income tax (see Table H.1 for details) by income bin. The red line represents a quadratic fit based on the underlying micro data. All computations are on the individual level. For this, the income of couples filing jointly is allocated equally to each spouse. In order to simulate counterfactual tax payments $T_{1}\left(\hat{y}_{0}^{i}\right)$, income from year 0 are inflated to year 1 using the CPI-U-RS deflator as uprating factor. The vertical lines show different locations for the median voter: the dashed line to the left imputes non-filers to the tax return data while the dashed line to the right accounts for differential turnout by income. The solid line in the middle represents both the original median in the data as well as the one accounting for both modifications simultaneously.
Source: Authors' calculations based on NBER TAXSIM and IRS-SOI PUF.

Figure F.6: Changes in tax liability including state-level and payroll taxes: Average values per decile

Notes: Figure F. 6 replicates Figure 2 by including state-level and payroll taxes. It shows the average value of the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ for reforms of the US federal personal income tax (see Table H. 1 for details) by income bin. The red line represents a quadratic fit based on the underlying micro data. Deciles are computed based on pre-tax income without capital gains while tax base includes capital gains. All computations are on the individual level. For this, the income of couples filing jointly is allocated equally to each spouse. In order to simulate counterfactual tax payments $T_{1}\left(\hat{y}_{0}^{i}\right)$, income from year 0 are inflated to year 1 using the CPI-U-RS deflator as uprating factor. The vertical lines show different locations for the median voter: the dashed line to the left imputes non-filers to the tax return data while the dashed line to the right accounts for differential turnout by income. The solid line in the middle represents both the original median in the data as well as the one accounting for both modifications simultaneously.
Source: Authors' calculations based on NBER TAXSIM and IRS-SOI PUF.

	Correlation	Rank Correlation
RA64	0.829	0.957
TRA69	0.270	0.765
RA78	0.318	0.716
ERTA81	0.641	0.871
TRA86	0.681	0.794
OBRA90	0.931	0.836
OBRA93	0.952	0.828
EGTRRA01	0.820	0.842
JGTRRA03	0.853	0.887
ATRA12	0.855	0.845
TCJA17	0.741	0.857

Table F.1: Monotonicity of reforms - correlation analysis

Abstract

Notes: This table shows the (rank) correlation between the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ (see Figure 2 and pre-tax income for reforms of the US federal personal income tax (see Table H.1 for details). All computations are on the individual level. For this, the income of couples filing jointly is allocated equally to each spouse. In order to simulate counterfactual tax payments $T_{1}\left(\hat{y}_{0}^{i}\right)$, income from year 0 are inflated to year 1 using the CPI-U-RS deflator as uprating factor. Source: Authors' calculations based on NBER TAXSIM and IRS-SOI PUF.

G. Tax Reform Proposals

In order to answer the question whether the finding that tax reforms are, by and large, monotonic, extends to tax reforms proposals which are publicly debated, but not enacted, we invoke the systematic analysis of reform proposals in the US that is provided by the Tax Policy Center. The data is taken from the Tax Policy Center's ex ante analysis of each reform proposal. Details on the underlying data, methods and simulation model can be found here: https://www. taxpolicycenter.org/resources/brief-description-tax-model. For each proposal, there is a code ("Source") corresponding to the source document from the Tax Policy Center's webpage ${ }_{4}^{4}$

We identified 69 reform proposals that were made in the period 2003-2019: some proposals were made during presidential campaigns and primaries, others were proposed by the Administration during the legislative process. Figures G. 1 - G. 8 and Tables G. 1 - G. 8 below synthesize the Tax Policy Center's ex-ante analyses of the absolute (dollar) tax payment changes by income quantiles of reform proposals of the federal personal income tax between 2003 and 2019. All tables provide a code corresponding to the source document from the Tax Policy Center, the year of the projection, the type of taxes underlying the analysis and the employed baseline. The selection criteria for the proposals/reforms were that (1) they concern personal income taxes, (2) they significantly impact all

[^2]income percentiles and (3) they were formal proposals from the Administration, Candidates, Political Parties, or particular Congress members. In case there are several projections available for one proposal and different years, only the one that is closest to the date of the proposal is included. Estimations using different baselines are included if changing the baseline significantly affects the estimates (due to many temporary taxes).

Figure G.1: Change in tax liability by quintile, 2016 US Presidential campaign
Notes: Figure G. 1 shows the average value of the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ for reform proposals of the US federal personal income tax by income quintile. The first column shows the overall counterfactual tax change. The dashed horizontal line shows the revenue neutral benchmark (via lump sum redistribution) for an ETI of zero. The data is taken from the Tax Policy Center's ex ante analysis of each reform proposal (see Table G.1 for details).
Source: Authors' calculations based on Tax Policy Center.

Figure G.2: Change in tax liability by quintile, 2012 US Presidential campaign
Notes: Figure G. 2 shows the average value of the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ for reform proposals of the US federal personal income tax by income quintile. The first column shows the overall counterfactual tax change. The dashed horizontal line shows the revenue neutral benchmark (via lump sum redistribution) for an ETI of zero. The data is taken from the Tax Policy Center's ex ante analysis of each reform proposal (see Table G. 2 for details).
Source: Authors' calculations based on Tax Policy Center.

Figure G.3: Change in tax liability by quintile, 2008 and 2004 US Presidential campaigns

Notes: Figure G. 3 shows the average value of the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ for reform proposals of the US federal personal income tax by income quintile. The first column shows the overall counterfactual tax change. The dashed horizontal line shows the revenue neutral benchmark (via lump sum redistribution) for an ETI of zero. The data is taken from the Tax Policy Center's ex ante analysis of each reform proposal (see Table G. 3 for details).
Source: Authors' calculations based on Tax Policy Center.

(j) Bowles-Simpson

Plan F

Figure G.4: Change in tax liability by quintile for reform proposals
Notes: Figure G. 4 shows the average value of the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ for reform proposals of the US federal personal income tax by income quintile. The first column shows the overall counterfactual tax change. The dashed horizontal line shows the revenue neutral benchmark (via lump sum redistribution) for an ETI of zero. The data is taken from the Tax Policy Center's ex ante analysis of each reform proposal (see Table G. 4 for details).
Source: Authors' calculations based on Tax Policy Center.

Figure G.5: Change in tax liability by quintile for reform proposals
Notes: Figure G. 5 shows the average value of the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ for reform proposals of the US federal personal income tax by income quintile. The first column shows the overall counterfactual tax change. The dashed horizontal line shows the revenue neutral benchmark (via lump sum redistribution) for an ETI of zero. The data is taken from the Tax Policy Center's ex ante analysis of each reform proposal (see Table G. 5 for details).
Source: Authors' calculations based on Tax Policy Center.
(a) Unified Framework

(d) Proposal for Budget FY2011 A

(b) Proposal for Budget FY2010 A

(e) Proposal for Budget FY2011 B

(c) Proposal for Budget FY2010 B

(f) Proposal for Budget FY2012 A

(g) Proposal for Budget FY2012 B

Figure G.6: Change in tax liability by quintile for reform proposals
Notes: Figure G. 6 shows the average value of the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ for reform proposals of the US federal personal income tax by income quintile. The first column shows the overall counterfactual tax change. The dashed horizontal line shows the revenue neutral benchmark (via lump sum redistribution) for an ETI of zero. The data is taken from the Tax Policy Center's ex ante analysis of each reform proposal (see Table G. 6 for details).
Source: Authors' calculations based on Tax Policy Center.

(b) Proposal for Budget FY2013 B

(e) Implement a Simplified Tax System

(d) Proposal for Budget FY2015

(f) Integrated Payroll Tax Plan

Figure G.7: Change in tax liability by quintile for reform proposals
Notes: Figure G.7 shows the average value of the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ for reform proposals of the US federal personal income tax by income quintile. The first column shows the overall counterfactual tax change. The dashed horizontal line shows the revenue neutral benchmark (via lump sum redistribution) for an ETI of zero. The data is taken from the Tax Policy Center's ex ante analysis of each reform proposal (see Table G. 7 for details).
Source: Authors' calculations based on Tax Policy Center.
(a) Middle Class Tax
(b) Temporary Payroll Relief and Job Creation Tax Cut Continuation Act

(c) Tax Relief, UI Reauthorization, and Job Creation Act A

(d) Tax Relief, UI Reauthorization, and Job Creation Act B

(e) American Recovery
(f) Economic Stimulus and Reinvestment Act Act

(g) Tax Increase Prevention Act

(h) Tax Increase Prevention and Reconciliation Act
(i) Working Families Tax Relief Act B

Figure G.8: Change in tax liability by quintile for reform proposals
Notes: Figure G. 8 shows the average value of the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ for reform proposals of the US federal personal income tax by income quintile. The first column shows the overall counterfactual tax change. The dashed horizontal line shows the revenue neutral benchmark (via lump sum redistribution) for an ETI of zero. The data is taken from the Tax Policy Center's ex ante analysis of each reform proposal (see Table G. 8 for details).
Source: Authors' calculations based on Tax Policy Center.

c9eqza	gzez9 ${ }^{-}$	9才979「－	802LOも－	$\dagger 8782$	09LLII	LgzsLz－	069才LZ－	
L08LE	9¢78T－	†98GI－	79868－	¢L97	0697	L9927－	0678 ${ }^{-}$	86－96
8786I	gtig－	9968－	67195－	7ヶ9	0 L	92tII－	0989－	¢6－06
608もT	89\％て－	6909－	2068－	97%	00I	IEL2－	0278－	68－08
								unpuәppV
∓ 968	\＆18\％－	9才t¢－	9609－	299	$0 ¢ 8$	UtIg－	0767－	IIV
692tt	27685－	8009 ${ }^{-}$	LLtGE－	Lzgt	0699	08tgz－	0999］${ }^{-}$	
［906	869\％－	£п0¢－	も0¢も－	£tI	$0{ }^{-}$	6989－	080\％－	
7697	59ti－	9985－	88LI－	切	$0 \mathrm{LI}^{-}$	z8L\％－	OLOL－	
9791	869－	0¢\％－	889－	9 Cl	0ヵI－	$696{ }^{-}$	007－	э！ฺบบ！\％
991	981－	L97－	$9 \square^{-}$	\pm	00I－	88I－	0LI－	
	MeT quai．nn刀	MeT 7uә．．n刀			Met quenm？	${ }^{\text {Me］}}$ quaiun刀	MeT que．un刀	әu！̣eseg
	$\begin{aligned} & \text { ILIO-GLL } \\ & \text { ueo!qqndəy } \end{aligned}$	$\begin{array}{r} \text { 8000-9「L } \\ \text { ueo!̣qndəy } \end{array}$	$\begin{aligned} & \text { LZ00-9LL } \\ & \text { ueo!!qndəy } \end{aligned}$			$\begin{array}{r} \text { モ\&Z0-gLL } \\ \text { ueo!̣qndəy } \end{array}$	$\begin{array}{r} \text { ZโZ0-9โL } \\ \text { ueo!̣qndəч } \end{array}$	
LIOz	LLOZ	$\angle 10 z$	LIOZ	$\angle \mathrm{LOZ}$	LIOz	LIOZ	LIOZ	ио！үәә！олд јо леә入

 Notes: This table shows the average value of the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ for reform proposals of the US federal personal

Year of projection	2009	2009	2009	2009	2009	2009	2005	2005
Party Affiliation	Democratic	Democratic	Democratic	Republican	Republican	Republican	Democratic	Democratic
Source	T08-0172	T08-0170	T08-0114	T08-0184	T08-0182	T08-0108	T04-0018	T04-0020
Baseline	Current							
	Law $]$							

Table G.4: Counterfactual change in tax liability of Tax Reform Proposals (not initiated by the Administration) Part 1

	Working Families Tax Relief Act	$\begin{aligned} & \text { House } \\ & \text { GOP } \\ & \text { Tax Plan } \end{aligned}$	Gov. Pawlenty Proposal A	Gov. Pawlenty Proposal B	BowlesSimpson Plan A	BowlesSimpson Plan B	BowlesSimpson Plan C	BowlesSimpson Plan D	BowlesSimpson Plan E	BowlesSimpson Plan F
Year of projection	2019	2017	2013	2013	2015	2015	2015	2015	2015	2015
Year of proposal	2019	2016	2011	2011	2010	2010	2010	2010	2010	2010
Originator	Senate	House of	Gov. Paw-	Gov. Paw-	Bowles-	Bowles-	Bowles-	Bowles-	Bowles-	Bowles-
	Democrats	Representatives GOP	lenty	lenty	Simpson	Simpson	Simpson	Simpson	Simpson	Simpson
					Deficit	Deficit	Deficit	Deficit	Deficit	Deficit
					Commission	Commission	Commission	Commission	Commission	Commission
Source	T19-0053	T16-0197	T11-0169	T11-0171	T10-0247	T10-0248	T10-0251	T10-0252	T10-0253	T10-0254
Baseline	Current									
	Law	Law	Law	Policy	Law	Policy	Law	Policy	Law	Policy
Lowest Quintile	-720	-50	-218	-23	319	402	152	234	-135	-53
Second Quintile	-640	-120	-919	-205	757	1370	293	906	-181	432
Middle Quintile	-350	-260	-2057	-955	738	1890	-113	1039	-776	376
Fourth Quintile	-190	-410	-4825	-2572	121	2845	-1177	1548	-2112	612
Top Quintile	-190	-11760	-33149	-23557	-1755	8848	-3075	7527	-1976	8626
All	-460	-1810	-6267	-4078	165	2583	-569	1850	-878	1540
Addendum										
80-89	-220	-310	-10051	-5672	-602	4020	-2084	2538	-2824	1798
90-94	-190	-370	-15495	-9654	-1690	5161	-3013	3838	-3846	3005
95-98	-160	-7690	-36403	-25796	-3348	8210	-4390	7168	-5321	6238
Top 1 Percent	0	-212660	-337439	-261433	-7322	77409	-8118	76613	28704	113434

Notes: This table shows the average value of the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ for reform proposals of the US federal personal income tax by income quintile as well as a decomposition for the top quintile. The data is taken from the Tax Policy Center's ex ante analysis of each reform proposal. Details on the underlying data, methods and simulation model can be found here: https://www.taxpolicycenter.org/resources/ brief-description-tax-model. For each proposal, there is a code ("Source") corresponding to the source document from the Tax Policy Center. The table also contains information on the year of the proposal, the year of the projection and the employed baseline (current law vs. current policy).

8LG－	\＆¢68¢－	69907－	てL0\％${ }^{-}$	LZ96LZ－	928L98－	LLItLて－	L68898－	L988z	06689－	ұиәэлә ${ }^{\text {I }}$ doL
0zg－	9797I－	8LZた－	L098－	\＆gczi－	LL6Iz－	96z0¢－	L8607－	ワ69\％	$629{ }^{-}$	86－96
9tg－	0ヵt8－	¢6L8－	†¢LI－	7261	8198－	96IE	z70¢－	7791	L68t－	¢6－06
LOG－	797ヶ－	8998－	でで－	6761	6207－	6097	L02I－	$96 \pm$	890才－	$\begin{array}{r} 68-08 \\ \text { unpuәpp\% } \end{array}$
298－	987\％－	99才t－	886 ${ }^{-}$	984I－	2ヵL8－	890 ${ }^{-}$	8678－	IL	0才LZ－	IIV
609－	8\＆โ6－	2797－	$908 \mathrm{Z}^{-}$	0¢z¢t－	8んもちて－	98885－	99 ¢8\％$^{-}$	Lъ\％\％	8892－	ข！ฺฺu！̣\％${ }^{\text {dol }}$
\＆じ－	66 LZ－	て\＆もて－	CEEL－	モ69	モ¢ ${ }^{\text {－}}$	てぃъて	991－	09\％${ }^{-}$	モ69\％－	
L8¢－	¢L2－	96zI－	8LIL－	ธ62	LI－	LZZI	ZSI	189－	809 ${ }^{-}$	ә！ฺบ！กชั әІрр！̣์
767－	¢8\％－	9St－	ZSt－	688	79	LeIt	Its	698^{-}	296－	
モ¢\％－	g\％－	GT－	9\％－	¢9L－	085－	22t	¢68	ஏ9－	Z5I－	ә！ฺu！ฺก ұรәмот
${ }_{\text {met }}$	${ }^{\text {meT }}$	${ }^{\text {meT }}$	${ }_{\text {met }}$	${ }_{\text {Ko！po }}$	${ }_{\text {met }}$		${ }_{\text {MET }}$	Кכ！${ }^{\text {¢ }}{ }^{\text {d }}$	${ }_{\text {мет }}$	
ұиәı．ın刀	ұиә．．m刀	ұиәл．ın刀	ұиәл．ın刀	ұиә．．m刀		ұиә．．．n刀	ұиә．．．n刀	ұиәı．ı刀	ұиәлın刀	әu！peseg
9000－80L	IE\＆0－L0L	8700－60山	9ஏ00－60L	8600－0LL	6800－0LL	L600－0LL	2800－0tL	6 LIO－0tL	27L0－0LL	ә๐mos
sұелоошәб		dOゆ	dOゆ					8 8．8コ》	8．80．1	
รәл！ұедиәง		sәл！реұиәs	sәл！ұеұиәs					＇uәS pue	＇üs pue	
－əıdəบ	uosduoul	－əıdəบ	－əıdəบ	uefy	ue K y	ueSy	uefy	${\operatorname{rəp} \kappa_{M}}^{\prime}$		
јо әsnoH	－uəs	jo əsnoH	јо əsnoH	＇dəy	＇dəy	＇dəบ	－dəy	＇uәS	＇uә，	моұеu！six
¢00z	2007	6002	6007	0102	0102	0 20z	0 20z	0 20z	0 20z	［esodord јо теәл
800z	6007	$600 z$	6002	¢10z	¢L0z	¢10z	¢toz	¢10z	¢LOz	иопргә！олд јо леәл
				a ${ }^{\circ} \mathrm{V}$	－2 ${ }^{\circ} \mathrm{V}$	$8{ }^{70} \mathrm{~V}$	$\mathrm{V}{ }^{\circ} \mathrm{O}$			
		g	V			ә．mn	อ．mn，			
	ueid	［esodord	［esodo．${ }_{\text {d }}$	s، ex	s،eo！	s،eot	s،es！			
I $^{\text {esodo．}}$ d	xeL sfuos	snınump	sninump	－raviv	－ләй	－ләuV	－ләu\％	${ }^{(93 \mathrm{~V}}$	$\left({ }^{\circ} \mathrm{O}\right.$	
sninump	－duoul	иео	иез	roj	roy	roj	roj	8．8®コ	8．8อх	
опрелоошәа		－！iqndəy	－！ıqndəy	deupeoy	deupeoy	deupeoy	dewpeor	－иәр $\kappa_{\text {M }}$	${\text {－иәр } \kappa_{M}}^{\text {¢ }}$	

Table G．5：Counterfactual change in tax liability of Tax Reform Proposals（not initiated by the Administration）Part 2
Table G.6: Counterfactual change in tax liability of Tax Reform Proposals (initiated by the Administration)
Part 1

	Unified Framework	Proposal for Budget FY2010 A	Proposal for Budget FY2010 B	Proposal for Budget FY2011 A	Proposal for Budget FY2011 B	Proposal for Budget FY2012 A	Proposal for Budget FY2012 B
Year of projection	2018	2012	2011	2012	2012	2013	2013
Year of proposal	2017	2009	2009	2010	2010	2011	2011
Source	T17-0225	T09-0132	T09-0501	T10-0037	T10-0039	T11-0027	T11-0029
Baseline	Current Law	Current Law	Current Law	Current Law	Current Policy	Current Law	Current Policy
Lowest Quintile	-60	-572	-496	-284	-216	-272	-216
Second Quintile	-290	-1197	-1059	-844	-264	-805	-264
Middle Quintile	-660	-1625	-1484	-1261	-244	-1166	-244
Fourth Quintile	-1110	-2747	-2553	-2396	-229	-2297	-229
Top Quintile	-8470	-5028	-6483	-5465	3698	-4882	3698
All	-1570	-1965	-2051	-1729	347	-1599	347

[^3]

 dic ${ }_{6}^{6999^{-}}$ | | $\begin{array}{l}\text { Proposal } \\ \text { for Budget }\end{array}$ | $\begin{array}{l}\text { Proposal } \\ \text { for Budget }\end{array}$ | $\begin{array}{l}\text { Proposal } \\ \text { for Budget } \\ \text { For }\end{array}$ | $\begin{array}{l}\text { Proposal } \\ \text { for Budget }\end{array}$ | $\begin{array}{l}\text { Implement } \\ \text { a Simplified } \\ \text { Tax System }\end{array}$ | $\begin{array}{l}\text { Integrated } \\ \text { Payroll Tax } \\ \text { Plan }\end{array}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FY2013 A | | | | | | | Table G.7: Counterfactual change in tax liability of Tax Reform Proposals (initiated by the Ad-

ministration) Part 2
Table G.8: Counterfactual change in tax liability of Further Amended Tax Reforms

	Middle Class Tax Relief and Job Creation Act	Temporary Payroll Tax Cut Continuation Act	Tax \quad Re- lief, Un- employ- ment Insurance Reautho- rization, and Job Creation Act A	Tax \quad Re- lief, Un- employ- ment Insurance Reautho- rization, and Job Creation Act B	American Recovery and Reinvestment Act	Economic Stimulus Act	Tax In- crease Preven- tion Act	Tax In- crease Preven- tion and Recon- ciliation Act	Working Families Tax Relief Act
Year of projection	2012	2012	2011	2011	2009	2008	2007	2006	2005
Year of proposal	2012	2011	2010	2010	2009	2008	2007	2005	2004
Source	T12-0034	T12-0006	T10-0273	T10-0275	T09-0113	T08-0062	T07-0343	T06-0086	T04-0154
Baseline	Current								
	Lawl) ()	Lawl)	Law	Policy	Law	Law	Law	Law	Law
Lowest Quintile	-89	-15	-351	-307	-473	-420	0	0	-2
Second Quintile	-309	-52	-1047	-524	-642	-653	0	-7	-55
Middle Quintile	-597	-103	-1713	-772	-765	-824	-4	-20	-162
Fourth Quintile	-1105	-191	-3186	-1296	-1263	-969	-88	-117	-331
Top Quintile	-2021	-341	-10887	-2556	-3113	-715	-1415	-2119	-1317
All	-682	-116	-2823	-950	-1092	-715	-301	-453	-374
Addendum									
80-89	-1780	-302	-5906	-2068	-2470	-975	-704		
90-94	-2226	-376	-7759	-2544	-3732	-688	-1514		
95-98	-2278	-380	-11983	-2903	-4642	-268	-3253		
Top 1 Percent	-2407	-396	-70836	-6095	-514	-38	-684	-14094	-2390
Notes: This table shows the average value of the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ for reform proposals of the US federal personal income tax by income quintile as well as a decomposition for the top quintile. The data is taken from the Tax Policy Center's ex ante analysis of each reform proposal. Details on the underlying data, methods and simulation model can be found here: https://www.taxpolicycenter.org/resources/									
brief-description-tax-model. For each proposal, there is a code ("Source") corresponding to the source document from the Tax Policy Center. The table also contains information on the year of the proposal, the year of the projection and the employed baseline (current law vs. current policy).									

H. Details on US Tax Reforms

In this section, we briefly outline the major changes in the US personal income tax system from 1964 until 2017. Table H. 1 provides an overview of the 11 reforms that we identified and analyze. We concentrate on large legislative changes which drive the tax policy effect. Reforms of interest are the Revenue Act of 1964 (RA64), the Tax Reform Act of 1969 (TRA69), the Revenue Act of 1978 (RA78), the Economic Recovery Tax Act of 1981 (ERTA81), the Tax Reform Act of 1986 (TRA86), the Omnibus Budget Reconciliation Act of 1990 and 1993 (OBRA90 and OBRA93), the Economic Growth and Tax Relief Reconciliation Act of 2001 (EGTRRA01), the Jobs and Growth Tax Relief Reconciliation Act of 2003 (JGTRRA03), the American Taxpayer Relief Act of 2012 (ATRA12) and the Tax Cuts and Jobs Act of 2017 (TCJA17).

Tax reform	pre	post	key features of the reform
RA64	1962	1966	Tax cut (top rate from 91% to 70\%)
TRA69	1968	1970	Introduction of Alternative Minimum Tax and new tax schedule for single taxpayers
RA78	1978	1979	Widening of tax brackets (and reducing their number)
ERTA81	1980	1984	Tax cut (top rate from 70% to 50%)
TRA86	1985	1988	Broadening of tax base and reductions in MTRs (top rate from 50% to 28%)
OBRA90	1990	1991	Increase of top tax rate from 28% to 31%
OBRA93	1992	1993	Expansion of EITC and increase of top tax rate from 31% to 39.6%
EGTRRA01	2000	2002	Reductions in marginal tax rates
JGTRRA03	2002	2003	Reductions in marginal tax rates
ATRA12	2012	2013	Increase of tax rates for high income earners
TCJA17	2016	2018	Tax cuts (top rate from 39.6% to 37%)

Table H.1: Overview of US reforms
Notes: Table H. 1 lists the major reforms of the federal income tax in the US after WWII: the Revenue Act of 1964 (RA64), the Tax Reform Act of 1969 (TRA69), the Revenue Act of 1978 (RA78), the Economic Recovery Tax Act of 1981 (ERTA81), the Tax Reform Act of 1986 (TRA86), the Omnibus Budget Reconciliation Act of 1990 and 1993 (OBRA90 and OBRA93), the Economic Growth and Tax Relief Reconciliation Act of 2001 (EGTRRA01), the Jobs and Growth Tax Relief Reconciliation Act of 2003 (JGTRRA03), the American Taxpayer Relief Act of 2012 (ATRA12) and the Tax Cuts and Jobs Act of 2017 (TCJA17). The pre reform year is always the last year before any change was implemented while the post reform year is the one after all changes are phased in (except for RA64 due to only bi-annual data availability of SOI PUF before 1966).

The key features of these reforms as well as distributional ex ante analyses of these reforms are summarized in the following.
RA64: RA64 was proposed by President Kennedy, thus often referred to as
"Kennedy tax cuts", but came into effect only after his assassination in 1964. Individual tax rates were reduced considerably, with the marginal rate at the top dropping from 91% to 70%. The tax revenue effect was negative (Tempalski (2006)). To the best of our knowledge, there is no retrievable distributional analysis for this reform and we provide such an analysis in Figure 2.

TRA69: The main goal of TRA69 was to tax high-income earners who had previously avoided paying taxes due to various exemptions and deductions by creating the Alternative Minimum Tax (AMT). There were also some tax rate and bracket changes (mostly for single taxpayers) and some changes to standard deductions and personal exemptions. The tax revenue effect was negative (Tempalski (2006)). To the best of our knowledge, there is no retrievable distributional analysis for this reform and we provide such an analysis in Figure 2.

RA78: RA78 reduced individual income taxes by widening tax brackets, reducing the number of tax rates, increasing the personal exemption, increasing the standard deduction and reducing the effective tax rate on realized capital gains. The tax revenue effect was negative (Tempalski (2006)). To the best of our knowledge, there is no retrievable distributional analysis for this reform and we provide such an analysis in Figure 2 .

ERTA81: ERTA81 introduced the indexation of individual income tax parameters which became effective in 1985. Tax cuts were phased in over the years 1982-1984, with a reduction of top marginal tax rates from 70% to 50% in 1982 and of other tax rates by 23% in three annual steps. Further, the income threshold for the top rate substantially increased from $\$ 85,600$ in 1982 to $\$ 109,400$ (1983) and $\$ 162,400$ (1984) for married couples filing jointly. Similarly, thresholds were increased for couples filing separately and for singles. The Joint Committee on Taxation (1981) conducted an ex ante analysis of the anticipated distributional effects. Estimates for the year 1982 show that all income classes are expected to pay less taxes (see Table H.3).

TRA86: Key aspects of TRA86 were the broadening of the tax base and reductions in marginal tax rates ${ }^{5}$ TRA86 further lowered the top marginal rate to 38.5% in 1987 and to 28% in 1988, reduced the number of tax brackets from 15 in 1986 to two in 1988, but also substantially expanded the EITC with financial benefits for low-income households. The Joint Committee on Taxation (1986) conducted an ex ante analysis of the anticipated distributional effects. The prediction was that all taxpayers would gain (see Table H.3).

OBRA90 छ OBRA93: OBRA90 contained increases in income taxes as well as expansions of the EITC and other low-income credits. Furthermore, payroll taxes were increased by lifting the taxable maximum for Medicare which was finally abolished in 1994. OBRA93 then led to the largest single expansion of the EITC (cf. Eissa and Hoynes (2011), and further increases in income tax rates were implemented, e.g. the top rate rose from 31% to 39.6% in 1993. The

[^4]EITC became much more generous in 1994 with higher maximum credits and an expansion to single workers with no children. The EITC was further expanded in the following years. Joint Committee on Taxation (1990) and Congressional Budget Office (1991) conducted ex ante analyses of the anticipated distributional effects of OBRA90, while Congressional Budget Office (1993) analyzed OBRA93. Both reforms were overall tax increases for most taxpayers except for those at the bottom of the distribution (see Tables H. 2 and H.3).

EGTRRA01 \& JGTRRA03: EGTRRA01 and JGTRRA03 were characterized by reductions in marginal tax rates, both for low- and high-income families, expansions of the child tax credits, and reductions in taxes on dividends. In 2003, JGTRRA accelerated those provisions of EGTRRA which were not set to become effective until 2006. Ex ante analyses of the anticipated distributional effects of both EGTRRA01 Tax Policy Center (2002); Joint Committee on Taxation (2001) and JGTRRA03 Tax Policy Center (2003b c) show that both reforms were tax cuts and that the absolute dollar change in income tax payments increases with each household income quintile (see Tables H.2 and H.3).

ATRA12: ATRA12 made the changes introduced with EGTRRA01 and JGTRRA03 permanent with the exception of high-income taxpayers. For individuals with earnings in excess of $\$ 400,000$ ($\$ 450,000$ for jointly filing married couples), the lowered rates expired as scheduled and the previous marginal rate of 39.6% was brought back. Additionally, these individuals saw an increase in the taxation of long-term capital gains and dividends, with the rate raising from 15 to 20%. Tax Policy Center (2012k ll) conducted ex ante analyses of the anticipated distributional effects of ATRA12 assuming either current law as baseline (i.e., temporary tax changes are considered to expire once finished) or current policy as baseline (i.e., temporary tax changes are assumed to remain in place after they expire) (see Tables H. 2 and H.3). When using the current law baseline, the reform is a tax cut for all taxpayers while it is an increase for the top of the distribution when using current policy as the baseline. We refer to Saez (2016) for a detailed analysis ex post of ATRA12.

TCJA17: TCJA17 made several significant changes to individual tax rates as well as to the calculation of taxable income. Tax rates were reduced for all income brackets but the lowest by one to four percentage points. The top rate was brought down from 39.6% to 37%. Furthermore, both the standard deduction and the child tax credit were roughly doubled. Joint Committee on Taxation (2017); Tax Policy Center (2018b a) conducted ex ante analyses of the anticipated distributional effects (see Tables H.2 and H.3).

Year of projection	TCJA17	ATRA12	ATRA12	JGTRRA03	EGTRRA01	OBRA93	OBRA90	$\begin{aligned} & \text { TRA86 } \\ & \text { (n.a.) } \end{aligned}$	$\begin{aligned} & \text { ERTA81 } \\ & \text { (n.a.) } \end{aligned}$
	2018	2013	2013	2003	2002	$\begin{aligned} & 1994 \\ & \text { CBO (1993) } \end{aligned}$	$\begin{aligned} & 1991 \\ & \text { CBO (1991) } \end{aligned}$		
Source	$\begin{array}{lr} \text { Tax } & \text { Pol- } \\ \text { icy } & \text { Center } \end{array}$	$\begin{array}{lr} \text { Tax } & \text { Pol- } \\ \text { icy } & \text { Center } \end{array}$	$\begin{array}{lr} \text { Tax } & \text { Pol- } \\ \text { icy } & \text { Center } \end{array}$	$\begin{array}{lr} \text { Tax } & \text { Pol- } \\ \text { icy } & \text { Center } \end{array}$	Tax Pol- icy Center $(2002 b)$				
	(2018b)	(2012b)	(2012d)	(2003b)					
Baseline		Current Law	Current Policy						
Lowest Quintile	-190	-265	0	-1	-26	-166	-109		
Second Quintile	-550	-795	1	-72	-283	-35	73		
Middle Quintile	-1,050	-1184	0	-245	-469	64	290		
Fourth Quintile	-1,810	-2170	-2	-475	-601	110	414		
Top Quintile	-7,170	-6845	2,483	-2,666	$-1,287$	1,884	1389		
All	-2,180	-1847	364	-692	-534	382	411		
Addendum									
80-89	-2,950	-4275	-1	-1,253	-871	239			
90-94	-4,100	-5494	-1	-2,110	-1,081	388			
95-98	-12,130	-10359	-71	-3,173	-1,418	1,177			
Top 1 Percent	-51,310	-25672	50,508	-17,540	-5,950	29,417			
Top 0.1 Percent	-247,020	-71885	322,528						

67\％¢\＆5－	798¢－	\＆Z86	788Lz98\％	†¢G－	$\begin{array}{r} 769^{-} \\ \varepsilon^{-} \end{array}$	¢98¢09 GZz	$\begin{aligned} & \angle \mp 8 \mathrm{I}^{-} \\ & \angle \hbar 68 \varepsilon^{-} \end{aligned}$		$\begin{gathered} \hline \text { 0I9 } \mathrm{I}^{-} \\ \text {099969 } \end{gathered}$		000‘t иеч7 әiolv
				692\％${ }^{-}$	ZStSt－	6899		9894－		0ヵてさて－	000‘「－009
09789－				0z07－	L667－	02^{-}		80z0t－		0999－	009－00z
7888¢－	ZL9－	076	679	$6 \mathrm{SLI}-$	L67て－	I^{-}		98゙ち－		097\％－	00Z－00I
9LZE－	92I－	¢gt	218	モ¢6－	L69 ${ }^{-}$	τ^{-}		\＆Gz\％－		0t\＆5－	00t－92
モ¢6 I^{-}	OSI－	๖¢Z	765	289－	889－	I^{-}		82TL－		028－	92－09
98LI－	98\％${ }^{-}$	907	got	679－	9tt－	0		2T0I－		029－	09－0才
782－	8L\％${ }^{-}$	885	09	$96{ }^{-}$	ち®\％－	0		L68－		098－	0才－08
$86 \dagger^{-}$	07\％－	801	LT－	8ti－	9\％\％－	\checkmark		602－		085－	08－0Z
8\％－	007－	88－	98^{-}	027－	26－	0		L98－		09－	0z－0I
76－	68^{-}	$9{ }^{-}$	89－	27^{-}	χ^{-}	0		L\＆L－		0I－	0t иеч\％ssəт
						КО					
							MeT 7	บәıı刀			
				（ez00z）	（e¢00z）	（9\％L0z）		(eZLOZ)		（e8L0z）	
				ләұиә刀 Кээ	ләұиә刀 Кэ！	мәұиә刀 Ко	ләұиә，	Кэ！	ләұนә	КЈ！	
（t86T）Lor	（986L）Lor	（066T）Lor	（866ए）O¢刀		${ }_{-10}{ }^{\text {d }}$ xeL	$-\mathrm{ro}_{\mathrm{d}} \quad \mathrm{xeL}$	-10^{0}	xe_{L}	$-\mathrm{IO}_{\mathrm{C}}$	$\mathrm{xe}_{\text {L }}$	${ }^{\text {ә．ınos }}$
7861	986	L661	7661	$z 002$	8007	\＆L0z		\＆L0z		8102	ио！̣әә！олd јо леәл
L8VLEG	98VYL	06VYяO	86VYяO	LOVYYLゆG	80VYYLDP	ZIVYLV	ZLI	VYLV		－ F ¢ OL	

I. Extensions

In this section we show that the median voter theorem for small monotonic reforms (Theorem 1) applies to models with more than one source of heterogeneity among individuals. Again, we show that a small tax reform is preferred by a majority of taxpayers if and only if it is preferred by the taxpayer with median income. Throughout, we stick to the assumption that individuals differ in their productive abilities ω. We introduce a second consumption good and the possibility of heterogeneity in preferences over consumption goods in Section I.I.1. We use this framework to discuss whether the introduction of distortionary taxes on savings is politically feasible. In Section I.I.2 we consider fixed costs of labor market participation as an additional source of heterogeneity ${ }^{6}$ In Section II. 3 we assume that individuals differ in their valuation of increased public spending. ${ }^{7}$ Finally, in Section I.I.4 individuals differ by how much of their income is due to luck as in Alesina and Angeletos (2005).

I.1. Political support for taxes on savings

We now suppose that there are two consumption goods. We refer to them as food and savings, respectively. An individual's budget constraint now reads as

$$
\begin{equation*}
c_{f}+c_{s}+T_{0 s}\left(c_{s}\right)+\tau_{s} h_{s}\left(c_{s}\right) \leq c_{0}+y-T_{0}(y)-\tau h(y) . \tag{I.1}
\end{equation*}
$$

The variables on the right-hand side of the budget constraint have been defined before. On the left-hand side, c_{f} denotes food consumption and c_{s} savings. In the status quo savings are taxed according to a possibly non-linear savings-tax function $T_{0 s}$. A reform replaces both the status quo income tax schedule T_{0} by $T_{1}=T_{0}+\tau h$ and the status quo savings tax schedule $T_{0 s}$ by $T_{1 s}=T_{0 s}+\tau_{s} h_{s}$. We maintain the assumption that the functions h and h_{s} are non-decreasing and focus on revenue neutral reforms so that either $\tau>0$ and $\tau_{s}<0$ or $\tau<0$ and $\tau_{s}>0$.
Preferences of individuals are given by a utility function $u\left(v\left(c_{f}, c_{s}, \beta\right), y, \omega\right)$, where v is a subutility function that assigns consumption utility to any consumption bundle $\left(c_{f}, c_{s}\right)$. The marginal rate of substitution between food and savings depends on a parameter β. We do not assume a priori that β is the same for all individuals. Under this assumption, however, the utility function u has the properties under which an efficient tax system does not involve distortionary commodity taxes, see Atkinson and Stiglitz (1976), or Laroque (2005) for a more elementary proof. Distortionary taxes on savings are then undesirable from a welfare-perspective.
Individuals choose c_{f}, c_{s} and y to maximize utility subject to the budget constraint above. We denote the utility maximizing choices by $c_{f}^{*}\left(\tau_{s}, \tau, \beta, \omega\right)$,

[^5]$c_{s}^{*}\left(\tau_{s}, \tau, \beta, \omega\right)$ and $y^{*}\left(\tau_{s}, \tau, \beta, \omega\right)$ and the corresponding level of indirect utility by $V\left(\tau_{s}, \tau, \beta, \omega\right)$. The slope of an indifference curve in a τ - τ_{s} diagram determines the individuals' willingness to accept higher savings taxes in return for lower taxes on current earnings. The following Lemma provides a characterization of this marginal rate of substitution in a neighborhood of the status quo. Let
$$
s\left(\tau, \tau^{s}, \beta, \omega\right)=-\frac{V_{\tau}\left(\tau_{s}, \tau, \beta, \omega\right)}{V_{\tau_{s}}\left(\tau_{s}, \tau, \beta, \omega\right)}
$$
be the slope of an individual's indifference curve in a τ - τ_{s} diagram. The slope in the status quo is denoted by $s^{0}(\omega, \beta)$. We denote the individual's food consumption, savings and earnings in the status quo by $\tilde{c}_{f}^{0}(\omega, \beta), \tilde{c}_{s}^{0}(\omega, \beta)$ and $\tilde{y}^{0}(\omega, \beta)$, respectively.

Lemma I. 1 In the status quo the slope of a type (ω, β)-individual's indifference curve in a $\tau-\tau_{s}$ diagram is given by

$$
s^{0}(\omega, \beta)=-\frac{h\left(\tilde{y}^{0}(\omega, \beta)\right)}{h_{s}\left(\tilde{c}_{s}^{0}(\omega, \beta)\right)} .
$$

The Lemma provides a generalization of Roy's identity that is useful for an analysis of non-linear tax systems. As is well known, with linear tax systems, the marginal effect of, say, an increased savings tax on indirect utility is equal to $-\lambda^{*} c_{s}^{*}(\cdot)$, where λ^{*} is the multiplier on the individual's budget constraint, also referred to as the marginal utility of income. Analogously, the increase of a linear income tax affects indirect utility via $-\lambda^{*} y^{*}(\cdot)$ so that the slope of an indifference curve in a $\tau_{s}-\tau$-diagram would be equal to the earnings-savings-ratio $-\frac{y^{*}(\cdot)}{c_{s}^{*}(\cdot)}$. Allowing for non-linear tax systems and non-linear perturbations implies that the simple earnings-savings-ratio is replaced by $-\frac{h\left(y^{*}(\cdot)\right)}{h_{s}\left(c_{s}^{*}(\cdot)\right)}$.

Consider a reform that involves an increase in the savings tax rate $d \tau_{s}>0$ and a reduction of taxes on income $d \tau<0$. We say that a type (ω, β)-individual strictly prefers a small reform with increased savings taxes over the status quo if

$$
V_{\tau_{s}}(0,0, \beta, \omega) d \tau_{s}+V_{\tau}(0,0, \beta, \omega) d \tau>0
$$

or, equivalently, if

$$
\begin{equation*}
\frac{d \tau_{s}}{d \tau}>s^{0}(\omega, \beta)=-\frac{h\left(\tilde{y}^{0}(\omega, \beta)\right)}{h_{s}\left(\tilde{c}_{s}^{0}(\omega, \beta)\right)} . \tag{I.2}
\end{equation*}
$$

Since h_{s} is an increasing function, this condition is, ceteris paribus, easier to satisfy if the individual has little savings in the status quo 8

[^6]Different types will typically differ in their generalized earnings-savings-ratio $s^{0}(\omega, \beta)$ and we can order types according to this one-dimensional index. Let $(\omega, \beta)^{0 M}$ be the type with the median value of $s^{0}(\omega, \beta)$. The following proposition extends Theorem 1. It asserts that a small reform is politically feasible if and only if it is supported by the median type $(\omega, \beta)^{0 M}$.

Proposition I. 1 For a given status quo tax policy and a given pair of nondecreasing functions h and h_{s}, the following statements are equivalent:

1) Type $(\omega, \beta)^{0 M}$ prefers a small reform with increased savings taxes over the status quo.
2) There is a majority of individuals who prefer a small reform with increased savings taxes over the status quo.

As Theorem 1, Proposition I.1 exploits the observation that individuals can be ordered according to a one-dimensional statistic that pins down whether or not they benefit from a tax reform. This makes it possible to prove a median-voter theorem for reforms that remain in a neighborhood of the status quo. There is also an important difference to Theorem 1. With only one-dimensional heterogeneity, there is a monotonic relation between types and earnings so that the identity of the type with median income does not depend on the status quo. Whatever the tax system, the person with the median income is the person with the median type ω^{M}. Here, by contrast, we allow for heterogeneity both in productive abilities and in preferences over consumption goods. The type with the median value of the generalized earnings-savings-ratio $s^{0}(\omega, \beta)$ will then typically depend on the status quo tax system. This does not pose a problem if we focus on small reforms. In this case, preferences over reforms follow from the generalized earnings-savings-ratios in the status quo, and a small reform is preferred by a majority of individuals if and only if it is preferred by the individual with the median ratio.

I.2. Fixed costs of labor market participation

With fixed costs of labor market participation individuals derive utility $u(c-$ $\left.\theta \mathbf{1}_{y>0}, y, \omega\right)$ from a (c, y)-pair. Fixed costs θ absorb some of the individual's aftertax income if the individual becomes active on the labor market, e.g. because of additional child care expenses. As before, there is an initial status quo tax
the reform. Revenue-neutrality requires that

$$
R_{\tau_{s}}^{s}\left(\tau_{s}, \tau\right) d \tau_{s}+R_{\tau}^{s}\left(\tau_{s}, \tau\right) d \tau+R_{\tau_{s}}\left(\tau_{s}, \tau\right) d \tau_{s}+R_{\tau}\left(\tau_{s}, \tau\right) d \tau=0
$$

or, equivalently, that

$$
\frac{d \tau_{s}}{d \tau}=-\frac{R_{\tau}\left(\tau_{s}, \tau\right)+R_{\tau}^{s}\left(\tau_{s}, \tau\right)}{R_{\tau_{s}}^{s}\left(\tau_{s}, \tau\right)+R_{\tau_{s}}\left(\tau_{s}, \tau\right)}
$$

which has to be evaluated for $\left(\tau_{s}, \tau\right)=(0,0)$. We assume that this expression is well-defined and takes a finite negative value.
schedule under which earnings are transformed into after-tax income according to the schedule C_{0} with $C_{0}(y)=c_{0}+y-T_{0}(y)$. After a reform, the schedule is

$$
C_{1}(y)=c_{0}+R+y-T_{0}(y)-\tau h(y),
$$

where h is a non-decreasing function of y. We denote by $y^{*}(R, \tau, \omega, \theta)$ the solution to

$$
\max _{y} u\left(C_{1}(y)-\theta \mathbf{1}_{y>0}, y, \omega\right),
$$

and the reform-induced change in indirect utility by $V(R, \tau, \omega, \theta)$. We proceed analogously for other variables: what has been a function of ω in previous sections is now a function of ω and θ.

For a given function h, the marginal gain that is realized by an individual with type (ω, θ) if the tax rate τ is increased, is given by the following analogue to equation (2),

$$
\begin{equation*}
V_{\tau}(\omega, \theta \mid \tau, h)=\tilde{u}_{c}^{1}(\omega, \theta)\left(R_{\tau}(\tau, h)-h\left(\tilde{y}^{1}(\omega, \theta)\right)\right), \tag{I.3}
\end{equation*}
$$

where $\tilde{u}_{c}^{1}(\omega, \theta)$ is the marginal utility of consumption realized by a type (ω, θ) individual after the reform, and $\tilde{y}^{1}(\omega, \theta)$ are the individual's post-reform earnings. At $\tau=0$, we can also write

$$
\begin{equation*}
V_{\tau}(\omega, \theta \mid 0, h)=\tilde{u}_{c}^{0}(\omega, \theta)\left(R_{\tau}(0, h)-h\left(\tilde{y}^{0}(\omega, \theta)\right)\right), \tag{I.4}
\end{equation*}
$$

where $\tilde{u}_{c}^{0}(\omega, \theta)$ and $\tilde{y}^{0}(\omega, \theta)$ are, respectively, marginal utility of consumption and earnings in the status quo.

For a given status quo tax policy and a given function h we say that type (ω, θ) strictly prefers a small tax reform over the status quo if $V_{\tau}(\omega, \theta \mid 0, h)>0$. The status quo median voter strictly prefers a small reform if $V_{\tau}\left((\omega, \theta)^{0 M} \mid 0, h\right)>0$, where $\tilde{y}^{0 M}$ is the median of the distribution of earnings in the status quo and $(\omega, \theta)^{0 M}$ is the corresponding type; i.e. $\tilde{y}^{0}\left((\omega, \theta)^{0 M}\right)=\tilde{y}^{0 M}$.

Proposition I. 2 For a given status quo tax policy and a monotonic function h, the following statements are equivalent:

1) Type $(\omega, \theta)^{0 M}$ prefers a small reform over the status quo.
2) There is a majority of individuals who prefer a small reform over the status quo.
Proposition I. 2 exploits that the slope of a type (ω, θ) individual's indifference curve through a point (τ, R),

$$
s(\tau, R, \omega, \theta)=h\left(y^{*}(R, \tau, \omega, \theta)\right)
$$

is a function of the individual's income. As in the basic Mirrleesian setup, the interpretation is that individuals with a higher income are more difficult to con-
vince that a reform that involves tax increases $(\tau>0)$ is worthwhile. A difference to the Mirrleesian setup is, however, that there is no monotonic relation between types and earnings. In the presence of income effects, and for a given level of ω, y^{*} will increase in θ as long as θ is below a threshold $\hat{\theta}(\omega)$ and be equal to 0 for θ above the threshold. Moreover, the threshold is affected by tax policy. This implies that there is no longer a fixed type whose income is equal to the median income whatever the tax schedule. As in Proposition I.1, this does not pose a problem if we focus on small reforms, i.e. on small deviations from $(\tau, R)=(0,0)$. In this case, preferences over reforms follow from the relation between types and earnings in the status quo, and a small reform is preferred by a majority of individuals if and only if it is preferred by the individual with the median level of income in the status quo.

I.3. Public-goods preferences

Suppose that the change in revenue R is used to increase or decrease spending on publicly provided goods. The post-reform consumption schedule is then given by

$$
C_{1}(y)=c_{0}+y-T_{0}(y)-\tau h(y),
$$

We assume that individuals differ with respect to their public-goods preferences. Now the parameter θ is a measure of an individual's willingness to give up private goods consumption in exchange for more public goods. More specifically, we assume that individual utility is

$$
u\left(\theta\left(R^{0}+R\right)+C_{1}(y), y, \omega\right),
$$

where R^{0} is spending on publicly provided goods in the status quo. Again, we denote by $y^{*}(R, \tau, \omega, \theta)$ the solution to

$$
\max _{y} u\left(\theta\left(R^{0}+R\right)+C_{1}(y), y, \omega\right)
$$

and the reform-induced change in indirect utility by $V(R, \tau, \omega, \theta)$. By the envelope theorem, the slope of a type (ω, θ) individual's indifference curve through point (τ, R) is now given by

$$
s(\tau, R, \omega, \theta)=\frac{h\left(y^{*}(R, \tau, \omega, \theta)\right)}{\theta}
$$

This marginal rate of substitution gives the increase in public-goods provision that an individual requires as a compensation for an increase of marginal tax rates. Ceteris paribus, individuals with a lower income and individuals with a higher public-goods preference require less of a compensation, i.e. they have a higher willingness to pay higher taxes for increased public-goods provision. If we focus on small reforms we observe, again, that if a type (ω, θ)-individual benefits
from a small tax-increase, then the same is true for any type $\left(\omega^{\prime}, \theta^{\prime}\right)$ with

$$
\frac{h\left(\tilde{y}^{0}(\omega, \theta)\right)}{\theta} \geq \frac{h\left(\tilde{y}^{0}\left(\omega^{\prime}, \theta^{\prime}\right)\right)}{\theta^{\prime}}
$$

By the arguments in the proof of Proposition I.2, a small reform with $\tau>0$ is preferred by a majority of individuals if and only if

$$
\left(\frac{h\left(\tilde{y}^{0}(\omega, \theta)\right)}{\theta}\right)^{0 M}<R_{\tau}(0, h)
$$

where $\left(\frac{h\left(\tilde{y}^{0}(\omega, \theta)\right)}{\theta}\right)^{0 M}$ is the median willingness to pay higher taxes for increased public spending in the status quo.

I.4. Fairness and politically feasible reforms

The validity of our approach does not dependent on the assumption that voting behavior is driven by narrow self-interest. To illustrate this insight, we analyze politically feasible reforms in the context of a model in which social preferences determine political support for redistributive taxation. Specifically, we adopt the framework of Alesina and Angeletos (2005). Alesina and Angeletos assume that individual incomes can be due to luck or effort and that preferences over tax policies include a motive to tax income that is due to luck more heavily than income that is due to effort. Alesina and Angeletos focus, however, on linear tax systems.

There are two periods. When young individuals choose a level of human capital k. When old individuals choose productive effort or labor supply l. Pre-tax income is determined by

$$
y=\pi(l, k)+\eta
$$

where π is a production function that is increasing in both arguments and η is a random source of income, also referred to as luck. An individual's life-time utility is written as $u(c, l, k, \omega)$. Utility is increasing in the first argument. It is decreasing in the second and third argument to capture the effort costs of labor supply and human capital investments, respectively. Effort costs are decreasing in ω. More formally, lower types have steeper indifference curves both in a (c, l)-space and in a (c, k)-space. We consider reforms that lead to a consumption schedule

$$
C_{1}(y)=c_{0}+R+y-T_{0}(y)-\tau h(y) .
$$

We assume that individuals first observe how lucky they are and then choose how hard they work, i.e. given a realization of η and given the predetermined level of k, individuals choose l so as to maximize

$$
u\left(C_{1}(\pi(l, k)+\eta), l, k, \omega\right)
$$

We denote the solution to this problem by $l^{*}(R, \tau, \omega, \eta, k)$. The reform-induced change in indirect utility is denoted by $V(R, \tau, \omega, \eta, k)$. As of $t=1$, there is multi-dimensional heterogeneity among individuals: they differ in their type ω, in their realization of luck η and possibly also in their human capital k.
In Alesina and Angeletos (2005) preferences over reforms have a selfish and fairness component. The indirect utility function V shapes the individuals' selfish preferences over reforms. The analysis of these selfish preferences can proceed along similar lines as the extension that considered fixed costs of labor market participation. Selfish preferences over small reforms follow from the relation between types and earnings in the status quo, and a small reform makes a majority better off if and only if it is beneficial for the individual with the median level of income in the status quo. More formally, let $\tilde{y}^{0}(\omega, \eta, k):=y^{*}(0,0, \omega, \eta, k)$ be a shorthand for the earnings of a type (ω, η, k)-individual in the status quo and recall that the sign of

$$
s(0,0, \omega, \eta, k)=h\left(\tilde{y}^{0}(\omega, \eta, k)\right)
$$

determines whether an individual benefits from a small tax reform. Specifically, suppose that h is a non-decreasing function and denote by y_{0}^{M} the median level of income in the status quo and by $(\omega, \eta, k)^{0 M}$ the corresponding type. A majority of individuals is - according to their selfish preferences - made better off if and only if the median voter benefits from the reform,

$$
s^{0}\left((\omega, \eta, k)^{0 M}\right)=h\left(\tilde{y}^{0 M}\right)<R_{\tau}(0, h) .
$$

In their formalization of social preferences, Alesina and Angeletos (2005) view $\pi(l, k)$ as a reference income. It is the part of income that is due to effort as opposed to luck. A tax reform affects the share of $y=\pi(l, k)+\eta$ that individuals can keep for themselves. After the reform, the difference between disposable income and the reference income is given by ${ }^{9}$

$$
C_{1}(y)-\pi(l, k)=\eta-T_{0}(\pi(l, k)+\eta)-\tau h(\pi(l, k)+\eta) .
$$

A social preferences for fair taxes is then equated with a desire to minimize the variance of $\eta-T_{0}(\pi(l, k)+\eta)-\tau h(\pi(l, k)+\eta)$ taking into account that k and l are endogenous variables ${ }^{10}$ Denote this variance henceforth by $\Sigma(R, \tau)$. Any one individual is assumed to evaluate a tax reform according to

$$
V(R, \tau, \omega, \eta, k)-\rho \Sigma(R, \tau)
$$

[^7]where ρ is the weight on fairness considerations which is assumed to be the same for all individuals. Therefore, heterogeneity in preferences over reforms is entirely due to heterogeneity in selfish preferences. Consequently, the finding that a small reform is preferred by a majority of taxpayers if and only if it is preferred by the voter with median income in the status quo is not affected by the inclusion of a demand for fair taxes.

REFERENCES

Alesina, A. and G.-M. Angeletos, "Fairness and Redistribution," American Economic Review, 2005, 95 (4), 960-980.

Atkinson, A. and J. Stiglitz, "The Design of Tax Structure: Direct versus Indirect Taxation," Journal of Public Economics, 1976, 1, 55-75.

Bierbrauer, F.J., "Optimal Tax and Expenditure Policy with Aggregate Uncertainty," American Economic Journal: Microeconomics, 2014, 6 (1), 205-57.

Boadway, R. and M. Keen, "Public Goods, Self-Selection and Optimal Income Taxation," International Economic Review, 1993, 34, 463-478.

Brett, C. and J.A. Weymark, "Voting over selfishly optimal nonlinear income tax schedules," Games and Economic Behavior, 2017, 101, 172-188.

Choné, P. and G. Laroque, "Optimal taxation in the extensive model," Journal of Economic Theory, 2011, 146 (2), 425-453.

Congressional Budget Office, "The Economic and Budget Outlook: Fiscal Years 1992-1996," Technical Report, The Congress of the United States 1991. Retrieved from https://www.cbo.gov/sites/default/files/ 102nd-congress-1991-1992/reports/91-cbo-002.pdf.
_ , "The Economic and Budget Outlook: An Update," Technical Report, The Congress of the United States 1993. Retrieved from https://www.cbo.gov/sites/default/files/cbofiles/ftpdocs/76xx/ doc7670/09-1993-outlookentirerpt.pdf.

Diamond, P.A., "Optimal Income Taxation: An Example with a U-Shaped Pattern of Optimal Marginal Tax Rates," American Economic Review, 1998, 88, 83-95.

Eissa, N. and H. Hoynes, "Redistribution and Tax Expenditures: The Earned Income Tax Credit," National Tax Journal, 2011, 64 (2), 689-729.

Hellwig, M.F., "Optimal income taxation, public-goods provision and publicsector pricing: A contribution to the foundations of public economics," MPI Collective Goods Preprint, 2004, 2004/14.
_ , "A Contribution to the Theory of Optimal Utilitarian Income Taxation," Journal of Public Economics, 2007, 91, 1449-1477.

Jacquet, L., E. Lehmann, and B. Van der Linden, "Optimal redistributive taxation with both extensive and intensive responses," Journal of Economic Theory, 2013, 148 (5), $1770-1805$.

Joint Committee on Taxation, "Burden tables - 1982, 1983, and 1984," 1981. Retrieved from https://www.jct.gov/publications.html?func= startdown\&id=2352.
_ , "Data on distribution by income class of effects of the Tax Reform Act of 1986," 1986. Retrieved from https://www.jct.gov/publications.html? func=startdown\&id=3518.
_ , "Summary Of Distributional Effects, By Income Category Assuming Enactment Of The Democratic Alternative To Budget Reconciliation Revenue Proposals," 1990. Retrieved from https://www.jct.gov/publications.html? func=startdown\&id=3211.
_ , "Distributional Effects Of The Conference Agreement For H.R. 1836," 2001. Retrieved from https://www.jct.gov/publications.html?func= startdown\&id=1999.
"Distributional Effects Of The Conference Agreement For H.R.1, The Tax Cuts And Jobs Act," 2017. Retrieved from https://www.jct.gov/ publications.html?func=startdown\&id=5054.

Laroque, G., "Indirect taxation is superfluous under separability and taste homogeneity: a simple proof," Economic Letters, 2005, 87, 141-144.

Milgrom, P. and I. Segal, "Envelope Theorems for Arbitrary Choice Sets," Econometrica, 2002, 70 (2), 583-601.

OECD Tax Database, "Table I.1. Central government personal income tax rates and thresholds [dataset]," OECD [distributor], https://stats.oecd. org/Index.aspx?DataSetCode=TABLE_I1, last accessed 2020-07-27. 20002016.

Saez, E., "Optimal Income Transfer Programs: Intensive versus Extensive Labor Supply Responses," Quarterly Journal of Economics, 2002, 117 (3), 1039-1073.

Saez, Emmanuel, "Taxing the Rich More: Preliminary Evidence from the 2013 Tax Increase," in "Tax Policy and the Economy, Volume 31" NBER Chapters, National Bureau of Economic Research, Inc, June 2016, pp. 71-120.

Tax Policy Center, "T02-0022 - EGTRRA: Distribution of Income Tax Change by Percentiles, 2002," 2002. Retrieved from https://www.taxpolicycenter. org/model-estimates/distribution-egtrra-tax-cuts/ egtrra-distribution-income-tax-change-percentiles-2002.

"T03-0005		Democratic	Stimulus		Proposal:	Distri-
bution of	Income	Tax	Change	by	Percentiles,	2003,"
2003.	Retrieved	d from	http	/ ww	taxpolicyce	r.org/
model-estimates/distribution-democratic-stimulus-proposal/						
democratic-stimulus-proposal-0.						

_, "T03-0098 - Jobs and Growth Tax Relief Reconciliation Act of 2003 as Passed by the Senate: Distribution of Income Tax Change by AGI Class, 2003," 2003. Retrieved from https: //www.taxpolicycenter.org/model-estimates/jgtrra-passed-senate/ jobs-and-growth-tax-relief-reconciliation-act-2003-passed-6.
_, "T03-0099 - The Jobs and Growth Tax Relief Reconciliation Act of 2003 as Passed by the Senate: Distribution of Income Tax Change by Percentiles, 2003," 2003. Retrieved from https: //www.taxpolicycenter.org/model-estimates/jgtrra-passed-senate/ jobs-and-growth-tax-relief-reconciliation-act-2003-passed.
_, "T04-0018 - Kerry Plan with College Tax Credit vs. Current-Law Baseline: Distribution of Individual Income and Estate Tax Change by Cash Income Percentiles, 2005," 2004. Retrieved from https: //www.taxpolicycenter.org/model-estimates/kerry-tax-proposals/ kerry-plan-college-tax-credit-vs-current-law-baseline-0.
_ , "T04-0020 - Kerry Plan with College Tax Credit vs. Administration's FY2005 Budget Proposal Baseline: Distribution of Individual Income and Estate Tax Change by Cash Income Percentiles, 2005," 2004. Retrieved from https: //www.taxpolicycenter.org/model-estimates/kerry-tax-proposals/ kerry-plan-college-tax-credit-vs-administrations-fy2005-budget-1.
-, "T04-0154 - Conference Agreement on H.R. 1308, The Working Families Tax Relief Act of 2004: Distribution of Tax Change by Cash Income Percentiles, 2005," 2004. Retrieved from https://www.taxpolicycenter.org/model-estimates/ distribution-2004-tax-cuts-and-without-financing/ conference-agreement-hr-1308-8
_, "T06-0086 - Conference Agreement on the Tax Increase Prevention and Reconciliation Act of 2005, Fully-Phased In Impact of Major Provisions at 2006 Income Levels, Distribution of Federal Tax Change by Cash Income Percentile," 2006. Retrieved from https://www. taxpolicycenter.org/model-estimates/2006-tax-reconciliation/ conference-agreement-tax-increase-prevention-and-0
-, "T07-0209 - Integrated Payroll Tax Plan, Distribution of Federal Tax Change by Cash Income Percentile, 2008," 2007. Retrieved from https://www.taxpolicycenter.org/model-estimates/ exempt-5000-payroll-tax-base-repeal-social-security-cap/ integrated-payroll-tax-1.
_, "T07-0334 - Major Individual Income and Estate Tax Components of Former Sen. Fred Thompson's Tax Plan, Distribution of Federal Tax

Change by Cash Income Percentile, 2009," 2007. Retrieved from https: //www.taxpolicycenter.org/model-estimates/thompson-tax-plan/ major-individual-income-and-estate-tax-components-former-sen-1.
_, "T07-0343 - H.R. 3996, The Tax Increase Prevention Act of 2007, Final Version as Passed by the House and Senate, Distribution of Federal Tax Change by Cash Income Percentile, 2007," 2007. Retrieved from https://www.taxpolicycenter. org/model-estimates/2007-amt-patch-final-version-hr-3996/ hr-3996-tax-increase-prevention-act-2007-0.
_, "T08-0062 - Individual Income Tax Measures in H.R. 5140, The Economic Stimulus Act of 2008: As Passed by the House and Senate, Distribution of Federal Tax Change by Economic Income Percentile Adjusted for Family Size, 2008," 2008. Retrieved from https://www. taxpolicycenter.org/model-estimates/economic-stimulus-proposals/ individual-income-tax-measures-hr-5140-economic-3.
_, "T08-0108 - Senator John McCain's Tax Proposals, Distribution of Federal Tax Change by Cash Income Percentile, 2009," 2008. Retrieved from https://www.taxpolicycenter.org/model-estimates/ latest-estimates-president-obamas-2008-presidential-campaign-tax-plan/ senator-john-0.
_, "T08-0114 - Senator Barack Obama's Tax Proposals, Distribution of Federal Tax Change by Cash Income Percentile, 2009," 2008. Retrieved from https://www.taxpolicycenter.org/model-estimates/ latest-estimates-president-obamas-2008-presidential-campaign-tax-plan/ senator-0.
_ , "T08-0170 - Senator Obama's Tax Proposals as Described by his Economic Advisors Distribution of Federal Tax Change by Cash Income Percentile, 2009," 2008. Retrieved from https://www.taxpolicycenter.org/model-estimates/ latest-estimates-president-obamas-2008-presidential-campaign-tax-plan/ senator-26.
_ , "T08-0172 - Senator Obama's Tax Proposals as Described in his Stump Speeches Distribution of Federal Tax Change by Cash Income Percentile, 2009," 2008. Retrieved from https://www.taxpolicycenter.org/model-estimates/ latest-estimates-president-obamas-2008-presidential-campaign-tax-plan/ senator-24.
_ , "T08-0182 - Senator McCain's Tax Proposals as Described by his Economic Advisors Distribution of Federal Tax

Change by Cash Income Percentile, 2009," 2008. Retrieved from https://www.taxpolicycenter.org/model-estimates/ latest-estimates-senator-mccains-2008-presidential-campaign-tax-plan/ senator-0.
_ , "T08-0184 - Senator McCain's Tax Proposals as Described in his Stump Speeches Distribution of Federal Tax Change by Cash Income Percentile, 2009," $2008 . \quad$ Retrieved from https://www.taxpolicycenter.org/model-estimates/ latest-estimates-senator-mccains-2008-presidential-campaign-tax-plan/ senator-2.
_, "T09-0046 - House Republican Stimulus Proposal Against Current Law Baseline, Distribution of Federal Tax Change by Cash Income Percentile, 2009," 2009. Retrieved from https://www.taxpolicycenter. org/model-estimates/house-republican-stimulus-proposal/ house-republican-stimulus-proposal-against-0.
_, "T09-0048 - House Republican Stimulus Proposal, Baseline: Current Law Plus Extension and Indexation of AMT Patch, Distribution of Federal Tax Change by Cash Income Percentile, 2009," 2009. Retrieved from https://www.taxpolicycenter. org/model-estimates/house-republican-stimulus-proposal/ house-republican-stimulus-proposal-baseline-0.
_, "T09-0113 - "The American Recovery and Reinvestment Tax Act of 2009", Conference Report: Major Individual Tax Provisions, Distribution of Federal Tax Change by Cash Income Percentile, 2009," 2009. Retrieved from https://www.taxpolicycenter.org/model-estimates/ american-recovery-and-reinvestment-tax-act-2009-conference-agreenent/ american-10.
_, "T09-0132 - Administration's Fiscal Year 2010 Budget Proposals, Major Individual Income Tax Provisions, Baseline: Current Law, Distribution of Federal Tax Change by Cash Income Percentile, 2012," 2009. Retrieved from https://www.taxpolicycenter.org/model-estimates/ fiscal-year-2010-administrations-budget-proposal/ administrations-fiscal-year-2010-2.
_ , "T09-0501 - Certain Individual Income and Estate Tax Provisions in Administration's FY2010 Budget Proposals Distribution of Federal Tax Change by Cash Income Percentile, 2011," 2009. Retrieved from https://www.taxpolicycenter.org/model-estimates/ distribution-administrations-fy2010-budget-proposals-age-and-income/ certain.
ual Income Tax Provisions; Baseline: Current Law; Distri- bution by Cash Income Percentile, 2012," 2010. Retrieved from https://www.taxpolicycenter.org/model-estimates/ estimates-administrations-fiscal-year-2011-budget-proposals/ administrations-fy2011-4.
_ , "T10-0039 - Administration's FY2011 Budget: Individual Income Tax Provisions; Baseline: Current Policy; Distribution by Cash Income Percentile, 2012," 2010. Retrieved from https://www.taxpolicycenter.org/model-estimates/ estimates-administrations-fiscal-year-2011-budget-proposals/ administrations-fy2011-6.
_ , "T10-0077 - Simplified Tax System; Baseline: Current Law; Distribution by Cash Income Percentile, 2010," 2010. Retrieved from https://www.taxpolicycenter.org/ model-estimates/distribution-tax-units-no-tax-liability/ simplified-tax-system-baseline-current-law-0.
_ , "T10-0087-Roadmap for America's Future Act of 2010: Tax Provisions under Alternate System; Baseline: Current Law; Distribution by Cash Income Percentile, 2014," 2010. Retrieved from https://www.taxpolicycenter. org/model-estimates/congressman-paul-ryans-tax-reform/ roadmap-americas-future-act-2010-tax-provisions-0.

- , "T10-0089 - Roadmap for America's Future Act of 2010: Tax Provisions; Taxpayers Optimize; Baseline: Current Law; Distribution by Cash Income Percentile, 2014," 2010. Retrieved from https://www.taxpolicycenter. org/model-estimates/congressman-paul-ryans-tax-reform/ roadmap-americas-future-act-2010-tax-provisions-2.
_ , "T10-0091 - Roadmap for America's Future Act of 2010: Tax Provisions under Alternate System; Baseline: Current Policy; Distribution by Cash Income Percentile, 2014," 2010. Retrieved from https://www.taxpolicycenter. org/model-estimates/congressman-paul-ryans-tax-reform/ roadmap-americas-future-act-2010-tax-provisions-4.
_ , "T10-0093 - Roadmap for America's Future Act of 2010: Tax Provisions; Taxpayers Optimize; Baseline: Current Policy; Distribution by Cash Income Percentile, 2014," 2010. Retrieved from https://www.taxpolicycenter. org/model-estimates/congressman-paul-ryans-tax-reform/ roadmap-americas-future-act-2010-tax-provisions-6.
_, "T10-0119 - Individual, Corporate, and Payroll Tax Liability under Wyden-Gregg; Baseline: Current Policy; Distribution by Cash Income Percentile, 2014," 2010. Retrieved
from https://www.taxpolicycenter.org/model-estimates/ bipartisan-tax-fairness-and-simplification-act-2010-wyden-gregg/ individual-1.
"T10-0122 - Individual, Corporate, and Payroll Tax Liability under Wyden-Gregg; Baseline: Current Law; Distribution by Cash Income Percentile, 2014," 2010. Retrieved from https://www.taxpolicycenter.org/model-estimates/ bipartisan-tax-fairness-and-simplification-act-2010-wyden-gregg/ individual-4.
"T10-0247 - Bowles-Simpson Deficit Commission: Zero Plan Variant, Eliminate Payroll Tax Exclusions, Retain Child Tax Credit and Earned Income Tax Credit. Baseline: Current Law; Distribution by Cash Income Percentile, 2015," 2010. Retrieved from https://www.taxpolicycenter.org/model-estimates/ distributional-estimates-bowles-simpson-deficit-commission/ bowles-simpson-deficit.
, "T10-0248 - Bowles-Simpson Deficit Commission: Zero Plan Variant, Eliminate Payroll Tax Exclusions, Retain Child Tax Credit and Earned Income Tax Credit. Baseline: Current Policy; Distribution by Cash Income Percentile, 2015," 2010. Retrieved from https://www.taxpolicycenter.org/model-estimates/ distributional-estimates-bowles-simpson-deficit-commission/ bowles-simpson-deficit-0.
_, "T10-0251 - Bowles-Simpson Deficit Commission: Zero Plan Variant, Retain Child Tax Credit and Earned Income Tax Credit. Baseline: Current Law; Distribution by Cash Income Percentile, 2015," 2010. Retrieved from https://www.taxpolicycenter.org/model-estimates/ distributional-estimates-bowles-simpson-deficit-commission/ bowles-simpson-deficit-1.
_, "T10-0252 - Bowles-Simpson Deficit Commission: Zero Plan Variant, Retain Child Tax Credit and Earned Income Tax Credit. Baseline: Current Policy; Distribution by Cash Income Percentile, 2015," 2010. Retrieved from https://www.taxpolicycenter.org/model-estimates/ distributional-estimates-bowles-simpson-deficit-commission/ bowles-simpson-deficit-2.
_, "T10-0253 - Bowles-Simpson Deficit Commission: Zero Plan Variant, Retain Payroll Tax Exclusions, CTC, EITC, 80and Retirement Benefit; Baseline: Current Law; Distribution by Cash Income Percentile, 2015," 2010. Retrieved from https://www.taxpolicycenter.org/model-estimates/ distributional-estimates-bowles-simpson-deficit-commission/ bowles-simpson-deficit-3.
- , "T10-0254 - Bowles-Simpson Deficit Commission: Zero Plan Variant, Retain Payroll Tax Exclusions, CTC, EITC, 80and Retirement Benefit; Baseline: Current Policy; Distribution by Cash Income Percentile, 2015," 2010. Retrieved from https://www.taxpolicycenter.org/model-estimates/ distributional-estimates-bowles-simpson-deficit-commission/ bowles-simpson-deficit-4.
_, "T10-0273 - 2010 Tax Act as Considered by the Senate; Baseline: Current Law; Distribution by Cash Income Percentile, 2011," 2010. Retrieved from https://www.taxpolicycenter.org/model-estimates/ tax-relief-unemployment-insurance-reauthorization-and-job-creation-act-2010-1.
_, "T10-0275 - 2010 Tax Act as Considered by the Senate; Baseline: Current Policy; Distribution by Cash Income Percentile, 2011," 2010. Retrieved from https://www.taxpolicycenter.org/model-estimates/ tax-relief-unemployment-insurance-reauthorization-and-job-creation-act-2010.
_, "T11-0027 - Administration?s FY2012 Budget Proposals; Individual Income Tax Provisions; Baseline: Current Law; Distribution by Cash Income Percentile, 2013," 2011. Retrieved from https://www.taxpolicycenter.org/model-estimates/ estimates-administrations-fiscal-year-2012-budget-proposals/ administrations-fy2012-1.
_ , "T11-0029 - Administration?s FY2012 Budget Proposals; Individual Income Tax Provisions; Baseline: Current Policy; Distribution by Cash Income Percentile, 2013," 2011. Retrieved from https://www.taxpolicycenter.org/model-estimates/ estimates-administrations-fiscal-year-2012-budget-proposals/ administrations-fy2012-2
_ , "T11-0169 - Gov. Pawlenty's Tax Proposal: TPC Interpretation; Baseline: Current Law; Distribution by Cash Income Percentile, 2013," 2011. Retrieved from https://www.taxpolicycenter.org/model-estimates/ tpc-interpretation-governor-tim-pawlentys-tax-proposal-outline/ gov-pawlentys-tax-2.
_, "T11-0171 - Gov. Pawlenty's Tax Proposal: TPC Interpretation; Baseline: Current Policy; Distribution by Cash Income Percentile, 2013," 2011. Retrieved from https://www.taxpolicycenter.org/model-estimates/ tpc-interpretation-governor-tim-pawlentys-tax-proposal-outline/ gov-pawlentys-tax-4.

- "T11-0373	-	Presidential	Campaign	2012:	Herman	Cain's	
"9-9-9"	Tax	Reform	Plan without	Poverty		Deduction;	Base-
line:	Current Law;	Distribution by	Cash	Income	Percentile,		

2013," 2011. Retrieved from https://www.taxpolicycenter. org/model-estimates/herman-cains-9-9-9-tax-reform-plan/
presidential-campaign-2012-herman-cains-9-9-9-0.
_, "T11-0377 - Presidential Campaign 2012: Gov. Perry's Tax Reform Plan; Baseline: Current Law; Distribution by Cash Income Percentile, 2015," 2011. Retrieved from https://www.taxpolicycenter. org/model-estimates/governor-rick-perrys-tax-reform-plan/ presidential-campaign-2012-gov-perrys-tax-0.
_, "T11-0379 - Presidential Campaign 2012: Gov. Perry's Tax Reform Plan; Baseline: Current Policy; Distribution by Cash Income Percentile, 2015," 2011. Retrieved from https://www.taxpolicycenter. org/model-estimates/governor-rick-perrys-tax-reform-plan/ presidential-campaign-2012-gov-perrys-tax-2.
-, "T11-0403 - Presidential Campaign 2012: The Gingrich Tax Plan; All Taxpayers Pay Flat Tax; Baseline: Current Law; Distribution by Cash Income Percentile, 2015," 2011. Retrieved from https: //www.taxpolicycenter.org/model-estimates/gingrich-tax-plan/ presidential-campaign-2012-gingrich-tax-plan-all-taxpayers-pay.
_, "T11-0405 - Presidential Campaign 2012: The Gingrich Tax Plan; All Taxpayers Pay Flat Tax; Baseline: Current Policy; Distribution by Cash Income Percentile, 2015," 2011. Retrieved from https: //www.taxpolicycenter.org/model-estimates/gingrich-tax-plan/ presidential-campaign-2012-gingrich-tax-plan-all-taxpayers-pay-2.
-, "T12-0002 - Presidential Campaign 2012: Mitt Romney's Tax Plan; Baseline: Current Law; Distribution by Cash Income Percentile, 2015," 2012. Retrieved from https://www.taxpolicycenter. org/model-estimates/romney-tax-plan-updated-030112/ presidential-campaign-2012-mitt-romneys-tax-plan-0.
_, "T12-0004 - Presidential Campaign 2012: Mitt Romney's Tax Plan; Baseline: Current Policy; Distribution by Cash Income Percentile, 2015," 2012. Retrieved from https://www.taxpolicycenter. org/model-estimates/romney-tax-plan-updated-030112/ presidential-campaign-2012-mitt-romneys-tax-plan-2.
-, "T12-0006 - Temporary Payroll Tax Cut Continuation Act of 2011; Baseline: Current Law; Distribution by Cash Income Percentile, 2012," 2012. Retrieved from https://www.taxpolicycenter.org/ model-estimates/temporary-payroll-tax-cut-continuation-act-2011/ temporary-payroll-tax-cut-0.
_, "T12-0012 - Presidential Campaign 2012: The Santorum Tax Plan; Baseline: Current Law; Distribution by Cash Income Percentile, 2015," 2012. Retrieved from https://www. taxpolicycenter.org/model-estimates/santorum-tax-plan/
presidential-campaign-2012-santorum-tax-plan-baseline-current-0.
_ , "T12-0014 - Presidential Campaign 2012: The Santorum Tax Plan; Baseline: Current Policy; Distribution by Cash Income Percentile, 2015," 2012. Retrieved from https://www. taxpolicycenter.org/model-estimates/santorum-tax-plan/ presidential-campaign-2012-santorum-tax-plan-baseline-current-1.
_, "T12-0034 - H.R. 3630: The Middle Class Tax Relief and Job Creation Act of 2012 Baseline: Current Law (Excluding the Temporary Payroll Tax Cut Continuation Act of 2011) Distribution of Federal Tax Change by Cash Income Percentile, 2012," 2012. Retrieved from https://www.taxpolicycenter.org/model-estimates/ hr-3630-middle-class-tax-relief-and-job-creation-act-2012/ hr-3630-middle-class-tax-4.
_, "T12-0039 - Romney Tax Plan Without Unspecified Base Broadeners; Baseline: Current Law; Distribution of Federal Tax Change by Cash Income Percentile, 2015," 2012. Retrieved from https://www.taxpolicycenter. org/model-estimates/romney-tax-plan-updated-030112/ romney-tax-plan-without-unspecified-base-broadeners-0.
_, "T12-0041 - Romney Tax Plan Without Unspecified Base Broadeners; Baseline: Current Policy; Distribution of Federal Tax Change by Cash Income Percentile, 2015," 2012. Retrieved from https://www.taxpolicycenter. org/model-estimates/romney-tax-plan-updated-030112/ romney-tax-plan-without-unspecified-base-broadeners-2.
_ , "T12-0043 - Administration's FY2013 Budget Proposals Major Individual Income and Corporate Tax Provisions Baseline: Current Law Distribution of Federal Tax Change by Cash Income Percentile, 2013," 2012. Retrieved from https://www.taxpolicycenter.org/model-estimates/ estimates-administrations-fiscal-year-2013-budget-proposals/ administrations-fy2013-0.
_ , "T12-0045 - Administration's FY2013 Budget Proposals Major Individual Income and Corporate Tax Provisions Baseline: Current Policy Distribution of Federal Tax Change by Cash Income Percentile, 2013," 2012. Retrieved from https://www.taxpolicycenter.org/model-estimates/ estimates-administrations-fiscal-year-2013-budget-proposals/ administrations-fy2013-2
_, "T12-0425 - The American Taxpayer Relief Act of 2012 (ATRA) as Passed by the Senate Major Individual Income Tax and Estate Tax Provisions Excludes Certain Business Extenders and other Provisions Baseline: Current Law, by Percentile," 2012. Retrieved from https://www.taxpolicycenter.org/model-estimates/ american-taxpayer-relief-act-2012-atra-passed-senate/ american-taxpayer-relief-act-0.
_, "T12-0427 - The American Taxpayer Relief Act of 2012 (ATRA) as Passed by the Senate Major Individual Income Tax and Estate Tax Provisions Excludes Certain Business Extenders and other Provisions Baseline: Current Policy, by Percentile," 2012. Retrieved from https://www.taxpolicycenter.org/model-estimates/ american-taxpayer-relief-act-2012-atra-passed-senate/ american-taxpayer-relief-act-2.
_ , "T13-0134 - Administration's FY2014 Budget Proposals; Major Individual Income Tax Provisions; Distribution of Federal Tax Change by Cash Income Percentile, 2015," 2013. Retrieved from https://www.taxpolicycenter.org/model-estimates/ estimates-administrations-fiscal-year-2014-budget-proposals/ administrations-fy2014-5.

_, "T15-0171 - Gov. Bush's Tax Reform Plan, Baseline: Current Law, Distribution of Federal Tax Change by Expanded Cash Income Percentile, 2017," 2015. Retrieved from https://www. taxpolicycenter.org/model-estimates/governor-bushs-tax-plan/ gov-bushs-tax-reform-plan-baseline-current-law-1.
_, "T15-0234 - Donald Trump's Tax Reform Plan, Baseline: Current Law, Distribution of Federal Tax Change by Expanded Cash Income Percentile, 2017," 2015. Retrieved from https://www. taxpolicycenter.org/model-estimates/donald-trumps-tax-plan/ donald-trumps-tax-reform-plan-baseline-current-law-1.

- , "T16-0003 - Senator Rubio's Tax Reform Plan, Baseline: Current Law, by Expanded Cash Income Percentile, 2017," 2016. Retrieved from https:// www.taxpolicycenter.org/model-estimates/senator-rubios-tax-plan/ senator-rubios-tax-reform-plan-baseline-current-law-1.
- , "T16-0021 - Senator Cruz's Tax Reform Plan, Baseline: Current Law, by Expanded Cash Income Percentile, 2017," 2016. Retrieved from https:// www.taxpolicycenter.org/model-estimates/senator-cruzs-tax-plan/ senator-cruzs-tax-reform-plan-baseline-current-law-expanded-1.
_ , "T16-0041 - Secretary Clinton's Tax Proposals, Baseline: Current Law, by Expanded Cash Income Percentile, 2017," 2016. Retrieved from https://www. taxpolicycenter.org/model-estimates/secretary-clintons-tax-plan/ secretary-clintons-tax-proposals-baseline-current-law-1.
_ , "T16-0054 - Senator Sanders's Tax Proposals, Distribution of Federal Tax Change by Expanded Cash Income Percentile, 2017," 2016. Retrieved from https://www. taxpolicycenter.org/model-estimates/senator-sanders-tax-plan/ senator-sanderss-tax-proposals-distribution-federal-tax-1.
_ , "T16-0197 - House GOP Tax Plan, Distribution of Federal Tax Change by Expanded Cash Income Percentile, 2017," 2016. Retrieved from https://www. taxpolicycenter.org/model-estimates/house-gop-tax-plan-sep-2016/ t16-0197-house-gop-tax-plan-distribution-federal-tax.
_ , "T16-0212 - Donald Trump's Revised Tax Plan, Distribution of Federal Tax Change by Expanded Cash Income Percentile, 2017," 2016. Retrieved from https://www.taxpolicycenter.org/ model-estimates/donald-trumps-revised-tax-plan-oct-2016/ t16-0212-donald-trumps-revised-tax-plan
_, "T16-0225 - Secretary Clinton's Revised Tax Plan, Distribution of Federal Tax Change by Expanded Cash Income Percentile, 2017," 2016. Retrieved from https://www.taxpolicycenter.org/ model-estimates/secretary-clintons-revised-tax-plan-oct-2016/ t16-0225-secretary-clintons-revised-tax.
_ , "T17-0225 - Unified Framework; Distribution of Federal Tax Change by Expanded Cash Income Percentile, 2018," 2017. Retrieved from https://www.taxpolicycenter. org/model-estimates/unified-framework-september-2017/ t17-0225-unified-framework-distribution-federal-tax.
_, "T18-0023 - Major Individual Income Tax Provisions in The Tax Cuts and Jobs Act (TCJA); Tax Units with a Tax Increase or Tax Cut, by Expanded Cash Income Percentile, 2018," 2018. Retrieved from https://www.taxpolicycenter.org/model-estimates/ individual-income-tax-provisions-tax-cuts-and-jobs-act-tcja-february-2018/ t18-0023.
_, "T18-0024 - The Tax Cuts and Jobs Act (TCJA): All Provisions and Individual Income Tax Provisions; Distribution of Federal Tax Change by Expanded Cash Income Level, 2018," 2018. Retrieved from https://www.taxpolicycenter.org/model-estimates/ individual-income-tax-provisions-tax-cuts-and-jobs-act-tcja-february-2018/ t18-0024.
_, "T19-0053 - Distributional Effect of the Working Families Tax Relief Act (WFTRA), By Expanded Cash Income Percentile, 2019," 2019. Retrieved from https://www.taxpolicycenter.org/model-estimates/ working-families-tax-relief-act-and-alternative-specification/ t19-0053

Tempalski, J., "Revenue effects of major tax bills," Office of Tax Analysis Working Paper, 2006, 81.

Weinzierl, M., "Revisiting the classical view of benefit-based taxation," Economic Journal, 2018, 128 (612), 37-64.

[^0]: * Bierbrauer (corresponding author): CMR - Center for Macroeconomic Research, University of Cologne, Germany (bierbrauer@wiso.uni-koeln.de); Boyer: CREST, École Polytechnique, France (pierre.boyer@polytechnique.edu); Peichl: ifo Munich, LMU Munich, CESifo, IHS and IZA peichl@ econ.lmu.de).

[^1]: ${ }^{1}$ The database provided by the OECD is Table I.1. on Central government personal income tax rates and thresholds (OECD Tax Database, 2000-2016) accessible on http://stats.oecd.org/Index.aspx? DataSetCode=TABLE_I1
 ${ }^{2}$ Additional details on the methodology applied by the OECD is accessible on http://www.oecd.org/ ctp/tax-policy/personal-income-tax-rates-explanatory-annex.pdf
 ${ }^{3}$ By and large, this does not affect the overall frequency of monotonic reforms. If we include Germany and base the analysis on data from the German Federal Ministry of Finance, accessible on https://www. bmf-steuerrechner.de/index.xhtml;jsessionid=46D8EC6083BF2573A42C23A2B03B49DF then 80\% of the reforms in OECD countries are found to be monotonic. When Germany is excluded the number is 78%.

[^2]: ${ }^{4}$ See, e.g, for TCJA17 https://www.taxpolicycenter.org/model-estimates/ individual-income-tax-provisions-tax-cuts-and-jobs-act-tcja-february-2018/t18-0024

[^3]: | Addendum | | | | | -4184 | | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | $\mathbf{8 0 - 8 9}$ | -1140 | -4672 | -4690 | -4439 | -273 | -5654 | -273 |
 | $\mathbf{9 0 - 9 4}$ | -1500 | -5790 | -5900 | -5820 | -222 | -6881 | |
 | $\mathbf{9 5 - 9 8}$ | -7620 | -6223 | -8579 | -7994 | 1857 | 1857 | |
 | Top 1 Percent | -129030 | -138 | -18755 | -3966 | 68906 | -205 | |

 Notes: This table shows the average value of the counterfactual change in tax liability $T_{1}\left(\hat{y}_{0}^{i}\right)-T_{0}\left(y_{0}^{i}\right)$ for reform proposals of the US federal personal income tax by income quintile as well as a decomposition for the top quintile. The data is taken from the Tax Policy Center's ex ante analysis of each reform proposal. Details on the underlying data, methods and simulation model can be found here: https://www.taxpolicycenter. хец әчұ шол ұ ұәum Policy Center. The table also contains information on the year of the proposal, the year of the projection and the employed baseline (current law

 Source: Authors' calculations based on Tax Policy Center.

[^4]: ${ }^{5}$ As part of the tax burden was effectively shifted from the individual to the corporate sector which is not part of our analysis, TRA86 constitutes a tax cut in the context of this paper

[^5]: ${ }^{6}$ See Saez (2002), Choné and Laroque (2011), and Jacquet et al. (2013).
 ${ }^{7}$ See Boadway and Keen (1993), Hellwig (2004), Bierbrauer (2014), or Weinzierl (2018).

[^6]: ${ }^{8}$ The ratio $\frac{d \tau_{s}}{d \tau}$ on the left-hand side of inequality $I .2$ is determined as follow: Let $R^{s}\left(\tau_{s}, \tau\right)$ be the change of revenue from savings taxes and $R\left(\tau_{s}, \tau\right)$ the change of revenue from income taxation due to

[^7]: ${ }^{9}$ The analysis in Alesina and Angeletos (2005) looks at a special case of this. They focus on a status quo equal to the laissez-faire schedule so that $T_{0}(y)=0$, for all y, and a reform that introduces a linear tax schedule, i.e. $h(y)=y$, for all y. Under these assumptions, we have $\eta-T_{0}(\pi(l, k)+\eta)-\tau h(\pi(l, k)+\eta)=$ $(1-\tau) \eta+\tau \pi(l, k)$.
 ${ }^{10}$ Human capital investment is a function of effort costs ω and the expectations (R^{e}, τ^{e}) of the young on the tax reforms that will be adopted when they are old

