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A Proof of Binary 2SLS Decomposition

This appendix section derives the binary two-stage least squares (2SLS) decomposition in equation
(2) of the main text, showing that binary 2SLS estimates a weighted average of local average
treatment effects along the 2←0 (2-year entry vs. no college) and 2←4 (2-year entry vs. 4-year
entry) complier margins.1 Recall the 2SLS specification:

Y = β0 + β2D2 + ε

D2 = α0 + α2Z2 + η,

where Y is a student outcome, D2 is an indicator for 2-year college entry, and Z2 is an exogenous
and excludable binary instrument that induces students into 2-year entry from the alternative
treatments of no college (D0) and 4-year entry (D4). In this system, β2 is the familiar Wald (1940)
estimand:

β2 =
E[Y |Z2 = 1]− E[Y |Z2 = 0]

E[D2|Z2 = 1]− E[D2|Z2 = 0]
.

Decompose E[Y |Z2 = 1] in the numerator using the fact that Y = Y0D0 + Y2D2 + Y4D4, where Yj
is the potential outcome associated with treatment j ∈ {0, 2, 4}:

E[Y |Z2 = 1] = E[Y0D0 + Y2D2 + Y4D4|Z2 = 1]

= E[Y0|D0 = 1, Z2 = 1]Pr(D0 = 1|Z2 = 1)

+ E[Y2|D2 = 1, Z2 = 1]Pr(D2 = 1|Z2 = 1)

+ E[Y4|D4 = 1, Z2 = 1]Pr(D4 = 1|Z2 = 1).

Letting D(z2) ∈ {0, 2, 4} denote the potential choice an individual would make if exogenously
assigned to Z2 = z2 ∈ {0, 1}, by instrument independence and exclusion this becomes

E[Y |Z2 = 1] = E[Y0|D(1) = 0]Pr(D(1) = 0)

+ E[Y2|D(1) = 2]Pr(D(1) = 2)

+ E[Y4|D(1) = 4]Pr(D(1) = 4).

∗University of Chicago Booth School of Business and NBER (email: jack.mountjoy@chicagobooth.edu).
1Heckman and Urzua (2010), Kline and Walters (2016), and Hull (2018) provide related derivations, as do Angrist

and Imbens (1995) for the case of ordered multivalued treatments.
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The monotonicity assumption that Z2 induces students into D2 from D0 and D4 permits the
following five complier types: {D(0) = 0, D(1) = 0}, {D(0) = 0, D(1) = 2}, {D(0) = 2, D(1) = 2},
{D(0) = 4, D(1) = 4}, and {D(0) = 4, D(1) = 2}. Hence we can further decompose:

E[Y |Z2 = 1] = E[Y0|D(0) = 0, D(1) = 0]Pr(D(0) = 0, D(1) = 0)

+ E[Y2|D(0) = 0, D(1) = 2]Pr(D(0) = 0, D(1) = 2)

+ E[Y2|D(0) = 2, D(1) = 2]Pr(D(0) = 2, D(1) = 2)

+ E[Y2|D(0) = 4, D(1) = 2]Pr(D(0) = 4, D(1) = 2)

+ E[Y4|D(0) = 4, D(1) = 4]Pr(D(0) = 4, D(1) = 4).

These permitted complier types also decompose E[Y |Z2 = 0] into

E[Y |Z2 = 0] = E[Y0D0|Z2 = 0] + E[Y2D2|Z2 = 0] + E[Y4D4|Z2 = 0]

= E[Y0|D0 = 1, Z2 = 0]Pr(D0 = 1|Z2 = 0)

+ E[Y2|D2 = 1, Z2 = 0]Pr(D2 = 1|Z2 = 0)

+ E[Y4|D4 = 1, Z2 = 0]Pr(D4 = 1|Z2 = 0)

= E[Y0|D(0) = 0, D(1) = 0]Pr(D(0) = 0, D(1) = 0)

+ E[Y0|D(0) = 0, D(1) = 2]Pr(D(0) = 0, D(1) = 2)

+ E[Y2|D(0) = 2, D(1) = 2]Pr(D(0) = 2, D(1) = 2)

+ E[Y4|D(0) = 4, D(1) = 4]Pr(D(0) = 4, D(1) = 4)

+ E[Y4|D(0) = 4, D(1) = 2]Pr(D(0) = 4, D(1) = 2).

Subtracting E[Y |Z2 = 1]−E[Y |Z2 = 0] eliminates the always-taker and never-taker groups, leaving
only the instrument compliers:

E[Y |Z2 = 1]− E[Y |Z2 = 0] = E[Y2|D(0) = 0, D(1) = 2]Pr(D(0) = 0, D(1) = 2)

− E[Y0|D(0) = 0, D(1) = 2]Pr(D(0) = 0, D(1) = 2)

+ E[Y2|D(0) = 4, D(1) = 2]Pr(D(0) = 4, D(1) = 2)

− E[Y4|D(0) = 4, D(1) = 2]Pr(D(0) = 4, D(1) = 2)

= E[Y2 − Y0|D(0) = 0, D(1) = 2]Pr(D(0) = 0, D(1) = 2)

+ E[Y2 − Y4|D(0) = 4, D(1) = 2]Pr(D(0) = 4, D(1) = 2).

To identify the two complier probabilities Pr(D(0) = 0, D(1) = 2) and Pr(D(0) = 4, D(1) = 2),
recall from above that independence and monotonicity of the instrument imply

Pr(D0|Z2 = 0) = Pr(D(0) = 0) = Pr(D(0) = 0, D(1) = 0) + Pr(D(0) = 0, D(1) = 2)

Pr(D0|Z2 = 1) = Pr(D(1) = 0) = Pr(D(0) = 0, D(1) = 0)

=⇒ Pr(D0|Z2 = 0)− Pr(D0|Z2 = 1) = Pr(D(0) = 0, D(1) = 2)

Pr(D4|Z2 = 0) = Pr(D(0) = 4) = Pr(D(0) = 4, D(1) = 4) + Pr(D(0) = 4, D(1) = 2)

Pr(D4|Z2 = 1) = Pr(D(1) = 4) = Pr(D(0) = 4, D(1) = 4)

=⇒ Pr(D4|Z2 = 0)− Pr(D4|Z2 = 1) = Pr(D(0) = 4, D(1) = 2).

This yields

E[Y |Z2 = 1]− E[Y |Z2 = 0] = E[Y2 − Y0|D(0) = 0, D(1) = 2](E[D0|Z2 = 0]− E[D0|Z2 = 1])

+ E[Y2 − Y4|D(0) = 4, D(1) = 2](E[D4|Z2 = 0]− E[D4|Z2 = 1]),
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and plugging this back into the Wald expression yields the result:

β2 =
E[Y |Z2 = 1]− E[Y |Z2 = 0]

E[D2|Z2 = 1]− E[D2|Z2 = 0]

=
E[Y2 − Y0|D(0) = 0, D(1) = 2](E[D0|Z2 = 0]− E[D0|Z2 = 1])

E[D2|Z2 = 1]− E[D2|Z2 = 0]

+
E[Y2 − Y4|D(0) = 4, D(1) = 2](E[D4|Z2 = 0]− E[D4|Z2 = 1])

E[D2|Z2 = 1]− E[D2|Z2 = 0]

= ωE[Y2 − Y0|D(0) = 0, D(1) = 2] + (1− ω)E[Y2 − Y4|D(0) = 4, D(1) = 2]

= ωLATE2←0 + (1− ω)LATE2←4,

where the weights

ω ≡ −E[D0|Z2 = 1]− E[D0|Z2 = 0]

E[D2|Z2 = 1]− E[D2|Z2 = 0]
, (1− ω) = −E[D4|Z2 = 1]− E[D4|Z2 = 0]

E[D2|Z2 = 1]− E[D2|Z2 = 0]

result from the fact that D0 +D2 +D4 = 1.

B What Does Multivariate 2SLS Identify?

This appendix section derives and decomposes the multivariate two-stage least squares (2SLS)
estimands in equation (3) of the main text under Assumptions IE, UPM, and CC.2 For efficient
notation, write this specification as

Y = γ + β0D0 + β4D4 + ε

E[D0|Z] = α0
0 + α2

0Z2 + α4
0Z4

E[D4|Z] = α0
4 + α2

4Z2 + α4
4Z4.

D2 = 1 is the omitted treatment case in the outcome equation, making −β0 comparable to MTE2←0

and −β4 comparable to MTE2←4. Z2 and Z4 are continuous, and the entire specification is local
to a given evaluation point (z2, z4) such that the linear first stages are arbitrarily close to exact for
small partial shifts in Z2 and Z4. Plug these first stage conditional expectations into the reduced
form:

E[Y |Z] = γ + β0(α
0
0 + α2

0Z2 + α4
0Z4) + β4(α

0
4 + α2

4Z2 + α4
4Z4) + E[ε|Z]

= γ + β0α
0
0 + β4α

0
4︸ ︷︷ ︸

≡α0
y

+ (β0α
2
0 + β4α

2
4)︸ ︷︷ ︸

≡α2
y

Z2 + (β0α
4
0 + β4α

4
4)︸ ︷︷ ︸

≡α4
y

Z4

= α0
y + α2

yZ2 + α4
yZ4

where E[ε|Z] = 0 by Assumption IE. Note that(
α2
y

α4
y

)
=

(
α2
0 α2

4

α4
0 α4

4

)
×
(
β0
β4

)
,

2See Kirkeboen, Leuven and Mogstad (2016) for a related derivation involving discrete instruments, a less re-
strictive monotonicity condition, and no comparable compliers assumption, which yields more complicated estimands
due to additional margins of instrument compliance. See also Kline and Walters (2016) and Hull (2018) for related
derivations involving one binary instrument interacted with a stratifying covariate.
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so we can solve for β0 and β4 as(
β0
β4

)
=

(
α2
0 α2

4

α4
0 α4

4

)−1
×
(
α2
y

α4
y

)
=

1

α2
0α

4
4 − α2

4α
4
0

(
α4
4 −α2

4

−α4
0 α2

0

)
×
(
α2
y

α4
y

)

β0 =
α4
4α

2
y − α2

4α
4
y

α2
0α

4
4 − α2

4α
4
0

, β4 =
α2
0α

4
y − α4

0α
2
y

α2
0α

4
4 − α2

4α
4
0

.

Using the complier mean potential outcome identification results of Section IIID, we can decompose
the reduced form w.r.t. Z2 into

α2
y =

∂E[Y |Z]

∂Z2
=
∂E[Y D0|Z]

∂Z2
+
∂E[Y D2|Z]

∂Z2
+
∂E[Y D4|Z]

∂Z2

= E[Y0|2–0]
∂E[D0|Z]

∂Z2
+ E[Y2|2–0]

(
−∂E[D0|Z]

∂Z2

)
+ E[Y2|2–4]

(
−∂E[D4|Z]

∂Z2

)
+ E[Y4|2–4]

∂E[D4|Z]

∂Z2

= −∂E[D0|Z]

∂Z2
(E[Y2|2–0]− E[Y0|2–0])− ∂E[D4|Z]

∂Z2
(E[Y2|2–4]− E[Y4|2–4])

= −α2
0MTE2←0 − α2

4MTE2←4

where E[Y0|2–0], for example, is shorthand for

lim
z′2↑z2

E[Y0|D(z′2, z4) = 2, D(z2, z4) = 0] = E[Y0|Marginal 2–0 complier w.r.t. Z2 at (z2, z4)],

and dependence on the local evaluation point (z2, z4) is suppressed in the notation of each element.
Likewise with respect to Z4, we have

α4
y =

∂E[Y |Z]

∂Z4
=
∂E[Y D0|Z]

∂Z4
+
∂E[Y D2|Z]

∂Z4
+
∂E[Y D4|Z]

∂Z4

= E[Y0|4–0]
∂E[D0|Z]

∂Z4
+ E[Y2|2–4 w.r.t.Z4]

∂E[D2|Z]

∂Z4

+ E[Y4|2–4 w.r.t. Z4]

(
−∂E[D2|Z]

∂Z4

)
+ E[Y4|4–0]

(
−∂E[D0|Z]

∂Z4

)
where E[Y0|4–0], for example, is shorthand for

lim
z′4↑z4

E[Y0|D(z2, z
′
4) = 4, D(z2, z4) = 0] = E[Y0|Marginal 4–0 complier w.r.t. Z4 at (z2, z4)].

By Assumption CC, we can equate E[Y2|2–4 w.r.t. Z4] = E[Y2|2–4 w.r.t. Z2] at a given evalua-
tion point and thus write this mean complier potential outcome in shorthand as E[Y2|2–4]. As-
sumption CC in the main text is silent about the relationship between E[Y4|2–4 w.r.t. Z4] and
E[Y4|2–4 w.r.t. Z2], however, since no restrictions are needed on these Y4 potential outcomes to
secure identification of the desired treatment effects in the separate identification approach of this
paper. To simplify the 2SLS decomposition, however, let us make a slightly stronger comparable
compliers assumption and equate these mean Y4 potential outcomes across 2–4 compliers w.r.t. Z2

vs. Z4, as with Y2. Hence we equate E[Y4|2–4 w.r.t. Z4] = E[Y4|2–4 w.r.t. Z2] ≡ E[Y4|2–4], which
simplifies the expression for α4

y to

α4
y = −∂E[D0|Z]

∂Z4
(E[Y4|4–0]− E[Y0|4–0]) +

∂E[D2|Z]

∂Z4
(E[Y2|2–4]− E[Y4|2–4])

= −α4
0MTE4←0 − (α4

0 + α4
4)MTE2←4,
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again suppressing dependence on the local evaluation point (z2, z4) and using the fact that

∂E[D2|Z]

∂Z4
=
∂E[1−D0 −D4|Z]

∂Z4
= −∂E[D0|Z]

∂Z4
− ∂E[D4|Z]

∂Z4
= −α4

0 − α4
4.

Plugging these results into the expressions above for β0 and β4 yields:

β0 =
α4
4(−α2

0MTE2←0 − α2
4MTE2←4)− α2

4(−α4
0MTE4←0 − (α4

0 + α4
4)MTE2←4)

α2
0α

4
4 − α2

4α
4
0

= −α
2
0α

4
4MTE2←0 − α2

4α
4
0(MTE4←0 +MTE2←4)

α2
0α

4
4 − α2

4α
4
0

,

β4 =
α2
0(−α4

0MTE4←0 − (α4
0 + α4

4)MTE2←4)− α4
0(−α2

0MTE2←0 − α2
4MTE2←4)

α2
0α

4
4 − α2

4α
4
0

= −(α2
0α

4
4 − α2

4α
4
0 + α2

0α
4
0)MTE2←4 + (−α2

0α
4
0)(MTE2←0 −MTE4←0)

α2
0α

4
4 − α2

4α
4
0

.

Finally, defining the weights

θ0 ≡
α2
0α

4
4

α2
0α

4
4 − α2

4α
4
0

, θ4 ≡
α2
0α

4
4 − α2

4α
4
0 + α2

0α
4
0

α2
0α

4
4 − α2

4α
4
0

yields the main result of this appendix section:

−β0 = θ0MTE2←0 + (1− θ0)(MTE4←0 +MTE2←4)

−β4 = θ4MTE2←4 + (1− θ4)(MTE2←0 −MTE4←0).

Each local multivariate 2SLS estimand in this setting is thus a linear combination of the marginal
treatment effect of interest and a biasing term involving effects for compliers along the other two
treatment margins. In the special case of constant treatment effects across all individuals, note that
MTE4←0 +MTE2←4 = (Y4 − Y0) + (Y2 − Y4) = Y2 − Y0 and MTE2←0 −MTE4←0 = (Y2 − Y0)−
(Y4 − Y0) = Y2 − Y4, which confirms that 2SLS identifies the effects of interest in the absence of
effect heterogeneity. With heterogeneous effects, however, MTE4←0 + MTE2←4 6= MTE2←0 and
MTE2←0 −MTE4←0 6= MTE2←4 in general, since each of these treatment effects conditions on
a different complier subpopulation. Each multivariate 2SLS estimand therefore does not generally
recover a well-defined treatment effect for any well-defined complier population.

C Proofs for Equations (5), (6), (7), and (8)

This appendix section proves the mean potential outcome identification results in equations (5),
(6), (7), and (8) of the main text. Consider a decrease in Z2 from z2 to z′2 while holding Z4 fixed
at z4. By Assumption UPM, this induces 2←0 and 2←4 compliers. Changes in D0 with respect to
this shift therefore must be driven by 2←0 compliers:

Pr[D = 0|z′2, z4]− Pr[D = 0|z2, z4]
=Pr[D(z′2, z4) = 0]− Pr[D(z2, z4) = 0]

=Pr[D(z′2, z4) = 0, D(z2, z4) = 0]−
(
Pr[D(z′2, z4) = 0, D(z2, z4) = 0] + Pr[D(z′2, z4) = 2, D(z2, z4) = 0]

)
=− Pr[D(z′2, z4) = 2, D(z2, z4) = 0]

≡− Pr[2←0 complier w.r.t. (z′2, z4)← (z2, z4)]. (16)
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The first equation is due to Assumption IE: conditioning on a given instrument value is as good as
exogenously assigning that instrument value. The second equation is due to Assumption UPM: the
group of individuals who choose D(z2, z4) = 0 includes 2←0 compliers, who would switch to D = 2
in response to the reduction in Z2, as well as non-responders, who would continue to choose D = 0.
Meanwhile, the group of individuals who choose D(z′2, z4) = 0 can only include non-responders
w.r.t. (z′2, z4)← (z2, z4), since if D = 2 still is not attractive to them with a lower Z2 cost, it would
not have been more attractive at a higher Z2 cost.

To prove (5), next note that

E[Y D0|z2, z4] =E[Y0|D0 = 1, z2, z4]Pr[D0 = 1|z2, z4]
=E[Y0|D(z2, z4) = 0]Pr[D(z2, z4) = 0]

=
[
E[Y0|D(z′2, z4) = 0, D(z2, z4) = 0]Pr[D(z′2, z4) = 0|D(z2, z4) = 0]

+E[Y0|D(z′2, z4) = 2, D(z2, z4) = 0]Pr[D(z′2, z4) = 2|D(z2, z4) = 0]
]
Pr[D(z2, z4) = 0]

=E[Y0|D(z′2, z4) = 0, D(z2, z4) = 0]Pr[D(z′2, z4) = 0, D(z2, z4) = 0]

+E[Y0|D(z′2, z4) = 2, D(z2, z4) = 0]Pr[D(z′2, z4) = 2, D(z2, z4) = 0],

where the second equation is due to Assumption IE and the third equation again decomposes the
mass of individuals with D(z2, z4) = 0 into the complier groups w.r.t. (z′2, z4) ← (z2, z4) allowed
by Assumption UPM. Likewise, Assumptions IE and UPM imply

E[Y D0|z′2, z4] =E[Y0|D(z′2, z4) = 0]Pr[D(z′2, z4) = 0]

=E[Y0|D(z′2, z4) = 0, D(z2, z4) = 0]Pr[D(z′2, z4) = 0, D(z2, z4) = 0].

Hence

E[Y D0|z′2, z4]− E[Y D0|z2, z4]
=− E[Y0|D(z′2, z4) = 2, D(z2, z4) = 0]Pr[D(z′2, z4) = 2, D(z2, z4) = 0].

Dividing by (16) above yields equation (5) in the main text:3

E[Y D0|z′2, z4]− E[Y D0|z2, z4]
E[D0|z′2, z4]− E[D0|z2, z4]

= E[Y0|D(z′2, z4) = 2, D(z2, z4) = 0]

≡ E[Y0|2←0 complier w.r.t. (z′2, z4)← (z2, z4)].

3Instead of working with Y D0, one could alternatively work with selected outcomes; a rewriting of (5) yields

E[Y |D = 0, z′2, z4] = E[Y0|2←0 complier w.r.t. (z′2, z4)← (z2, z4)]− E[Y |D = 0, z′2, z4]− E[Y |D = 0, z2, z4](
E[D0|z′2, z4]− E[D0|z2, z4]

)/
E[D0|z2, z4]

.

In words, the mean selected outcome among the D = 0 treatment group at (z′2, z4) is equal to the unselected complier
potential outcome mean of interest adjusted by a selection term, which is proportional to the instrument-induced
compositional change in the observed outcome within the selected treatment group. This formulation has the flavor
of a nonparametric control function (e.g. Heckman and Robb, 1985; Blundell and Powell, 2003; Wooldridge, 2015;
Brinch, Mogstad and Wiswall, 2017; Kline and Walters, 2019), and as such suggests a simple test of selection: if the
instrument induces no compositional change in the mean selected outcome, i.e. if the selection term is zero, then the
mean complier potential outcome of interest is identified directly from the conditional mean E[Y |D = 0, z2, z4] with
no selection adjustment. Otherwise, the sign of the selection term helps inform whether the average D = 0 treatment
group member at (z′2, z4) tends to be positively or negatively selected on their potential outcome level Y0 relative to
the 2←0 compliers of interest.
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We can proceed analogously for D4:

E[Y D4|z2, z4] =E[Y4|D(z2, z4) = 4]Pr[D(z2, z4) = 4]

=
(
E[Y4|D(z′2, z4) = 4, D(z2, z4) = 4]Pr[D(z′2, z4) = 4|D(z2, z4) = 4]

+E[Y4|D(z′2, z4) = 2, D(z2, z4) = 4]Pr[D(z′2, z4) = 2|D(z2, z4) = 4]
)
Pr[D(z2, z4] = 4)

=E[Y4|D(z′2, z4) = 4, D(z2, z4) = 4]Pr[D(z′2, z4) = 4, D(z2, z4) = 4]

+E[Y4|D(z′2, z4) = 2, D(z2, z4) = 4]Pr[D(z′2, z4) = 2, D(z2, z4) = 4]

E[Y D4|z′2, z4] =E[Y4|D(z′2, z4) = 4]Pr[D(z′2, z4) = 4]

=E[Y4|D(z′2, z4) = 4, D(z2, z4) = 4]Pr[D(z′2, z4) = 4, D(z2, z4) = 4]

E[Y D4|z′2, z4]− E[Y D4|z2, z4] =− E[Y4|D(z′2, z4) = 2, D(z2, z4) = 4]Pr[D(z′2, z4) = 2, D(z2, z4) = 4]

=E[Y4|D(z′2, z4) = 2, D(z2, z4) = 4]
(
Pr[D(z′2, z4) = 4]− Pr[D(z2, z4) = 4]

)
,

which yields (6):

E[Y D4|z′2, z4]− E[Y D4|z2, z4]
E[D4|z′2, z4]− E[D4|z2, z4]

= E[Y4|D(z′2, z4) = 2, D(z2, z4) = 4]

≡ E[Y4|2←4 complier w.r.t. (z′2, z4)← (z2, z4)].

Turning to D2,

E[Y D2|z2, z4] =E[Y2|D(z2, z4) = 2]Pr[D(z2, z4) = 2]

=E[Y2|D(z′2, z4) = 2, D(z2, z4) = 2]Pr[D(z′2, z4) = 2, D(z2, z4) = 2]

E[Y D2|z′2, z4] =E[Y2|D(z′2, z4) = 2]Pr[D(z′2, z4) = 2]

=E[Y2|D(z′2, z4) = 2, D(z2, z4) = 2]Pr[D(z′2, z4) = 2, D(z2, z4) = 2]

+E[Y2|D(z′2, z4) = 2, D(z2, z4) = 0]Pr[D(z′2, z4) = 2, D(z2, z4) = 0]

+E[Y2|D(z′2, z4) = 2, D(z2, z4) = 4]Pr[D(z′2, z4) = 2, D(z2, z4) = 4],

which yields the pooled expression in (7):

E[Y D2|z′2, z4]− E[Y D2|z2, z4] =E[Y2|D(z′2, z4) = 2, D(z2, z4) = 0]Pr[D(z′2, z4) = 2, D(z2, z4) = 0]

+E[Y2|D(z′2, z4) = 2, D(z2, z4) = 4]Pr[D(z′2, z4) = 2, D(z2, z4) = 4].

Finally, we turn to Z4. From the same initial evaluation point (z2, z4), consider an increase in Z4

from z4 to z′4, while holding Z2 fixed at z2. By Assumption UPM, this induces 2←4 and 0←4
compliers. Changes in D2 with respect to this shift therefore must only involve 2←4 compliers:

E[Y D2|z2, z4] =E[Y2|D(z2, z4) = 2]Pr[D(z2, z4) = 2]

=E[Y2|D(z2, z
′
4) = 2, D(z2, z4) = 2]Pr[D(z2, z

′
4) = 2, D(z2, z4) = 2]

E[Y D2|z2, z′4] =E[Y2|D(z2, z
′
4) = 2]Pr[D(z2, z

′
4) = 2]

=E[Y2|D(z2, z
′
4) = 2, D(z2, z4) = 2]Pr[D(z2, z

′
4) = 2, D(z2, z4) = 2]

+E[Y2|D(z2, z
′
4) = 2, D(z2, z4) = 4]Pr[D(z2, z

′
4) = 2, D(z2, z4) = 4]
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E[Y D2|z2, z′4]− E[Y D2|z2, z4] =E[Y2|D(z2, z
′
4) = 2, D(z2, z4) = 4]Pr[D(z2, z

′
4) = 2, D(z2, z4) = 4]

=E[Y2|D(z2, z
′
4) = 2, D(z2, z4) = 4]

(
Pr[D(z2, z

′
4) = 2]− Pr[D(z2, z4) = 2]

)
,

which yields (8):

E[Y D2|z2, z′4]− E[Y D2|z2, z4]
E[D2|z2, z′4]− E[D2|z2, z4]

= E[Y2|D(z2, z
′
4) = 2, D(z2, z4) = 4]

≡ E[Y2|2←4 complier w.r.t. (z2, z
′
4)← (z2, z4)].

D The Index Model Is Sufficient for Assumptions UPM and CC

This appendix section shows that the index model in equation (4) of the main text satisfies the
more general Assumptions UPM and CC as a special case. Recall the choice equations from (4):

D0(z2, z4) = 1[U2 < µ2(z2), U4 < µ4(z4)]

D2(z2, z4) = 1[U2 > µ2(z2), U4 − U2 < µ4(z4)− µ2(z2)]
D4(z2, z4) = 1[U4 > µ4(z4), U4 − U2 > µ4(z4)− µ2(z2)].

D.1 Assumption UPM

To prove that the first part of Assumption UPM holds in this model, fix an arbitrary base point
(z2, z4) and consider a decrease in Z2 to z′2 < z2 while holding Z4 fixed at z4. We must show that
D0(z

′
2, z4) ≤ D0(z2, z4), D2(z

′
2, z4) ≥ D2(z2, z4), and D4(z

′
2, z4) ≤ D4(z2, z4) for all individuals,

with each inequality holding strictly for at least some individuals.
By (4), whether an individual would choose a given treatment at a given instrument value

depends entirely on her values of (U2, U4). We can therefore completely characterize the set of
individuals with D0(z2, z4) = 1 as I0(z2, z4) = {(U2, U4) : U2 < µ2(z2), U4 < µ4(z4)}, and the
set of individuals with D0(z

′
2, z4) = 1 as I0(z′2, z4) = {(U2, U4) : U2 < µ2(z

′
2), U4 < µ4(z4)}.

Since µ2(·) is strictly increasing, any individual satisfying U2 < µ2(z
′
2) also satisfies U2 < µ2(z2),

which implies I0(z′2, z4) ⊂ I0(z2, z4) and thus D0(z
′
2, z4) ≤ D0(z2, z4) for all individuals, with the

inequality holding strictly for 2←0 compliers with {(U2, U4) : U2 ∈ (µ2(z
′
2), µ2(z2)) , U4 < µ4(z4)}.

Those choosing D2(z2, z4) = 1 are I2(z2, z4) = {(U2, U4) : U2 > µ2(z2), U4 − U2 < µ4(z4) −
µ2(z2)}. Likewise I2(z′2, z4) = {(U2, U4) : U2 > µ2(z

′
2), U4 − U2 < µ4(z4) − µ2(z

′
2)}. Since

µ2(·) is strictly increasing, any individual satisfying U2 > µ2(z2) also satisfies U2 > µ2(z
′
2), and

any individual satisfying U4 − U2 < µ4(z4) − µ2(z2) also satisfies U4 − U2 < µ4(z4) − µ2(z
′
2),

which implies I2(z2, z4) ⊂ I2(z′2, z4) and thus D2(z
′
2, z4) ≥ D2(z2, z4) for all individuals, with the

inequality holding strictly for 2←0 compliers with {(U2, U4) : U2 ∈ (µ2(z
′
2), µ2(z2)) , U4 < µ4(z4)}

and 2←4 compliers with {(U2, U4) : U4 − U2 ∈ (µ4(z4)− µ2(z2), µ4(z4)− µ2(z′2)) , U4 > µ4(z4)}.
Those choosing D4(z2, z4) = 1 are I4(z2, z4) = {(U2, U4) : U4 > µ4(z4), U4 − U2 > µ4(z4) −

µ2(z2)}. Likewise I4(z′2, z4) = {(U2, U4) : U4 > µ4(z4), U4 − U2 > µ4(z4) − µ2(z
′
2)}. Since

µ2(·) is strictly increasing, any individual satisfying U4 − U2 > µ4(z4) − µ2(z′2) also satisfies U4 −
U2 > µ4(z4) − µ2(z2), which implies I4(z′2, z4) ⊂ I4(z2, z4) and thus D4(z

′
2, z4) ≤ D4(z2, z4) for

all individuals, with the inequality holding strictly for 2←4 compliers with {(U2, U4) : U4 − U2 ∈
(µ4(z4)− µ2(z2), µ4(z4)− µ2(z′2)) , U4 > µ4(z4)}.

To prove that the second part of Assumption UPM holds in this model, fix an arbitrary base
point (z2, z4) and consider an increase in Z4 to z′4 > z4 (to match the direction of the visualized
shift in Figure 4) while holding Z2 fixed at z2. We must show that D0(z2, z

′
4) ≥ D0(z2, z4),
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D2(z2, z
′
4) ≥ D2(z2, z4), and D4(z2, z

′
4) ≤ D4(z2, z4) for all individuals, with each inequality holding

strictly for at least some individuals.
Those choosing D0(z2, z

′
4) = 1 are I0(z2, z′4) = {(U2, U4) : U2 < µ2(z2), U4 < µ4(z

′
4)}. Since

µ4(·) is strictly increasing, any individual satisfying U4 < µ4(z4) also satisfies U4 < µ4(z
′
4), which

implies I0(z2, z4) ⊂ I0(z2, z′4) and thus D0(z2, z
′
4) ≥ D0(z2, z4) for all individuals, with the inequal-

ity holding strictly for 0←4 compliers with {(U2, U4) : U2 < µ2(z2), U4 ∈ (µ4(z4), µ4(z
′
4))}.

Those choosing D2(z2, z
′
4) = 1 are I2(z2, z′4) = {(U2, U4) : U2 > µ2(z2), U4 − U2 < µ4(z

′
4) −

µ2(z2)}. Since µ4(·) is strictly increasing, any individual satisfying U4 − U2 < µ4(z4) − µ2(z2)
also satisfies U4 −U2 < µ4(z

′
4)− µ2(z2), which implies I2(z2, z4) ⊂ I2(z2, z′4) and thus D2(z2, z

′
4) ≥

D2(z2, z4) for all individuals, with the inequality holding strictly for 2←4 compliers with {(U2, U4) :
U2 > µ2(z2), U4 − U2 ∈ (µ4(z4)− µ2(z2), µ4(z′4)− µ2(z2))}.

Those choosing D4(z2, z
′
4) = 1 are I4(z2, z′4) = {(U2, U4) : U4 > µ4(z

′
4), U4 − U2 > µ4(z

′
4) −

µ2(z2)}. Since µ4(·) is strictly increasing, any individual satisfying U4 > µ4(z
′
4) also satisfies U4 >

µ4(z4), and any individual satisfying U4−U2 > µ4(z
′
4)−µ2(z2) also satisfies U4−U2 > µ4(z4)−µ2(z2),

which implies I4(z2, z′4) ⊂ I4(z2, z4) and thus D4(z2, z
′
4) ≤ D4(z2, z4) for all individuals, with the

inequality holding strictly for 0←4 compliers with {(U2, U4) : U2 < µ2(z2), U4 ∈ (µ4(z4), µ4(z
′
4))}

and 2←4 compliers with {(U2, U4) : U2 > µ2(z2), U4 − U2 ∈ (µ4(z4)− µ2(z2), µ4(z′4)− µ2(z2))}.
This proves that the index model in (4) is sufficient for Assumption UPM.

D.2 Assumption CC

To prove that the index model is sufficient for Assumption CC, first consider the left side of
Assumption CC, which in the index model translates to

lim
z′2↑z2

E[Y2|D(z′2, z4) = 2, D(z2, z4) = 4] = lim
z′2↑z2

E[Y2|U4 − U2 ∈
(
µ4(z4)− µ2(z2), µ4(z4)− µ2(z′2)

)
, U4 > µ4(z4)]

= E[Y2|U4 − U2 = µ4(z4)− µ2(z2), U4 > µ4(z4)], (17)

where exact indifference with U4 − U2 = µ4(z4) − µ2(z2) is assumed to be decided in favor of
D(z2, z4) = 4. Now consider the right side of Assumption CC, which in the index model translates
to

lim
z′4↓z4

E[Y2|D(z2, z
′
4) = 2, D(z2, z4) = 4] = lim

z′4↓z4
E[Y2|U4 − U2 ∈

(
µ4(z4)− µ2(z2), µ4(z′4)− µ2(z2)

)
, U2 > µ2(z2)]

= E[Y2|U4 − U2 = µ4(z4)− µ2(z2), U2 > µ2(z2)]. (18)

The conditioning set in (17) can be written as U4 = U2 + µ4(z4)− µ2(z2) > µ4(z4), which implies
U2 > µ2(z2). Hence a verbose version of (17) is E[Y2|U4 −U2 = µ4(z4)− µ2(z2), U2 > µ2(z2), U4 >
µ4(z4)]. The conditioning set in (18) can be written as U2 = U4 − µ4(z4) + µ2(z2) > µ2(z2), which
implies U4 > µ4(z4). Hence a verbose version of (18) is E[Y2|U4 − U2 = µ4(z4) − µ2(z2), U2 >
µ2(z2), U4 > µ4(z4)]. Therefore

lim
z′2↑z2

E[Y2|D(z′2, z4) = 2, D(z2, z4) = 4] = [Y2|U4 − U2 = µ4(z4)− µ2(z2), U2 > µ2(z2), U4 > µ4(z4)]

= lim
z′4↓z4

E[Y2|D(z2, z
′
4) = 2, D(z2, z4) = 4],

i.e. the index model is sufficient for Assumption CC.
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E A Nonseparable Model Satisfying Assumptions UPM and CC

This appendix section shows that the converse of the previous appendix section does not hold: the
index model in equation (4) of the main text is not necessary for Assumptions UPM and CC. I
consider a nonseparable model that strictly nests (4) and no longer satisfies the two-dimensional
visualization in Figure 4, but still satisfies Assumptions UPM and CC.

The key generalization from the separable index model in (4) will be to allow for unobservable
individual-level heterogeneity in the cost (instrument response) functions, i.e. nonseparability. As
a useful preamble, however, note that (4) can accommodate such heterogeneity if it affects both
µ2(·) and µ4(·) with equal sign and magnitude. To see this, consider the following variation on the
index model,

I0 = 0

I2 = U2 − V µ2(Z2) (19)

I4 = U4 − V µ4(Z4),

where V > 0 is a random variable that varies unobservably across individuals. This implies the
choice equations

D0(z2, z4) = 1[U2 < V µ2(z2), U4 < V µ4(z4)]

D2(z2, z4) = 1[U2 > V µ2(z2), U4 − U2 < V µ4(z4)− V µ2(z2)]
D4(z2, z4) = 1[U4 > V µ4(z4), U4 − U2 > V µ4(z4)− V µ2(z2)].

By dividing through by V > 0, we can see that this model is isomorphic to a separable index model
given by

Ĩ0 = 0

Ĩ2 = Ũ2 − µ2(Z2)

Ĩ4 = Ũ4 − µ4(Z4),

where each tilde’d variable is its original value in (19) divided by V . Since dividing by V > 0
preserves each individual’s relative ranking of I0, I2, and I4 for every given instrument value
(z2, z4), the model in (19) is weakly separable, i.e. it can be renormalized as a separable model
yielding identical choice behavior.

What is important in strictly generalizing from (4), then, is that the unobserved heterogeneity
in instrument responses be differential across µ2(·) and µ4(·). Thus consider the following model,

I0 = 0

I2 = U2 − V2µ2(Z2)

I4 = U4 − V4µ4(Z4),

where V2 > 0 and V4 > 0 are random variables that vary unobservably across individuals. This
model nests the weakly separable case above as V2 = V4 = V , and it nests (4) as V2 = V4 = 1. Unlike
those models, however, this one does not generally admit a separable representation when V2 6= V4.
Dividing through by V4 > 0, for example, still leaves the following nonseparable representation that
we will work with for the remainder of this section, with some abuse of notation that redefines the
quantites divided by V4:

I0 = 0

I2 = U2 − V µ2(Z2) (20)

I4 = U4 − µ4(Z4).
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V ≡ V2/V4 > 0 thus captures individual-level heterogeneity in relative responsiveness to Z2

vs. Z4. That is, individuals with high values of V are relatively more sensitive to changes in Z2

than changes in Z4, compared to individuals with low values of V . This third dimension of choice
heterogeneity is shut down by weakly separable models like (4) and (19): those models allow all
individuals to respond differently to Z2 relative to Z4, since µ2(·) and µ4(·) can differ from each
other, but this relative responsiveness must be homogeneous across individuals, since µ2(·) and
µ4(·) do not differ across individuals. The nonseparable model in (20) thus strictly generalizes
those separable models by allowing for such heterogeneity.

E.1 Assumption UPM

This subsection shows that the nonseparable model in (20) still satisfies Assumption UPM. As long
as V > 0 for all individuals, the logic of the proof in Appendix D.1 still goes through, since all
arguments using the fact that µ2(·) is strictly increasing for each individual still apply to V µ2(·).
Thus we proceed with a proof with nearly identical structure to that in D.1. The choice equations
implied by (20) are

D0(z2, z4) = 1[U2 < V µ2(z2), U4 < µ4(z4)]

D2(z2, z4) = 1[U2 > V µ2(z2), U4 − U2 < µ4(z4)− V µ2(z2)]
D4(z2, z4) = 1[U4 > µ4(z4), U4 − U2 > µ4(z4)− V µ2(z2)].

To prove that the first part of Assumption UPM holds in this model, fix an arbitrary base point
(z2, z4) and consider a decrease in Z2 to z′2 < z2 while holding Z4 fixed at z4. We must show that
D0(z

′
2, z4) ≤ D0(z2, z4), D2(z

′
2, z4) ≥ D2(z2, z4), and D4(z

′
2, z4) ≤ D4(z2, z4) for all individuals,

with each inequality holding strictly for at least some individuals.
Whether an individual would choose a given treatment at a given instrument value depends

entirely on her values of (U2, U4, V ). We can therefore completely characterize the set of individuals
with D0(z2, z4) = 1 as I0(z2, z4) = {(U2, U4, V ) : U2 < V µ2(z2), U4 < µ4(z4)}, and the set of
individuals with D0(z

′
2, z4) = 1 as I0(z′2, z4) = {(U2, U4, V ) : U2 < V µ2(z

′
2), U4 < µ4(z4)}. Since

V µ2(·) is strictly increasing, any individual satisfying U2 < V µ2(z
′
2) also satisfies U2 < V µ2(z2),

which implies I0(z′2, z4) ⊂ I0(z2, z4) and thus D0(z
′
2, z4) ≤ D0(z2, z4) for all individuals, with the

inequality holding strictly for 2←0 compliers with {(U2, U4, V ) : U2 ∈ (V µ2(z
′
2), V µ2(z2)) , U4 <

µ4(z4)}.
Those choosing D2(z2, z4) = 1 are I2(z2, z4) = {(U2, U4, V ) : U2 > V µ2(z2), U4−U2 < µ4(z4)−

V µ2(z2)}. Likewise I2(z′2, z4) = {(U2, U4, V ) : U2 > V µ2(z
′
2), U4 − U2 < µ4(z4)− V µ2(z′2)}. Since

V µ2(·) is strictly increasing, any individual satisfying U2 > V µ2(z2) also satisfies U2 > V µ2(z
′
2), and

any individual satisfying U4−U2 < µ4(z4)−V µ2(z2) also satisfies U4−U2 < µ4(z4)−V µ2(z′2), which
implies I2(z2, z4) ⊂ I2(z′2, z4) and thus D2(z

′
2, z4) ≥ D2(z2, z4) for all individuals, with the inequal-

ity holding strictly for 2←0 compliers with {(U2, U4, V ) : U2 ∈ (V µ2(z
′
2), V µ2(z2)) , U4 < µ4(z4)}

and 2←4 compliers with {(U2, U4, V ) : U4 − U2 ∈ (µ4(z4)− V µ2(z2), µ4(z4)− V µ2(z′2)) , U4 >
µ4(z4)}.

Those choosing D4(z2, z4) = 1 are I4(z2, z4) = {(U2, U4, V ) : U4 > µ4(z4), U4 − U2 > µ4(z4) −
V µ2(z2)}. Likewise I4(z′2, z4) = {(U2, U4, V ) : U4 > µ4(z4), U4 − U2 > µ4(z4) − V µ2(z′2)}. Since
V µ2(·) is strictly increasing, any individual satisfying U4 − U2 > µ4(z4) − V µ2(z′2) also satisfies
U4−U2 > µ4(z4)−V µ2(z2), which implies I4(z′2, z4) ⊂ I4(z2, z4) and thus D4(z

′
2, z4) ≤ D4(z2, z4) for

all individuals, with the inequality holding strictly for 2←4 compliers with {(U2, U4, V ) : U4−U2 ∈
(µ4(z4)− V µ2(z2), µ4(z4)− V µ2(z′2)) , U4 > µ4(z4)}.

To prove that the second part of Assumption UPM holds in this model, fix an arbitrary base
point (z2, z4) and consider an increase in Z4 to z′4 > z4 (to match the direction of the visualized
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shift in Figure 4) while holding Z2 fixed at z2. We must show that D0(z2, z
′
4) ≥ D0(z2, z4),

D2(z2, z
′
4) ≥ D2(z2, z4), and D4(z2, z

′
4) ≤ D4(z2, z4) for all individuals, with each inequality holding

strictly for at least some individuals.
Those choosingD0(z2, z

′
4) = 1 are I0(z2, z′4) = {(U2, U4, V ) : U2 < V µ2(z2), U4 < µ4(z

′
4)}. Since

µ4(·) is strictly increasing, any individual satisfying U4 < µ4(z4) also satisfies U4 < µ4(z
′
4), which

implies I0(z2, z4) ⊂ I0(z2, z′4) and thus D0(z2, z
′
4) ≥ D0(z2, z4) for all individuals, with the inequal-

ity holding strictly for 0←4 compliers with {(U2, U4, V ) : U2 < V µ2(z2), U4 ∈ (µ4(z4), µ4(z
′
4))}.

Those choosing D2(z2, z
′
4) = 1 are I2(z2, z′4) = {(U2, U4, V ) : U2 > V µ2(z2), U4 − U2 <

µ4(z
′
4)− V µ2(z2)}. Since µ4(·) is strictly increasing, any individual satisfying U4 − U2 < µ4(z4)−

V µ2(z2) also satisfies U4 − U2 < µ4(z
′
4) − V µ2(z2), which implies I2(z2, z4) ⊂ I2(z2, z′4) and thus

D2(z2, z
′
4) ≥ D2(z2, z4) for all individuals, with the inequality holding strictly for 2←4 compliers

with {(U2, U4, V ) : U2 > V µ2(z2), U4 − U2 ∈ (µ4(z4)− V µ2(z2), µ4(z′4)− V µ2(z2))}.
Those choosing D4(z2, z

′
4) = 1 are I4(z2, z′4) = {(U2, U4, V ) : U4 > µ4(z

′
4), U4 − U2 >

µ4(z
′
4) − V µ2(z2)}. Since µ4(·) is strictly increasing, any individual satisfying U4 > µ4(z

′
4) also

satisfies U4 > µ4(z4), and any individual satisfying U4 − U2 > µ4(z
′
4) − V µ2(z2) also satisfies

U4 − U2 > µ4(z4)− V µ2(z2), which implies I4(z2, z′4) ⊂ I4(z2, z4) and thus D4(z2, z
′
4) ≤ D4(z2, z4)

for all individuals, with the inequality holding strictly for 0←4 compliers with {(U2, U4, V ) : U2 <
V µ2(z2), U4 ∈ (µ4(z4), µ4(z

′
4))} and 2←4 compliers with {(U2, U4, V ) : U2 > V µ2(z2), U4 − U2 ∈

(µ4(z4)− V µ2(z2), µ4(z′4)− V µ2(z2))}. This proves that the nonseparable model in (20) satisfies
Assumption UPM.

E.2 Assumption CC

To prove that the nonseparable model in (20) satisfies Assumption CC, first consider the left side
of Assumption CC, which in the nonseparable model translates to

lim
z′2↑z2

E[Y2|D(z′2, z4) = 2, D(z2, z4) = 4]

= lim
z′2↑z2

E[Y2|U4 − U2 ∈
(
µ4(z4)− V µ2(z2), µ4(z4)− V µ2(z′2)

)
, U4 > µ4(z4)]

=E[Y2|U4 − U2 = µ4(z4)− V µ2(z2), U4 > µ4(z4)], (21)

where exact indifference with U4 − U2 = µ4(z4) − V µ2(z2) is assumed to be decided in favor of
D(z2, z4) = 4. Now consider the right side of Assumption CC, which in the nonseparable model
translates to

lim
z′4↓z4

E[Y2|D(z2, z
′
4) = 2, D(z2, z4) = 4]

= lim
z′4↓z4

E[Y2|U4 − U2 ∈
(
µ4(z4)− V µ2(z2), µ4(z′4)− V µ2(z2)

)
, U2 > V µ2(z2)]

=E[Y2|U4 − U2 = µ4(z4)− V µ2(z2), U2 > V µ2(z2)]. (22)

The conditioning set in (21) can be written as U4 = U2 + µ4(z4) − V µ2(z2) > µ4(z4), which
implies U2 > V µ2(z2). Hence a verbose version of (21) is E[Y2|U4 − U2 = µ4(z4) − V µ2(z2), U2 >
V µ2(z2), U4 > µ4(z4)]. The conditioning set in (22) can be written as U2 = U4−µ4(z4)+V µ2(z2) >
V µ2(z2), which implies U4 > µ4(z4). Hence a verbose version of (22) is E[Y2|U4 − U2 = µ4(z4) −
V µ2(z2), U2 > V µ2(z2), U4 > µ4(z4)]. Therefore

lim
z′2↑z2

E[Y2|D(z′2, z4) = 2, D(z2, z4) = 4] = [Y2|U4 − U2 = µ4(z4)− V µ2(z2), U2 > V µ2(z2), U4 > µ4(z4)]

= lim
z′4↓z4

E[Y2|D(z2, z
′
4) = 2, D(z2, z4) = 4],
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i.e. the nonseparable model in (20) satisfies Assumption CC.

F A Nonseparable Model Satisfying UPM but Not CC

To show that Assumption CC does not quite come for free in the general framework of Section
IIID of the main text, consider a generalization of the nonseparable model in (20) with the same
structure,

I0 = 0

I2 = U2 − V µ2(Z2)

I4 = U4 − µ4(Z4),

but now allow the instrument response heterogeneity variable V ≥ 0 to take on the value of zero for
some positive mass of students in the population, with 0 < Pr[V = 0|U2, U4] < 1 for all (U2, U4).

F.1 Assumption UPM

Such a model still satisfies Assumption UPM. To see this, note first that for the subpopulation of
individuals with V strictly positive, the proof in E.1 goes through exactly, so they satisfy Assump-
tion UPM. For the complementary subpopulation of individuals with V = 0, their implied choice
equations are

D0(z2, z4) = D0(z4) = 1[U2 < 0, U4 < µ4(z4)]

D2(z2, z4) = D2(z4) = 1[U2 > 0, U4 − U2 < µ4(z4)]

D4(z2, z4) = D4(z4) = 1[U4 > µ4(z4), U4 − U2 > µ4(z4)].

That is, their potential treatment functions do not depend on Z2. This means they satisfy the weak
inequalities in first part of Assumption UPM by holding with equality—D0(z

′
2, z4) = D0(z2, z4),

D2(z
′
2, z4) = D2(z2, z4), and D4(z

′
2, z4) = D4(z2, z4)—but they do not contribute any compliers to

satisfy the requirement that each inequality hold strictly for at least some individuals. This does
not lead to a violation of Assumption UPM, however, since other students with V > 0 are available
to fulfill this role for all possible instrument shifts given Pr[V > 0|U2, U4] > 0 for all (U2, U4).

To prove that the second part of Assumption UPM holds for the V = 0 subpopulation, fix an
arbitrary base point (z2, z4) and consider an increase in Z4 to z′4 > z4 while holding Z2 fixed at z2.
We must show that D0(z2, z

′
4) ≥ D0(z2, z4), D2(z2, z

′
4) ≥ D2(z2, z4), and D4(z2, z

′
4) ≤ D4(z2, z4)

for all individuals with V = 0. For this subpopulation, V is fixed and does not enter the choice
equations, so whether an individual would choose a given treatment at a given instrument value
depends entirely on her values of (U2, U4).

Those choosing D0(z2, z
′
4) = 1 are I0(z2, z′4) = {(U2, U4) : U2 < 0, U4 < µ4(z

′
4)}. Since

µ4(·) is strictly increasing, any individual satisfying U4 < µ4(z4) also satisfies U4 < µ4(z
′
4), which

implies I0(z2, z4) ⊂ I0(z2, z′4) and thus D0(z2, z
′
4) ≥ D0(z2, z4) for all individuals in the V = 0

subpopulation, with the inequality holding strictly for 0←4 compliers with {(U2, U4) : U2 < 0, U4 ∈
(µ4(z4), µ4(z

′
4))}.

Those choosingD2(z2, z
′
4) = 1 are I2(z2, z′4) = {(U2, U4) : U2 > 0, U4−U2 < µ4(z

′
4)}. Since µ4(·)

is strictly increasing, any individual satisfying U4 − U2 < µ4(z4) also satisfies U4 − U2 < µ4(z
′
4),

which implies I2(z2, z4) ⊂ I2(z2, z′4) and thus D2(z2, z
′
4) ≥ D2(z2, z4) for all individuals in the

V = 0 subpopulation, with the inequality holding strictly for 2←4 compliers with {(U2, U4) : U2 >
0, U4 − U2 ∈ (µ4(z4), µ4(z

′
4))}.
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Those choosing D4(z2, z
′
4) = 1 are I4(z2, z′4) = {(U2, U4) : U4 > µ4(z

′
4), U4−U2 > µ4(z

′
4)}. Since

µ4(·) is strictly increasing, any individual satisfying U4 > µ4(z
′
4) also satisfies U4 > µ4(z4), and any

individual satisfying U4 − U2 > µ4(z
′
4) also satisfies U4 − U2 > µ4(z4), which implies I4(z2, z′4) ⊂

I4(z2, z4) and thus D4(z2, z
′
4) ≤ D4(z2, z4) for all individuals in the V = 0 subpopulation, with the

inequality holding strictly for 0←4 compliers with {(U2, U4) : U2 < 0, U4 ∈ (µ4(z4), µ4(z
′
4))} and

2←4 compliers with {(U2, U4) : U2 > 0, U4 − U2 ∈ (µ4(z4), µ4(z
′
4))}. This proves that the V = 0

subpopulation satisfies Assumption UPM.

F.2 Assumption CC

This model does not satisfy Assumption CC, however. Since individuals with V = 0 are responsive
to Z4 but not Z2, their existence can break the exact overlap of marginal 2←4 compliers w.r.t. Z2

vs. Z4 featured in the separable index model in (4) and the nonseparable model in (20). To see
this, first note that the left side of Assumption CC in this model can only involve individuals with
V > 0, since those with V = 0 are never compliers w.r.t. Z2. Thus

lim
z′2↑z2

E[Y2|D(z′2, z4) = 2, D(z2, z4) = 4]

= lim
z′2↑z2

E[Y2|V > 0, U4 − U2 ∈
(
µ4(z4)− V µ2(z2), µ4(z4)− V µ2(z′2)

)
, U4 > µ4(z4)]

=E[Y2|V > 0, U4 − U2 = µ4(z4)− V µ2(z2), U4 > µ4(z4)], (23)

where exact indifference with U4 − U2 = µ4(z4) − V µ2(z2) is assumed to be decided in favor of
D(z2, z4) = 4. Now consider the right side of Assumption CC, which does involve individuals with
V = 0,

lim
z′4↓z4

E[Y2|D(z2, z
′
4) = 2, D(z2, z4) = 4]

= lim
z′4↓z4

E[Y2|U4 − U2 ∈
(
µ4(z4)− V µ2(z2), µ4(z′4)− V µ2(z2)

)
, U2 > V µ2(z2)]

=E[Y2|U4 − U2 = µ4(z4)− V µ2(z2), U2 > V µ2(z2)],

which we can decompose as a weighted average across the subpopulations with V > 0 vs. V = 0,

E[Y2|V > 0, U4 − U2 = µ4(z4)− V µ2(z2), U2 > V µ2(z2)]Pr[V > 0|U4 − U2 = µ4(z4)− V µ2(z2), U2 > V µ2(z2)]

+E[Y2|V = 0, U4 − U2 = µ4(z4)− V µ2(z2), U2 > V µ2(z2)]Pr[V = 0|U4 − U2 = µ4(z4)− V µ2(z2), U2 > V µ2(z2)].

As in E.2, the conditioning set V > 0, U4 − U2 = µ4(z4) − V µ2(z2), U4 > µ4(z4) is equivalent to
V > 0, U4 − U2 = µ4(z4) − V µ2(z2), U2 > V µ2(z2). Putting these pieces together, the difference
between the left side and right side of Assumption CC in this model is

E[Y2|V > 0, U4 − U2 = µ4(z4)− V µ2(z2), U4 > µ4(z4)]

−E[Y2|V > 0, U4 − U2 = µ4(z4)− V µ2(z2), U2 > V µ2(z2)]
(
1− Pr[V = 0|U4 − U2 = µ4(z4)− V µ2(z2), U2 > V µ2(z2)]

)
−E[Y2|V = 0, U4 − U2 = µ4(z4)− V µ2(z2), U2 > V µ2(z2)]Pr[V = 0|U4 − U2 = µ4(z4)− V µ2(z2), U2 > V µ2(z2)],

which simplifies to{
E[Y2|V > 0, D(z2, z

′
4) = 2, D(z2, z4) = 4]− E[Y2|V = 0, D(z2, z

′
4) = 2, D(z2, z4) = 4]

}
Pr[V = 0|D(z2, z

′
4) = 2, D(z2, z4) = 4].

Thus, Assumption CC will fail to hold in this model if two conditions are both met. First, indi-
viduals with V = 0 must be among 2←4 compliers w.r.t. Z4 at (z2, z4), i.e. Pr[V = 0|D(z2, z

′
4) =

2, D(z2, z4) = 4] > 0. Second, those compliers with V = 0 must differ in their mean Y2 from their
counterparts with V > 0, i.e. E[Y2|V > 0, D(z2, z

′
4) = 2, D(z2, z4) = 4] 6= E[Y2|V = 0, D(z2, z

′
4) =

2, D(z2, z4) = 4].

14



Figure A.1: Out-of-State Enrollment and Missing Earnings among Top Scorers
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Notes: The top panel of this figure plots the share of students within each 10th grade test score percentile who
enroll in college outside of Texas using the 2008-2009 cohorts with National Student Clearinghouse college enrollment
coverage. The bottom panel plots the share of students within each test score percentile who have no Texas quarterly
earnings records over ages 28-30 using the 2000-2004 main analysis cohorts.

Figure A.2: Predicted Earnings Are Similar for Students with Observed and Missing Earnings
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Notes: This figure plots the distributions of predicted mean quarterly earnings over ages 28-30 for students with and
without observed earnings. Earnings are first projected on all covariates and instruments in Table 1 in the sample
with valid earnings, then predicted in the full sample and plotted by earnings status.
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Figure A.3: Sorting into College Enrollment Choices by Observables, 2000-2004 Analysis Cohorts
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Notes: Disadvantaged is an indicator for free or reduced price lunch eligibility in 10th grade. Neighborhood quality
and test score percentiles are grouped into 5-unit bins.
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Figure A.4: Predictive Power of 10th Grade Test Scores on Long-Run Outcomes

11
12

13
14

15
Ye

ar
s 

of
 c

om
pl

et
ed

 s
ch

oo
lin

g

0 20 40 60 80 100
Test score percentile

60
00

80
00

10
00

0
12

00
0

14
00

0
Q

ua
rte

rly
 e

ar
ni

ng
s

0 20 40 60 80 100
Test score percentile

Notes: Years of completed schooling are measured at age 28. Quarterly earnings are measured in real 2010 U.S.
dollars and averaged within person over ages 28-30.
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Table A.1: High School Graduation and Out-of-State College Enrollment

Graduate from Enroll in college
high school out-of-state

Z2: 2-year distance (miles/10) 0.0013 0.0001
(0.0012) (0.0006)

Z4: 4-year distance (miles/10) 0.0002 -0.0011
(0.0009) (0.0007)

R2 .018 .016
N 590,862 362,064

Sample Main analysis cohorts NSC cohorts
Baseline controls X X

Notes: NSC cohorts are those with National Student Clearinghouse college enrollment data. Standard errors in
parentheses are clustered at the high school campus by cohort level. High school graduation is measured cumulatively
through eight years after 10th grade. Out-of-state college enrollment is measured within two years of projected high
school graduation due to NSC data availability.
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Table A.2: Causal Effect Estimates: Time-to-Degree and Field of Study

MTE2 = ω MTE2←0 + (1− ω) MTE2←4

Net Democratiz- Democratiz- Diversion Diversion
effect ation share ation effect share effect

BA completion within:
4 years 0.046 0.657 0.041 0.343 0.055

(0.018) (0.049) (0.012) (0.049) (0.051)

5 years 0.058 0.657 0.105 0.343 -0.033
(0.032) (0.049) (0.020) (0.049) (0.076)

6 years 0.065 0.657 0.159 0.343 -0.116
(0.037) (0.049) (0.025) (0.049) (0.078)

7 years 0.083 0.657 0.206 0.343 -0.154
(0.041) (0.049) (0.030) (0.049) (0.080)

8 years 0.087 0.657 0.220 0.343 -0.167
(0.045) (0.049) (0.032) (0.049) (0.081)

9 years 0.088 0.657 0.234 0.343 -0.191
(0.045) (0.049) (0.034) (0.049) (0.081)

10 years 0.104 0.657 0.265 0.343 -0.204
(0.048) (0.049) (0.036) (0.049) (0.082)

10-year BA completion in:
STEM major 0.005 0.657 0.020 0.343 -0.024

(0.012) (0.049) (0.010) (0.049) (0.027)

Non-STEM major 0.099 0.657 0.245 0.343 -0.180
(0.042) (0.049) (0.034) (0.049) (0.076)

Notes: Locally weighted observations: 565,687. All estimates are evaluated at the mean values of the instruments.
Standard errors in parentheses are block bootstrapped at the high school campus by cohort level. Complier shares
are the same across outcomes due to common first stage equations.
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