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A.1 Data Appendix

A.1.1 Baseline McDash Prepayment Sample

This section describes in more detail our loan-level sample restrictions as well as our identification
of prepayment type in CRISM data. See the supplementary replication code for more details (Berger
et al. (2021)). Our primary loan-level data set for measuring prepayment and loan gaps is the McDash
loan performance and origination data from 1992-2017 produced by Black Knight Financial Services.
The origination data provides a number of origination characteristics such as origination date, amount,
loan purpose and appraisal value while the performance data provides dynamic info on these loans
like current unpaid balance, current interest rate and flags for prepayment. Our prepayment analysis
primarily requires information from the dynamic loan performance data: we define loan prepayment in
month t as any loan with termination flag "voluntary payoff" in that month and a termination date of
month t.

Our primary analysis uses only fixed rate first mortgages, but results are similar when including
all mortgages in the McDash data set. In order to maintain a consistent sample when running cross-
MSA results, we also drop any loan with missing information on MSA-division. We also drop any loan
with missing information on the current interest rate in the McDash loan performance data set, since
we cannot measure gaps for these loans. We define the interest rate gap as the current interest rate
minus the monthly average 30 year FRM from the Freddie Mac PMMS plus an estimated loan-specific
adjustment that is a quadratic function of the borrower’s FICO score and the loan’s current LTV ratio.
We also compute $ gaps in addition to rate gaps, which we define as the current unpaid balance times
the interest rate gap. For that analysis, we drop any loan with missing unpaid balance in the McDash
performance data set.

Since most of our analysis is focused on prepayment rates, the majority of our analysis can be
performed using only loan performance data, albeit without controls for individual fixed effects or time-
varying observables only available in credit records. However, while performance data is required to
measure prepayment, it cannot be used to decompose prepayment into that arising from refinancing and
moves. This is because loan purpose is collected at origination but not at termination, so the performance
data set tells us if a loan prepays but not why. Conversely, origination data can be used to measure the
share of new originations which are due to refinancing and moves, but it cannot be used to measure the
share of old mortgages which are prepaying. So origination data cannot tell us what share of mortgages
prepay and why, since it contains the wrong denominator. This means that measuring the frequency of
prepayment by type requires linking information on loan performance for terminating loans with loan
origination information for newly originating loans.

After 2005, we are able to use the linked Equifax/CRISM data which we describe in the next subsec-
tion to precisely link each individual prepaying loan to a newly originating loan so that we can measure
exactly why each individual loan is prepaying. Prior to 2005, these links are unavailable, so we cannot
measure the reason that any individual loan prepays However, in a stationary environment, performance
data and origination data can be combined to proxy for the share of prepayment arising from different
types. In particular, in an environment with no net flows in and out of the mortgage market, every
loan which prepays due to refinancing or due to moving must be matched by a newly originated loan
with the same purpose. While we cannot link the new and old loan together, the shares must remain
unchanged. This allows us to proxy for rate-refi, cash-out refi and movement frequencies in a month
using only loan level data without links to individuals.

In particular, we compute f reqtype
t = f reqprepay

t × sharetype
t where f reqtype

t is the frequency of a given
type of prepayment, f reqprepay

t is the frequency of prepayment in performance data and sharetype
t is

the share of a given type of loan purpose in origination data. The McDash origination data set only
collects loan purpose after 1998, so we measure sharetype

t using originations data from CoreLogic LLMA.
This data set has a structure nearly identical to the McDash data, but it contains reliable loan purpose
at origination info as early as 1993. However, we continue to measure f reqprepay

t using McDash data
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because CoreLogic performance data does not measure prepayment before 1999, and has roughly half
the market coverage of the McDash Performance Data set. Combining prepayment frequencies from
McDash with loan purposes shares at origination from CoreLogic leverages the comparative advantages
of the two data sets. While stationarity is clearly a strong assumption, we can use the CRISM data
after 2005 to compare our proxies for frequency by type under the stationarity assumption, with actual
frequencies. Figure A-1 shows they are very similar.

Figure A-1: Construction of Prepay Shares by Type
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Overall, the McDash Performance data set contains information on approximately 180 million loans.
After 2005, the McDash Performance data set covers roughly 50% of total U.S. mortgage debt as mea-
sured by the Federal Reserve. Prior to 2005, coverage is somewhat lower, ranging from around 10%
market coverage in the early 90s to 20-25% in the late 90s. As a measure of representativeness and ex-
ternal validity, Figure A-2 shows that refinancing in our data closely tracks the refinancing applications
index produced by the Mortgage Banker’s Association from 1992-2017.72 This suggests that despite the
changing sample sizes, the McDash Performance data is broadly representative of the U.S. mortgage
market over the entire 1992-2017 period.73

We use the McDash Performance data rather than CoreLogic Performance data because the Core-
Logic performance data does not measure prepayment before 1999, and has roughly half the market
coverage of the McDash performance data. Using CoreLogic instead of McDash Performance data leads
to somewhat noisier refinancing series and eliminates the first 7 years of data. In addition, we cannot
link loans to individuals in CoreLogic data like we can in the McDash data using the links we describe

72Note that we measure originations while this index measures applications. According to LendingTree, denials are roughly
8% after the financial crisis due to Dodd-Frank related changes in lending standards. This explains the level difference after
the Financial Crisis but the series continue to highly comove.

73Note that even in the months with the fewest observations, we still have more than 5 million mortgages, so only lack of
representativeness and not sampling error is a potential concern.
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next. Nevertheless, we have repeated our analysis of prepayment using series derived from CoreLogic
LLMA Performance data and arrive at similar conclusions.

Figure A-2: Comparison of Refi Measured with McDash Data to Mortgage Bankers’ Association data
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Figure shows an index of refinancing computed using McDash Performance data and CoreLogic Origination Purpose data
compared to the Mortgage Banker’s Association Refinancing Application Index. Note that the loan-level index measures
originations while the MBA index measures applications. Indices are normalized to 100 in 2005m4.

A.1.2 Linked CRISM Sample: Measuring Refinancing

After 2005, we link loans in the McDash data set to Equifax credit records, which allows us to decom-
pose prepayment into different types and to control for various individual level observables, including
individual fixed effects. Our analysis and description of this data closely follows Beraja et al. (2019).
The linked Equifax/McDash CRISM data set provides the linked Equifax credit records for each Mc-
Dash mortgage for the lifetime of the loan, including an additional 6 months before origination and
after termination. This link is done directly by Equifax. Credit records provide a consumer’s total out-
standing debt amounts in different categories (first-lien mortgages, second-lien mortgages, home equity
lines of credit [HELOCs], auto loans, etc.). Additionally, in any month, Equifax provides the origination
date, amount, and remaining principal balance of the two largest (in balance terms) first mortgages,
closed-end seconds, and HELOCs outstanding for a given consumer.

In order to reduce the computational burden, we begin the analysis of CRISM data by extract-
ing all the loan and individual characteristics from a random 10% sample of all individuals in the
Equifax/McDash data at some point between 1992 and 2017. This 10% CRISM sample includes all mort-
gage loans (approximately 11 million) for approximately 5.9 million individuals74 We further restrict our
CRISM sample to those consumers who start our sample with two or fewer loans in each category and
never have more than three of any of these types of loans outstanding.75 These sample restrictions leave

74Results are extremely similar when using 5% and 20% samples since the CRISM sample is very large, so sampling error is
not important.

75Equifax only provides detailed origination information on the two largest loans, so this restriction allows us to infer the
origination month, origination balance, and balance of the third largest loan of any loan type even though this information
does not appear explicitly in Equifax. We also drop loans that do not have complete consecutive Equifax records.
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roughly 96% of the 5.9 million individuals in our analysis sample. In creating this loan-level data set, we
assume that the month in which the loan stops appearing in Equifax is the month that it was terminated.

While McDash loans are linked to individual credit records directly be Equifax using social security
number, individuals can have multiple loans and the loan information in Equifax does not always exactly
match that in McDash, since they come from independent sources.76 We thus have to construct a unique
match between a loan in McDash and the possible set of linked loans in Equifax. As in Beraja et al.
(2019), we consider an Equifax loan/McDash loan pairing a match if the origination date of the Equifax
loan is within 1 month and the origination amount is within $10,000 of the McDash loan. If more than
one loan is matched, we use the origination amount, date, termination date, zip code (where available,
or 3-digit zip code and MSA-div where not)77, and termination balance as tiebreakers. We are able to
match roughly 93% of McDash loans to an Equifax loan using these restrictions.

As in our primary analysis, we begin with all remaining outstanding fixed rate first liens in the
McDash which are voluntarily paid off. We then look for any loan in the Equifax data set that has an
open date within 4 months of the McDash loan’s termination date. We classify these new loans as a
refinance if either:

• The loan also appears in McDash and is tagged as a refinance in the purpose-type variable.

• The loan also appears in McDash and is tagged as an "Unknown" or "Other" purpose type, and
has the same property 5 digit zip code (where available, or 3-digit zip code and MSA-div where
not) as the original loan.

• The loan appears only in Equifax but the borrower’s Equifax address does not change in the 6
months following the termination of the original loan.

This allows us to compute one of our primary outcomes of interest, the count of first-lien FRM
loans which refinance in month t divided by the total number of McDash first-lien FRM loans with
Performance data in that month. (We have also considered results which compute balance weighted
shares, and they are very similar).

A.1.3 Linked CRISM Sample: Decomposing refinancing into rate and cash-out

To compute the cash-out and rate-refinancing share of loans, we must further break these refinancing
loans down by type. In particular, we need to compute how the balance of the new loan compares to the
outstanding balance of the loan(s) being prepaid. We begin by labeling any loan in the Equifax data set
that terminates between -1 and 4 months from a new McDash loan’s close date a "linked" loan, including
first mortgages as well as closed-end seconds and HELOCs, and we call the new loan a refinance if:

• The loan is a known refinance in McDash.

• The loan has an "Unknown" or "Other" purpose type in McDash and a linked loan in McDash that
has a matching property zip code (5 digit when available or 3-digit + MSA-div when not).

• The loan has an "Unknown" or "Other" purpose type in McDash and a linked loan that appears
only in Equifax, but the consumer’s Equifax address does not change in the 6 months after the
new loan was opened.

If there is more than one linked loan that is a first mortgage in Equifax, we link only the loan that
is closest in balance to the origination amount of the new mortgage. We only link those Equifax loans

76For example, balances may differ slightly since they may be reported to credit bureaus and servicers at different dates.
77To ensure anonymity, McDash reports 5-digit zip code for loans in higher volume locations and 3-digit zip code for loans

in lower volume locations.
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that exist in the Equifax data for at least three months to prevent the refinanced loan balance from being
counted in the old balance of the loan.

For each of these cases, we can then calculate the cash-out amount as the difference between the
origination amount on the refinance loan and the balance of the linked loan(s) at termination. In order
to capture the correct origination amount on the refinance loan, we want to ensure that we are also
including any "piggyback" second liens that are opened with the refinance loan that we find in McDash.
Thus, we look for any loan in the Equifax record linked to our refinance loan that has an Equifax
open date within three months of our refinance loan and an origination balance of less than 25% of
our loan’s origination balance if labeled a first mortgage and less than 125% of the refinance loan’s
origination balance if labeled a HELOC or CES, and add the balance of these piggyback seconds to the
refi origination amount when calculating cash-out amounts.78 To eliminate outliers, we also drop cash-
out and "cash-in" amounts that are greater than $1,000,000. These amount to dropping less than 0.05%
of the refinance loans.

After measuring the change in the balance, we then call a refinancing a cash-out if, after subtracting
2 percent from the new loan to cover closing costs, the new mortgage balance is at least $5,000 above
the old mortgage. Using a more restrictive definition of cash-out reduces the overall share of cash-
out and the sensitivity of cash-out to rate gaps while using a less conservative cutoff does the reverse
since it reclassifies some rate-refis as cash-outs. By construction, these choices have no effect on the
decomposition of prepayment into refi vs. moves.

A.1.4 Leverage controls

In many of our aggregate regressions we control for average leverage in our data set and in our individ-
ual level regressions, we control for individual leverage. In order to measure leverage at the loan-level
we start with all McDash FRM first mortgages. For each mortgage we estimate its current value as the
appraisal value at origination updated using local house price indices from CoreLogic. We use zip code
level house price indices to update values when the 5-digit zip is available in McDash and in the Core-
Logic indices, and we otherwise use MSA level house price indices. We then compute leverage LTV for
a given loan as the ratio of the current unpaid balance to this estimate of value. Our aggregate controls
then take the average leverage across loans.

This procedure will tend to understate leverage for individuals with multiple loans, but it can be
applied over the entire 1992-2017 sample. After 2005, we can construct a more accurate measure of
leverage using CRISM data. Following Beraja et al. (2019), we begin with first-lien McDash FRM loans.
For each month, we then take the corresponding Equifax record and assign all outstanding second liens
to the outstanding first liens in Equifax using the rule that each second lien is assigned to the largest first
lien (in balance terms) that was opened on or before the second lien’s opening date. We then add the
assigned second lien balance(s) to the McDash balance of our original loan as our measure of secured
debt on a property, which is the numerator of CLTV. We then divide by the value constructed exactly
as described above.

78We impose these upper bounds because we want to avoid picking up other first lien mortgages (to purchase another
property) the borrower might originate at the same time.
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A.2 Additional Empirical Results

Figure A-3 is the annualized version of Figure 1 in the main text. The key difference between Figure
1 is that the interest rate gaps are averaged annually (as opposed to monthly), as is the prepayment
indicator.79 However, a comparison between Figure 1 and Figure A-3 shows that they are very similar.
In particular, both show clear evidence of state-dependent prepayment: loans with positive gaps are
much more likely to prepay than loans with negative gaps.

Figure A-3: Robustness of Prepayment Hazard to Annual Instead of Monthly Frequency
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Figure shows the point estimates and 95-percent confidence intervals for the coefficients on the 20 basis point gap bin dummies
in regression 1. Gaps are averaged by year, and prepayment is an indicator for any prepayment event over the year. Standard
errors are clustered by household (but not year since we only have 12 year observations). In order to include household fixed
effects and time-varying characteristics, figure uses CRISM data linked to credit records from 2005m6-2017m4.

Figure A-4 shows that restricting our analysis to households with substantial outstanding mortgage
balances delivers results similar to those documented in Figure 1: a step-like behavior of the prepayment
hazard, as a function of the rate gap.

Figure A-5 documents the foregone annual savings for households with 300bp+ rate-gaps who do
not refinance. As the graph makes clear, the typical household with a large rate gap also has very
large potential payment savings. For example, the average (median) annual foregone mortgage payment
savings are $2800 ($2050). Overall, this supports our conclusion that lack of prepayment despite high
individual rate gaps does not reflect limited benefits from refinancing.

79We also compute standard errors differently. In this regression standard errors are clustered by household, but not year
since we only have 12 year observations.
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Figure A-4: Prepayment Hazard with Individual Controls: Excluding Mortgage Balances < $100k
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Figure shows point estimates and 95% confidence intervals for coefficients on the 20bp bin dummies in regression 1. We
exclude loan-month observations with balances less than $100,000. Standard errors are two-way clustered by household and
month using data from 2005m6-2017m4.

Figure A-5: Annual Payment Savings Lost By Not Refinancing
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Figure shows CDF of the distribution of foregone annual savings for households with 300bp+ gaps who do not refinance.
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In Section 4.2 we argue that rate incentives are a crucial driver of refinancing decisions, even for
households taking cash out of their homes. The fact that few loans refinance into higher rates might seem
to be at odds with evidence that in many months, most refinancing loans are doing so into higher rates
(see Chen et al. (2019) Figure 1, or https://www.wsj.com/articles/americans-are-taking-cash-out-of-
their-homesand-it-is-costing-them-11577529000). It is not. First, Figure A-6 shows that we can replicate
the time-series evidence shown in the publicly available Freddie Mac almost perfectly in our data.

Figure A-6: Median of Ratio of New to Old Rate: McDash vs. Freddie Mac Data
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For each month, we estimate the ratio of new rates relative to outstanding old rates for refinancing loans in our data. We then
calculate the median of this ratio for each month and compare this to published data for the same object from Freddie Mac.

Figure A-7: Shares and Frequencies of Refinancing into Higher Rates

(a): Share of Refi w/ Increase vs. Refi Freq
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(b): Frequency of All Refi vs. All Refi w/ Increase
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In particular, for each each month and for all prepaid GSE loans in the McDash data, we compute the
estimated gap between the outstanding interest rate and the estimated new rate for the loan. We then
apply the refinancing hazard computed in CRISM data after 2005 to allocate all of these prepayments
between refinancing and moves. For each imputed refi in McDash data, we then compute the ratio of
the estimated new rate relative to the outstanding old rate. We then calculate the median of this ratio
and Figure A-6 compares it to published data for the same object from Freddie Mac.

Furthermore, Figure A-7 shows that changes in refinancing frequency are key to reconciling this time-
series pattern with our cross-sectional fact that refinancing into higher rates is very unusual. Panel (a)
shows that the times when most refis result in rate increases are precisely the times when the frequency
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Figure A-8: Shares and Frequencies of Cash-out Refinancing into Higher Rates

(a): Share of Refi w/ Increase vs. Refi Freq
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(b): Frequency of Refi vs. Refi w/ Increase
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of refinancing is extremely low, so the loans refinancing in these months are a small share of overall
refinancing activity. Panel (b) more directly shows that the frequency of refinancing into higher rates
is nearly zero outside of 2005-2006, and even in those two years it is still low compared to the overall
average frequency of refinancing across time. Figure A-8 shows that this is also true when restricting to
only cash-out refinancing and excluding rate refis. In sum, these three figures reconcile our results with
Chen et al. (2019).

Figure A-9: Distribution of Gaps at Two Dates
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Figure A-9 shows the distribution of interest rate gaps at two points in time. The solid black line
shows the distribution of gaps in December of 2000 while the dotted gray line shows the distribution of
gaps in December of 2003. The key takeaway is that there is significant variation in these distributions
and thus the f rac > 0 over time. This time-variation along with the state-dependence of the hazard rate
is what leads to significant path dependence.

In the main text, we look at time series responses to identified monetary policy shocks by regressing
aggregate outcomes directly on monetary policy shocks. That exercise is analogous to our theoretical
modeling exercise. In Figure A-10 we instead regress on changes in mortgage rates, instrumented by
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these monetary policy shocks. This is conceptually further from our theoretical exercises, but poten-
tially better isolates effects working through prepayment. Point estimates are similar although power is
reduced so standard errors are wider.

Figure A-10: Response to Identified Mortgage Rate Shocks
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This figure shows the response of log real output and non-durable consumption to the shocks to the 30 year mortgage rate
instrumented using identified monetary shocks from Romer and Romer (2004), extended through 2007 by Wieland and Yang
(2020). Light (dark) gray shaded areas are 90 (80) percent confidence intervals based on Newey-West standard errors. The red-
dashed line indicates the effect of a monetary policy shock when f rac > 0 is above its median value of 0.596. The blue-dotted
line shows the effect when f rac > 0 is below its median value.

Table A-1 shows that the relationship between f rac > 0 and prepayment is robust to a number of
other potential confounding observables. Columns (2) and (3) add controls for two different measures
of the business cycle. Column (4) controls for seasonality with 12 month-of-year dummies. Column (5)
provides evidence that adding additional controls to capture non-linearities in rate changes does not alter
our conclusions. Specifically we include an indicator for periods of unusually large declines in mortgage
rates: for each period, we compute the 3-month change in the mortgage rate ∆3,t ≡ Mt−3 − Mt− and
then add to the baseline regression an indicator for periods in the top ten percent of ∆3,t. Using different
cutoffs for the indicator delivers similar conclusions. We have also explored interactions between large
rate changes and the relationship between f rac > 0 and prepayment and find no significant results.
Importantly, this does not mean there are not non-linear effects of rate incentives on prepayment: non-
linearities are most apparent from the microeconomic hazard in Figure 1. However, the result in Column
(5) shows that these non-linearities are already captured by f rac > 0: when rates decline by large
amounts there are large increases in f rac > 0 and resulting prepayment. Figure 5 shows that there is
a large spike in prepayment in 2003. This unusual increase in refinancing coincides exactly with the
“Mortgage-Rate Conundrum" documented by Justiniano et al. (2017). We cannot explain this outlier
in 2003 based on observables but Column (6) shows that if we introduce a 2003 dummy, leverage and
f rac > 0 explain almost two-thirds of the variation in prepayment. In Column (7), we show that jointly
controlling for all of these observables again leads to similar conclusions.

In Column (8), our most stringent empirical specification, we also add controls for one hundred
calendar-quarter fixed effects.80 In this specification, identification comes only from monthly relation-
ships between prepayment and rate incentives within quarters. These specifications rule out many
additional confounding factors such as aging (Wong (2019)) and trends in lender concentration (Agar-

80We also include all of the other controls except the 2003 indicator, which is collinear with quarter fixed effects, but most of
these controls are almost constant within quarters and so there is little identifying variation. Redoing the regression with only
quarter FE and no additional controls produces similar results.
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Table A-1: Relationship Between Rate Incentives and Prepayment with Controls

(1) (2) (3) (4) (5) (6) (7) (8)
None U Y Seas Large ∆m 2003 All Quart FE

frac > 0 2.82*** 2.82*** 2.82*** 2.82*** 2.83*** 2.48*** 2.53*** 2.14***
(0.50) (0.50) (0.50) (0.50) (0.50) (0.36) (0.38) (0.39)

LTV -6.49*** -6.49*** -6.49*** -6.49*** -6.64*** -4.96*** -4.96*** 0.53
(1.66) (1.66) (1.66) (1.66) (1.70) (1.15) (1.26) (5.30)

Constant 3.58*** 3.58*** 3.58*** 3.58*** 3.64*** 2.79*** 2.80*** -0.97
(0.80) (0.80) (0.80) (0.80) (0.81) (0.57) (0.61) (3.52)

Adj. R2 0.47 0.47 0.47 0.47 0.48 0.62 0.63 0.93
N 304 304 304 304 304 304 304 304
Date 92-17m4 92-17m4 92-17m4 92-17m4 92-17m4 92-17m4 92-17m4 92-17m4

Newey-West standard errors in parantheses. *=10%, **=5%, ***=1% significance. LTV is average leverage. Prepayment fractions
are measured in month t + 1 while rate incentives and LTV are measured in month t, since McDash data measures origination
not application and there is a 1-2 month lag from application to origination. U is the current unemployment rate, Y is monthly
log industrial production detrended with an HP(129600) filter. Seas is 12 month of year indicators. Large ∆m includes an
indicator for the top ten percent of months by the 3-month decline in mortgage rates. 2003 includes and indicator for the year
2003. All includes all controls in Columns 2-6 simultaneously. Quart includes calendar-quarter fixed effects.

wal et al. (2017) and Scharfstein and Sunderam (2016)) which might influence refinancing incentives and
prepayment rates but are unlikely to matter at these high frequencies.

In Appendix Table A-2 we show that the relationship between f rac > 0 and prepayment also holds
at the MSA level, even after including both calendar-month and MSA × calendar-quarter fixed effects.
As the table shows, there is a strong positive relationship between total prepayment (column 1) , rate-refi
(column 2), cash-out refi (column 3), home purchases (column 4) and f rac > 0.

Since f rac > 0 depends on past endogenous interest rates, it is possible that some unobserved
confounding factor affects both f rac > 0 and prepayment propensities even at high frequencies. To
address this concern, Table A-3 re-estimates our baseline regressions using the cumulative value of the
Gertler and Karadi (2015) high-frequency monetary policy shock series over the past six months as an
instrument for f rac > 0. Unsurprisingly, this reduces power and increases standard errors, but point
estimates are nearly identical and f rac > 0 remains a significant predictor of prepayment activity.81

In Table A-4 we decompose the positive time-series relationship between total prepayment and
f rac > 0 into its constituent types (rate-refi, cashout-refi and purchase). As suggested by the over-
all loan-level relationship in Figure 1, f rac > 0 is most important for explaining rate-refinancing.82

f rac > 0 alone explains roughly 40% of the time-series variance in rate-refinancing. Since leverage di-
rectly affects incentives to cash-out and move, we also explore the relationship between leverage and
the different prepayment types. Leverage has no effect on rate refinancing, but unsurprisingly, it has a
strong negative effect on cash-out and moves. Leverage has stronger independent predictive content (as
measured by R2) for cash-out and moves than does f rac > 0. However columns (6) and (9) show that
including both f rac > 0 and leverage gives much stronger predictions than either alone. That is, after
controlling for leverage, f rac > 0 has strong additional predictive content for cash-out and moves.

Many of our empirical results focus on prepayment (and its constituent components) as the out-
come of interest. However, changes in the average outstanding mortgage rate m∗ are arguably more
important than prepayment rates since mortgage payments are what enter the household budget con-

81First-stage F-stats shown in the table exceed the 15% Stock-Yogo critical values for weak instrument bias.
82After 2005 we decompose prepayment using CRISM data; prior to 2005 we assume stationarity and decompose using

origination shares. See Section 3. This decomposition requires origination shares data from CoreLogic LLMA data, which has
poor coverage prior to 1993. For this reason, regressions start from 1993 rather than 1992 as in other tables.
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Table A-2: Effects of Rate Gaps on Prepayment Propensities by MSA

(1) (2) (3) (4)
Tot Prepay Rate-Refi Cashout Purchase

frac > 0 3.05*** 1.80*** 0.54*** 0.69***
(0.33) (0.22) (0.11) (0.24)

Quarter X MSA FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Adj. R2 0.98 0.93 0.94 0.80
N 112885 112885 112885 112885
Date Range 92-17m4 92-17m4 92-17m4 92-17m4

Standard errors two-way clustered by MSA and month. *=10%, **=5%, ***=1% significance. Prepay-
ment is measured using loan level data from McDash Performance data. After 2005, we decompose
prepayment by type using CRISM data which links new and old loans. Prior to 2005, we decompose
prepayment by type using origination shares by type from CoreLogic LLMA data. See Appendix for
additional discussion. Prepayment fractions are measured in month t + 1 while rate incentives are mea-
sured in month t, since McDash data measures origination not application and there is a 1-2 month lag
from application to origination.

Table A-3: Instrumenting for Rate Gaps with High Frequency Monetary Policy Shocks

(1) (2) (3)

frac > 0 2.36*** 3.01*** 3.34***
(0.83) (0.72) (0.74)

LTV -7.83*** -6.32***
(1.57) (1.33)

Constant -0.073 4.43*** 3.50***
(0.55) (0.73) (0.56)

Additional Controls None None All
F-Stat 17.2 16.3 21.7
N 247 247 247
Date 92-12m7 92-12m7 92-17m4

Newey-West standard errors in parantheses. *=10%, **=5%, ***=1% significance. This table instruments for f rac > 0 using
the sum over the prior 6 months of the high frequency monetary policy shock series from Gertler and Karadi (2015), available
through 2012m7. LTV is average leverage. We calculate leverage for each loan as the ratio of its outstanding balance to value
estimated using appraisal values at origination updated using local house price indices from CoreLogic. Loan level data from
McDash Performance data+appraisal values from McDash origination data is used to calculate LTV. Prepayment fractions are
measured in month t + 1 while rate incentives and LTV are measured in month t, since McDash data measures origination not
application and there is a 1-2 month lag from application to origination. Additional controls include all those in Column (7) of
Table A-1

13



Table A-4: Effects of Rate Gaps on Prepayment Propensities by Type

Rate Refi Cash-out Purchase

(1) (2) (3) (4) (5) (6) (7) (8) (9)

frac > 0 1.261*** 1.465*** 0.296** 0.599*** 0.400*** 0.670***
(0.187) (0.255) (0.128) (0.118) (0.132) (0.124)

LTV 0.343 -1.787** -1.786*** -2.657*** -1.385*** -2.358***
(0.820) (0.844) (0.303) (0.399) (0.442) (0.401)

Constant -0.411*** 0.212 0.566 0.0670 1.375*** 1.520*** 0.380*** 1.507*** 1.669***
(0.0948) (0.533) (0.413) (0.0672) (0.206) (0.189) (0.0690) (0.281) (0.229)

Adj. R2 0.418 0.00244 0.472 0.0713 0.211 0.466 0.101 0.0947 0.335
N 292 292 292 292 292 292 292 292 292
Date Range 93-17m4 93-17m4 93-17m4 93-17m4 93-17m4 93-17m4 93-17m4 93-17m4 93-17m4

Newey-West standard errors in parantheses. *=10%, **=5%, ***=1% significance. Prepayment is measured using loan level
data from McDash Performance data. After 2005, we decompose prepayment by type using CRISM data which links new and
old loans. Prior to 2005, we decompose prepayment by type using origination shares by type from CoreLogic LLMA data.
Regressions begin in 1993 rather than 1992 since reliable CoreLogic origination data on prepayment shares does not begin
until 1993. See Appendix for additional discussion. Prepayment fractions are measured in month t + 1 while rate incentives
and LTV are measured in month t, since McDash data measures origination not application and there is a 1-2 month lag from
application to origination.

straint and prepayment matters more if households secure large payment reductions. Prepayment
rates and changes in m∗ are of course related: in each month the change in average rates is ∆m̄∗ =∫

gap× f (gap)× h(gap)dgap, where f is the density of gaps and h is the prepayment hazard in that
month. If gaps are typically positive, then increases in prepayment will lead to declines in m̄∗. However,
it is also clear that they need not move perfectly together since average rates will decline by more if the
households prepaying have larger gaps.
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Table A-5: Effects of FRM Changes and Gaps on Average Coupon Changes

(1) (2) (3) (4)

frac > 0 -0.0486*** -0.0470*** -0.0531***
(0.00579) (0.00531) (0.00654)

∆ FRM 0.0188*** -0.0286** 0.0369
(0.00516) (0.0124) (0.0356)

∆ FRM × (frac > 0) 0.0542** 0.0679***
(0.0231) (0.0244)

∆ FRM × mean LTV -0.118*
(0.0673)

mean LTV 0.0521**
(0.0217)

Constant 0.0180*** -0.0142*** 0.0175*** -0.0109
(0.00284) (0.00178) (0.00273) (0.0111)

Adj. R2 0.497 0.0497 0.516 0.560
N 303 303 303 303
Date Range 92-17m3 92-17m3 92-17m3 92-17m3

Newey-West standard errors in parantheses. *=10%, **=5%, ***=1% significance. Average LTV is average across loans of the
ratio of a loan’s outstanding balance to value estimated using appraisal values at origination updated using local house price
indices from CoreLogic. Loan level data from McDash Performance data+appraisal values from McDash origination data is
used to calculate LTV. ∆ FRM is the change in the current 30 year FRM is the monthly average of the Freddie Mac weekly
PMMS survey 30 year fixed rate mortgage average: https://fred.stlouisfed.org/series/MORTGAGE30US. To account for a lag
between application and origination, in all specifications, f rac > 0 and LTV is measured as of month t, ∆m∗ is measured
between month t and month t + 1 and ∆ FRM is measured between month t− 1 and month t.

Column (1) of Table A-5 documents that there is an extremely strong negative time-series relationship
between f rac > 0 and ∆m∗. Unsurprisingly, Column (2) shows that when the current market interest rate
rises, so does the resulting average outstanding rate. More interestingly, Column (3) shows that there is
a strong interaction effect between f rac > 0 and ∆ FRM: interest rate pass-through into average coupons
is much stronger when f rac > 0 is large. As we discuss below, this increase in rate pass-through with
f rac > 0 is a central implication of our theoretical model and is a key indicator of path-dependence.
Given the importance of leverage for prepayment discussed above, Column (5) also includes interactions
of interest rate changes in month t with average leverage in this same month. While we indeed find a
negative interaction effect between leverage and pass-through, the interaction between f rac > 0 and ∆
FRM is if anything mildly amplified.

15



Table A-6 presents robustness to our main regression results when we only include conforming loans
in our sample. Other types of loans can sometimes have different refinancing processes and institutional
constraints (e.g. streamlined FHA refi) that could lead to different interactions with rate incentives.
Reassuringly the results in Table A-6 are very similar to the results from using our baseline sample as
shown in Table 2.

Table A-6: Robustness to Including only Conforming Loans

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Date Range 92-17m4 92-17m4 92-17m4 92-00 01-10 11-17m4 92-00 01-10 11-17m4

frac > 0 2.23*** 2.90*** 2.48*** 2.86*** 2.45*** 2.55*** 5.06*** 2.48***
(0.37) (0.50) (0.39) (0.88) (0.40) (0.37) (0.92) (0.44)

LTV -5.82*** -1.07 -1.58 -12.7*** -0.11
(1.82) (1.61) (1.70) (2.89) (0.91)

Constant 0.073 3.29*** 2.15** -0.086 0.024 -0.59* 0.90 6.18*** -0.54
(0.16) (0.92) (1.07) (0.19) (0.35) (0.30) (1.14) (1.28) (0.53)

Adj. R2 0.33 0.45 0.0020 0.61 0.33 0.67 0.62 0.67 0.66
N 304 304 304 108 120 76 108 120 76

Newey-West standard errors in parantheses. *=10%, **=5%, ***=1% significance. This table redoes the baseline analysis in Table
2, but restricting to only conforming loans.

Conversely, Table A-7 presents robustness to our main regression results when we exclude conform-
ing loans from our sample. Housing agencies play a role in credit supply and thus potentially affect
transmission of monetary policy into conforming loan mortgage rates, which is outside of the scope
of our model. Around 70% of loans over our whole sample period are conforming, so this is a major
sample restriction. However, results in Table A-7 are again quite similar to the results from using our
baseline sample as shown in Table 2.

Table A-7: Robustness to Excluding Conforming Loans

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Date Range 92-17m4 92-17m4 92-17m4 92-00 01-10 11-17m4 92-00 01-10 11-17m4
frac > 0 2.02*** 2.63*** 1.77*** 2.69*** 1.40*** 1.85*** 4.55*** 1.98***

(0.43) (0.45) (0.33) (0.92) (0.39) (0.30) (0.82) (0.38)

LTV -6.65*** -4.24*** -2.23** -11.3*** -2.15***
(1.30) (1.36) (1.08) (1.91) (0.71)

Constant -0.12 3.60*** 4.01*** -0.024 -0.29 -0.039 1.38* 4.95*** 0.88*
(0.26) (0.62) (0.91) (0.19) (0.56) (0.30) (0.76) (0.74) (0.44)

Adj. R2 0.25 0.49 0.11 0.49 0.24 0.41 0.50 0.66 0.54
N 304 304 304 108 120 76 108 120 76
Date Range 92-17m4 92-17m4 92-17m4 92-00 01-10 11-17m4 92-00 01-10 11-17m4

Newey-West standard errors in parantheses. *=10%, **=5%, ***=1% significance. This table redoes the baseline analysis in Table
2, but restricting to only non-conforming loans.

Table A-8 presents robustness to our main regression results when we only include loans which were
never delinquent. The main empirical concern here is that if a loan was ever delinquent it may be more
difficult to refinance. Thus, if we see a household with a large gap not refinancing, it might be because
this household was previously delinquent, not because they are inattentive. Results in Table A-8 are
very similar to the results from our baseline sample shown in Table 2.

16



Table A-8: Robustness to Excluding Loans Which are Ever Delinquent

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Date Range 92-17m4 92-17m4 92-17m4 92-00 01-10 11-17m4 92-00 01-10 11-17m4

frac > 0 2.44*** 3.22*** 2.41*** 3.18*** 2.64*** 2.50*** 5.19*** 2.59***
(0.40) (0.54) (0.39) (0.90) (0.39) (0.37) (0.95) (0.43)

LTV -6.96*** -1.85 -2.23 -12.6*** 0.20
(1.95) (1.75) (1.51) (2.93) (1.06)

Constant 0.091 3.94*** 2.80** -0.037 0.084 -0.56** 1.37 6.31*** -0.66
(0.19) (0.97) (1.16) (0.20) (0.37) (0.28) (1.02) (1.29) (0.60)

Adj. R2 0.33 0.48 0.010 0.58 0.36 0.71 0.59 0.66 0.70
N 304 304 304 108 120 76 108 120 76

Newey-West standard errors in parantheses. *=10%, **=5%, ***=1% significance. This table redoes the baseline analysis in Table
2, but restricting to only loans which are never delinquent.

Table A-9 presents robustness using a broader set of loans including those with adjustable rates rather
than just the fixed rate loans which are the focus of our main analysis. The main empirical concern here
is that if the loan is an adjusted rate mortgage (ARM) then there is no incentive to refinance as the
interest rate adjusts automatically (at least once it is past the initial period of fixed rates typical under
the hybrid ARMs common in the US). The results in Table A-9 are very similar to the results using our
baseline sample. This is because the FRM share is large: overall, just over 80% of mortgage balances are
in fixed rate loans rather than adjustable rate loans. In addition, even when focusing on ARMs, most are
actually still in the the initial fixed rate period when gaps and refi incentives can emerge. Furthermore,
the FRM share varies across time but is generally between 75-85%, except for a moderate dip during the
housing boom, and there is little relationship between the FRM share and f rac > 0.

Table A-9: Robustness to Including all Loans Instead of Only Fixed Rate Loans

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Date Range 92-17m4 92-17m4 92-17m4 92-00 01-10 11-17m4 92-00 01-10 11-17m4

frac > 0 1.91*** 2.79*** 2.01*** 2.40*** 1.90*** 2.09*** 5.09*** 2.24***
(0.40) (0.50) (0.30) (0.91) (0.39) (0.27) (0.88) (0.40)

LTV -6.89*** -3.04** -2.32** -13.6*** -1.24
(1.58) (1.38) (1.08) (2.39) (0.77)

Constant 0.22 3.97*** 3.34*** 0.069 0.27 -0.20 1.53** 6.60*** 0.35
(0.20) (0.76) (0.93) (0.16) (0.41) (0.27) (0.75) (0.97) (0.46)

Adj. R2 0.23 0.47 0.052 0.57 0.22 0.56 0.58 0.69 0.60
N 304 304 304 108 120 76 108 120 76

Newey-West standard errors in parantheses. *=10%, **=5%, ***=1% significance. This table redoes the baseline analysis in Table
2, but extending the analysis to all loans including those with adjustable rates instead of only looking at fixed rate mortgages.
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A.3 Model Appendix

A.3.1 Model Calibration

Table A-10: Model Parameter Values

Panel A: Exogenous Processes

Parameter Value Description

ln 2/ηr 5.3 years half life of interest-rate shock
r̄ 3.5% (p.a.) (unconditional) interest rate mean
σr 6% (p.a.) interest rate volatility

ln 2/ηy 7.3 years half-life of (log) income shock
E [Yt] $58,000 (unconditional) income mean

σy 21% (p.a.) log-income volatility
γ 2 inverse IES
F $150,000 mortgage debt outstanding

Panel B: Refinancing Frictions

Parameter Inattention Baseline Fixed-Cost Hybrid Description

ν 4.1% (p.a.) 4.1% (p.a.) 4.1% (p.a.) arrival rate of moving shocks
χc 22.8% (p.a.) 0 12.5% (p.a.) arrival rate of zero cost refi opportunity
χ f 0 2400% (p.a.) 14.5% (p.a.) arrival rate of positive cost refi opportunity
κ 0 $2500 $8250 fixed cost of refinancing for χ f

A.3.2 Mortgage Rates

In this section, we explain how to map short term rates into mortgage rates when risk-neutral financial
intermediaries lend to inattentive households. In the particular case of our pure Calvo model, the value
of a mortgage, from the financial intermediary standpoint, is only a function of (a) the current level of
short rates r, and (b) the mortgage coupon m∗ = m(r∗), since we know the household will refinance
whenever he has the opportunity to do so and whenever the short term rate r is below the short term
rate r∗ that was prevalent at the time of the previous refinancing. Thus, the price of a mortgage (with
face value of $1) can be encoded via the function P (r, r∗):

P (r, r∗) = E

[∫ τ

0
e−
∫ t

0 rsdsm(r∗)dt + e−
∫ τ

0 rsds
∣∣∣∣r0 = r

]
In the above, τ is the prepayment time, a stopping time that is the minimum of (a) an exponentially-
distributed time τν representing a move, and (b) the first exponentially distributed attention time τχ for
which the mortgage rate m(rτχ) is below m∗. If we note Lr the infinitesimal operator associated with the
stochastic process rt, P satisfies(

r + ν + χI{r<r∗}
)

P = m(r∗) + ν + χI{r<r∗} + LrP

Assuming the mortgage function m(r∗) is known, this is a standard ordinary differential equation, which
can be solved numerically with standard methods. In a risk-neutral environment, it must be the case
that the price of the mortgage, at time of origination, is equal to its notional value. In other words, we
must have the mortgage market equilibrium condition P(r, r) = 1. This latter equation allows us to pin
down the implicit function m(·).
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A.3.3 Solution to Household Problem

Let S := (W, m∗, Y) be the household idiosyncratic state and V (r, S) be the value function when the short
rate is r for a household with income Y, liquid wealth W and a fixed mortgage rate m∗. Let Ly be the
infinitesimal operator associated with the stochastic process Yt. The household Hamilton-Jacobi-Bellman
(HJB) equation can be written:

δV = sup
C

u(C) + LrV + LyV +
(

ν + χIm(r)<m∗
)
[V (r, S−m∗ , m(r))−V (r, S−m∗ , m∗)]

+ (rW + Y− C−m∗F) ∂WV (A1)

The optimal consumption function C (r, S) solves the first order condition u′ (C (r, S)) = ∂WV (r, S),
which can be written:

C (r, S) = (∂WV (r, S))−1/γ (A2)

We can then reinject the optimal consumption policy into the HJB equation satisfied by V to obtain a non-
linear partial differential equation satisfied by V. The non-linearity stems from the fact that consumption
is controlled – its value depends on the first partial derivative of V w.r.t. W. The endogenous savings
rate can then be written

µW (r, S) := rW + Y− C (r, S)−m∗F

Section A.3.6 discusses our numerical method to solve this non-linear PDE.

A.3.4 Fokker Planck Equation

The joint density gt over (1) the aggregate short rate state r, and (2) the idiosyncratic state vector S,
consisting of (a) savings W, (b) coupons m∗ and (c) income Y, satisfies the following Fokker Planck
equation (for m∗ 6= m(r)):

∂tgt = −∂W [µW (rt, S) gt (S)] + L∗ygt + L∗r gt −
(

ν + χ1{m(rt)<m∗}

)
gt (A3)

L∗y (resp. L∗r ) is the adjoint operator of Ly (resp. Lr), associated with the stochastic process for Yt
(resp. rt). This equation describes the inflows and outflows of "particles" in and out of the state (r, S);
it accounts for changes in short rate rt, in income Yt, in savings Wt, as well as refinancings that reset
the mortgage coupon of a household. A slightly different equation holds for m(r) = m∗, since in this
case we must take into account the inflow of households who are refinancing, re-striking their long-term
fixed rate mortgage at the rate m(r):

lim
r↘m−1(m∗)

[
ηr (r− r̄) gt(r, S) + ∂r

[
σ2

r r
2

gt(r, S)
]]
− lim

r↗m−1(m∗)

[
ηr (r− r̄) gt(r, S) + ∂r

[
σ2

r r
2

gt(r, S)
]]

+ ν
∫ +∞

0
gt

(
m−1 (m∗) , W, x, Y

)
dx + χ

∫ +∞

m∗
gt

(
m−1 (m∗) , W, x, Y

)
dx = 0

These equations will be leveraged in our numerical scheme when computing impulse response functions.

A.3.5 Impulse Response Functions

Our impulse response function ("IRF") calculations focus on the following outcome variables: average
prepayment rates, average mortgage coupons, and aggregate (per household-annum) consumption. The
initial state of the economy is given by a distribution over (a) short rates and (b) liquid savings, coupons
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and income, g0 (r, W, m∗, Y) that is degenerate, since the short rate is assumed to be known at time zero.
In other words, given our knowledge of r0, the initial distribution g0 satisfies g0 (r, W, m∗, Y) = 0 for any
r 6= r0, and there exists a density ĝ0 over (W, m∗, Y) that satisfies g0 (r, W, m∗, Y) = Ir=r0 ĝ0 (W, m∗, Y). To
compute the consumption IRF (for example), we first have to define expected aggregate consumption at
time t, C̄(t; ĝ0, r0), as a function of the initial state of the economy:

C̄(t; ĝ0, r0) :=
∫∫∫

E [C (rt, Wt, m∗t , Yt) |r0 = r, W0 = W, m∗0 = m∗, Y0 = Y] ĝ0 (W, m∗, Y) dWdm∗dY

In the above, C (rt, Wt, m∗t , Yt) is the consumption function for an optimizing household with liquid
savings Wt, mortgage coupon m∗t , income level Yt, when the current short term rate is rt (and the
corresponding market mortgage rate is m(rt)). The consumption IRF to a 100 bps decline in rates is then
simply defined as:

IRF1%
C (t; ĝ0, r0) :=

C̄(t; ĝ0, r0 − 1%)

C̄(t; ĝ0, r0)
− 1

We express consumption IRFs as semi-elasticities, and compute average mortgage coupon and average
prepayment IRFs in absolute terms:

IRF1%
m∗ (t; ĝ0, r0) := m̄∗(t; ĝ0, r0 − 1%)− m̄∗(t; ĝ0, r0).

A.3.6 Numerical Implementation

We compute the equilibrium of the model numerically by determining the value function V at N :=
nw × nr × nr × ny discrete points of the state space. We use a standard finite difference scheme with
upwinding for solving our PDE – in other words, we use a forward difference for approximating the
first partial derivative of V in a given direction whenever the drift in this direction is positive, and a
backward difference otherwise. The upwinding strategy ensures that our finite difference scheme is
monotone. Since the HJB includes an optimal control, we solve the value function iteratively using a
false transient (aka an artifical time-derivative), and at each iteration update the consumption policy
using the value function and its derivatives according to equation (A2). Defining ~V(i) as the vector of
values of the value function V at each point of our discretization grid at iteration i, our numerical scheme
leads us to solve successive linear equation systems of the form[

(1 + δ∆t)I − ∆t M(i)
]
~V(i+1) = ~V(i) + ∆t~Φ(i),

where ∆t > 0 is the time-step of our false transient algorithm, I is the identity matrix (dimension N),
M(i) is an N × N square matrix, ~Φ(i) is an N dimensional vector with elements {u (Ck)}k≤N , and ~V(i+1)

is the unknown value vector. The N× N matrix M(i) is the discrete state counterpart to the infinitesimal
operator for the dynamic system (r, S). It has the interpretation of an "intensity" matrix: its diagonal
elements are all negative, its off-diagonal elements are all positive, and its row-sums are all equal to
zero.

Our algorithm iterates until the point where the artificial time derivative of our false transient is close
to zero. Note that the matrix M(i) then converges to a matrix M at that point. The ergodic distribution of
our economic model is then computed by focusing on the implied transition intensity matrix M, and by
finding the column vector π that solves π′M = 0 — in other words, the left-eigenvector of M, associated
with the eigen-value 0, that verifies ∑N

k=1 πk = 1.
Finally, in order to compute impulse response functions, we use the discrete state counterpart of

equation (A3) in order to compute the density of our economic system at time t, given initial conditions.
Starting from a discretized density of our economic system ~g0 at time zero, we compute ~gt be iteratively
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solving the linear system

~gt+1 −~gt

∆t
= MT~gt+1,

where MT represents the transpose of M. This allows us to compute statistics of the economic system
at time t without relying on Monte-Carlo simulations, but instead by leveraging our value function
solution’s method.

A.3.7 Caballero-Engel in Continuous Time

Let m∗it be the mortgage coupon of household i at time t, and let mt be the market mortgage rate. Let
ft(m∗) be the density of mortgage coupons in the economy (and Ft(m∗) its CDF). Let us assume that
prepayments are purely driven by a hazard function h(m∗ −mt). In our model, this function is equal to
h(m∗ −m) = ν + χI{m∗−m>0}. The time-t average (instantaneous) refinancing intensity is equal to

Ei [ρit] :=
∫

h(m∗ −mt) ft(m∗)dm∗ = ν + χ (1− Ft(mt))

1 − Ft(mt) is exactly ( f rac > 0)t, meaning that our benchmark model-implied prepayment rates are
purely driven by this moment of the cross-sectional distribution of mortgage coupons. The average
coupon rate m̄∗t can be computed as follows:

m̄∗t := Ei [m∗it] =
∫

m∗ ft(m∗)dm∗

We also know that the density ft evolves as follows, between t and t + dt, for any m∗ 6= mt:

ft+dt(m∗) ≈ (1− h (m∗ −mt) dt) ft(m∗)

Thus, we have:

m̄∗t+dt =
∫

m∗ [1− h (m∗ −mt) dt] ft(m∗)dm∗ + mt

∫
h (m∗ −mt) ft(m∗)dm∗dt

The first term stems from mortgages that have not been refinanced between t and t + dt, whereas the
second term stems from the new mortgages being refinanced, and which are contractually setting their
coupon at mt. In other words, we have:

dm̄∗t := m̄∗t+dt − m̄∗t =
∫

(mt −m∗) h (m∗ −mt) ft(m∗)dm∗dt

Using our specialized hazard function, we obtain:

dm̄∗t
dt

= ν (mt − m̄∗t ) + χ (mt −Ei [m∗it|m∗it > mt]) (1− Ft(mt)) (A4)

Let us consider a small change in rt and its impact on dm̄∗t
dt . This is essentially the (time-slope) of the IRF

w.r.t. to a small change in the interest rate:

∂

∂rt

(
dm̄∗

dt

)
= m′ (rt) [ν + χ [1− Ft (m (rt))]]− χ

(
∂

∂rt
Ei [m∗it|m∗it > m (rt)]

)
[1− Ft (m (rt))]

+ χ (Ei [m∗it|m∗it > m (rt)] + m (rt)) ft (m (rt))m′ (rt)
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Note that

Ei [m∗it|m∗it > m (rt)] =

∫ ∞
m(rt)

m∗ ft (m∗) dm∗

1− Ft (m (rt))

so that

∂Ei [m∗it|m∗it > m (rt)]

∂rt
=
−m (rt) ft (m (rt))m′ (rt)

1− Ft (m (rt))
−

∫ ∞
m(rt)

m∗ ft (m∗) dm∗

[1− Ft (m (rt))]
2 (−) ft (m (rt))m′ (rt)

= (Ei [m∗it|m∗it > m (rt)]−m (rt))
ft (m (rt))m′ (rt)

1− Ft (m (rt))

Plugging in, we are left with

∂

∂rt

(
dm̄∗

dt

)
= m′ (rt) [ν + χ [1− Ft (m (rt))]] (A5)

A.3.8 Analytic Characterization of Consumption Semi-Elasticity

We focus on a representative household with preferences

U :=
∫ +∞

0
e−δt c1−γ

t
1− γ

dt

We are in a complete markets partial equilibrium environment, in which a household is endowed with
constant income ȳ, and at time zero, savings w. The household budget constraint is∫ +∞

0
e−
∫ t

0 rsdsctdt =
∫ +∞

0
e−
∫ t

0 rsdsȳdt + w

We are interested in computing the household’s consumption response to a shock to interest rates, in the
neighborhood of a steady-state. In this steady-state, we assume that short rates are constant and equal
to δ. The household’ savings are invested in a bank account that earns the risk-free rate rt.

A.3.8.1 No Pre-payable Mortgage Debt

We first analyze the consumption semi-elasticity to rates in the absence of mortgage debt. We focus on
a small mean-reverting shock to the nominal rate, such that

rt = δ + εt dεt = −ηrεtdt

We interpret this as a shock to real rates, under the assumption that prices in this economy are perfectly
sticky. Asymptotically, the short rate converges back to the steady state δ. The persistence of the
monetary shock is parametrized via ηr. Define the value function V(w, ε; ȳ) as:

V(w, ε; ȳ) : = max
c

∫ +∞

0
e−δt c1−γ

t
1− γ

dt

s.t. dwt = [(δ + εt)wt + ȳ− ct] dt
dεt = −ηrεtdt

(w0, ε0) = (w, ε)
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The value function V satisfies the following HJB equation

δV = max
c

c1−γ

1− γ
+ [(δ + ε)w + ȳ− c]Vw − ηrεVε (A6)

Optimal consumption satisfies c−γ = Vw. We posit the following Taylor expansion for V and optimal
consumption c

V(w, ε; ȳ) = V0(w; ȳ) + εV1(w; ȳ) + o(ε)
c(w, ε; ȳ) = c0(w; ȳ) + εc1(w; ȳ) + o(ε)

The asymptotic expansion of the household’s consumption optimality equation leads to

c−γ
0 = V ′0

−γ
c1

c0
=

V ′1
V ′0

The terms of order zero in our asymptotic expansion must satisfy

c0(w; ȳ) = δw + ȳ

V0(w; ȳ) =
1
δ

(δw + ȳ)1−γ

1− γ

In other words, consumption must be equal to permanent income, and the value function is simply
equal to the net present value of the constant flow utilities over consumption. The HJB equation (A6)
allows us to derive a differential equation for the first order term V1

δV1 = c−γ
0 c1 + (w− c1)V ′0 + [δw + ȳ− c0]V ′1 − ηrV1

We use the optimality condition c−γ
0 = V ′0 and c0 = δw + ȳ to simplify and obtain

V1 (w; ȳ) =
wV ′0 (w; ȳ)

ηr + δ
=

w (δw + ȳ)−γ

ηr + δ

c1 (w; ȳ)
c0 (w; ȳ)

=
−1

ηr + δ

[
1
γ
− δw

c0 (w; ȳ)

]
The fraction c1/c0 is the semi-elasticity of consumption to a small shock to interest rates. Our result is
consistent with Kaplan et al. (2018): the direct, partial equilibrium, effect of a small interest rate shock
onto consumption is higher if (a) the rate of time preference is small, (b) the persistence of the monetary
policy shock is high, and (c) the inter-temporal elasticity of substitution is high. The consumption
response is slightly muted by the presence of positive savings (for reasonable values of the asset-to-
income ratio).

A.3.8.2 Pre-payable Mortgage Debt

Now imagine that parts of the household’s financial position is a fixed-rate mortgage liability, with a
coupon that can be refinanced at Poisson arrival times (intensity χc). We denote mt the mortgage market
rate at time t, and rt the short term rate at time t. We assume that

rt = δ + εt mt = δ + πεt dεt = −ηrεtdt
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The parameter π > 0 is the pass-through, from the short rate to the mortgage rate. We are assuming that
the time-zero mortgage coupon of the household is δ, equal to the long run short (and mortgage) rate.
We continue to consider small shocks to the interest rate. If the initial interest rate shock is positive, the
mortgage market interest rate jumps up on impact, the household will never use his option to refinance
(when given the chance to do so), and thus the consumption response of households to a positive
interest rate shock is identical to the response computed in Section A.3.8.1, where the permanent income
ȳ + δ(w− F) is adjusted to reflect the presence of mortgage debt.

If the initial interest rate shock is negative, the household will want to refinance whenever he has
the opportunity to do so, and will do so only once, since mortgage rates are monotone increasing,
converging back to their steady state δ. Let J be the household value function before refinancing, which
satisfies

(δ + χc) J (w, ε) = max
c

c1−γ

1− γ
+ [(δ + ε)w + ȳ− δF− c] Jw (w, ε)− ηrεJε (w, ε) + χcV (w, ε; ȳ− (δ + πε)F)

The last term of this HJB equation relates to refinancing, following which the household value function is
equal to the function V computed in Section A.3.8.1. Optimal consumption satisfies once again c−γ = Jw.
The zero order term of our asymptotic expansion satisfies

(δ + χc) J0 =
(J′0)

1−1/γ

1− γ
+
[
δ(w− F) + ȳ−

(
J′0
)−1/γ

]
J′0 + χcV0 (w; ȳ− δF)

The solution to this equation is J0 = V0 (w; ȳ− δF), and c0(w) = δ(w− F) + ȳ. The first order correction
term J1 satisfies

(δ + χc + ηr) J1 = c−γ
0 c1 + (w− c1)J′0 + [δw + ȳ− κF− c0] J′1 + χc

(
V1 (w; ȳ− δF)− πF

∂V0

∂ȳ
(w; ȳ− δF)

)
This can be simplified further since c0 = δ(w− F) + ȳ, and we obtain

(δ + χc + ηr) J1 = wJ′0 + χc (δ(w− F) + ȳ)−γ
(

w
ηr + δ

− πF
δ

)
Since J0 is known, the above equation allows us to pin J1. We then compute the first order correction
term for consumption c1 via

−γ
c1

c0
=

V ′1
V ′0

Plugging in and summarizing our result, denoting I{ε0<0} the indicator for whether the initial rate shock
is negative or not, we have

J0 =
1
δ

(ȳ + δ(w− F))1−γ

1− γ

c0 = ȳ + δ(w− F)

J1 =
(ȳ + δ(w− F))−γ

ηr + δ + χc

[
w + χc

(
w

ηr + δ
−

πFI{ε0<0}
δ

)]
c1

c0
=
−1

ηr + δ

[
1
γ
− δw

c0
+

(
ηr + δ

ηr + δ + χc

)
χcπFI{ε0<0}

c0

]
Those expressions allow us to explicitly see the impact of the mortgage refinancing option on the elas-
ticity of consumption to a small shock to interest rates.
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We can also characterize analytically the full impulse response of expected prepayment rates E0 [ρt]
and expected coupon rates E0 [m∗t ]− δ to the time-zero shock to short rates. Expected prepayment rates
upon a shock are simply equal to

E0 [ρt] = I{ε0<0}χce−χct

I{ε0<0} is the indicator function for whether the time-zero rate shock is positive or negative. Let us then
compute the expected change in mortgage coupon, following the rate shock. Remember that m∗t is the
mortgage coupon of the household at time t. Notice that the current mortgage rate mt satisfies

mt = δ + πε0e−ηrt

At time zero, the initial coupon is m∗0 = δ. Our simple model then allows us to compute the expected
coupon change of the household:

E0 [m∗t ]− δ =
∫ t

0
χce−χcsπε0e−ηrsds =

χcπε0

χc + ηr

(
1− e−(ηr+χc)t

)
Finally, in the case where the rate shock is negative (ε0 < 0), we can compute the change in consumption
rate occurring at the time of an actual refinancing (which can in turn be mapped to our empirical and
quantitative event studies of individual refinancing). Just before the refinancing event (assumed to occur
at time τ), the consumption rate is equal to (at the first order, i.e. excluding terms that are of order o(ε)):

cτ− = ȳ + δ (w− F)− ε

ηr + δ

[
ȳ + δ (w− F)

γ
− δw +

(
ηr + δ

ηr + δ + χc

)
χcπF

]
Just after the refinancing event, the consumption rate is equal to (at the first order, i.e. excluding terms
that are of order o(ε)):

cτ = ȳ + δ (w− F)− επF− ε

ηr + δ

[
ȳ + δ (w− F)

γ
− δw

]
In other words,

cτ − cτ− = −επF
(

ηr + δ

ηr + δ + χc

)
Since ε < 0, consumption jumps upwards following the actual refinancing event.

A.4 Life Cycle Model Details

The extension of our benchmark model that includes life-cycle elements is structured as follows. First,
all our households are home-owner households, just as in our benchmark model. Households transi-
tion stochastically between "young", "middle-age" and "old" at Poisson arrival times. We define young
households in the data as having 25-40 years of age, "middle-age" as having 40-62 years of age, and "old"
as those 62-75 years of age. Transition intensities from one age category to another are parametrized
accordingly, such that households end up staying (i) young on average 15 years, (ii) middle-age on aver-
age 22 years, and old on average 13 years. Whenever a household dies, a young household is born with
mortgage debt and assets as described below.

Thus, the (continuous time) generator matrix for the aging process is as specified in table (A-11).
We calibrate various data moments to mortgage holders in the 2001 SCF (see discussion of Figure A-

13 for details of data definitions). We calibrate labor income and retirement income as well as mortgage
debt and assets using data from the 2001 SCF. In particular, we compute that (i) young households
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“young” “middle-age” “old”
“young” -1/15 1/15 0
“middle-age” 0 -1/22 1/22
“old” 1/13 0 -1/13

Table A-11: Generator matrix for life cycle model

earn 0.946 times average income, (ii) middle-age households earn 1.117 times average income, and (iii)
old households earn 0.760 times average income. We choose average income so that ergodic average
household income is equal to $58,000, which corresponds to the ergodic average household income in
our benchmark model. We assume that young and middle-age households face labor income risk, with
log income that follows the continuous-time counterpart to an AR(1) process, where the speed of mean
reversion and the local volatility are calibrated to match those estimated by Floden and Linde (2001). Old
households are assumed to have constant retirement income. Young households are borne with assets of
$25,000 to match mean assets for the young age group in SCF and we also calibrate household’s relative
mortgage balance again using data from the 2001 SCF. We estimate that (i) young households have 1.115
times average mortgage debt, (ii) middle-age households have 1.005 times average mortgage debt, and
(iii) old households have 0.652 times average mortgage debt. We pick the average level of mortgage debt
around which these relatives values are chosen so that the ergodic average mortgage debt outstanding
is equal to $150,000 (corresponding to the fixed mortgage balance in our benchmark model). When a
household transitions from one age category to another, that household’s mortgage balance declines by
the appropriate quantity; in each age category, households pay a per-annum principal amount on their
mortgage such that the expected principal repayments made in that age category equals the expected
notional reduction at the time of transition into an older age group. Our model thus matches broad life-
cycle patterns of mortgage debt and income patterns, by construction. The age-specific relative income
and mortgage balances are summarized in table (A-12).

relative relative
income mortgage balance

“young” 0.946 1.115
“middle-age” 1.117 1.005
“old” 0.760 0.652

Table A-12: Relative income and mortgage debt by age group

Old households also have a standard bequest motive bW1−γ/(1− γ), with parameter b = 1, as in
Cocco, Gomes and Maenhout (2005). In Figure A-13 we show that in addition to matching targeted
moments for income and mortgage debt, this model also does a good job of matching untargeted life-
cycle profiles of consumption and savings.

A.5 Additional Figures and Tables

Figure A-11 shows that the time-series predictions of the pure Calvo model are nearly identical to the
hybrid model fit to more closely match the micro prepayment hazard. This is because the prepayment
hazard for the Calvo model mostly misses the data for small gaps, and refinancing from a small gap to
zero has little effect on a household’s mortgage coupon.
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Figure A-11: Hybrid Menu Cost+Inattention Model vs. Inattention Model: Time-Series Fit

(a): Distribution of Gaps
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Figure A-12 shows the fit of our baseline Calvo model calibration in Section 6.5.2 to various observ-
able consumption and wealth moments. Panel (a) compares our model implications for the distribution
of consumption and wealth, as measured by Lorenz curves. We measure consumption using Consumer
Expenditure Survey data from 1988-2018 for homeowners with complete earnings records, weighting
spending in the calculation of Lorenz curves by household sampling weights. We measure wealth using
2001 SCF data, and we define liquid wealth in the data as cash, checking accounts, savings accounts,
money market mutual funds and directly held stocks and bonds. Panel (b) compares our MPCs to esti-
mates in Lewis et al. (2020). We normalize by the mean MPC and compute the 10th, 25th, 50th, 75th and
90th percentile and compare this to the same object from Lewis et al. (2020) Figure 1.

Figure A-12: Baseline Model Fit to Consumption and Wealth Data

(a): Consumption and Wealth Lorenz Curves
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Figure A-13 shows the fit of our lifecycle model in Section 9 to various data moments. We define
young homeowners as those 25-40, middle aged as those 40-62, and old households as those 62-75. We
compute income, savings and mortgage debt in the 2001 SCF data. Since our model has no home-
ownership decision and focuses on refinancing, we restrict our analysis to homeowners with non-zero
mortgage debt. We define income as labor earnings for the young and middle aged and additionally
include broader non-labor income for old households. We define savings as total non-housing wealth
since these lifecycle patterns are more straightforward to interpret as lifecycle savings, since they do not
confound savings decisions with portfolio effects driven by e.g. the tax treatment and withdrawal rules
on retirement accounts. Consumption is measured as total consumption in the consumer expenditure
survey using households from 1988-2018. We keep only young and middle aged households with non-
missing earnings records but do not impose this restriction on old households. The model fits income
and mortgage debt exactly, by construction, while consumption and savings are untargeted.
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Figure A-13: Life-cycle Model Fit
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Figure A-14 shows the dynamics of the full IRFs for the regime-shift experiments in Section 7.5. We
consider both a 100bps and “max” rate decline. We illustrated the IRF to both the 100bps and “max”
shock for the baseline economy in Figure 11. Analogously, Figure A-14 shows the impulse response to
both the 100bps and the “max” shock in the regime shift economies, noting that the regime shift occurs in
period 0. The horizontal dashed red lines in Figure A-14 (which are identical to those in Figure 11) show
the peak coupon response to the 100bps and the “max” shock in the “baseline” economy respectively,
in order to help comparing coupon responses in the regime shift economies to the “baseline” economy
without regime shift. The date at which the impulse starts indicates how far after the regime shift the
monetary shock occurs. For example, the blue line in panel (a) shows the effect of cutting short rates by
100bps one year after the interest rate regime shifts up, while the blue line in panel (b) shows the effect
of cutting short rates by 100bps one year after the interest rate regime shifts down.

There are a number of takeaways from Figure A-14. First, looking at 100bps responses on impact in
black as compared to the baseline peak responses in red, we can see that 100bps short rate cuts initially
have smaller effects on coupons in the “Rate-Shift-Up” economy than in the “Rate-Shift-Down” economy.
This arises exactly from the effects emphasized in the previous experiments: when rates rise, ( f rac > 0)
decreases and this reduces the effects of a given change in short rates. Moreover, as time passes since the
regime shift, 100bps rate cuts become more powerful in the “Rate-Shift-Up” economy and less powerful
in the “Rate-Shift-Down” economy.

Second, the maximum stimulus power (given by cutting short rates to zero) increases in the “Rate-
Shift-Up” economy and decreases in the “Rate-Shift-Down” economy. A higher average level of interest
rates naturally results in a larger max rate cut and resulting response. More interestingly, the difference
between maximum stimulus power in the “Rate-Shift-Down” and “Rate-Shift-Up” economy grows with
the time since the regime shift (e.g. the green lines in Panel (c) and (d) differ more than the black lines).
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Figure A-14: Regime Shift: Average Coupon m∗ to 100bps & Max decline in r

(a): Rate-Shift-Up: 100bps
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(b): Rate-Shift-Down: 100bps
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(c): Rate-Shift-Up: Max
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(d): Rate-Shift-Down: Max

0 5 10 15

Year

-80 bp

-70 bp

-60 bp

-50 bp

-40 bp

-30 bp

-20 bp

-10 bp

0 bp

 A
v
e

ra
g

e
 O

u
ts

ta
n

d
in

g
 C

o
u

p
o

n

30



Figure A-15: Robustness of Consumption IRFs to Including Cashout Refi
(a): baseline vs. secular decline (b): past high vs. past low rates

Figure A-16: Robustness of Consumption IRFs to Life-Cycle
(a): baseline vs. secular decline (b): past high vs. past low rates
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Figure A-17: Robustness of Consumption IRFs to Hybrid Frictions
(a): baseline vs. secular decline (b): past high vs. past low rates
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Figure A-18: Robustness of Consumption IRFs to Interest Rate Persistence

(a): Half-life 0.66× h (b): Half-life 1.33× h

(c): Half-life 0.66× h (d): Half-life 1.33× h
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